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This paper is devoted to the problem of sample path large deviations
for the Markov processes dRﬁ having a constant but different transition
mechanism on each boundary setx; =0fori ¢ A, x; >0fori € A}. The
global sample path large deviation principle and an integral representation of
the rate function are derived from local large deviation estimates. Our results
complete the proof of Dupuis and Ellis of the sample path large deviation
principle for Markov processes describing a general class of queueing
networks.

1. Introduction. The present paper investigates sample path large deviations
of Markov processes O]Rf having a constant but different transition mechanism
on each set

By ={x:x;=0fori ¢ A, x; >0for j e A},

whereA is a subset of1, ..., N}. This property will be referred to as tipartial
homogeneity of the transitioms the following.

Such Markov processes occur in a wide class of stochastic models such as
gueueing networks. To establish a sample path large deviation principle in this
situation, the general method of Freidlin and Wentzel [9] cannot be applied because
of a discontinuity of the transition mechanism.

Our paper is motivated by various examples where a local sample path
large deviation principle (see below for a precise definition) can be proved,;
roughly speaking, locally, the rate function can be identified by using the partial
homogeneity of the processes. It is quite natural to try to extend this property in
order to get a complete sample path large deviation principle.

In this paper, the problem of establishing a global principle of sample path large
deviations from local large deviation estimates is investigated. It is proved that,
under some general conditions, such an extension holds and that the associated
rate function has an integral representation.

Before formulating our results and discussing the literature of the domain, the
definition of sample path large deviation principle is recalled.
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1480 I. IGNATIOUK-ROBERT

For x € RV, let (X(z,x)) be a Markov process ot C RY with a given
transition kernel and initial stat& (0, x) = x. Forn > 1,

Zn(t,z)=X(nt,nz)/n

is a rescaled Markov process defined &n= %E and having initial state
Z,(0,z) = z € &,. Throughout the paper, with a slight abuse of notation, we
write (X (1)) and (Z,(¢)) instead of(X (¢, x)) and (Z, (¢, z)). The subscript, of
P.(Z, € -) refers to the initial state afZ,(r)).

1.1. Sample path large deviation principleThe functional
Iio,r1: D((0, T1, RY) — [0, +00]

is called arate functionif it is lower semicontinuous. The family of rescaled
Markov processesZ,(t),t € [0, T]) is said to satisfy thesample path large
deviation principlewith a rate function/|g 7 if:

(i) for anyx € RY and for any open s&® C D([0, T],RY),

1
Q)  lim liminf inf —logP,(Z, € O) > — inf Io,11(9);

e—>0n—>+0z€§,: |z—x|<e n ¢ : ¢ (0)=x

(i) for any x € RY and for any closed sdt C D([0, T1, RY),

1
(2) limlimsup sup —IogPZ(ZneF)§—¢ inf Io.11(9),

e=>0n—+00 ze6,: |z—x|<c 1 €F:¢(0)=x

whereD([O, T'], Rﬁ) is the set of all functions frorfD, T'] to ]R{ﬁ which are right-
continuous and have left limits. The get[0, T], ]Rﬁ\r’) is endowed by the Skorohod
metric.

Inequalities (1) and (2) are usually called lower and upper large deviation
bounds, respectively.

A general upper large deviation bound has been obtained for the processes with
discontinuous statistics by Dupuis, Ellis and Weiss in [8]. This upper bound is
usually quite rough: results obtained by Alanyali and Hajek [1], Blinavakid
Dobrushin [3] and Ignatiouk [11] show that the lower large deviation bound with
the same rate function fails in general.

1.2. Local sample path large deviation principleA local sample path large
deviation principlewith a rate function/jo, 7} is said to hold when the following
inequalities are satisfied:

(3) lim lim liminf inf }IogIP’Z(Hw —Zulloo <8) = —Jio.11(¥),

§—>0e—>0 n—>0 z€§,:|z—v(0)|<e n

. 1
(4)  limlimsup sup —10gP: (1Y — Znlloo < &) = —Jjo.11(¥),

§=0 n—>o00 zeg,: 1=y (0)|<s 1
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for every continuous piecewise linear functign [0, T] — R_’X. Because of the
Markov property, a local sample path large deviation principle holds if the above
inequalities are satisfied for any functignhaving a constant velocity.

For Markov processes associated to queueing networks, a local sample path
large deviation principle has been established by Dupuis and Ellis [6]. For such
Markov processes, the rate functidp, 1 has an integral form

T .
J[o,T](lﬂ):/o Ly (@), ¥ (1)) dt

for every continuous piecewise linear functign The local rate functionL is
defined by the limits

L . 1
L(x,v)=—Ilim lim lim liminf inf —
T—-06—-0e—-0 n—>0 z:|z—x|<e nT

IogPZ( sup |x +vt —Z,(1)| < 8)
1€[0,T]

1
=—lim lim limsup sup T IogIP’Z< sup |x +vt —Z,()| < 8)

T—-06—0 n—soo z:|z—x|<s I te[0,T]
and satisfies the following properties:

(@) foranyx e Rﬂ, the functionv — L(x, v) is convex,
(b) for anyv € Rﬁ, the mappingc — L(x, v) = LA (v) is constant on each set
By ={x:x;=0fori¢ A, x; >0forjeA}.

Borovkov and Mogubkii [4] obtained a local sample path large deviation
principle for partially homogeneous Markov chains with vaIueRin An explicit
expression for the local rate function has been derived in several situations. In [10],
an explicit representation of the local rate function was obtained for Jackson
networks by using the classical method of exponential change of measure and the
explicit representation of the related fluid limits. Atar and Dupuis [2] give the local
rate function for a class of networks for which the associated Skorohod problem
has some regularity properties. Delcoigne and de La Fortelle [5] expressed the
local rate function for some polling systems. In [11], the local rate function of a
general class of Markov chains with discontinuous statistics was represented in
terms of convergence parameters of a family of matrices.

The local large deviation principle with a rate functiolp,r) implies the
lower large deviation bound (1) with the rate functidp,7; defined as a lower
semicontinuous regularization of the functigg r;: for any¢ € D([0, T'], R_’X),

5) lio,71(¢) = gil)noigf Jio,r1(¥),

where the infimum is taken over all piecewise linear functigng0, 7] — R’X
with ds(¢, ¥) < 8§ anddg(-,-) denotes the Skorohod metric (see Theorem 4.3
of [6]).

As it stands, the local large deviation principle is not sufficient to imply the
upperlarge deviation bound (2). In this setting, a proof of the upper large deviation
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bound has been proposed by Dupuis and Ellis [6]. It is not entirely correct for the
following reason: relation (4) shows that, for any- 0 and for any continuous
piecewise linear functiop : [0, T] — RN there exist$ = 64 > 0 depending om

and also o such that

. 1
limsup  sup  —logP.(ll¢ — Zulleo <8) = —Ij0.71(9) +&.
n—00 7€, :z—$(0)<8

Let 8 be the set of all continuous piecewise linear pagthg), 7] — Rﬁ. To obtain
the upper large deviation bound, the arguments of [6] consist in covering a compact
subsetk c D([0, T, Rﬂ) by a finite family of open setg) : || — @[ < 84} with
¢ € 8. While the sets is dense in the Skorohod spaéy]O0, T],]Rﬂ), such a
coveringdoes not necessarily exist in genetacause the quantity, depends
ong.

Moreover, (5) gives only an implicit description of the rate functigyyy;. Even
if the closed form expression of the local rate functibq, -) is known, it is not
clear whether the functiofjo, 71 has an integral form. Such an explicit expression
of the rate function is important in view of applications.

1.3. Results. In the present paper, a complete proof of the upper large devia-
tion bound (2) is given and an integral representation of the rate fungton is
derived. The main arguments of the proof are now detailed.

For Markov processes considered in this paper, because of the partial homo-
geneity of the transitions, the local sample path large deviation principle is equiv-
alent to the existence of a collection of convex nonnegative functiofis“gn

Ly, AC{l,...,N},

such that, for any’ > 0 and for any linear functiom(s) = ¢(0) + vs, s €
[0, T, the sequence of scaled Markov procességr),t € [0, T]) satisfies the
inequalities

= I|m lim liminf inf Io P Zn )
wo (@) < im lim liminf _ inf = logF (¢~ Zule <)
(6)
> —TLa@)(v)
and
1
Wio, T](¢) = llm llmSUIO sup  —IlogP.(ll¢ — Zyllec < 8)
8—0 n—oo Z:|z— ¢(0)|<5n
(7)

< =T Ljw(v),

where A(¢) is the set of all thosé € {1,..., N} for which ¢;(s) # 0 for all
s € (0, T). Inequalities (6) and (7) correspond to inequalities (3) and (4).
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In order to get our main result, (7) will be replaced by a slightly different
inequality, namely,

L 1
limlimsup  sup  =logP.(|¢(T) — Z,(T)| <8 andzp, >T)
§—0 n—o0 i 1z—¢(0)|<s 1

(8)
< —=TLpw(v),
wheret, , is the first time when the proce&s (¢) hits the set ;5 {x :x; = 0}.
When the local estimates (6) and (8) are verified and when the local rate function
Ly1,....ny is finite in a neighborhood of zero, it is proved that, for any absolutely
continuous functio : [0, T] — RY,

T .
9) W[o,T](¢>)=w[o,T](¢)=—1[o,T](¢)=—/0 L(¢@), ¢(n)dt.

It is shown that this result implies the whole sample path large deviation principle
when the general rough upper bound of [8] holds.

In the setting considered by Dupuis and Ellis [6], inequality (8) is proved
in Section 3 by using the method of convergence parameters of corresponding
local transform semigroups. This method was developed in [11] for partially
homogeneous discrete-time Markov chains. In this way, our results complete the
proof of the main result of [6].

The paper is organized as follows. Section 2 presents an overview of the main
results. In Section 3, as an application, these results are used to establish the sample
path large deviation principle for a general class of queueing networks. The proof
of the local estimates (6) and (8) is given. Section 4 is devoted to the proof of (9)
(this is the proof of Theorem 1 below). Using this relation and the general upper
bound of [8], the whole sample path large deviation principle (Theorem 2) is
derived in Section 5.

2. General results.

2.1. Definitions and assumptionsThe following notation are used throughout
this paper. For € RY, A(x) is the set of those indicesfor which x; > 0. For a
subsetA C {1,..., N}:

(@) xa = (xi,i € A);
(b) Ba is the set of allk € RY with A(x) = A.

It is assumed that the subsé&&,, n > 1), the state spaces of scaled processes
(Z,,n > 1), are dense irR_’X: for anyx e ]R_’X there exists a sequence of points
x, € €, converging tox.

It is assumed that there is a collection of convex nonnegative funcfigns
onRY satisfying the following conditions.
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(A1) ForanyA c{1,...,N}andT > 0, and for any functiorp:[0, T] — ]R_’X
with a constant velocity () = v and such thap (1) € B forO <t < T, the
following inequality holds:

o . 1
g@o;@o'm'&fz: Iz—l(r;IO)|<£ - logP; (¢ — Zulloo < 8) = =T L (v).
(A2) The functionLyy, . n; is finite in a neighborhood of zero.
(A3) ForanyA c{1,...,N}andT > 0, and for anyx, y € By, the following
inequality holds:

L 1
limlimsup sup =logP,(|Z,(T) -yl <éandtp, >T)

8—-0 n—soo g: |z—x|<d

— X
s—TLA(yT )

wheret, , is the hitting time of the sdt);., {x:x; = 0} by the process$Z,(t)).
In the next section we will see that these conditions are satisfied for a general class
of queueing networks.

For a continuous piecewise linear functign[0, 7] — RY, we define

T .
Jor1(¢) = /O L(6(s). $(s)) ds

with L(x,v) = Lay)(v) for all x e RY, v € RV, The functionl|o 7} is defined on
D([0,T],RY) by

Iio,71(¢) = (!i_r)noigf Jio,r1(¥),

the infimum being taken over all continuous piecewise linear functioos [0, T']
with dg(¢, ¥) < 8, whereds(, -) is the Skorohod metric o® ([0, T], ]Ri’). Itis
the lower semicontinuous regularization of the functifgr.

2.2. The main theorems.The central result of our paper is the following
theorem.

THEOREM1. Underthe assumptionsii), (A2) and(As), for any absolutely
continuous functiow : [0, T] — RY,

T

lio.7y(@) = fo L(¢ (). $(0)) dt = —Wio.r)() = —wio.r1(9).

Recall that a mappingT[o,T] :D([0, T1], ]R{ﬁ) — R, is agood rate functionif
the following assertions hold:
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(a) for any compact séf C Rﬁ and for anyc > 0 the set of all functiong <
D([0, T], IM) with ¢ (0) € V satisfying the inequalit)f[o,ﬂ@) < ciscompactin
D([0, T1,RY);

(b) every functionp € D([O, T, ]Rﬁ) with IN[O,T](qs) < oo is absolutely contin-
uous.

A general upper large deviation bound with a good rate function was obtained by
Dupuis, Ellis and Weiss [8]. The next theorem establishes/tbai is a good rate
function and that the sequence of Markov procegags:)) satisfies the whole
sample path large deviation principle when the general upper bound of [8] holds.

THEOREM 2. Suppose that there is a good rate functif}an satisfying
the upper large deviation bound and let the hypothesep, (A2) and (A3)
be satisfiedThen the sample path large deviation principle holds with the rate
function o, 71 and Ijo, 7 is also a good rate function

The main steps of our proofs are now briefly outlined. The proof of Theorem 1
begins by showing that for any absolutely continuous funaiof0, 7] — Rﬁ,

T

(10) Lor)(¢) < /0 L(¢(). (1)) dr.

To obtain this inequality, the classical approach consists in constructing for every
¢ > 0 a piecewise linear interpolatioft, of ¢ such that|¢ — V|0 < € and

T T

Tior) (o) = /0 Lo (), Yo () dit < /0 L(¢(). (1)) dt + e,

wheren, — 0 ase — 0.

For Markov processes with a discontinuity in the transition mechanism along
a hyperplane, such a construction was performed in Lemma 7.5.4 of [7] and in
Lemma 4.9 of [3]. In some particular cases, when there is a nonnegative fuaction
onR" such that1£(v) < L(x, v) < c2£(v) for all x e RY and for allv € RV with
v; =0fori ¢ A(x), this method can be extended to higher dimensions; see [2].

In our setting, such a construction does not seem possible: wher3 and
when the trajectoryf{¢(¢),t € [0, T]} has a spiral form with an infinite number
of linear segments on the boundary &¢t{x :x; = 0} converging to the center
of the spiral Oc RY, one can have|o r(¥) = +oo for every piecewise linear
interpolatiomy of the functiong.

Generally, a construction of the above piecewise linear interpolation is difficult
and sometimes impossible in a neighborhood of some irregular points (in the
above example, it is a center of the spiral). To avoid this difficulty, we slow
down the velocity of piecewise linear interpolations in a neighborhood of irregular
points. It is shown that, for any > 0, there is a piecewise linear interpolation
Y. of ¢ and there is a strictly increasing continuous piecewise linear mapping
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0, : [0, T] — [0, 6:(T)] with 6,(0) = 0 andé, (+) > 1 for almost allr € [0, 7], such
that

T .
Tiory (e 0651 < fo L($(@). (1)) di +e

and such thaf¢ — v [l @and supo 7710 (¢) — ¢| tend to 0 ag tends to 0. Since
6.(T) > T, the resulting functiony, o 6~ is piecewise linear and continuous
on [0, T']. The functiong being continuous, we obtain moreover thét— ¢, o
61|l converges to 0 astends to 0 and therefore, that (10) holds.

The next step is the proof of the inequality

T .
Wio,r)(¢) < — /0 L((0), d() dt

for any absolutely continuous pagh To obtain this inequality, (8) is used.

The proof of the last inequality as well as the proof of the existencé of
and 6, is performed by a careful induction with respectAoc {1,..., N} for
¢=(d1,...,0n):[0,T] — Rﬁ with ¢; (¢) > 0 foralli € A and for allz € [0, T'].

Finally, with the lower large deviation bound of [6], we conclude that

T .
—1I0,11(¢) < wio,11(¢) < Wio,11(¢) < _/o L(¢p(t), ¢(1))dt < —Ijo,11().

This completes the proof of Theorem 1. Theorem 2 is proved classically with the
results of Theorem 1.

3. Application: the large deviations of queueing networks. In this section
an application of our general results is presented to establish the sample path large
deviation principle for Markov processes describing a general class of queueing
networks.

Forx € Zﬁ, we consider a continuous-time Markov procéX<z, x)) on Zﬁ
generated by

LIG)= Y qo. IO —f»), yezl,

y’eZﬁ

with X (0, x) = x. The transition intensitieg(y, y’) of this process are assumed to
satisfy the following conditions:

(Bo) (Finite range) There isd > 0 such that (y, y') = 0 whenevety — y'| > d.

(B1) (Communication conditiah There areC > 0 and O< y < 1 such that for
anyy,y’ € ZY, there exists a sequengg =y, y1, ..., y, = ¥’ € Z¥ with
n<Cl|y—y'|suchthay(y,_1,y;) >y foralli=1,...,n.

(B2) (Partial homogeneity For everyA c {1,..., N}, there is a nonnegative
measure:, onZN \ {0} such that

q(y,y)=pa(y' =)
for anyy € Z with A(y) = A, and for anyy’ € Z¥'.
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Recall that forx e Rﬁ, A(x) denotes the set of all thoses {1,..., N} for
which x; > 0 and By = {x e RY:A(x) = A}. For A C {1,...,N} and x =
(x1,...,xy) € RN we denotery = (x;;i € A).

We prove that under the above assumptions, the sequence of scaled Markov
processes

Z,(t,z) =X (nt,nz)/n

satisfies the sample path large deviation principléifo, 71, Rﬁ) with a good
rate function having an integral representation.

To prove the local large deviation estimates (6) and (8), we use the local
Markov processes introduced in [6]. Roughly speaking, if the Markov process
(X (¢)) describes a queueing network witfi nodes, a local Markov process
(AA(2), YA (2)) ON

ZA x 28 ={zeZN :z; > Oforalli € A%}

describes a modified queueing network with the same parameters as the original
Markov processg X (1)), but without any boundary condition on the nodes A:

the queue lengths at the nodes A may be negative. Such a Markov process
(AA(2), YA(2)) is generated by

Laf@= > qaz)(fE) - fQ),

’ A AL'
7/ €L XL

where ga (z,z') = naua) (2 — z). Throughout this section, we identifx s,
xpc) € RA x Rf with x = (x1,..., xn).

The transition intensitieg (z, z’) being invariant with respect to the transla-
tions on the first coordinate, , following the usual terminologyA A (¢), YA (1))
is aMarkov-additive proceswith additive partA, (z) on Z* and with Markov-
ian part¥, (1) on Z4". The Markovian part’, (¢) is a Markov chain orZ4". For

.....

The local estimates (6) and (8) are proved and the local rate funétjon
is expressed by using the method of convergence parameters of transform
semigroups developed earlier in [11]. For a givea R, thetransform semigroup
(P (o)) of the Markov-additive processia (1), Ya (7)) is defined by

Pr@f) =Y Palesy, Y) ) =Ey(e* O f(¥a 1))
y'eZAC

for a nonnegative function”:Zf — R. E(@,)(-) denotes here a conditional
expectation given thad 5 (0) = 0 andY, (0) = y. Under our assumptions, for all
AC{l,...,N},t>0andx € R, the quantities

a,Ap (1))

Ph:y,y) =E@,y) (e Lyem=y)): .Y €LY,
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are finite. Moreover, because of the communication condit®), the infinite
matrices?) («) = (Ph(e; y,Y); v,y eZA ) are irreducible. Using the inequal-
ity

0’““(0! ¥.Y) = Pi(e, v, D) Ph (@ 2. 2) P} (0.2 Y),

this implies that the limit

AA(a)—Ilmsup log P} (a; v, y")

11— 00

does not depend on,y € Zf. The quantity exp—ia(x)) is called the
convergence parametesf the semigroug#, («)). ForA ={1,..., N}, clearly

Pa....ny (@) = Eo(expl{e, Ajg,...m®)})
:exp<t > B..m@ e<‘“>—1))
z€Z: z#0

and

Mm@ = Y up..m@ (e —1).
z€Z: z#0

For A C {1,..., N}, we define the functiod 5 : RV — R by settingL 5 (v) =
A% (va) where)?, is the convex conjugate of the functian :

Awa) = sup({a, va) — Ap(a))

acRA
andwe letL(x,v) =La() if A(x)=A
The main result of this section is the following theorem.

THEOREM 3. Under the hypothese&Bp), (B1) and (B2), the sequence of
scaled process€¥, (1)) satisfies the sample path large deviation principle with a
good rate function

T 1 - - .
Io.71() = {/0 L(¢(t),¢(t))dt,  if ¢ is absolutely continuoys
+00, otherwise

The following lemmas prove the local estimates (6) and (8).

LEmMmMA 3.1. Forany A Cc {1,...,N} and T > 0, and for any linear path
¢ (s) = ¢ (0) + vr with ¢ (¢) € By fors € (0, T), (6) holds
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To prove this lemma it is sufficient to show that for anycC {1, ..., N},
T > 0 andv € R?, the local Markov-additive process » (1), YA (1)) satisfies the
inequality

1
11) lim liminf = logP s Ap() —1t Ya(t Sn ) >—T:\;
(D Jmlimint 1090 U 1AAG) ol + Va0l < dn) = T30
(this is a consequence of Proposition 3.7 of [6]). In [11], this inequality was
proved for discrete-time Markov-additive processes. For continuous-time Markov-
additive processes the proof of (11) is quite similar. In the Appendix, we recall the
main steps of this proof.

LEMMA 3.2. ForanyA c{1,...,N}, T >0andx, y € By, (8) holds

PROOF Remark that before the timg, , when the procesg, () = X (nt)/n
hits the setlJ;cp{x:x; = 0} for the first time, the transition intensities of
the Markov processX (¢) are the same as those of the local Markov process
(AA(2), YA(2)). Hence, to prove (8) it is sufficient to show that the local Markov-
additive process$A (1), Y (1)) satisfies the inequality

1
lim limsup sup =logP,(|AA(nT) —nTv|+ |Ya(nT)| < dn)

6—=0 n—oo z:|z|<én
(12) .
< —=TA}(v).
Fors > 0,n e N andv e R, denoteE, s (v) = {|Ar(nT) —nTv| + |YA(nT)| <
sn}. We will show that for anyoe € R? such thati, (@) < +oo, and for any
A > dp(a),

(13) (Slin limsup sup }IogIPZ(Eng(v)) < —T{a,v) —1)

0 n—oo z: |z|<én

from which (12) will follow.
Givena € R andx > A («), we consider the function

o0

£i() = /0 Phiay, 0 d,  yerl.

According to the definition of 5 (@), the above integral converges and for any
t >0,

(14) Ph(@) fr < e f.

Furthermore, under the hypothesd®)—(B>), there argu, C; andC2 > 0 such
that for anyy e Zf there exists: satisfying the inequalitie€1]y| <n < Ca|y|
and

Pl (;y,0) =P,y (Ar(1) =0, Ya(r) =0) > (y1)"e™" /n!
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for all # > 0. This implies that
(15) )=y /Gt "
There exists moreovet such thatC1|y| <m < C2|y| and
P (@;0,y) = Po,o)(Ar(t) =0, Yp(1) = y) = (y)"e ™ /m!
for all > 0. Hence, using (14) we obtain
()" (e ™ /m! < P (e; 0, y) £.(») < " £.(0).

The last inequality withh = m and (15) show that for any > A 5 () there isc > 1
such that

(16) < fiy) <l
and hence, on the eveh};s(v), the following inequality holds:
e@AND) £ (Y, (nT)) = exp(nT (@, v) — |a|dn)c ™",
By Chebyshev’s inequality, this implies that
P, (Ens(v)) < ™" exp(|a|dn — nT (a, v)E, (¢! As@D) £ (Y4 (nT))).
Moreover, using (14) it follows that
E, (e 20T £ (YA (T))) = eV 2T (@) fi(zac) < e fr(zac)
and consequently, using again (16) we obtain
|Sl|JF23 % logP;(Ens(v)) < 28logc + 2|a|8 — T (o, v) + AT.
2t )zl<dn

Lettingn — oo and§ — O in the last equality, (13) follows. Moreover, letting
A — Ap(@) in (13), it follows that for alle € dom(ip) = {a@: A p (@) < 400},

1
lim limsup sup =logP;(E.s(v)) < —T ({&r, v) — Aa(e))
6—0 n—>oo ;: |z|<én 1
and hence,
L 1
lim limsup sup —logP(E,s(v)) <—T sup ({o,v)—Aip(@)).
6=0 n—oo z:|z|<én acdom(ra)

The last inequality proves (12) because

M) = sup({a,v) —Aa(@)) = sup ({a,v) — Ap(a))
acRA acdom(riy)

(see [12], Corollary 12.2.2 of Theorem 12.2)]

PrROOF OFTHEOREM3. We are ready now to prove Theorem 3. For this, it is
sufficient to show that the hypotheses of Theorem 2 are satisfied.
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Conditions (A1) and (A3) are satisfied because of Lemmas 3.1 and 3.2.
Moreover, under the hypothesé®8g) and (B1), the convex conjugate of the
function

Mm@ = Y pa..n@(ECT -1)

Z2€Z:z#£0

is finite in a neighborhood of zero and consequently, the conditian is also
satisfied. Finally, under our hypotheses, the general upper large deviation bound
of [8] holds and hence, Theorem 2 can be applied.

4, Proof of Theorem 1. Let D([a,b],Rﬁ) be the set of all functions
¢:la,b] — Rﬁ which are right-continuous and have left limits. It is convenient
to introduce the functiongj, »)(-), wia,p(-) and Wi, 51(-) on D([a,b],Rﬁ) for
every intervalla, b] C R,.. For¢ € D([a, b], Rﬁ), the expressions, »1(¢) and
Wia,51(¢) are generalized as follows:

Wia, b](qb) = I|m lim liminf inf IogIP’a Z( sup o(s) — Z,(s)| < 6)

—0e—>0 >0 z:|z—¢(t)|<e n sela,b]

and
Wia, b](q}) = I|m Ilmsup sup ! Iog]Pa’Z( sup ¢(s) — Z,(s)| < 5),

n—=>00 z:|z—¢(1)|<s sela,b]

whereP, . is a conditional probability given that, (a) =z € &,.

Recall that a continuous functiap: [a, b] — Rﬁ is called piecewise linear if
thereisn > 1 andthereare =<1 <--- <t, = b suchthatforall € [r,_1, 1],
i=1...,n

o (i) — P (ti-1)

dt)=¢(ti—1)+( —ti—1)
L —ti-1

For a continuous piecewise linear functign [a, b] — Rﬁ we let

b .
T = [ L@, b 0)ds
The functionl(, p is defined by

lia.p)(@) = “mow dsl(g)fw) RN
the infimum being taken over all continuous piecewise lingeafa, b] — Ri’ with
ds(¢,¥) < 6 whereds(-, -) is the Skorohod metric oP ([a, b], R_’X).
We begin the proof of Theorem 1 with the following proposition.
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PROPOSITION 4.1. Under the hypothesegA1)—(A3), for any absolutely
continuous functios : [a, b] — RY,

b )
(17) Tia)(@) < / L((®). (1)) dr.

Recall that a piecewise linear functignis called a piecewise linear interpola-
tion of the functiong € D([a, b], Rﬁr’) if thereisn > 1 and thereare = <1 <
...<t,=bsuchthatforalt e[t,_1,1],i=1,...,n,

¢t) — P (ti-1)
i —ticg

V() =¢(ti—1) + (t —ti—1)

To obtain (17), we show that for amy> 0 there is a piecewise linear interpolation
Y. of ¢ and there is a strictly increasing continuous piecewise linear function
0; :[a, b] — R, with 6,(a) = a andf,(b) > b, such that

b .
Ta.6.o0n (e 00,1 < / L(¢p(r), p(2))dt + e,

and such that syp, It — 0:(¢)| — 0 and||¢ — ¥ | — 0 whene — 0. Then, the
function¢ being continuous,

e 007 — Blloo
= SUp [[Y: 06,1(1) — p ()]
tela,b)

(18)
= sup |[ve(t) —dob.(0)

rela,0: 1 b))

<IYe—dlct+ sSUp  l¢(t) —¢ob:(1)| >0  ase—0
tela,0: (b))
and hence, (17) will follow.
For our purpose, it is convenient to introduce a new func@gny by letting

_ . . 71
(19) Gla.p)(@) = g@o:yn,g Tia,0)1 (W 0607 7),

where the infimum is taken over all piecewise linear interpolatign®f ¢
such that|l¢ — ¥ |lcc < 8 and over all continuous piecewise linear functions
0 :la,b] — R suchthab(a) = a, SUR¢[,p It —O()| < andé(r) > 1 for almost

all ¢ € [a, b]. To prove Proposition 4.1 we will use the following properties of the
function G4 p).

LEMMA 4.1. For any continuous functio : [a, b] — ]Rﬁ, and for anyc €
la, b],

(20) lia.p)(®) < Gla.p1(@) < Gla,c1(@) + Gle,p)(@).
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ProoOFE The first inequality of (20) follows from (18). The second inequality
holds because

Gla.c)(®) + Glep) (@) = M inf fia o6 (¥ 007,

where the infimum is taken over alt and 6 satisfying the same condition as
in (19) but withy (¢) = ¢ (c). O

To prove the next property of the functi@r, ;) we need the following lemma.

LEMMA 4.2. ForanyA c {1,..., N} and for anyv € RY with vac =0,
(21) LA(v) <L, Ny(v).

PROOF LetA c{1,...,N} and letv € RV be such thav,c = 0. Consider
x € Bp andT > 0 such thatp(r) = x + vt € B, for all t € [0, T]. Then because
of assumptiongA,) and(As), the following relations hold:

wio,71(¢) = Wio,11(¢p) = =T LA (v).
Similarly for ¢,,(¢) = ¢ () + z/n with z = (1, ..., 1),
wio,71(Pn) = Wio,71(¢pn) = =T L(1,.. N (V).

The mappingp — Wio,r1(¢) being upper semicontinuous, this proves (21}l

LEMMA 4.3. For any continuous functiop : [a, b] — RY,

(22) G[a,b] (d)) = sin(]+ G[a—l—s,b—e]((b)-

PROOF By definition, for any continuous functiop = (¢1,...,¢n):
[a,b] — RY,

o) — ¢(tjl))

i
§—0 (1) 0j(t; —1tj-1)

n
Glan(@®) = Jim _inf 30,0 —t‘,-_l)LAj(
) 1 l:j

where foreveryj =1,...,n, A; is the set of all thosee {1, ..., N} for which
@i (tj) — ¢i(tj-1) -

I —1tj—1

Gi(tj—1) + (t —tj_1) 0 forej_1 <t <tj,

and the infimum is taken over all partitions=1r <1 < --- < t, = b with
max; (f; — ti_1) < 8 and over all real numbes > 1,i =1, ..., n, such that

n
> 0t —tic1) <b—a+0.
i=1
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Lettingr; — 710 = ¢ andt, — 1,_1 = ¢’ and using Lemma 4.2, it follows therefore
that

. . ¢(a+8)—¢(a))
G <lim inf 6Q¢L
la,b1(®) = m € {1,.,.,N}< e

<¢(b) —¢b— 8/)>
0’ ’

where the infimum is taken over all¢’ > 0,0 > 1 andd’ > 1 with ¢0 + ¢'0’ < §.
Recall that by assumptiofi,), the functionL;y, . w; is finite in a neighborhood
of 0 e RV. Being convex it is therefore bounded in a neighborhood offd" and
hence, there are two real numbers 0 andc > 0 such that(1 . n;(v) <c forall
vE ]RN with |v| < r. Without any restriction of generallty we suppose that 1
andc > 1. For givens > 0, let us choose & &5 < §/(2¢) such that for O< ¢ < &5
|p(a+¢e) —¢p(a)| <rd/(2c) and letd = max{l, |p(a + &) — p(a)|/(re)}. Then
|p(a+e) —@p(a)|/(e0) <r and hence,

}<¢(a +89)8_¢(a)) <0sc=cmaxXe, |p(a+e) —¢(a)l/r} <8/2.

The same arguments show that there gfe- 0 and6’(¢) > 1 such that for
0<ée <¢

+ Glate,p—s1(P)
(23)

+ Q/S/L{]_’ N}

.....

.....

(¢(b) —¢(b— 8/))
6’e’
<@'d’c=cmaxe’, |¢p(b) —p(b—e)|/r} <68/2.
For suche,¢’,0 and 6’, we havefs + 6'¢’ < 6 and hence, using (23) we
obtain (22). O

LEMMA 4.4. For any A C {1,...,N} and for any¢ = (¢1,...,¢n) €
D([a, b],Rﬁ) such thatg (a), ¢ (b) € Bx and¢;(¢r) > 0for all i € A and for all
t € [a, b], the following inequality holds

b) —
(24) b a)LA(M) < Ly (@),

b—a

PROOE Indeed, letx, y € Bp and let@; be the set of alp € D([a, b], ]Rﬁr’)
with |¢(b) — y| < § and such thap;(r) > O for all i € A and for allt € [a, b].
Then because of assumptioas),

1 —
(25) limlimsup sup —logP, (Z,() € Os) <—(b —a)LA< x).
3—0 n—oo yily—x|<8 b—a
Moreover, recall that under the hypothesgas), the rate functior|o, ,—,) satisfies
the lower large deviation bound (1) with= b — a. The set®; being open, using

the Markov property we obtain

—Iiap (@) < I|m liminf  inf IogIPa v(Zn () € Os)
o yily—xl<en
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for any ¢ € 05 with ¢ (a) = x and¢ (b) = y. Letting in the last inequality — 0
and using (25), (24) follows. O

The last lemma combined with Lemma 4.1 implies the following property of
the functionGq, 5.

LEmMmA 4.5. For any A C {1,...,N} and for any¢ = (¢1,...,¢n) €
D([a,b],]Ri’) such thaty (a), ¢ (b) € By and ¢;(t) > 0 for all i € A and for all
t € [a, b], the following inequality holds

(26) b oL (¢<b> — (@)

P ) < Gia,p)(P).

PROOF OFPROPOSITION4.1. We are ready now to prove Proposition 4.1.
Because of Lemma 4.1, it is sufficient to show that for any absolutely continuous
function¢ = (¢1, ..., ¢n) :[a, b] —> Rﬁ, the following inequality holds:

b .
(27) Guun@® = [ L0, 90)dr.
Suppose first thap; (#) > 0 foralli =1, ..., N and for allz € [a, b]; then

b . b .
f L(¢(0), d(0)) di = f Liv..w (@) dr.

Moreover, for any piecewise linear interpolation = (y1,...,¥y) of the
function¢, we have alsa@; (r) > Oforalli =1, ..., N and for allr € [a, b] which
implies that

.....

and hence, (27) holds.

To prove (27) in the general case, let us consider for every {1, ..., N},
the setd, of all absolutely continuous functios= (¢1, ..., ¢n) : [a, b] — Rﬁ
with arbitrarya < b such thatg; () > 0 for all r € [a, b] and for alli € A. We
prove (27) by induction with respect to for ¢ € ® . Remark that for alfp € O
with A = {1, ..., N}, this inequality is already verified.

Suppose that (27) is already verified for alle ®,, with A’ c {1,..., N}
such thatA ¢ A’ # A and let us verify this inequality fopp € &, ¢ =
(b1, ..., 0n):[a,b] — ]R_’X. Because of our assumption, for<r <t < b, the
inequality

t A
(28) Gioo(@) < / L($(s), d(s)) ds
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is already verified if there existse {1,..., N} \ A such thatg;(s) > 0 for all
s €[t t].

Consider first the case whe(t) = (¢1(2), ..., dn (1)) ¢ Bp for all ¢ € [a, b].
Then there ig > 0 such that

(29) > ¢ity>¢e  forallzela,b]

i¢A
and there is > 0 such that for alt, s € [a, b] satisfying the inequalityr —s| < o,
the inequality)_; |¢; (1) — ¢i(s)| < ¢/N holds. Consider an increasing sequence
a=to<t1<---<tp=bwithsupl|yi1—1|<o.lffortely_1,14], ¢i(t)=0
for somei € {1,..., N} \ A, then because of (29) there jse {1,...,N}\ A
such thaip; () > ¢/(N — 1) and consequently, for anye [#,_1, ], the following
inequality holds:

L)

6/() > 7 =16, = $;()| > 75 —

This proves that for any = 1,...,n, there isj; € {1,..., N} \ A such that
¢ (s) > 0 for all s € [t—1,#] and hence, using (28) witfr, t'] = [#,—1, 1] for
each/ =1, ..., n, we obtain

b .
Gla,n)(@) + Gliy.15)(@) + - + G, _1.51(P) 5/ L(¢(1), ¢(2))dt.

The last inequality and Lemma 4.1 imply (27).

Consider now an arbitrary functiope ®5, ¢ = (¢1,...,¢n) :[a, b] > Rﬁ.
Remark that for such a functiop, (28) is already verified it (s) ¢ B for all
s € [t,1']. The functiong being continuous, the set

A={re(ab):¢@) ¢ Ba)=J{re@b)¢i(t) >0}
ieEA
is open and hence, it is a union of a countable family of open disjoint intervals
(tx, 1), k € N. For anyk € N, and for any O< o < (1; — 1x)/2, the inequality

t,—o

Gluso- 1@ = [ L), $®)ds

tk+o

is already verified and hence, using Lemma 4.3 it follows that

1 )
Gt = 1M Gy o1 = [ L), 30 s

According to the definition of the functioG, 1(¢) this implies that for given
€ > 0, there is a piecewise linear interpolatigp of the functiong : [#, ;] — ]Riﬁ
and a continuous piecewise linear functi@n 7, 1,1 — R with 6; (1) = # and
Ok (1) > 1 for almost all € [1, 11, such that

sup (1) — Y (1) <e, sup 16c(1) — 1] < e/2t

teln, 1] telt, 1]
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and
t .

(30) o o0 = [ L), 9())ds +e/2"
k

Moreover, Lemma 4.5 shows that for akyg N, for which¢ (1), ¢(7;) € Ba, the
following inequality holds:
¢ ) — ¢ ()

n—t

(31) =L ( ) = Guup@

Givene > 0 let us choose, such that

(32) Y —n) <€/2

k>n.

and such thai, > k if rp =a or 1, = b. Then for allk > n,, (31) holds and
consequently,

I .
s/kL(¢<s>,¢(s>)ds.

Tk

- (2 =20)
b — Ik
For the function
¢ )+t — 1) (P(ty) — d 1)/ (1, — 1),

fort e (i, 1), k > ng,

o), forte [a,b]\ U . 20,

k>ng

¢8(t) =

the above inequality implies that

@) [ L@ dew)dss [ L) de)ds
la,bNUE 1 (1) la,bNUE (s 1p)

The sef(a, b) \ Uz;l[tk, t;1is a union of a finite number of disjoint open intervals

(si.s)), i =1,...,m. By constructiong(s;), ¢(s)) € By foranyi =1,...,m.

For everyi =1,...,m, we define a partition; = sijo < si1 < --- < sir, =5, by

induction: ifs;; is already defined:

(@) welets;jy1=s/andk; = j+1,if s/ <s;; +¢€;
(b) otherwise, (32) shows that there sg + €/2 < s < s;; + € such that
¢(s) € By and we lets;;j 1 =s.

Then the piecewise linear function

& (sij) — P (sij—1)

Sij = Sij—1

§() =p(sij—1) + (& —sij-1)

t€lsij—1,5i51, j=1,....k;,
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satisfies the following relations:

s/

[ rew.cyar= [ Lagm)a

1 1

< / La(e(t))dt

= [ L@, o) ar.

The first relation holds here because) € B, for all ¢ € [s;;_1, s;;1; the second
relation is verified because by constructignis a piecewise linear interpolation
of ¢. and because the functidiy (-) is convex. Finally, the last identity is verified
becausep, () € B, forall r € [s;;—1, si;]. Using (33) we conclude that

(34) L LEGE@) s [ L), 9)) ds.
[a,bN\UpS 1 (t. 1) la,bN\UpS 1 (t.17)

Define now a piecewise linear interpolatign of the function¢ on the whole
interval[a, b] by

Ur(t),  forte (., ), k <n,
Ve =1 £, forte[a,b]\ U . 1),
k<ng

and leté, : [a, b] — R be a continuous piecewise linear function witlia) = a
and

oc(t),  forte (. 1)),k <ne,
() =11, forte(a,b)\ U [k, 1.
k<ng

Then clearly, sup, ;10:(t) —t| <& and [[¢p — Yelloo — O whene — 0.
Moreover, (30) and (34) imply that

110, (a).0. o)) (¥ 09_1)2/
‘ o [a, b\ 4 (1.

L(5(s),§())ds + Y Tio, (0,001 (V)
i=1

b .
< / L(¢(1), p(2))dt +¢

and hence, letting — 0, (27) follows. Proposition 4.1 is therefore proved]

PrROPOSITION4.2. Under the hypothesgsi1) and (As), for any absolutely
continuous functios : [a, b] — RY,

b .
(35) Wen@) <~ [ Lo®,d0)dr.
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PROOF Let t — ¢(t) = (¢p1(?),...,¢n(t)) be an absolutely continuous
mapping from[a, b] to Rﬁ. When ¢; () > 0 for all ¢ € [a, b] and for alli =
1,..., N, the proof of (35) is classical: for any< ' <t” < b and fors > 0 small
enough, the first time when the proc&ss(r)) hits the setJ,-;, - n{x:x; =0} is
greater tham(:” — t') whenever o

sup |t +1t)— X(nt)/n| <8.

te[0,t—1"]

Because of assumptidm 3), this implies that

Wy (@) < —@" =t L., N}<W)

and using the Markov property it follows that

P (tiv1) — ¢(li)>

n—1 n—1
(36) Wiup1(@) <D Wiian1(@) < — Y (tiy1— ti)L{l,...,N}<
20 -0 lit1— 1

for any sequence =1 <t1 < --- <t, = b. For a piecewise linear continuous
functiong, : [a, b] — RY with
¢ (tiv1) — P (1)

o) =0t)+ @ —tj))—— fort e[, tiy1],
liy1— 1

the right-hand side of the last inequality equals
b

Whenn — oo and sup|t; 11 — ;| — 0, ¢, (t) — ¢(¢) for almost allz € [a, b]. By
the Fatou lemma, this implies that

. b H b H
liminf [ L. N}(¢n(t))df2/ L. ny(o(0))dt

n—oo

because the convex functidn, . x;(-) is lower semicontinuous. Letting therefore
n — oo and sup|ti+1 — ;| = 0in (36), (35) follows.

Let us prove now (35) fop € @, by induction with respectta. C {1,..., N}.
Recall that®, denotes the set of all absolutely continuous functigns=
(¢1,...,xn) [a, b] > RY with arbitrarya < b, such thai; (r) > 0 for all i € A
and for allr € [a, b].

For¢ € @, with A ={1,..., N}, this inequality is already proved. Suppose
that (35) holds for alip € @, with A" C {1,..., N} such thatA ¢ A’ # A and let
us consider € P, ¢ = (P1,...,¢n) :[a, b] - Rﬁ. Because of our assumption,
for [¢/, "] C [a, b], the inequality

t//

(37) W@ <= [ L@@, dw)ds
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is already verified if there existse {1,..., N} \ A such thatg;(s) > 0 for all
set,t].

Consider first the case whep(r) ¢ B, for all ¢ € [a,b]. Then the same
arguments as in the proof of Proposition 4.1 show that there is a pattitiony <
aip < --- <a, =b and there aréy, ..., i, € {1,..., N} \ A such thatp; (s) > 0
foralll=1,...,n and for alls € [a;_1, ;]. Because of our assumption, we have
therefore

a

Wiar ral(@) < — / L(¢®). (1)) dr

aj—1
foreveryl =1, ...,n, and hence, using the Markov property, (35) follows.
Consider now an arbitrary functiope ® 5, ¢ = (¢1,...,¢n):[a,b] — ]Riﬁ.
Remark that for such a functiop, (37) is already verified ifp(r) ¢ B, for all
t € [t/, t"]. The functionp being continuous, the set

A={te(@b):g@) ¢Ba)=Jlr€@b):¢i(t)>0)
ieA
is open and consequently, it is a union of a countable collection of open disjoint
intervals(t, 1), k € N. For anyk € N and for anyo < (1, — ) /2 the inequality

t,—o

Wiso- 1@ == [ L@®. ) dr

tx+o

is therefore verified and hence, letting— 0 we obtain

_ | :

(38) Wiy = Im Wiy oy @) == [ L@@, $0)dr.
g k

For givenn > 0, let us choosg, > 0 large enough so that

(39) Yo ti—te<1/n

k>ky

and so thak, > k if ry =a or#; = b. The set(a, b) \ Ui”:l[tk, 1] is a union of
a finite number of disjoint interval§;, s/), i =1,...,m. Foreveryi =1,...,m,
a partitions; = sjo < sj1 < - -- < six, = s; is defined by induction. If;; is already
defined:

(@) welets;j1=s/ andk; = j + 1, if s] <s;; +2/n;
(b) otherwise, because of (38), theresis+ 1/n < s < s;; + 2/n such that
¢(s) € By and we lets;j 1 =s.

Remark that for anyi = 1,...,m and for anyj = 1,...,k;, by construction
¢ (sij—1), ¢(sij) € Bo. Moreover, for§ > 0 small enough, the first time when the
Markov procesgX (1)) hits the set ;. {x :x; = 0} is greater tham(s;; — s;j—1)
whenever the inequality

sup lp(t +sij—1) — X(nt)/n| <§

te[0,s;5—sij—1]
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holds and consequently, using assumptidag) we get

(40) Wisij—1,5:1(@) < —(sij — Sij—1)La (‘Ms"j) — ¢(Sij—1)>‘

Sij = Sij-1

Define a functiony,, : [a, b] — Rﬁ by settingy,, (1) = ¢(¢) for t € U’,j”zl(tk, ),
and by setting

Valt) = d(s1j—1) + (t — Sij_l)¢(sij) — ¢ (sij-1)

Sij = Sij-1

if r e [Sij—l,Sij], i=1 ...k,
forr e[si,s/],i =1,...,m. Then using the Markov property and (38), (40) we get

h .
(41) Wia.)(@) < — / L(n(0). (1)) 1.

Notice that by construction,

. kn 7 . .
AL(¢n(t)’¢”(t))dt > kgl/rk L(¢(1). (1)) dt — /AL(qb(t), $(1))dt
asn — oo. Moreover,
[{MM L(¢n (1), u (1)) dt = /[a’b]\A L(¢n(1))dt

because by constructiafy, (r) € B, for anyt € [a, b] \ A. The functiong being

absolutely continuous, we hav,(r) — ¢(r) for almost all € [a,b] \ A. The
function L (-) is lower semicontinuous because it is convex and hence by the
Fatou lemma,

liminf L (dn(t dt>f La(p(t dt:/ L(o (), d(1)) dt.
mint | Lal@)drz | Lalg@o)dr=| L0, 60)
Letting therefore: — oo on the right-hand side of (41), (35) follows[]

PROOF OF THEOREM 1. Let a function¢:[0,T] — Rﬁ be absolutely
continuous. Then using Propositions 4.1 and 4.2 it follows that

T .
Wio.r)(¢) < — /0 L($®). (1)) dt < —Io.11().

Moreover, under the hypotheses; ), the rate functiono, () satisfies the lower
large deviation bound (1) (see the statement (c) in Theorem 4.3 of [6]) and
consequently,
Wio,71(¢) = wio,71(¢) = —1[0,71(¢)-
This implies that for any absolutely continuous functipn0, 7] — RY,
T

wio.11() = Wio.7)(¢) = — /O L), @) dt = —Iio.7(9)

and hence, Theorem 1 is proved.]
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5. Proof of Theorem 2. We begin the proof of this theorem with the following
lemma.

LEMMA 5.1. Under the hypotheses of Theor@nthe inequality

(42) Tio.1)(¢) = Tj0.71(9)
holds for every functiog € D([0, T, Rﬁ).

PROOF.  Indeed, suppose that the hypothe&és)—(A3) are satisfied and let
there exist a good rate functidp, 71(-) satisfying the upper large deviation bound

im limsup  sup }IogIP’y(Z,,(-) EF)<-— inf Io.71(9)

43) |
3—-0 n—soo ye&y: |y—x|<s peF:p(0)=x

for anyx € RY and for any closed sdt C D([0, T],RY). Then the lower large
deviation bound (1) is satisfied with the rate functihgnr;(-) and the inequality
wio,71(¢) = —I10,71(¢) holds for all ¢ € D(]0, T],]Riﬁ). Moreover, using the
upper large deviation bound (43), it follows th#fj 77(¢) < —f[o,T](qS) and
consequently (42) holds.[d

The next lemma proves thdjy 77 is a good rate function ol ([0, T],Rﬁ)
when the hypotheses of Theorem 2 are satisfied.

LEMMA 5.2. Under the hypotheses of Theore2n for any compact set
V C Rﬁ and for anyc > 0 the set of all functionsp € D([O, T],Rﬁ) with
#(0) € V and Ijo,71(¢) < ¢ is compact inD([O, T],Rﬁ) and every functiorp
with Ijo 77(¢) < oo is absolutely continuous

PrROOF Indeed, for any compact sétc Rﬁ and for anyc > 0, the set

{p:0(0) eV, Lor(¢) <c}

is closed inD([0, T], ]Rﬁ) because the rate functidip, 7} is lower semicontinu-
ous. Moreover, using (42) it follows that

{$:¢(0) €V, Lor)(@) <c} C{p:¢(0) €V, [o1)() <c}.

The rate functiorjo, 7] being good, the séty: ¢ (0) € V, Ijo.71(¢) < c} is compact
in D([0, T1,RY) and every functiong: [0, T] — RY with Jjo71(#) < oo is

absolutely continuous. The s¢p:¢(0) € V, Ij0.11(¢p) < c} is therefore also
compact and every functios : [0, T] — ]R{ﬁ with Ijo 77(¢p) < oo is absolutely
continuous. [

The next lemma shows that the rate functifnr; satisfies the upper large
deviation bound (2).
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LEMMA 5.3. Under the hypotheses of Theor@m

44) |im limsu su logP,(Z,(:) e F) < — inf 1
(44) Jm n_)oopyegn |ypx|<8” gPy(Z,() € F) < per Mo s [0,71(¢)

for anyx € RY and for any closed set c D([0, T1, RY).

PROOF.  Consider a closed sétC D([0, T],RY), x € RY and let

= inf 1 .
c= per Mo 0,71($)

The rate functioni[o,T](-) being good, every functiop € F satisfying the
inequality I;0,771(¢) < c is absolutely continuous and hence, by Theorem 1,

Wio,11(¢) < —I10.71(®)-
The last inequality implies that for ary> O there exist$, > 0 such that

limsup sup IogIP’ (lp — Znll < d¢) < —Iio,11(¢p) + €
n—>00 ze€,:|z—¢p(0)|<sy

forall0<é <d4. The setk = {¢ € F:¢(0) =x, i[o,T](dﬁ) < ¢} being compact,
there exists a finite collection of functioms, ..., ¢, € K such that

Kco=|J{o:llgi — ol <)

i=1

and consequently,

(45) limlimsup  sup IogIP’ (Zy()€eO) <— |nf I[OT (¢i) + €.
820 n—o0 yeg,:|y—x|<s N

Remark that for any € F \ @ with ¢ (0) = x, the following inequality holds:

I > ], >c= inf I i
0,71(9) = Iio,11(¢) = ¢ L P 0,71(¢)
The setF\ O being closed, using the upper large deviation bound (43), this implies
that

limlimsup  sup IogIED (Zy()e F\O) <— inf Iio,71().

8=0 n—oo yeg,:|y—x|<s peF:p(0)=x
This inequality and (45) show that
lim limsu su logPy(Z,(-)e F) < — inf Io +e.
§—0 n—>oopyegn |ypx‘<5n g ( ) ) PpeF 9 (0)=x [’T](¢)
Letting in the last inequality — 0, (44) follows. O
The last lemma completes the proof of Theorem 2 (the lower large deviation

bound (1) is satisfied because of assumptian); this is a consequence of the
statement (c) of Theorem 4.3 of [6]).
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APPENDIX

In this section we prove inequality (11). This is a subject of the following
lemma.

LEMMA A.1l. Under the hypothese&Bp)—(B2), for any A C {1,..., N},
t > 0andv € R%, the local Markov-additive processi A (1), Ya (7)) satisfies the
inequality

(46) I|m I|m|nf 1IogIP’(00)< sup |AA(S)—sv|+|YA(S)|<8n> —tA (V).

s€[0,nt]

ProOFr GivenkK C Zf, let Tx be the first time when the proceéB, (1))
exists from the seK and let.K, be the collection of all the finite subseks of
Zf for which the restriction of the Markov chaii¥s (¢)) on K is irreducible. For
K C X, the matrices’P}LK(a) = (ffx,K(O“ v,y); v,y € K) with

, _ A
Phx @y, Y) =E@y(“ A(t)):ﬂ'{YAc(t)zy/ andry=r})

are irreducible. Moreover;/’j\,K(oz) = exp(t - Oa k()) where the matrix
Onk(@)=(Qn.k(a;y,y); v,y € K) is defined by

Qn k(@ y,Y)= 3 qa((0y), (x,y))e™.

xeZAh

Using the Perron—Frobenius theorem this implies that:

(a) The matrixQ A k(o) has a unique maximal real eigenvalug x (o) and a
strictly positive unique to constant multiples right eigenvedt@r, = (f§ x (»);
y € K) associated with.p g («).

(b) For everyr > 0, rf\vK(oz) =exp{tia k (@)} is the unique Perron—Frobenius
eigenvalue of the matrif . («) and f§ x = (f{ x(»); y € K) is its unique to
constant multiples right eigenvector associated v&{kt};( ().

(c) The collection of the functions, g, K € K4, is increasing with respect
to K and forally, y' € K,

1
An k(@) =I1im sup— log Ph k(@5 y, ) < Aa(@).

1—00
Moreover, an argument similar to one used to prove Lemma 1 of [11] shows that
the functionsi s x, K € KX,, are convex and infinitely differentiable @&, and
using the arguments of the proof of Proposition 2 in [11] we obtain that
An(a) = SUp A k(@).
KeXp

Let)ﬁj\ x be the convex conjugate of the functidp g . Then the collection of the
funcUons)C“A x» K € K, is decreasing with respectmand using Theorem 16.5
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of [12] it follows that the convex conjugateg, of the functioni 4 is the closure of
the function

inf A%
Kex, MK

The mapping
v—> IImOIImlnf IogIP’(o 0)< sup |Aa(s) —sv|+ |Ya(s)] < (Sn)

s€[0,nt]

being upper semicontinuous @&f*, we conclude that to prove (46) it is sufficient
to show that

TR ¢
lim liminf —logP 0)< sup |Aa(s)—sv|+|Ya(s)| < 8n> —t |nf AA x (V).
§—>0 =0 pn ' se[0,nt]
To prove the last inequality, it is sufficient to show that for any finite/Set K 5,
1
47) I|m I|m|nf Iog]P’(o 0)( sup |Aa(s) —sv| <dn, Tk > m‘) > —1A% g (v).
se[0,nt] ’

For this we use the martingale method and the classical method of change of
measure.
Let {}‘,A}tzo be the natural filtration of the Markov process, (¢), Y (7). For

o)

(x,y) € ZA x K andr > 0 we define a new meas .y) ON
FAN{Tk >t} ={EN{Tk >t}: E € F,*)
by setting
P (B) =B y) (L expiier, An(1) —x) — tAa k @} R x (Ya ) /15 £ ().

Then cIearIyIP’gj) NTk >1) = 1 for all (x,y) € Z* x K and for allt > 0. This

implies that for alls > > 0 and for allE € F*
P(“)y)(E N{Tx > s)) = ]P(“)))(E N{Tx > 1))
and hence, letting

]P)(C‘)

) o (EN{Tg =o0}) = simoop(“) (EN{Tk > s))

(x0,y0)

for E € U0 F* we obtain a new probability measure ph. o % N {Tx = oo}.
This is a distribution of a new Markov process®fi x K with initial state(xg, yo)
and transition intensities

4 (), (D) = gal(e, y), (2, y)e ™ =9 £ (N1 fR k()

x,x' €Z, v,y eK.
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Let EE% denote the expectation with respect to the new probability measure
IPEZ‘,)V) and let E, 5 = {SUR¢[o.nr) |AA(S) — sv| < én, Tx > nt}. Without any

restriction of generality we will suppose that0Kk and thatf¥ ; (0) = 1. Then
using the standard arguments of the change of measure it follows that

logP(0,0)(En,s)
= l0gEy o) (LE, , XD — (o, A (n1)) +nthp g (@)} [ x (Ya(nr)))
> l0gPG ), (En ) + 1t (Aa,k (@) + (o0, v)) — 6n — maxiog f£ ().

Suppose first that € ri(domik ). Then, the functiom.k (-) being convex and
differentiable orR?, there isx, € R* such that

(48) )‘Z,K(U) = (ay, V) — )‘A,K(av)
(see Corollary 26.4.1 of [12]). Using the last inequality with= «,, we obtain
. . 1 . P 1 (ay)
,glinollnriloréf - logP0,0(En,s) > (!1“0",1@'&“ - Iog]P’(o’o)(E,,,g) + A’R,K(v)
and hence, to get (47) it is sufficient to show that for any 0,
PG (Ens) —~1  asn— oo
or equivalently that

(49) PE%‘}&( sup |Aa(s) —sv| > an) -0  asn— .

s€[0,nt]

For this we use a martingale technigue. Straightforward calculations show that for
anya € R%,

Mo, t) = Lire>1) €Xpl{a — oy, AA (1)) — (Aa k(@) — A,k (00))1}
< Rk (Ya®)/fRk (YA (®)
is a martingale relative to the new probability meaéﬂﬁ‘(’%) with
E{g7) (M (o, 1)) = 1.
Moreover, because of (48)
M(a,t) = Lizg =1 eXp{{a — ay, Ap (1) — vt) — (A, k(o) — (o, V) + A’,"\vK(v))t}

X fAk(Ya®)/ [k (Ya())

and hence, using Fenchel’'s inequality x (&) — («, v) + A} g (v) > 0, it follows
that

E(t) = M(a, 1) exp{(ha, g (@) — (o, v) + A% £ ()1}
= expl{e — ay, X (1) = v} R g (YAD)/fR' (YA(®))
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is a submartingale relative to the new probability meaﬁiﬁg’%}) with

Ego (B(0) = explt(ha.x @) — (e v) + 43 ().

Letting c(ar) = minyex f§ «(9)/fx'x (») and using submartingale inequality, it
follows that for anyy > 0, and for anyx e RA with |a — oy < 1,

ng,v(%)( Sup (o — oy, Ap(s) —vs) > y)

s€[0,nt]
(50) nggf&( sup E(s) > c(a)eV>
s€[0,nt]

<c HNayexp(—y +nt(ha g (@) — (@, v) + A% £ (V).
Moreover, let

C= max (92 k@)l

o |la—ay|<1

whereagkA,K(a) denotes Hessian matrix afy x (-). Then for anyux € RA with
lo — o] < 1, the inequalityt o x (@) — (o, v) + A% ¢ (v) < o — &, [2C holds and
using (50) we get

IPE&“&)( Sup (o —ay, Ax(s) —vs) > V)
s€[0,nt]

<c Y o) exp(—y + ntla — ay|°C).
Let € € RA be a unit vector. Letting in the above inequality= «, + 6¢ with
0<6 <1andy = (Ct + 1)6?%n, we obtain

ngfg)( sup (e, Ax(s) — vs) > (Ct + 1)911) < c o) exp(—62n).
s€[0,nt]
Finally, the unit vectoe being arbitrary, the last inequality proves that
]P’( sup |Aa(s) —us| > 2N6(Ct + l)n)
s€[0,nt]
<2N meax(;—l(av + 0¢) exp(—6°n}

and hence, letting = 2N0(Ct + 1), (49) follows.
Forv eri(domAi% ), (47) is therefore verified. The mapping

o1
v— lim I|m|nf—IogIP’(o,o)< sup |Aa(s) —sv| <én, Tk >nt>

=0 n—>0 n s€[0,nt]

being upper semicontinuous @, this implies that (47) holds for everye R*
and hence, Lemma A.1 is proved]
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