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DYNAMICAL STABILITY OF PERCOLATION FOR SOME
INTERACTING PARTICLE SYSTEMS AND ε-MOVABILITY

BY ERIK I. BROMAN1 AND JEFFREY E. STEIF2

Chalmers University of Technology

In this paper we will investigate dynamic stability of percolation for the
stochastic Ising model and the contact process. We also introduce the no-
tion of downward and upward ε-movability which will be a key tool for our
analysis.

1. Introduction. Consider bond percolation on an infinite connected locally
finite graph G, where, for some p ∈ [0,1], each edge (bond) of G is, independently
of all others, open with probability p and closed with probability 1 − p. Write πp

for this product measure. The main questions in percolation theory (see [10]) deal
with the possible existence of infinite connected components (clusters) in the ran-
dom subgraph of G consisting of all sites and all open edges. Write C for the event
that there exists such an infinite cluster. By Kolmogorov’s 0–1 law, the probability
of C is, for fixed G and p, either 0 or 1. Since πp(C) is nondecreasing in p, there
exists a critical probability pc = pc(G) ∈ [0,1] such that

πp(C) =
{

0, for p < pc,
1, for p > pc.

At p = pc, we can have either πp(C) = 0 or πp(C) = 1, depending on G.
In [15] the authors initiated the study of dynamical percolation. In this model,

with p fixed, the edges of G switch back and forth according to independent 2
state Markov chains where 0 switches to 1 at rate p and 1 switches to 0 at rate
1 −p. In this way, if we start with distribution πp, the distribution of the system is
at all times πp . The general question studied in [15] was whether there could exist
atypical times at which the percolation structure looks different than at a fixed
time.

We record here some of the results from [15]; (i) for any graph G and for any
p < pc(G), there are no times at which percolation occurs, (ii) for any graph G

and for any p > pc(G), there are no times at which percolation does not occur,
(iii) there exist graphs which do not percolate for p = pc(G), but, nonetheless, for
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p = pc(G), there are exceptional times at which percolation occurs, (iv) there exist
graphs which percolate for p = pc(G), but, nonetheless, for p = pc(G), there are
exceptional times at which percolation does not occur, and (v) for Z

d with d ≥ 19
with p = pc(Z

d), there are no times at which percolation occurs. In addition, it
has recently been shown in [23] that, for site percolation on the triangular lattice,
for p = pc = 1/2, there are exceptional times at which percolation occurs. Given
this, a similar result would be expected for Z

2.
The point of the present paper is to initiate a study of dynamical percolation

for interacting systems where the edges or sites flip at rates which depend on the
neighbors. We point out that in a different direction such questions in continuous
space, but without interactions, related to continuum percolation have been studied
in [2].

Ising model results. Precise definitions of the following Ising model measures
and the stochastic Ising model will be given in Section 2. Fix an infinite graph G =
(S,E). Let µ+,β,h be the plus state for the Ising model with inverse temperature β

and external field h on G [this is a probability measure on {−1,1}S ]. Let �+,β,h

denote the corresponding stochastic Ising model; [this is a stationary continuous
time Markov chain on {−1,1}S with marginal distribution µ+,β,h]. Let C+ (C−)
denote the event that there exists an infinite cluster of sites with spin 1 (−1) and
let C+

t (C−
t ) denote the event that there exists an infinite cluster of sites with spin

1 (−1) at time t . It is known that the family µ+,β,h is, for fixed β , stochastically
increasing (to be defined later) in h.

THEOREM 1.1. Consider a graph G = (S,E) of bounded degree. Fix β ≥ 0
and let hc = hc(β) be defined by

hc := inf{h :µ+,β,h(C+) = 1}.
Then for all h > hc,

�+,β,h(C+
t occurs for every t) = 1

and for all h < hc,

�+,β,h(∃ t ≥ 0 :C+
t occurs) = 0.

If we modify hc to be instead

h′
c := sup{h :µ+,β,h(C−) = 1},

the same two claims hold with C+
t replaced by C−

t and with h < h′
c and h > h′

c

reversed.

This result tells us what happens in the subcritical and supercritical cases (with
respect to h with β held fixed). It is the analogue of the easier Proposition 1.1
in [15] where it is proved that if p < pc (p > pc), then, with probability 1, there is
percolation at no time (at all times).

The following easy lemma gives us information about when hc is nontrivial.
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LEMMA 1.2. Assume the graph G has bounded degree and let β be arbitrary.
Then hc > −∞. If pc(site) < 1, then hc < ∞. Similar results hold if hc is replaced
by h′

c.

The following theorems, where we restrict to Z
d , will only discuss the case

h = 0. However, this will in many cases give us information about the “critical”
case (β,hc(β)) since, in a number of situations, hc(β) = 0. For example, this is
true on all Z

d with d ≥ 2 and β sufficiently large. We also mention that while the
relationship between hc and h′

c in Theorem 1.1 might in general be complicated,
for Z

d , one easily has that hc = −h′
c; this follows from the known fact that the plus

and minus states are the same when h �= 0. When h = 0, we will abbreviate µ+,β,0

by µ+,β and �+,β,0 by �+,β . We point out that while µ+,β,h is stochastically
increasing in h for fixed β, there is no such monotonicity in β for fixed h, not even
for h = 0. Therefore, we must use a different approach in the latter case.

We first study percolation of −1’s and then percolation of 1’s. Let

βp(2) := inf

{
β :

∞∑
l=1

l3l−1e−2βl < ∞
}

= log 3

2
.

We will refer to βp(2) as the critical inverse temperature of the Peierls regime
for Z

2. The choice of βp(2) might at first look quite arbitrary, but it is exactly what
is needed to carry out a contour argument (known as Peierls argument) for Z

2. For
d ≥ 3, there is a βp(d), such that, for β larger than βp(d), a similar (although topo-
logically more complicated) argument works for Z

d . As a result of this “contour
argument,” it is well known and easy to show that, for β > βp(d), we have that

µ+,β(C−) = 0.(1)

Our next result is a dynamical version of (1) and we emphasize that this corre-
sponds to the critical case as it is easy to check that, for these β’s, hc(β) = 0.

THEOREM 1.3. For Z
d with d ≥ 2 and β > βp(d),

�+,β(∃ t ≥ 0 :C−
t occurs) = 0.

It is well known that βp(d) ≥ βc(d), the latter being the critical inverse temper-
ature for the Ising model on Z

d . For d = 2, Theorem 1.3 can be extended down
to the critical inverse temperature βc(2). First, it is known (see [5]) that on Z

2, for
all β ,

µ+,β(C−) = 0.(2)

Our dynamical analogue for β > βc is the following where we again point out
that this is also a critical case as it is easy to check that, for these β’s, we also have
hc(β) = 0.
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THEOREM 1.4. For the stochastic Ising model �+,β on Z
2 with parameter

β > βc,

�+,β(∃ t ≥ 0 :C−
t occurs) = 0.

Interestingly, (1) is not always true for β > βc(d), although, as stated, it is true
for Z

2 or β sufficiently large. In [1] it is shown that for Z
d with large d, there exists

β+ > βc(d) such that the probability in (1) is, in fact, 1 for all β < β+. Moreover,
they show that, for these β , there exists h > 0 with

µ+,β,h(C−) = 1.

For such β’s, this means that h′
c > 0 and, hence, it immediately follows from The-

orem 1.1 that

�+,β(C−
t occurs for every t) = 1.

Note that, for these values of β , the case h = 0 is a noncritical case.
We next look at percolation of 1’s under µ+,β . In the above results, we have not

discussed the case of percolation of −1’s when β ≤ βc. However, by symmetry,
this is the same as studying percolation of 1’s in this case and so we can now move
over to the study of C+.

First, it is well known that, for any graph of bounded degree, µ+,β,h �= µ−,β,h

implies that µ+,β,h(C+) = 1. (This is proved in [3] for Z
d ; this argument extends

to any graph of bounded degree.) In particular, for any graph G of bounded degree
and for β > βc(G),

µ+,β(C+) = 1.(3)

Our next result is a dynamical version of (3) for Z
d . We mention that this result

sometimes corresponds to a critical case and sometimes not. For β > βp(d) in Z
d

or β > βc(2) in Z
2, we have seen that hc = 0 and so, in these cases, this next result

covers the critical case. However, as pointed out, for d large and β just a little
higher than βc, the result in [1] gives us that hc < 0 and, hence, in this case, this
next theorem already follows from Theorem 1.1.

THEOREM 1.5. For the stochastic Ising model �+,β on Z
d with parameter

β > βc(d),

�+,β(C+
t occurs for every t) = 1.

(The proof we give actually works for any graph of bounded degree.) We men-
tion that while β > βc is a sufficient condition for (3) to hold, it is certainly not
necessary. For example, on Z

3 we have that µ+,0(C+) = 1 since µ+,0 = π1/2 and
the critical value for site percolation on Z

3 is less than 1/2. The reason βc appears
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is the connection between the Ising model and the random cluster model; βc cor-
responds to the critical value for percolation in the corresponding random cluster
model (see [13]).

We are now left with the case β ≤ βc. We will not be able to say too much since
it is not known in all cases whether one has percolation at a fixed time. We first,
however, have the following easy result for d ≥ 3. We do not prove this result since
it follows easily from the fact that the critical value for site percolation on Z

d is
less than 1/2 for d ≥ 3, as this gives easily that hc(β) < 0 for β sufficiently small
and, hence, Theorem 1.1 is applicable.

Note that the case β = 0 follows from the result in [15] mentioned above.

PROPOSITION 1.6. For d ≥ 3, there exists β1(d) > 0 such that, for all
β < β1(d), we have that

�+,β(C+
t occurs for every t) = 1.

Finally, due to work of Higuchi, we can determine what happens with β < βc

for Z
2. It is shown in [16] that, for Z

2, for all β < βc, we have that hc(β) > 0. The
following result follows from this fact and Theorem 1.1.

THEOREM 1.7. For d = 2, for all β < βc, we have that

�+,β(∃ t ≥ 0 :C+
t occurs) = 0.

We note that even though it is known that for Z
2, µ+,βc (C+) = 0, we cannot

conclude that

�+,βc (∃ t ≥ 0 :C+
t occurs) = 0,

since it is known (see [17]) that hc(βc) = 0. In contrast, based on the results in [23],
it is interesting to ask the following:

QUESTION 1.8. For the graph Z
2, is it the case that

�+,βc (∃ t ≥ 0 :C+
t occurs) = 1?

We finally mention that, interestingly, it is also known (see again [17]) that, for
β < βc, µ+,β,hc(β)(C+) = 0.

Contact process results. Precise definitions of the following items will be
given in Section 2. Fix an infinite graph G = (S,E). Consider the contact process
on G = (S,E) with parameter λ. Denote by µλ the stochastically largest invariant
measure, the so-called “upper invariant measure” (this is a probability measure on
{0,1}S ). Let �λ denote the corresponding stationary contact process (this is a sta-
tionary continuous time Markov chain on {0,1}S with marginal distribution µλ).
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If 0 < λ1 < λ2, it is well known that µλ1 is stochastically smaller than µλ2 , de-
noted by

µλ1 � µλ2

(see Section 2 for this precise definition).

THEOREM 1.9. Consider the contact process �λ on a graph G = (S,E),

with initial and stationary distribution µλ. Let λp be defined by

λp := inf{λ :µλ(C
+) = 1}.

We have that, for all λ > λp,

�λ(C+
t occurs for every t) = 1.

In order for this theorem to be nonvacuous, we need to know that λp < ∞
for at least some graph. First, the fact that there exists λ such that µλ(C

+) > 0
for T

d with d ≥ 2 follows from [12]. Here T
d is the unique infinite connected

graph without circuits and in which each site has exactly d + 1 neighbors; T
d is

commonly known as the homogenous tree of order d . Combined with a 0–1 law
which we develop, Proposition 4.2, we obtain that λp < ∞ in this case. For Z

d

with d ≥ 2 (as well as for T
d ), it is proved in [22] that, for large λ, µλ stochastically

dominates high density product measures, which immediately implies that λp < ∞
in these cases.

When we prove Theorem 1.1, we will, in fact, prove a more general theorem
which holds for a large class of systems. However, this proof will only work for
models satisfying the so-called FKG lattice condition (which we call “monotone”
in this paper). We now point out the important fact that, for λ < 2, in 1 dimension,
the upper invariant measure for the contact process, while having positive correla-
tions, is not monotone (see [20]). These terms are defined in Section 2. (One would
also believe it is never monotone whenever the measure is not δ0.) Hence, Theo-
rem 1.9 does not follow from the generalization of Theorem 1.1 which will come
later.

ε-movability. We now introduce the concepts of upward and downward
ε-movability. While we mainly introduce these as a technical tool to be used in
our main results, it turns out that they are of interest in their own right. In [4] the
concept of upward movability is studied for its own sake and is related to other
well studied concepts, such as uniform insertion tolerance.

Let S be a countable set. Take any probability measure µ on {−1,1}S and
let X be a {−1,1}S valued random variable with distribution µ. Let Z be a
{−1,1}S valued random variable with distribution π1−ε and be independent of X.
Define X(−,ε) by letting X(−,ε)(s) = min(X(s),Z(s)) for every s ∈ S, and let
µ(−,ε) denote the distribution of X(−,ε). In a similar way, define X(+,ε) by let-
ting X(+,ε)(s) = max(X(s),Z(s)) for every s ∈ S, where Z has distribution πε

and is independent of X. Denote the distribution of X(+,ε) by µ(+,ε).
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DEFINITION 1.10. Let (µ1,µ2) be a pair of probability measures on {−1,1}S,

where S is a countable set. Assume that

µ1 � µ2.

If

µ1 � µ
(−,ε)
2 ,

then we say that this pair of probability measures is downward ε-movable. If the
pair is downward ε-movable for some ε > 0, we say that the pair is downward
movable. Analogously, if

µ
(+,ε)
1 � µ2,

then we say that the pair (µ1,µ2) is upward ε-movable and that it is upward mov-
able if the pair is upward ε-movable for some ε > 0.

For probability measures on {0,1}S, we have identical definitions.
The relevance of downward (or upward) ε-movability to our dynamical per-

colation analysis will be explained in Section 5. In Section 3 we will prove
ε-movability for general monotone systems, which will eventually lead to a proof
of Theorem 1.1 (and its generalization). We now state a similar and key result for
the contact process.

THEOREM 1.11. Let G be a graph of bounded degree, 0 < λ1 < λ2 and µλ1 ,
µλ2 be the upper invariant measures for the contact process on {0,1}S with para-
meters λ1 and λ2, respectively. Then (µλ1,µλ2) is downward movable.

We finally mention how the above questions that we study fall into the context
of classical Markov process theory. Let (�,F ,P) be the probability space where a
stationary Markov process {Xt }t≥0 taking values in some state space S is defined.
Letting µ denote the distribution of Xt (for any t), consider an event A ⊆ S with
µ(A) = 1. Let At be the event that A occurs at time t . We say that A is a dy-
namically stable event if P(At ∀ t ≥ 0) = 1. In Markov process terminology, this
is equivalent to saying that Ac has capacity zero. All the questions in this paper
deal with showing, for various models and parameters, that the event that there
exists/there does not exist an infinite connected component of sites which are all
open is dynamically stable.

The rest of this paper is divided into 9 sections. In Section 2 we will give all
necessary preliminaries and precise definitions of our models. Sections 3 and 4
will deal with the concept of ε-movability. In Section 3 we develop what will be
needed to prove Theorem 1.1 and its generalization. In Section 4 we will prove
Theorem 1.11 (which is the key to Theorem 1.9), as well as give a proof that
λp < ∞ for trees. In Section 5 we prove two elementary lemmas which relate the



546 E. I. BROMAN AND J. E. STEIF

notion of ε-movability to dynamical questions. In the remaining sections proofs of
the remaining results are given. We note that the proof of Theorem 1.4 will use the
proof of Theorem 1.5 and, hence, will come afterward.

We end with one bit of notation. If µ is a probability measure on some set U ,
we write X ∼ µ to mean that X is a random variable taking values in U with
distribution µ.

2. Models and definitions. Before presenting the interacting particle systems
discussed in this paper, we will present some definitions and results related to sto-
chastic domination. Let S be any countable set. For σ,σ ′ ∈ {−1,1}S , we write
σ � σ ′ if σ(s) ≤ σ ′(s) for every s ∈ S. An increasing function f is a function
f : {−1,1}S → R such that f (σ) ≤ f (σ ′) for all σ � σ ′. For two probability mea-
sures µ,µ′ on {−1,1}S , we write µ � µ′ if, for every continuous increasing func-
tion f , we have that µ(f ) ≤ µ′(f ). [µ(f ) is shorthand for

∫
f (x) dµ(x).] When

{−1,1}S is replaced by {0,1}S , we have identical definitions. Strassen’s theorem
(see [19], page 72) states that if µ � µ′, then there exist random variables X,X′
with distribution µ,µ′, respectively, such that X � X′ a.s.

A very useful result is the so-called Holley’s inequality, which appeared first
in [18]. We will present a variant of the theorem by Holley; it is not the most
general, but is sufficient for our purposes.

THEOREM 2.1. Take S to be a finite set. Let µ, µ′ be probability measures
on {−1,1}S which assign positive probability to all configurations σ ∈ {−1,1}S .
Assume that

µ
(
σ(s) = 1|σ(S \ s) = ξ

) ≤ µ′(σ(s) = 1|σ(S \ s) = ξ ′)
for every s ∈ S and ξ � ξ ′, where ξ, ξ ′ ∈ {−1,1}S\s . Then µ � µ′.

PROOF. See [9] or [13] for a proof. �

Two properties of probability measures which are often encountered within the
field of interacting particle systems are the monotonicity property and the property
of positive correlations presented below.

DEFINITION 2.2. Take S to be a finite set. A probability measure µ on
{−1,1}S which assigns positive probability to every σ ∈ {−1,1}S is called
monotone if, for every s ∈ S and ξ � ξ ′ where ξ, ξ ′ ∈ {−1,1}S\s ,

µ
(
σ(s) = 1|σ(S \ s) = ξ

) ≤ µ
(
σ(s) = 1|σ(S \ s) = ξ ′).

We point out immediately that it is known that this is equivalent to the so-called
FKG lattice condition.
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DEFINITION 2.3. A probability measure µ on {−1,1}S is said to have positive
correlations if, for all bounded increasing functions f,g : {−1,1}S → R, we have

µ(fg) ≥ µ(f )µ(g).

The following important result is sometimes known as the FKG inequality
(see [7]).

THEOREM 2.4. Take S to be a finite set. Let µ be a monotone probability
measure on {−1,1}S which assigns positive probability to every configuration.
Then µ has positive correlations.

PROOF. This was originally proved in [7]; see also [9] for a proof. �

In this section, and also later in this paper, we will talk about convergence of
probability measures. Convergence will always mean weak convergence, where
{0,1}S is given the product topology.

2.1. The Ising model. Take G = (S,E), where |S| < ∞. The Ising mea-
sure µβ,h on {−1,1}S at inverse temperature β ≥ 0, external field h and with free
boundary conditions is defined as follows. For any configuration σ ∈ {−1,1}S, let

Hβ,h(σ ) = −β
∑

{t,t ′}∈E

t,t ′∈S

σ (t)σ (t ′) − h
∑
t∈S

σ (t).(4)

Hβ,h is called the Hamiltonian. Define µβ,h by assigning the probability

µβ,h(σ ) = e−Hβ,h(σ )

Z
(5)

to any configuration σ ∈ {−1,1}S , where Z is a normalization constant. Of course,
Z depends on the graph and the values β and h, but this will not be important for
us and, therefore, not reflected in the notation.

Take Sn := 
n+1 = {−n − 1, . . . , n + 1}d and En to be the set of all near-
est neighbor pairs of Sn. Given a configuration ξ on {−1,1}Z

d\
n , let, for
σ ∈ {−1,1}
n ,

Hξ,β,h
n (σ ) = −β

∑
{t,t ′}∈En

t,t ′∈
n

σ(t)σ (t ′) − h
∑
t∈
n

σ(t) − β
∑

{t,t ′}∈En

t∈
n

t ′∈
n+1\
n

σ(t)ξ(t ′)(6)

be our Hamiltonian. Here ξ is called a boundary condition. Again, we define a
probability measure using (5), but using the Hamiltonian of (6) instead. This Ising
measure will be denoted by µ

ξ,β,h
n . The cases ξ ≡ 1 and ξ ≡ −1 are especially im-

portant and the corresponding Ising measures are denoted by µ
+,β,h
n and µ

−,β,h
n ,
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respectively. We view µ
+,β,h
n (resp. µ

−,β,h
n ) as a probability measure on {−1,1}Z

d

by letting, with probability 1, the configuration be identically 1 (resp. −1) out-
side 
n. It is known (see [19], page 189) that the sequences {µ+,β,h

n } and {µ−,β,h
n }

converge as n tends to infinity; these limits are denoted by µ+,β,h and µ−,β,h.
The same kind of construction can be carried out on any infinite connected lo-

cally finite graph G = (S,E). One defines a Hamiltonian analogous to the one
in (6), but with 
n replaced by any 
 ⊆ S where |
| < ∞. With ξ ≡ 1 or ξ ≡ −1,
one then considers the corresponding limits of Ising measures as 
 ↑ S, the limit
turning out to be independent of the particular choice of sequence. See, for in-
stance, [9] for how this is carried out in detail. Fix h = 0 and abbreviate µ+,β,0

and µ−,β,0 by µ+,β and µ−,β . It is well known [8, 9] that, for any graph, there
exists βc ∈ [0,∞] such that, for 0 ≤ β < βc, we have that µ−,β = µ+,β (and there
is then a unique so-called Gibbs state) and for β > βc, µ−,β �= µ+,β . For Z

d with
d ≥ 2, and many other graphs, βc ∈ (0,∞). βc is sometimes referred to as the
critical inverse temperature for phase transition in the Ising model. Furthermore,
in [14] the author shows that if G is of bounded degree, the condition βc < ∞ is
equivalent to the condition pc < 1, where pc is the critical parameter value for site
percolation on G. It is easy to see that for any graph of bounded degree pc > 0 (see
the proof of Theorem 1.10 of [10]). This, in turn, implies, via the connection be-
tween the random cluster model and the Ising model described below, that βc > 0
for any graph of bounded degree.

2.2. Spin systems. A configuration σ ∈ {−1,1}S can be seen as particles on
a discrete set S having one of two different “spins” represented by −1 and 1. To
this we will add a stochastic dynamics, and assume that the system is described
by “flip rate intensities,” which we will denote by {C(s, σ )}s∈S, σ∈{−1,1}S . C(s, σ )

represents the rate at which site s changes its state when the present configuration
is σ . Of course, C(s, σ ) ≥ 0 ∀ s ∈ S,σ ∈ {−1,1}S , and we assume that the inter-
action is nearest neighbor in the sense that the flip rate of a site s ∈ S only depends
on the configuration σ at s and at sites t with {s, t} ∈ E. We will limit ourselves
to only allow one site flip in every transition and we will only consider flip rate
intensities such that

sup
s,σ

C(s, σ ) < ∞.

In many cases we will consider translation invariant systems and then this last con-
dition will hold trivially. Furthermore, we will always assume the trivial condition
that, for every s ∈ S,

sup
σ : σ(s)=0

C
(
s, σ (s)

)
> 0, sup

σ : σ(s)=1
C

(
s, σ (s)

)
> 0.

We will call such an object a spin system (see [6] or [19] for results concern-
ing general spin systems). Given such rates, one can obtain a Markov process �
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on {−1,1}S governed by these flip rates; see [19]. Such a Markov process with a
specified initial distribution µ on {−1,1}S will be denoted by �µ. Given a Markov
process, µ will be called an invariant distribution for the process if the projections
of �µ onto {−1,1}S at any fixed time t ≥ 0 is µ. In this case, �µ will be a sta-
tionary Markov process on {−1,1}S , all of whose marginal distributions are µ.
Of course, the state space {−1,1}S can be exchanged for either {0,1}S or {0,1}E .

Sometimes we will work with two different sets of flip rates,
{C1(s, σ )}s∈S,σ∈{−1,1}S and {C2(s, σ )}s∈S,σ∈{−1,1}S , governing two Markov proc-
esses �1 and �2, respectively. We will write C1 � C2 if the following conditions
are satisfied:

C2(s, σ2) ≥ C1(s, σ1) ∀ s ∈ S, ∀σ1 � σ2 s.t. σ1(s) = σ2(s) = 0,(7)

and

C1(s, σ1) ≥ C2(s, σ2) ∀ s ∈ S, ∀σ1 � σ2 s.t. σ1(s) = σ2(s) = 1.(8)

The point of C1 � C2 is that a coupling of �1 and �2 will then exist for which
{(η, δ) :η(s) ≤ δ(s) ∀ s ∈ S} is invariant for the process; see [19].

2.3. Stochastic Ising models. We will now briefly discuss stochastic Ising
models. We will omit most details; for an extensive discussion and analysis, see
again [19]. Consider Gn = (Sn,En), defined in Section 2.1. Given β and h, it is
possible to construct flip rates C+

n on {−1,1}Sn for which µ
+,β,h
n is reversible and

invariant. We denote by �
+,β,h
n the corresponding stationary Markov process with

initial distribution µ
+,β,h
n . One possible choice of flip rate intensities are that, for

every s ∈ 
n and σ ∈ {−1,1}S ,

C+
n (s, σ )

= exp

[
−β

( ∑
t∈
n : {t,s}∈En

σ (t)σ (s) + ∑
t∈
n+1\
n : {t,s}∈En

σ (s)

)
− hσ(s)

]
.

Sites in 
n+1 \ 
n are kept fixed at 1. Observe that if s ∈ 
n−1, the second sum
is over an empty set. A straightforward calculation gives

C+
n (s, σ )µ+,β,h

n (σ ) = C+
n (s, σs)µ

+,β,h
n (σs),(9)

where

σs(t) =
{

σ(t), if t �= s,
−σ(t), if t = s.

This shows that indeed µ
+,β,h
n is reversible and invariant for C+

n . Any family of
spin rates satisfying (9) is called a stochastic Ising model (on our finite set). One
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can show that there exists a limiting distribution �+,β,h of �
+,β,h
n when n tends

to infinity; see [19], Theorem 2.2, page 17 and Theorem 2.7, page 139. Further-
more, �+,β,h is a stationary Markov process on {−1,1}Z

d
with marginal distribu-

tion µ+,β,h governed by flip rate intensities

C(s, σ ) = exp

(
−β

∑
t∈Zd : {t,s}∈E

σ(t)σ (s) − hσ(s)

)
;(10)

see [19], Theorem 2.7, page 139. It is also possible to construct �+,β,h directly
on {−1,1}Z

d
without going through the limiting procedure. Furthermore, there

are several possible choices of flip rate intensities that can be used to construct
a stationary and reversible Markov process on {−1,1}Z

d
with marginal distribu-

tion µ+,β,h. In [19], a stochastic Ising model is defined to be any spin system with
flip rate intensities {C(s, σ )}

s∈Zd ,σ∈{−1,1}Zd satisfying that, for each s ∈ Z
d ,

C(s, σ ) exp

(
β

∑
{t,s}∈E

t∈Zd

σ (t)σ (s) + hσ(s)

)
(11)

is independent of σ(s). Therefore, when we refer to a stochastic Ising model
�+,β,h with marginal distribution µ+,β,h, we will have this definition in mind.
It is particularly easy to see that (11) (or the condition of detailed balance as it
is often referred to) is satisfied for the flip rate intensities of (10), but there are
many other rates satisfying this. It is known that the set of so-called Gibbs states
are exactly the same as the class of reversible measures with respect to the flip
rates satisfying (11); see [19], pages 190–196. Note also that the condition speci-
fied in (11) with Z

d replaced by 
n is equivalent to that of (9) (modified with the
boundary condition removed).

While we defined above stochastic Ising models on {−1,1}Z
d
, this construction

can be done on more general graphs (see [19]).

2.4. The random cluster model. Unlike all other models in this paper, the ran-
dom cluster model deals with configurations on the edges E of a graph G = (S,E).

We will review the definition of the regular random cluster measure on general fi-
nite graphs and the “wired” random cluster measure on 
n ⊆ Z

d . We will also
recall the limiting measures and in the next subsection the connection between the
random cluster model and the Ising model. In doing so we will follow the outlines
of [9] and [13] closely.

Take a finite graph G = (S,E). Define the random cluster measure ν
p,q
G on

{0,1}E with parameters p ∈ [0,1] and q > 0 as the probability measure which
assigns to the configuration η ∈ {0,1}E the probability

ν
p,q
G (η) = qk(η)

Z

∏
e∈E

pη(e)(1 − p)1−η(e).(12)
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Here Z is again a normalization constant and k(η) is the number of connected
components of η. From now on we will always take q = 2 and, therefore, we will
suppress q in the notation.

Take Gn = (Sn,En), where Sn = 
n+1 ⊆ Z
d and En is the set of all nearest

neighbor pairs of 
n+1. Write ν
p
n for ν

p
Gn

, and define

ν̃p
n (·) = νp

n (·|all edges of En with both
(13)

end sites in 
n+1 \ 
n are present).

This is the so-called “wired” random cluster measure. It is called “wired” since
all edges of the boundary are present. It is immediate from the defining equations
(12) and (13), that, for e ∈ En and any ξ ∈ {0,1}En\e,

ν̃p
n (η(e) = 1|η(En \ e) = ξ)

(14)

=



p, if the endpoints of e are connected in ξ ,
p

2 − p
, otherwise.

One can show (see [9] or [13]) that when n tends to infinity, the probability mea-
sures {ν̃p

n }n∈N+ converge to a probability measure ν̃p . Furthermore, the construc-
tion of ν̃

p
n on {0,1}En can be done on any finite subgraph by connecting all sites of

the boundary of the graph with each other. As a consequence, we can also define
random cluster measures on more general graphs than Z

d ; see, for example, [11].

2.5. The random cluster model and the Ising model. Take Gn = (Sn,En) as in
Section 2.4. As in [13], let Pp

n be the probability measure on {−1,1}Sn × {0,1}En

defined in the following way:

1. Assign each site of 
n+1 \
n and every edge with both endpoints in 
n+1 \
n

the value 1.
2. Assign each site of 
n the value 1 or −1 with equal probability, assign each

edge with not more than one endpoint in 
n+1 \ 
n the value 0 or 1 with
probabilities 1 − p and p, respectively. Do this independently for all sites and
edges.

3. Condition on the event that no two sites with different spins have an open edge
connecting them.

One can then check that Pp
n (σ, {0,1}En) = µ

+,β
n (σ ) with β = − log(1 −p)/2, and

that Pp
n({−1,1}Sn, η) = ν̃

p
n (η). Here, Pp

n (σ, {0,1}En) is just the marginal in the
first coordinate of Pp

n . The same kind of construction can be carried out on any
finite graph G = (S,E).
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2.6. The contact process. Consider a graph G = (S,E) of bounded degree. In
the contact process the state space is {0,1}S . Let λ > 0, and define the flip rate
intensities to be

C(s, σ ) =



1, if σ(s) = 1,

λ
∑

(s′,s)∈E

σ(s′), if σ(s) = 0.

If we let the initial distribution be σ ≡ 1, the distribution of this process at time t ,
which we will denote by δ1Tλ(t), is known to converge as t tends to infinity. This is
simply because it is a so-called “attractive” process and σ ≡ 1 is the maximal state
and {δ1Tλ(t)} is stochastically decreasing; see [19], page 265. This limiting dis-
tribution will be referred to as the upper invariant measure for the contact process
with parameter λ and will be denoted by µλ. We then let �λ denote the stationary
Markov process on {0,1}S with initial (and invariant) distribution µλ.

3. ε-movability for monotone measures. In this section we prove movability
results for classes of monotone measures. The finite case is covered by Lemma 3.3,
while the countable case is discussed in Proposition 3.4. In this section we will
always assume that our measures have full support.

For any |S| < ∞, s ∈ S, ξ ∈ {0,1}S\s and probability measure µ on {0,1}S ,
write µ(∗,ε)(i|ξ) for µ(∗,ε)(σ (s) = i|σ(S \ s) = ξ), µ(∗,ε)(i ∩ ξ) for µ(∗,ε)({σ(s) =
i} ∩ {σ(S \ s) = ξ}) and µ(∗,ε)(ξ) for µ(∗,ε)(σ (S \ s) = ξ). Here “∗” can represent
either + or − and i ∈ {0,1}. Note that s is suppressed in the notation and so should
be understood from context.

We begin with an easy lemma whose proof is left to the reader. The idea is that
if the configuration outside of s is ξ under µ(−,ε), it must have been at least as
large under µ “before flipping some 1’s to 0’s”; then use monotonicity.

LEMMA 3.1. Assume that µ is a monotone probability measure on {0,1}S ,
where |S| < ∞. Take s ∈ S and let ξ ∈ {0,1}S\s . Then, for any ε > 0, we have that

µ(−,ε)(1|ξ) ≥ (1 − ε)µ(1|ξ)

and that

µ(+,ε)(0|ξ) ≥ (1 − ε)µ(0|ξ).

The next lemma will be used to prove Lemma 3.3.

LEMMA 3.2. Assume that µ is a monotone probability measure on {0,1}S ,
where |S| < ∞. For any ε > 0, µ(−,ε) is also monotone.

PROOF. Let s ∈ S be arbitrary, X ∼ µ and X(−,ε) ∼ µ(−,ε). For any δ, η ∈
{0,1}S\s , define the probability measures µδ and µη on {0,1}S\s by letting
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µδ(A) = P(X ∈ A|X(−,ε)(S \ s) ≡ δ) and µη(A) = P(X ∈ A|X(−,ε)(S \ s) ≡ η)

for every event A in {0,1}S\s , respectively. We will prove that

µδ � µη ∀ δ � η.(15)

This will give us [since P(X(s) = 1|X(S \ s) ≡ η) is an increasing function of η]
that

P
(
X(−,ε)(s) = 1|X(−,ε)(S \ s) ≡ η

)
= (1 − ε)

∫
η̃∈{0,1}S\s

P
(
X(s) = 1|X(S \ s) ≡ η̃

)
dµη(η̃)

≥ (1 − ε)

∫
η̃∈{0,1}S\s

P
(
X(s) = 1|X(S \ s) ≡ η̃

)
dµδ(η̃)

= P
(
X(−,ε)(s) = 1|X(−,ε)(S \ s) ≡ δ

)
.

Since s was chosen arbitrarily, this would prove the statement.
We now prove (15). Define for η � η̃ d(η̃, η) := |{t ∈ S \s : η̃(t) = 1}|−|{t ∈ S \

s :η(t) = 1}| and d(η̃,0) = |{t ∈ S \ s : η̃(t) = 1}|. Here | · | denotes cardinality. Let
µS\s(η) = P(X(S \ s) ≡ η) and define µ

(−,ε)
S\s similarly. We have that, for η � η̃,

µη(η̃) = P
(
X(−,ε)(S \ s) ≡ η|X(S \ s) ≡ η̃

) µS\s(η̃)

µ
(−,ε)
S\s (η)

(16)

= εd(η̃,η)(1 − ε)d(η,0) µS\s(η̃)

µ
(−,ε)
S\s (η)

.(17)

It is well known that µ being monotone implies that, for every, δ̃, η̃,

µS\s(η̃ ∨ δ̃)µS\s(η̃ ∧ δ̃) ≥ µS\s(η̃)µS\s(δ̃).(18)

By a simple modification of Theorem 2.9, page 75 of [19], it is enough for us to
show that

µη(η̃ ∨ δ̃)µδ(η̃ ∧ δ̃) ≥ µη(η̃)µδ(δ̃)(19)

for all η̃ � η and δ̃ � δ to show (15). An elementary calculation shows that

d(η̃ ∨ δ̃, η) + d(η̃ ∧ δ̃, δ) = d(η̃, η) + d(δ̃, δ).(20)

We therefore get

µη(η̃ ∨ δ̃)µδ(η̃ ∧ δ̃)

= εd(η̃∨δ̃,η)+d(η̃∧δ̃,δ)(1 − ε)d(η,0)+d(δ,0) µS\s(η̃ ∨ δ̃)

µ
(−,ε)
S\s (η)

µS\s(η̃ ∧ δ̃)

µ
(−,ε)
S\s (δ)

≥ εd(η̃,η)+d(δ̃,δ)(1 − ε)d(η,0)+d(δ,0) µS\s(η̃)

µ
(−,ε)
S\s (η)

µS\s(δ̃)
µ

(−,ε)
S\s (δ)

= µη(η̃)µδ(δ̃),
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where (16) is used in the first and last equality and equations (18) and (20) are used
in the inequality. �

LEMMA 3.3. Let µ1,µ2 be probability measures on {0,1}S , where |S| < ∞.
Assume that µ2 is monotone and that

A := inf
s∈S

ξ∈{0,1}S\s

[
µ2

(
σ(s) = 1|σ(S \ s) ≡ ξ

) − µ1
(
σ(s) = 1|σ(S \ s) ≡ ξ

)]
> 0.

Then for any choice of ε > 0, such that

A >
1

1 − ε
− 1,

we have

µ1 � µ
(−,ε)
2 .

Hence, (µ1,µ2) is downward movable.

PROOF. Monotonicity of µ2, Lemma 3.1, the definition of A and our choice
of ε give us that, for any s ∈ S and ξ ∈ {0,1}S\s ,

µ
(−,ε)
2 (1|ξ) ≥ (1 − ε)µ2(1|ξ) ≥ (1 − ε)

(
A + µ1(1|ξ)

)
≥ (1 − ε)

µ1(1|ξ)

1 − ε
= µ1(1|ξ).

By Lemma 3.2, µ
(−,ε)
2 is monotone and so ∀ ξ̃ � ξ ,

µ1(1|ξ̃ ) ≤ µ
(−,ε)
2 (1|ξ̃ ) ≤ µ

(−,ε)
2 (1|ξ).

The proof is completed by the use of Holley’s inequality, Theorem 2.1. �

PROPOSITION 3.4. Let S be any finite or countable set and consider (Sn)n∈N+ ,
a collection of sets such that |Sn| < ∞ ∀n ∈ N

+ and Sn ↑ S. Let (µ1,n)n∈N+ ,
(µ2,n)n∈N+ , be two collections of probability measures, where µ1,n,µ2,n are prob-
ability measures on {0,1}Sn for every n ∈ N

+. Furthermore, assume that all of the
probability measures (µ1,n)n∈N+((µ2,n)n∈N+) are monotone, that µ1,n → µ1 and
that µ2,n → µ2. Set

An := inf
s∈Sn

ξ∈{0,1}Sn\s

[
µ2,n

(
σ(s) = 1|σ(S \ s) ≡ ξ

) − µ1,n

(
σ(s) = 1|σ(S \ s) ≡ ξ

)]
.

If

inf
n∈N+ An > 0,

then (µ1,µ2) is both upward and downward movable.
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PROOF. Take ε > 0 such that

inf
n∈N+ An >

1

1 − ε
− 1.

With this choice of ε, Lemma 3.3 says that (µ1,n,µ2,n) is upward (downward)
ε-movable. Since µ1,n → µ1 and µ2,n → µ2, we easily get that µ

(−,ε)
2,n → µ

(−,ε)
2

and µ
(+,ε)
1,n → µ

(+,ε)
1 . Furthermore, since the relations

µ1,n � µ
(−,ε)
2,n

and

µ
(+,ε)
1,n � µ2,n

are easily seen to be preserved under weak limits, we get that

µ1 � µ
(−,ε)
2 and µ

(+,ε)
1 � µ2. �

4. ε-movability for the contact process and a 0–1 law. The conditions in
our next proposition might seem overly technical; however, these represent the
essential features of the contact process (after a small suitable time rescaling) and,
therefore, we feel it is instructive to highlight these features. In Proposition 4.1
and Lemmas 5.1, 5.2 and 8.1 we will use the so-called graphical representation to
define our processes; see, for instance, [19], page 172.

PROPOSITION 4.1. Let µ1 and µ2 be two probability measures defined
on {0,1}S , where S is a countable set. Assume that µ1 � µ2 and that there ex-
ists two stationary Markov processes �1 and �2, governed by flip rate intensities
{C1(s, σ1)}s∈S,σ1∈{0,1}S and {C2(s, σ2)}s∈S,σ2∈{0,1}S , respectively, and with mar-
ginal distributions µ1 and µ2. Assume that C1 � C2 [conditions (7) and (8) of
the Introduction]. Consider the following conditions:

1. There exists an ε1 > 0 such that

C2(s, σ2) − C1(s, σ1) ≥ ε1
(21)

∀ s ∈ S, ∀σ2 � σ1 s.t. σ2(s) = 0 and C1(s, σ1) �= 0.

2. There exists an ε2 > 0 such that

C1(s, σ1) − C2(s, σ2) ≥ ε2
(22)

∀ s ∈ S, ∀σ2 � σ1 s.t. σ1(s) = 1 and C2(s, σ2) �= 0.

3. There exists an ε3 > 0 such that

C1(s, σ1) ≥ ε3 ∀ s ∈ S, ∀σ1 s.t. σ1(s) = 1.(23)



556 E. I. BROMAN AND J. E. STEIF

4. There exists an ε4 > 0 such that

C2(s, σ2) ≥ ε4 ∀ s ∈ S, ∀σ2 s.t. σ2(s) = 0.(24)

If conditions 1, 2 and 3 are satisfied, then (µ1,µ2) is downward movable.
If conditions 1, 2 and 4 are satisfied, then (µ1,µ2) is upward movable.

PROOF. We will prove the first statement, the second follows by symmetry.
Define

λ := sup
s,σ2 : σ2(s)=0

C2(s, σ2) + sup
s,σ1 : σ1(s)=1

C1(s, σ1).

Our aim is to construct a coupling of the processes {X1,t }t≥0 ∼ �1 and {X2,t }t≥0 ∼
�2 such that X1,t � X2,t ∀ t ≥ 0 in such a way that we prove the proposition.
Before presenting the actual coupling, we will discuss the idea behind it. For every
site s ∈ S, associate an independent Poisson process with parameter λ. Next, let
{Us,k}s∈S,k≥1 and {U ′

s,k}s∈S,k≥1 be independent uniform [0,1] random variables
also independent of the Poisson processes. If τ is an arrival time for the Poisson
process at site s, we write Us,τ for Us,k , where k is such that τ is the kth arrival of
the Poisson process at site s. Now, let τ be an arrival time for the Poisson process
associated to a site s. For i ∈ {1,2}, let Xi,τ− and Xi,τ+ denote the configurations
before and after the arrival. We will let the outcome of Us,τ decide what happens
with the {X2,t }t≥0 process at time t = τ, and then we will let U ′

s,τ , together with
Us,τ , decide what happens with the {X1,t }t≥0 process at time t = τ . As we will
see, we will do this so that X1,t � X2,t for all t ≥ 0. Furthermore, we will do
this in such a way that there exists an ε ∈ (0,1) such that if U ′

s,τ ≥ 1 − ε, then
X1,τ+(s) = 0 regardless of the outcome of Us,τ . Consider now the process {Xε

t }t≥0
we get by taking Xε

0(s) = 1 for every s ∈ S and letting {Xε
t (s)}t≥0 be updated at

every arrival time τ for the Poisson process associated to s, and updated in such a
way that Xε

τ+(s) = 0 if U ′
s,τ ≥ 1 − ε, and Xε

τ+(s) = 1 if U ′
s,τ < 1 − ε. Of course,

the distribution of Xε
t will converge to π1−ε . Observe that whenever Xε

t (s) = 0,
we have that X1,t (s) = 0. Therefore, we can conclude that

X1,t � min(X2,t ,X
ε
t ) ∀ t ≥ 0.(25)

Furthermore, since the process {Xε
t }t≥0 does not depend on any Us,τ , we have

that Xε
t (s) is conditionally independent of X2,t if there has been an arrival for the

Poisson process associated to s before time t . Let si , i ∈ {1, . . . , n}, be distinct sites
in S and let At be the event that all Poisson processes associated to s1 through sn
have had an arrival by time t . Of course, P(At ) = (1 − e−λt )n and so we get that

P
(
X2,tX

ε
t (s1) = · · · = X2,tX

ε
t (sn) = 1

)
= P

(
X2,tX

ε
t (s1) = · · · = X2,tX

ε
t (sn) = 1|At

)
P(At )

+ P
(
X2,tX

ε
t (s1) = · · · = X2,tX

ε
t (sn) = 1|Ac

t

)
P(Ac

t )
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= P
(
X2,t (s1) = · · · = X2,t (sn) = 1|At

)
× P

(
Xε

t (s1) = · · · = Xε
t (sn) = 1|At

)
P(At )

+ P
(
X2,tX

ε
t (s1) = · · · = X2,tX

ε
t (sn) = 1|Ac

t

)
P(Ac

t )

= P
(
X2,t (s1) = · · · = X2,t (sn) = 1|At

)
P(At )(1 − ε)n

+ P
(
X2,tX

ε
t (s1) = · · · = X2,tX

ε
t (sn) = 1|Ac

t

)
P(Ac

t )

= P
({X2,t (s1) = · · · = X2,t (sn) = 1} ∩ At

)
(1 − ε)n

+ P
(
X2,tX

ε
t (s1) = · · · = X2,tX

ε
t (sn) = 1|Ac

t

)
P(Ac

t )

≥ (
P

(
X2,t (s1) = · · · = X2,t (sn) = 1

) − P(Ac
t )

)
(1 − ε)n

+ P
(
X2,tX

ε
t (s1) = · · · = X2,tX

ε
t (sn) = 1|Ac

t

)
P(Ac

t )

= P
(
X2,t (s1) = · · · = X2,t (sn) = 1

)
(1 − ε)n

+ P(Ac
t )

(
P

(
X2,tX

ε
t (s1) = · · · = X2,tX

ε
t (sn) = 1|Ac

t

) − (1 − ε)n
)

= µ
(−,ε)
2

(
σ(s1) = · · · = σ(sn) = 1

)
+ P(Ac

t )
(
P

(
X2,tX

ε
t (s1) = · · · = X2,tX

ε
t (sn) = 1|Ac

t

) − (1 − ε)n
)

t→∞−→ µ
(−,ε)
2

(
σ(s1) = · · · = σ(sn) = 1

)
.

In addition,

P
(
X2,t (s1) = · · · = X2,t (sn) = 1 ∩ At

)
(1 − ε)n

≤ P
(
X2,t (s1) = · · · = X2,t (sn) = 1

)
(1 − ε)n

= µ
(−,ε)
2

(
σ(s1) = · · · = σ(sn) = 1

)
.

Hence, by inclusion exclusion, we have that the distribution of
min(X2,t ,X

ε
t ) approaches µ

(−,ε)
2 as t tends to infinity. So by first taking the limit

in (25), we get that µ1 � µ
(−,ε)
2 , as desired.

Now to the construction. Take X1,0 ∼ µ1, X2,0 ∼ µ2, such that X1,0 � X2,0. Let
τ be an arrival time for the Poisson process associated to s. Take Us,τ and U ′

s,τ .
The following transition rules apply:

X2,τ− X2,τ+ if

0 1 Us,τ ≤ C2(s,X2,τ−)

λ

1 0 Us,τ ≥ λ − C2(s,X2,τ−)

λ
.

It is easy to check that the process {X2,t }t≥0 thus constructed will have the right
flip-rate intensities. The construction of {X1,t }t≥0 is slightly more complicated. If
C2(s,X2,τ−) = 0 and X2,τ−(s) = 0, then it follows from (7) that C1(s,X1,τ−) = 0,
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and in that case we interpret
C1(s,X1,τ− )

C2(s,X2,τ− )
as 0. Observe that C2(s,X2,τ−) can be 0

when X2,τ−(s) = 1, but it will not cause any problems. With these observations in
mind, these are the transition rules we apply:

(X1,τ−,X2,τ−) (X1,τ+,X2,τ+) if

(0,0) (1,1) Us,τ ≤ C2(s,X2,τ−)

λ
and U ′

s,τ ≤ C1(s,X1,τ−)

C2(s,X2,τ−)

(0,0) (0,1) Us,τ ≤ C2(s,X2,τ−)

λ
and U ′

s,τ >
C1(s,X1,τ−)

C2(s,X2,τ−)

(0,0) (0,0) otherwise

(0,1) (0,0) Us,τ ≥ λ − C2(s,X2,τ−)

λ

(0,1) (1,1) Us,τ <
sups,σ2 : σ2(s)=0 C2(s, σ2)

λ
and

U ′
s,τ ≤ C1(s,X1,τ−)

sups,σ2 : σ2(s)=0 C2(s, σ2)

(0,1) (0,1) otherwise

(1,1) (0,0) Us,τ ≥ λ − C2(s,X2,τ−)

λ

(1,1) (0,1) Us,τ <
λ − C2(s,X2,τ−)

λ
and

U ′
s,τ ≥ λ − C1(s,X1,τ−)

λ − C2(s,X2,τ−)

(1,1) (1,1) otherwise.

It is not difficult to check that all flip rate intensities are correct and that X1,t � X2,t

for all t ≥ 0. Observe that, by the definition of λ, the events {Us,τ ≥ λ−C2(s,X2,τ− )

λ
}

and {Us,τ <
sups,σ2 : σ2(s)=0 C2(s,σ2)

λ
} are disjoint when (X1,τ−,X2,τ−) = (0,1).

We now want to show that there exists an ε > 0 so that U ′
s,τ ≥ 1 − ε im-

plies that X1,τ+(s) = 0. Note that if (X1,τ−,X2,τ−) = (0,0) and C1(s,X1,τ−) > 0
[⇒ C2(s,X2,τ−) > 0], then

C1(s,X1,τ−)

C2(s,X2,τ−)
≤ C2(s,X2,τ−) − ε1

C2(s,X2,τ−)
≤ 1 − ε1

sups,σ2 : σ2(s)=0 C2(s, σ2)
< 1

and if (X1,τ−,X2,τ−) = (0,0) and C1(s,X1,τ−) = 0, then

C1(s,X1,τ−)

C2(s,X2,τ−)
= 0.

Furthermore, if (X1,τ−,X2,τ−) = (0,1) and C1(s,X1,τ−) > 0, then

C1(s,X1,τ−)

sups,σ2 : σ2(s)=0 C2(s, σ2)
≤ 1 − ε1

sups,σ2 : σ2(s)=0 C2(s, σ2)
< 1,
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while again if (X1,τ−,X2,τ−) = (0,1) and C1(s,X1,τ−) = 0, then the 0 never
changes to a 1. Finally, if (X1,τ−,X2,τ−) = (1,1) and C2(s,X2,τ−) > 0
[⇒ C1(s,X1,τ−) > 0], then

λ − C1(s,X1,τ−)

λ − C2(s,X2,τ−)
≤ λ − C2(s,X2,τ−) − ε2

λ − C2(s,X2,τ−)

≤ 1 − ε2

λ − C2(s,X2,τ−)

≤ 1 − ε2

λ
,

and if (X1,τ−,X2,τ−) = (1,1) and C2(s,X2,τ−) = 0,

λ − C1(s,X1,τ−)

λ − C2(s,X2,τ−)
≤ λ − ε3

λ
= 1 − ε3

λ
< 1.

Therefore, whenever

U ′
s,τ ≥ max

(
1 − ε1

sups,σ2 : σ2(s)=0 C2(s, σ2)
,1 − ε2

λ
,1 − ε3

λ

)
,

we have that X1,τ+(s) = 0 regardless of the outcome of Us,τ . Therefore,
(µ1,µ2) is downward ε-movable where

ε := 1 − max
(

1 − ε1

sups,σ2 : σ2(s)=0 C2(s, σ2)
,1 − ε2

λ
,1 − ε3

λ

)

= min
(

ε1

sups,σ2 : σ2(s)=0 C2(s, σ2)
,
ε2

λ
,
ε3

λ

)
. �

PROOF OF THEOREM 1.11. Take δ > 0 such that λ1(1+δ) < λ2 and consider
the process {Xt }t≥0 constructed in the following way. Take X0 ≡ 1 and let the
process evolve with flip rate intensities

C1(s, σ ) =



1 + δ, if σ(s) = 1,

λ1(1 + δ)
∑
s′∼s

σ (s′), if σ(s) = 0.(26)

Denote the limiting distribution of Xt as t tends to infinity by µ1+δ,λ1(1+δ). It
is easy to see that this process is just a time-scaling of the contact process con-
structed in Section 2.6 with parameter λ1. Recall that that process had limiting
distribution µλ1 , the upper invariant measure for the contact process. Thus, we
have µλ1 = µ1+δ,λ1(1+δ). By Proposition 4.1 with C1 as above and C2 as in Sec-
tion 2.6 with parameter λ2, there exists an ε > 0 such that

µ1+δ,λ1(1+δ) � µ
(−,ε)
λ2

.

Hence, (µλ1,µλ2) is downward movable. �
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For the rest of this section we will only consider the graph T
d for d ≥ 2. The

following is a 0–1 law for the upper invariant measure for the contact process.

PROPOSITION 4.2. Let A ⊆ {0,1}T
d
, where d ≥ 2, be a set which is invariant

under all graph automorphisms on T
d . Then, for λ > 0, we have that

µλ(A) ∈ {0,1}.

PROOF. Let ε > 0. By elementary measure theory, there exists a cylinder
event B depending on finitely many coordinates such that

µλ(A�B) ≤ ε.(27)

Let suppB denote the finite number of coordinates with respect to which B
is measurable. Letting {Tλ(t)}t≥0 denote the Markov semigroup for the contact
process with parameter λ, we have that δ1Tλ(t) → µλ and also that µλ � δ1Tλ(t)

for every t ≥ 0. Choose t so that, for all (equivalently, some) sites s,

δ1Tλ(t)
(
η(s) = 1

) ≤ µλ

(
η(s) = 1

) + ε

2| suppB| .

It follows easily that if m is any coupling of δ1Tλ(t) and µλ which is concentrated
on {(η, δ) :η � δ}, then, for any finite set S of sites,

m
(
(η, δ) :η(s) �= δ(s) occurs for some s ∈ S

) ≤ |S|ε
2| suppB| .

In particular, if E is any event depending on at most 2| suppB| sites, then

|δ1Tλ(t)(E) − µλ(E)| ≤ ε.(28)

For this fixed t , Theorem 4.6, page 35 of [19] shows that there exists an auto-
morphism γ ∈ AUT(Td) such that

|δ1Tλ(t)(B ∩ γB) − δ1Tλ(t)(B)δ1Tλ(t)(γB)| ≤ ε.(29)

Furthermore, since µλ is invariant under automorphisms, (27) implies that

µλ(γA�γB) ≤ ε,

and since A = γA, we have

µλ(A�γB) ≤ ε.

It follows that

µλ(B�γB) ≤ µλ(A�γB) + µλ(A�B) ≤ 2ε.

Next, (28) implies that

|δ1Tλ(t)(B�γB) − µλ(B�γB)| ≤ ε,
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and so

δ1Tλ(t)(B�γB) ≤ 3ε.(30)

We get that

|µλ(A) − µλ(A)2| = |µλ(A) − µλ(A)µλ(γA)|
≤ |µλ(B) − µλ(B)µλ(γB)| + 3ε

≤ |δ1Tλ(t)(B) − δ1Tλ(t)(B)δ1Tλ(t)(γB)| + 6ε

≤ |δ1Tλ(t)(B) − δ1Tλ(t)(B ∩ γB)| + 7ε

≤ δ1Tλ(t)(B�γB) + 7ε ≤ 10ε,

where we used (27), (28) and (29) for the three first inequalities and (30) in the
last. Since ε > 0 was choosen arbitrarily, we get that

µλ(A) = µλ(A)2

and so µλ(A) ∈ {0,1}. �

REMARKS. The above proof works for any transitive and even quasi-transitive
graph. For the case of Z

d , this was proved in Proposition 2.16, page 143 of [19].
It is mentioned there that, while δ1Tλ(t) is ergodic for each t , one cannot con-
clude immediately the ergodicity of µλ because the class of ergodic processes is
not weakly closed. We point out, however, that there is another important notion
of convergence given by the d̄-metric (see [24], page 89 for definition) on station-
ary processes. Convergence in this metric is stronger than weak convergence and
weaker than convergence in the total variation norm. It is also known that the er-
godic processes are d̄-closed and that weak convergence together with stochastic
ordering implies d̄-convergence. In this way, one can conclude ergodicity of µλ

using the d̄-metric, giving an alternative proof of Proposition 2.16 of [19]. In fact,
the proof of Proposition 4.2 is essentially based on this idea. However, because of
the open question listed below, it is not so easy to formulate the d̄-metric for tree
indexed processes and so we choose a more hands on approach. Observe that the
crucial property of d̄-convergence which is essentially used in the above proof is
that, for each fixed k, one has uniform convergence of the probability measures
(in, say, the total variation norm) over all sets which depend on at most k points.
(The point is that the k points can lie anywhere and, hence, this is much stronger
than weak convergence.)

Open question related to defining the d̄-metric for tree indexed processes.
Assume that µ and ν are two automorphism invariant probability measures
on {0,1}T

d
such that µ � ν. Does there exist a T

d -invariant coupling (X,Y ) with
X ∼ µ, Y ∼ ν and X � Y ?
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PROPOSITION 4.3. On T
d , d ≥ 2, there exists a λp such that, for all λ > λp ,

µλ(C
+) = 1.

PROOF. By Theorem 1.33(c), page 275 in [19], for sufficiently large λ,
µλ(η(s) = 1) ≥ 2/3. By [12], we have that if µλ(η(s) = 1) ≥ 2/3, then

µλ(C
+) > 0.

Finally, Proposition 4.2 then implies that

µλ(C
+) = 1. �

5. Relationship between ε-movability and dynamics. In the general setup
we have a family of stationary Markov processes parametrized by one or two pa-
rameters, for example, the contact processes �λ (λ is here the only parameter)
or a stochastic Ising model �+,β,h (β and h being the parameters). Many of the
proofs in this paper will involve comparing the marginal distributions of these
Markov processes for two different values of one of the involved parameters. Let
p be the parameter and let p1 < p2. Assume that the marginal distributions are
µp1 and µp2 , respectively, and that µp1 � µp2 . Lemmas 5.1 and 5.2 show that there
is a close connection between showing that (µp1,µp2) is downward ε-movable and
that the infimum of the second process over a short time interval is stochastically
larger than the first process.

Let �µ be a stationary Markov process on {0,1}S with marginal distribution µ

and let {Xt }t≥0 ∼ �µ. For δ > 0 and s ∈ S, define

Xinf,δ(s) := inf
t∈[0,δ]Xt(s),

and denote the distribution of Xinf,δ by µinf,δ . Similarly, define

Xsup,δ(s) := sup
t∈[0,δ]

Xt(s),

and denote the distribution of Xsup,δ by µsup,δ .

LEMMA 5.1. Take S to be the sites of a bounded degree graph. Let
{C(s, σ )}s∈S,σ∈{−1,1}S be the flip rate intensities for a stationary Markov process
�µ on {−1,1}S with marginal distribution µ. Let

λ := sup
(s,σ )

C(s, σ ).

For any τ > 0, if we set ε := 1 − e−λτ , we have that

µ(−,ε) � µinf,τ .

Similarly, we get that

µsup,τ � µ(+,ε).
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PROOF. We will prove the first statement, the second statement follows by
symmetry. Take τ > 0. For every s ∈ S, associate an independent Poisson process
with parameter λ. Define {(X1

t ,X
2
t )}t≥0 in the following way. Let X1

0 ≡ X2
0 ∼ µ,

and take t ′ to be an arrival time for the Poisson process of a site s. For i ∈ {1,2},
let Xi

t ′,− and Xi
t ′,+ denote the configurations before and after the arrival. We let

X1
t ′,+(s) �= X1

t ′,−(s) with probability C(s,X1
t ′,−)/λ and we let X2

t ′,+(s) = 0 and fi-
nally, we let X1

t ′,+(S \ s) ≡ X1
t ′,−(S \ s), X2

t ′,+(S \ s) ≡ X2
t ′,−(S \ s). Do this inde-

pendently for all arrival times for all Poisson processes of all sites. Observe that
once X2

t (s) is 0, it remains so. Note also that X1
τ ∼ µ, X2

τ ∼ µ(−,ε). Furthermore,
if X1

t (s) = 0 for some t ∈ [0, τ ], the construction guarantees that X2
τ (s) = 0 and,

therefore, X2
τ � X1

inf,τ ∼ µinf,τ . �

LEMMA 5.2. Take S to be the sites of any bounded degree graph. Let
{C(s, σ )}s∈S,σ∈{−1,1}S be the flip rate intensities of a stationary Markov process
�µ on {−1,1}S with marginal distribution µ. Define

λ1 := inf
s,σ : σ(s)=1

C(s, σ ).

If λ1 > 0, then for any 0 < ε < 1, if we set τ := − log(1−ε)
λ1

, we have that

µinf,τ � µ(−,ε).

Similarly, defining λ2 := infs,σ : σ(s)=0 C(s, σ ), if λ2 > 0, then for any 0 < ε < 1,
if we set τ := − log(1−ε)

λ2
, we have that

µ(+,ε) � µsup,τ .

PROOF. We will prove the first statement, the second statement follows by
symmetry. For every s ∈ S, associate an independent Poisson process with para-
meter λ := sup(s,σ ) C(s, σ ). Next, let {Us,k}s∈S,k≥1 be independent uniform [0,1]
random variables also independent of the Poisson processes. If t ′ is an arrival time
for the Poisson process at site s, we write Us,t ′ for Us,k , where k is such that t ′ is
the time of the kth arrival of the Poisson process at site s. Define {(X1

t ,X
2
t )}t≥0

in the following way. Let X1
0 ≡ X2

0 ∼ µ, and take t ′ to be an arrival time for the
Poisson process of a site s. We let X1

t ′,+(s) �= X1
t ′,−(s) if Us,t ′ ≤ C(s,X1

t ′,−)/λ.
Furthermore, we let X2

t ′,+(s) = 0 if Us,t ′ ≤ λ1/λ or X2
t ′,−(s) = 0, and finally, we

let X1
t ′,+(S \ s) ≡ X1

t ′,−(S \ s), X2
t ′,+(S \ s) ≡ X2

t ′,−(S \ s). Do this independently
for all arrival times for all Poisson processes of all sites. Clearly, X1

τ ∼ µ and
X2

τ ∼ µ(−,ε). Furthermore, if X2
τ (s) = 0, then either X1

0(s) = X2
0(s) = 0 or there

exists a t ∈ [0, τ ] such that t is an arrival time for the Poisson process associated to
s and Us,t ≤ λ1/λ. Since λ1 ≤ C(s,X1

t−) if X1
t−(s) = 1, we get that either X1

t+(s)

or X1
t−(s) is 0 and, therefore, X1

inf,τ � X2
τ . �
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To illustrate why the condition λ1 > 0 of Lemma 5.2 is needed, consider the case
µ = πp for some p > 0. With ε > 0, if we assume the trivial dynamics C(s, σ ) = 0
for all s, σ , we will of course not have that µinf,τ � µ(−,ε) for any τ > 0.

6. Proof of Theorem 1.9. Take λ > λp and let λ′ = (λ + λp)/2. By The-
orem 1.11, there exists an ε > 0 such that (µλ′,µλ) is downward ε-movable.
Lemma 5.1 gives us that there exists a τ > 0 such that µ

(−,ε)
λ � µλ,inf,τ and, hence,

that µλ′ � µλ,inf,τ . Therefore, since C+ is an increasing event and λ′ > λp , we
have that

1 = µλ′(C+) ≤ µλ,inf,τ (C
+)

and so

�λ(C+
t ∀ t ∈ [0, τ ]) = 1.

The theorem now follows from countable additivity. �

7. Proof of Theorem 1.1. In this section we will deal with stationary distrib-
utions for interacting particle systems which are monotone in the sense of Defini-
tion 2.2.

Let G = (S,E) be a countable connected locally finite graph and let 
 ⊆ S be
connected and |
| < ∞. Let {µp


}p∈I , where I ⊆ R be a family of probability
measures on {−1,1}
 such that

µ
p1

 � µ

p2

 ∀p1 ≤ p2.

Assume that there exist stationary Markov processes �
p

 governed by flip rate in-

tensities {Cp,
(s, σ )}s∈
,σ∈{−1,1}
 and with marginal distributions µ
p

. Further-

more, assume that there exists limiting distributions �p of �
p

 and µp of µ

p



as 
 ↑ S. Assume that µ
p

 are monotone for every p and 
. For p1 < p2, let

A
,p1,p2 := inf
s∈


ξ∈{−1,1}
\s

[
µ

p2



(
σ(s) = 1|σ(
\s) ≡ ξ

)−µ
p1



(
σ(s) = 1|σ(
\s) ≡ ξ

)]

and assume that, for all p1 < p2,

inf

⊆S

A
,p1,p2 > 0.

For fixed p1 < p2, there exists by Proposition 3.4 an ε > 0 such that (µp1,µp2) is
both upward and downward ε-movable. Next, by Lemma 5.1, there exists a τ > 0
such that

µp2,(−,ε) � µ
p2
inf,τ ,

and therefore,

µp1 � µ
p2
inf,τ .(31)



DYNAMICAL STABILITY FOR IPS 565

THEOREM 7.1. Consider the setup just described. Let A be an increasing
event on {−1,1}S and let At be the event that A occurs at time t .

(1) Let a ∈ R. If

µp(A) = 1

for all p ∈ I with p > a, then

�p(At occurs for every t) = 1

for all p ∈ I with p > a.
(2) Let a ∈ R. If

µp(A) = 0

for all p ∈ I with p < a, then

�p(At occurs for some t) = 0

for all p ∈ I with p < a.

PROOF. We prove only (1), as (2) is proved in an identical way. Take p > a

and let p2 = (p + a)/2. By the argument leading toward (31), there exists τ > 0
such that

µp2(A) ≤ µ
p
inf,τ (A).

By using µp2(A) = 1 and

µ
p
inf,τ (A) ≤ �p(At occurs for every t ∈ [0, τ ]),

we get by countable additivity that

�p(At occurs for every t) = 1. �

We will now be able to prove Theorem 1.1 easily.

PROOF OF THEOREM 1.1. We prove only the very first statement; all the
other statements are proved in a similar manner. We fix β ≥ 0 and then h will
correspond to our parameter p in the above set up. For any 
 ⊆ S, any s ∈ 
 and
any ξ ∈ {−1,1}
\s , we have that

µ
+,β,h



(
σ(s) = 1|σ(
 \ s) = ξ

) = 1

1 + e−2β(
∑

t : t∼s ξ(t))−2h
,(32)

where we let ξ(t) = 1 if t ∈ 
c in order to take the boundary condition into ac-
count. It is obvious from (32) and the definition of monotonicity that µ

+,β,h

 is

monotone for any h and 
. Letting h1 < h2, it is immediate that

A
,h1,h2 = inf
s∈


ξ∈{−1,1}
\s

[
1

1 + e−2β(
∑

t : t∼s ξ(t))−2h2
− 1

1 + e−2β(
∑

t : t∼s ξ(t))−2h1

]
> 0,
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where again ξ(t) = 1 for all t ∈ 
c. It is not hard to see that this strict inequality
must hold uniformly in 
, that is,

inf

⊆S

A
,h1,h2 > 0.

It follows that all of the assumptions of Theorem 7.1 hold and part (1) of that result
gives us what we want. �

PROOF OF LEMMA 1.2. Fix β ≥ 0. Given any p ∈ (0,1), it is easy to see
that there exists a real number h2 such that, for all h ≥ h2, for s ∈ S and for all
ξ ∈ {−1,1}S\s ,

µ+,β,h(
σ(s) = 1|σ(S \ s) = ξ

) ≥ p

and, hence, πp � µ+,β,h. It is also easy to see that there exists a real number h1
such that, for all h < h1, for s ∈ S and for all ξ ∈ {−1,1}S\s ,

µ+,β,h(
σ(s) = 1|σ(S \ s) = ξ

) ≤ p

and, hence, µ+,β,h � πp . The statements of the lemma easily follow from these
facts. �

8. Proof of Theorem 1.3. In this section we will use a variant of the so-called
Peierls argument to prove Theorem 1.3. We prove this only for Z

2; the proof (with
more complicated topological details) can be carried out for Z

d with d ≥ 3.

We will write 0
−,t←→ ∂
L for the event that there exists a path of sites in

state −1 connecting the origin to ∂
L := 
L+1 \ 
L at time t and we will write

0
−,t←→ ∞ for the event that there exists an infinite path of sites in state −1 con-

taining the origin at time t . We will also write 0
+,t←→ ∂
L and 0

+,t←→ ∞ for the
obvious analogous events. We will first need Lemma 8.1 and the concept of a dual
graph. The dual graph Gdual

n = (Sdual
n ,Edual

n ) of Gn = (Sn,En) consists of the set
of sites Sdual

n := {−n− 1
2 , . . . , n+ 1

2}2 and Edual
n , which is the set of nearest neigh-

bor pairs of Sdual
n . In this paper we will only work with the edges of the dual graph.

An edge e ∈ Edual
n crosses one (and only one) edge f ∈ En and the end sites of this

edge f will be called the sites (of Gn) associated to e. For a random spin configu-
ration X on {−1,1}Sn , define a random edge configuration Y on {0,1}Edual

n in the
following way:

Y(e) =
{

0, if X(t) = X(s),
1, if X(t) �= X(s),

(33)

where s, t are the sites associated to edge e ∈ Edual
n . In Figure 1 we have drawn a

configuration σ ∈ {−1,1}S1 and the induced edge configuration on {0,1}Edual
1 .

Assume that the sites evolve according to the flip rate intensities
{Cn(s, σ )}s∈Sn,σ∈{−1,1}Sn . Consider γ, a (finite) path of edges in the dual graph.
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FIG. 1. S1 and the edges of its dual graph. A solid circle marks a site with spin 1, while an empty
circle has spin −1. A solid line is a present edge of the dual graph, and a dashed line is an absent
edge of the dual graph.

Take γ ′ to be a subset of γ . Assume that all edges of γ ′ are absent and all
edges of γ \ γ ′ are present at t = 0. We want to estimate the probability of the
event that all edges of γ ′ are present at some point (not necessarily all at the
same time) during some time interval [0, τ ]. In other words, we want to estimate
P(Ysup,τ (γ

′) ≡ 1|Y0(γ
′) ≡ 0, Y0(γ \ γ ′) ≡ 1).

LEMMA 8.1. Let {Cn(s, σ )}s∈Sn,σ∈{−1,1}Sn be the flip rate intensities for a
stationary Markov process on {−1,1}Sn and let Yt be defined as above. Let

λ := sup
(s,σ )

Cn(s, σ ) (< ∞).

For any τ > 0 and any γ ′ ⊆ Edual
n ,

P
(
Ysup,τ (γ

′) ≡ 1|Y0(γ
′) ≡ 0, Y0(E

dual
n \ γ ′) ≡ 1

) ≤ (
4(1 − e−λτ )1/4)|γ ′|

.

PROOF. Take τ > 0. For every s ∈ Sn, associate an independent Poisson
process with parameter λ. Define {Xt }t≥0 in the following way. Let X0 ∼ µ

and take t ′ to be an arrival time for the Poisson process of a site s. We let
Xt ′,+(s) �= Xt ′,−(s) with probability C(s,Xt ′,−)/λ. Do this independently for all ar-
rival times for all Poisson processes associated to the different sites. It is immediate
that Xτ ∼ µ. Let si, i ∈ {1, . . . , l}, be distinct sites of Sn. The event {Xinf,τ (si) �=
Xsup,τ (si) ∀ i ∈ {1, . . . , l}} is contained in the event that every Poisson process as-
sociated to the sites si, i ∈ {1, . . . , l}, have had at least one arrival by time τ . The
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probability that a particular site has had an arrival by time τ is 1 − e−λτ . Fur-
thermore, this event is independent of the Poisson processes for all other sites.
Therefore,

P
(
Xinf,τ (si) �= Xsup,τ (si) ∀ i ∈ {1, . . . , l}) ≤ (1 − e−λτ )l.(34)

Given γ ′, consider the set of all sites associated to some edge of γ ′ and let nγ ′ be
the cardinality of that set. Observe that nγ ′ ≤ 2|γ ′| and that in order for the event
(Ysup,τ (γ

′) ≡ 1|Y0(γ
′) ≡ 0, Y0(E

dual
n \ γ ′) ≡ 1) to occur, at least |γ ′|/4 of the sites

associated to γ ′ must flip during [0, τ ]. This is because one site is associated to
at most 4 edges. Denote the event that at least |γ ′|/4 of the sites associated to γ ′
flip during [0, τ ] by Aτ,γ ′ . Take S̃ to be a subset of the sites associated to γ ′ such
that |S̃| ≥ |γ ′|/4. By (34), the probability that all of these sites flip during [0, τ ] is
less than (1 − e−λτ )|S̃| ≤ (1 − e−λτ )|γ ′|/4. To conclude, observe that the number of
subsets of the sites associated to γ ′ is bounded by 22|γ ′|. Hence, the probability of
the event Aτ,γ ′ must be less than (1 − e−λτ )|γ ′|/422|γ ′|, and so

P
(
Ysup,τ (γ

′) ≡ 1|Y0(γ
′) ≡ 0, Y0(E

dual
n \ γ ′) ≡ 1

)
≤ P(Aτ,γ ′) ≤ (

(1 − e−λτ )1/44
)|γ ′|

. �

PROOF OF THEOREM 1.3. We will prove the theorem for d = 2. For β > βp ,
choose δ1 > 0 so that β ′ := β 2−δ1

2 > βp and, hence,

∞∑
l=1

l3l−1e−2β ′l < ∞.

Next, choose N and ε < 1/2 such that 4
N

≤ δ1, and ε1/N ≤ e−β(2−δ1) and let τ be
such that ε = 4(1 − e−λτ )1/4. Let δ > 0 be arbitrary and choose L so that

3
∞∑

l=L

l3l−1e−2β ′l < δ.

Let EL,τ be the event that 0
−,t←→ ∂
L, for some t ∈ [0, τ ]. Let �

+,β
n be defined as

in Section 2.3. We will show that

�+,β
n (EL,τ ) < δ ∀n > L.

Since �
+,β
n (EL,τ ) → �+,β(EL,τ ) (see Section 2.3) we get that �+,β(EL,τ ) ≤ δ.

Letting L → ∞ and δ → 0, we get that

�+,β(∃ t ∈ [0, τ ] : 0
−,t←→ ∞) = 0,

and then by countable additivity,

�+,β(∃ t ≥ 0 : 0
−,t←→ ∞) = 0.
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It is well known (see [8]) that if all sites in 
n+1 \ 
n take the value +1,

EL,τ ⊆ {∃γ ⊆ Edual
n , t ∈ [0, τ ] : |γ | ≥ L,γ surrounds the origin, Yt (γ ) ≡ 1}

(35)
⊆ {∃γ ⊆ Edual

n : |γ | ≥ L,γ surrounds the origin, Ysup,τ (γ ) ≡ 1}.
To prove �

+,β
n (EL,τ ) < δ, consider γ with |γ | = l a contour in Edual

n surround-
ing the origin. By Lemma 8.1, P(Ysup,τ (γ

′) ≡ 1|Y0(γ
′) ≡ 0, Y0(γ \γ ′) ≡ 1) ≤ ε|γ ′|

whenever γ ′ ⊆ γ . We get

P
(
Ysup,τ (γ ) ≡ 1

)

=
l∑

k=0

∑
γ ′⊆γ

|γ ′|=k

P
(
Y0(γ

′) ≡ 0, Y0(γ \ γ ′) ≡ 1
)

× P
(
Ysup,τ (γ

′) ≡ 1|Y0(γ
′) ≡ 0, Y0(γ \ γ ′) ≡ 1

)

≤
l∑

k=0

∑
γ ′⊆γ

|γ ′|=k

P
(
Y0(γ

′) ≡ 0, Y0(γ \ γ ′) ≡ 1
)
εk(36)

=
l∑

k=0

P({all edges except k of γ are present at t = 0})εk

=
l/N∑
k=0

P({all edges except k of γ are present at t = 0})εk

+
l∑

k=l/N+1

P({all edges except k of γ are present at t = 0})εk.

Obviously, l/N need not be an integer, but correcting for this is trivial and is left
for the reader.

We need to estimate P({all edges except k of γ are present at t = 0}). For this
purpose, define T : {−1,1}Sn → {−1,1}Sn , by

(T σ)(s) =
{

σ(s), if s is not in the domain bounded by γ ,

−σ(s), if s is in the domain bounded by γ ,

for all σ ∈ {−1,1}Sn . Let Ek = {σ : all edges except k of γ are present}. Since
H

+,β
n of (6) gives a contribution of −β for adjacent pairs of equal spin and +β

for adjacent pairs of unequal spin, we have that, for σ ∈ Ek , H
+,β
n (T σ) =

H
+,β
n (σ ) − 2β(|γ | − k) + 2βk = H

+,β
n (σ ) − 2β|γ | + 4βk.

Hence, for σ ∈ Ek ,

µ+,β
n (σ ) = e−H

+,β
n (σ )

Z
= e−H

+,β
n (T σ)−2β|γ |+4βk

Z
,
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and so

µ+,β
n (Ek) = ∑

σ∈Ek

µ+,β
n (σ ) = e−2βl+4βk

∑
σ∈Ek

e−H
+,β
n (T σ)

Z

≤ e−2βl+4βk
∑

σ∈{−1,1}Sn

e−H
+,β
n (T σ)

Z
= e−2βl+4βk,

where the last equality follows from T being bijective. We then get that

l/N∑
k=0

P({all edges except k of γ are present at t = 0})εk

≤
l/N∑
k=0

e−2βl+4βkεk ≤ e−2βl+4βl/N
l/N∑
k=0

εk ≤ 2e−2βl+4βl/N(37)

≤ 2e−β(2−δ1)l = 2e−2β ′l .

Furthermore,

l∑
k=l/N+1

P({all edges except k of γ are present at t = 0})εk

≤ εl/N
l∑

k=l/N+1

P({all edges except k of γ are present at t = 0})(38)

≤ εl/N ≤ e−β(2−δ1)l = e−2β ′l ,

where we use that {all edges except k of γ are present at t = 0} are disjoint events
for different k. Hence, (36), (37) and (38) combined give us

P
(
Ysup,τ (γ ) ≡ 1

) ≤ 3e−2β ′l

and so by (35), for all n > L,

�+,β
n (EL,τ ) ≤ �+,β

n

(∃γ ⊆ Edual
n : |γ | ≥ L,γ surrounds the origin, Ysup,τ (γ ) ≡ 1

)
≤

∞∑
l=L

l3l−13e−2β ′l < δ,

where the second to last inequality follows from the fact that the number of con-
tours around the origin of length l is at most l3l−1 (see [8]). �

REMARK. For Z
d , the proof is generalized by noting that the number of con-

nected surfaces of size l surrounding the origin is at most C(d)l , for some con-
stant C(d). The arguments are the same but the “topological details” are messier.
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9. Proof of Theorem 1.5. We will start this subsection by presenting a theo-
rem by Liggett, Schonmann and Stacey [21].

THEOREM 9.1. Let G = (S,E) be a graph with a countable set of sites in
which every site has degree at most � ≥ 1, and in which every finite connected
component of G contains a site of degree strictly less than �. Let p,α, r ∈ [0,1],
q = 1 − p, and suppose that

(1 − α)(1 − r)�−1 ≥ q,

(1 − α)α�−1 ≥ q.

If µ ∈ G(p), then παr � µ. In particular, if q ≤ (� − 1)�−1/��, then πρ � µ,
where

ρ =
(

1 − q1/�

(� − 1)(�−1)/�

)(
1 − (

q(� − 1)
)1/�)

.

Here G(p) denotes the set of probability measures on {−1,1}S such that if
µ ∈ G(p), X ∼ µ, then for any site s ∈ S,

P
[
X(s) = 1|σ ({

X(t) : {s, t} /∈ E
})] ≥ p a.s.

Observe that when p → 1 ⇒ q → 0 and so ρ → 1. The above theorem is stated as
the original in [21]. However, by considering the line-graph of G = (S,E), it can
be restated in the following way.

COROLLARY 9.2. Let G̃ = (S̃, Ẽ) be any countable graph of degree at
most �. For each 0 < ρ < 1, there exists a 0 < p < 1, where p = p(�,ρ) such
that if Y ∼ ν, where ν is a probability measure on the edges of G̃ such that for
every edge e ∈ Ẽ,

P
[
Y(e) = 1|σ ({Y(f ) : e �∼ f })] ≥ p a.s.,

we have that πẼ
ρ � ν.

By e �∼ f , we of course mean that the edges e and f do not have any endpoints
in common. Here, πẼ

ρ is the product measure with density ρ on the edges of G̃.
Consider a graph G = (S,E) and a subgraph G′ = (S′,E′), where S′ = S and

E′ ⊂ E. Let X ∼ πp on S. We declare an edge e ∈ E′ to be closed if any of the
endpoints takes the value 0 under X. Corollary 9.2 gives us that, for any ρ < 1,
there is a p < 1 such that this method of closing edges dominates independent
bond percolation with density ρ on E′. Observe that we can choose p independent
of E′ since the maximal degree of E′ is bounded above by the maximal degree
of E.
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Let (X,Y ) ∼ Pp
n , defined in Section 2.5. Close every e ∈ En such that Y(e) = 1

independently with probability ε, thus creating (X,Y (−,ε)). Compare this to clos-
ing every site in Sn independently with parameter ε′ [creating X(−,ε′)] and defining

Y ε′
(e) =

{
1, if Y(e) = 1 and neither one of the endpoints of e flips,
0, otherwise.

By the arguments of the last paragraph, we see that, for a fixed ε, there exists an ε′
[that we can choose independent of (X,Y ) and n] such that the first way (i.e.,
independent bond percolation) of removing edges is stochastically dominated by
the latter. Hence,

Pp
n

((
X,Y (−,ε)) ∈ ({−1,1}Sn, ·)|(X,Y )

)
� Pp

n

((
X(−,ε′), Y ε′) ∈ ({−1,1}Sn, ·)|(X,Y )

)
.

By averaging over all possible (X,Y ), the next lemma follows.

LEMMA 9.3. With notation as above, for any ε > 0, there exists ε′ > 0 inde-
pendent of n such that

Pp
n

((
X,Y (−,ε)) ∈ ({−1,1}Sn, ·)) � Pp

n

((
X(−,ε′), Y ε′) ∈ ({−1,1}Sn, ·)).

Observe that

Pp
n

((
X,Y (−,ε)) ∈ ({−1,1}Sn, ·)) D= ν̃p,(−,ε)

n (·)(39)

and that

Pp
n

((
X(−,ε′), Y ε′) ∈ (·, {−1,1}En)

) D=µ+,β,(−,ε′)
n (·).(40)

We are now ready to prove Theorem 1.5.

PROOF OF THEOREM 1.5. For any choice of β > βc, take p = 1 − e−2β and
let δ ∈ (0,p − pc). Now, (14) and Holley’s inequality imply that

ν̃p−δ
n � ν̃p

n ∀n ∈ N
+.

Since, by (14), both ν̃
p−δ
n and ν̃

p
n are monotone, there exists by Lemma 3.3 (it is

easy to check that all other conditions of that lemma are satisfied) an ε > 0 such
that

ν̃p−δ
n � ν̃p,(−,ε)

n ∀n ∈ N
+.(41)

In [13] they show that the limit limn ν̃
p−δ
n (0 ←→ ∂
n) exists and that

lim
n

ν̃p−δ
n (0 ←→ ∂
n) > 0.(42)
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Here {0 ←→ ∂
n} denotes the event that there exists a path of present edges
connecting the origin to ∂
n := 
n+1 \ 
n. Since {0 ←→ ∂
n} is an increasing
event on the edges, Lemma 9.3 guarantees the existence of an ε′ > 0 such that

ν̃p,(−,ε)
n (0 ←→ ∂
n)

= Pp
n

((
X,Y (−,ε)) ∈ ({−1,1}Sn,0 ←→ ∂
n)

)
≤ Pp

n

((
X(−,ε′), Y ε′) ∈ ({−1,1}Sn,0 ←→ ∂
n)

) ∀n ∈ N
+.

If there exists a path of present edges connecting the origin to the boundary ∂
n

under Y , all the sites of this path must have the value 1 under X. Similarly for
(X(−,ε′), Y ε′

), if there exists a path of present edges connecting the origin to the
boundary ∂
n under Y ε′

, all the sites of this path must have the value 1 un-
der X(−,ε′). Hence,

Pp
n

((
X(−,ε′), Y ε′) ∈ ({−1,1}Sn,0 ←→ ∂
n)

)
= Pp

n

((
X(−,ε′), Y ε′) ∈ (0

+←→ ∂
n,0 ←→ ∂
n)
)

≤ Pp
n

((
X(−,ε′), Y ε′) ∈ (0

+←→ ∂
n, {0,1}En)
)

= µ+,β,(−,ε′)
n (0

+←→ ∂
n).

Of course,

µ+,β,(−,ε′)
n (0

+←→ ∂
n) ≤ µ+,β,(−,ε′)
n (0

+←→ ∂
L) ∀L < n.

Therefore, for any L, we have that

0 < lim
n

ν̃p−δ
n (0 ←→ ∂
n)

≤ lim
n

µ+,β,(−,ε′)
n (0

+←→ ∂
L) = µ+,β,(−,ε′)(0
+←→ ∂
L),

and so

0 < lim
L

µ+,β,(−,ε′)(0
+←→ ∂
L) = µ+,β,(−,ε′)(0

+←→ ∞).

The limit in L exists since {0 +←→ ∂
L2} ⊆ {0 +←→ ∂
L1} for L1 ≤ L2. Since
µ+,β is ergodic (see [19], pages 143 and 195), it follows that µ+,β,(−,ε′) must also
be ergodic. This is because µ+,β,(−,ε′) can be expressed as a function of two inde-
pendent processes, one being µ+,β and the other a product measure. We conclude
that

µ+,β,(−,ε′)(C+) = 1.(43)

By Lemma 5.1, there exists a τ > 0 such that

µ+,β,(−,ε′) � µ
+,β
inf,τ
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and therefore,

µ
+,β
inf,τ (C

+) = 1.

Therefore,

�+,β(C+
t occurs for every t ∈ [0, τ ]) = 1.

Finally, using countable additivity,

�+,β(C+
t occurs for every t) = 1. �

10. Proof of Theorem 1.4. The aim of this section is to prove Theorem 1.4.
For that we will use Theorem 1.5 and Lemma 10.1. We will not prove Lemma 10.1
since it follows immediately from the proof of Lemma 11.12 in [10] due to
Y. Zhang.

A probability measure µ on {−1,1}S is said to have the finite energy property
if all conditional probabilities on finite sets are strictly positive.

LEMMA 10.1. Take µ to be any probability measure on {−1,1}Z
2

which
has positive correlations and the finite energy property. Assume further that µ is
invariant under translations, rotations and reflections in the coordinate axes. If
µ(C+) = 1, then µ(C−) = 0.

PROOF OF THEOREM 1.4. Fix β > βc. By (43), there exists ε > 0 such that

µ+,β,(−,ε)(C+) = 1.

Since µ+,β and π1−ε both have positive correlations, it follows that µ+,β,(−,ε) has
positive correlations. This is because (see [19], page 78) the product of two prob-
ability measures which have positive correlations also has positive correlations.
Furthermore, a collection of increasing functions of random variables which have
positive correlations also has positive correlations. In addition, the finite energy
property is easily seen to hold for µ+,β,(−,ε). Using this, we can by Lemma 10.1
conclude that

µ+,β,(−,ε)(C−) = 0.

By Lemma 5.1, there exists a τ > 0 such that µ+,β,(−,ε) � µ
+,β
inf,τ and hence,

µ
+,β
inf,τ (C

−) = 0.

It follows that

�+,β(∃ t ∈ [0, τ ] :C−
t occurs) = 0,

and by countable additivity, we conclude

�+,β(∃ t ≥ 0 :C−
t occurs) = 0. �
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