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LARGE DEVIATIONS FOR PROCESSES WITH
DISCONTINUOUS STATISTICS
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This paper is devoted to the problem of sample path large deviations
for the Markov processes onRN+ having a constant but different transition
mechanism on each boundary set{x :xi = 0 for i /∈ �, xi > 0 for i ∈ �}. The
global sample path large deviation principle and an integral representation of
the rate function are derived from local large deviation estimates. Our results
complete the proof of Dupuis and Ellis of the sample path large deviation
principle for Markov processes describing a general class of queueing
networks.

1. Introduction. The present paper investigates sample path large deviations
of Markov processes onRN+ having a constant but different transition mechanism
on each set

B� = {x :xi = 0 for i /∈ �, xj > 0 for j ∈ �},
where� is a subset of{1, . . . ,N}. This property will be referred to as thepartial
homogeneity of the transitionsin the following.

Such Markov processes occur in a wide class of stochastic models such as
queueing networks. To establish a sample path large deviation principle in this
situation, the general method of Freidlin and Wentzel [9] cannot be applied because
of a discontinuity of the transition mechanism.

Our paper is motivated by various examples where a local sample path
large deviation principle (see below for a precise definition) can be proved;
roughly speaking, locally, the rate function can be identified by using the partial
homogeneity of the processes. It is quite natural to try to extend this property in
order to get a complete sample path large deviation principle.

In this paper, the problem of establishing a global principle of sample path large
deviations from local large deviation estimates is investigated. It is proved that,
under some general conditions, such an extension holds and that the associated
rate function has an integral representation.

Before formulating our results and discussing the literature of the domain, the
definition of sample path large deviation principle is recalled.
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1480 I. IGNATIOUK-ROBERT

For x ∈ R
N , let (X(t, x)) be a Markov process onE ⊂ R

N+ with a given
transition kernel and initial stateX(0, x) = x. Forn ≥ 1,

Zn(t, z) = X(nt, nz)/n

is a rescaled Markov process defined onEn = 1
n
E and having initial state

Zn(0, z) = z ∈ En. Throughout the paper, with a slight abuse of notation, we
write (X(t)) and (Zn(t)) instead of(X(t, x)) and (Zn(t, z)). The subscriptz of
Pz(Zn ∈ ·) refers to the initial state of(Zn(t)).

1.1. Sample path large deviation principle.The functional

I[0,T ] :D([0, T ],R
N+) → [0,+∞]

is called arate function if it is lower semicontinuous. The family of rescaled
Markov processes(Zn(t), t ∈ [0, T ]) is said to satisfy thesample path large
deviation principlewith a rate functionI[0,T ] if:

(i) for anyx ∈ R
N+ and for any open setO ⊂ D([0, T ],R

N+),

lim
ε→0

lim inf
n→+∞ inf

z∈En : |z−x|<ε

1

n
logPz(Zn ∈ O) ≥ − inf

φ∈O : φ(0)=x
I[0,T ](φ);(1)

(ii) for any x ∈ R
N+ and for any closed setF ⊂ D([0, T ],R

N+),

lim
ε→0

lim sup
n→+∞

sup
z∈En : |z−x|<ε

1

n
logPz(Zn ∈ F) ≤ − inf

φ∈F : φ(0)=x
I[0,T ](φ),(2)

whereD([0, T ],R
N+) is the set of all functions from[0, T ] to R

N+ which are right-
continuous and have left limits. The setD([0, T ],R

N+) is endowed by the Skorohod
metric.

Inequalities (1) and (2) are usually called lower and upper large deviation
bounds, respectively.

A general upper large deviation bound has been obtained for the processes with
discontinuous statistics by Dupuis, Ellis and Weiss in [8]. This upper bound is
usually quite rough: results obtained by Alanyali and Hajek [1], Blinovskiĭ and
Dobrushin [3] and Ignatiouk [11] show that the lower large deviation bound with
the same rate function fails in general.

1.2. Local sample path large deviation principle.A local sample path large
deviation principlewith a rate functionJ[0,T ] is said to hold when the following
inequalities are satisfied:

lim
δ→0

lim
ε→0

lim inf
n→∞ inf

z∈En : |z−ψ(0)|<ε

1

n
logPz(‖ψ − Zn‖∞ < δ) ≥ −J[0,T ](ψ),(3)

lim
δ→0

lim sup
n→∞

sup
z∈En : |z−ψ(0)|<δ

1

n
logPz(‖ψ − Zn‖∞ < δ) ≤ −J[0,T ](ψ),(4)
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for every continuous piecewise linear functionψ : [0, T ] → R
N+ . Because of the

Markov property, a local sample path large deviation principle holds if the above
inequalities are satisfied for any functionψ having a constant velocity.

For Markov processes associated to queueing networks, a local sample path
large deviation principle has been established by Dupuis and Ellis [6]. For such
Markov processes, the rate functionJ[0,T ] has an integral form

J[0,T ](ψ) =
∫ T

0
L

(
ψ(t), ψ̇(t)

)
dt

for every continuous piecewise linear functionψ . The local rate functionL is
defined by the limits

L(x, v) = − lim
T →0

lim
δ→0

lim
ε→0

lim inf
n→∞ inf

z : |z−x|<ε

1

nT
logPz

(
sup

t∈[0,T ]
|x + vt − Zn(t)| < δ

)

= − lim
T →0

lim
δ→0

lim sup
n→∞

sup
z : |z−x|<δ

1

nT
logPz

(
sup

t∈[0,T ]
|x + vt − Zn(t)| < δ

)

and satisfies the following properties:

(a) for anyx ∈ R
N+ , the functionv → L(x, v) is convex,

(b) for anyv ∈ R
N+ , the mappingx → L(x, v) ≡ L�(v) is constant on each set

B� = {x :xi = 0 for i /∈ �,xj > 0 for j ∈ �}.
Borovkov and Mogul′skĭi [4] obtained a local sample path large deviation
principle for partially homogeneous Markov chains with values inR

2+. An explicit
expression for the local rate function has been derived in several situations. In [10],
an explicit representation of the local rate function was obtained for Jackson
networks by using the classical method of exponential change of measure and the
explicit representation of the related fluid limits. Atar and Dupuis [2] give the local
rate function for a class of networks for which the associated Skorohod problem
has some regularity properties. Delcoigne and de La Fortelle [5] expressed the
local rate function for some polling systems. In [11], the local rate function of a
general class of Markov chains with discontinuous statistics was represented in
terms of convergence parameters of a family of matrices.

The local large deviation principle with a rate functionJ[0,T ] implies the
lower large deviation bound (1) with the rate functionI[0,T ] defined as a lower
semicontinuous regularization of the functionJ[0,T ] : for anyφ ∈ D([0, T ],R

N+),

I[0,T ](φ) = lim
δ→0

inf
ψ

J[0,T ](ψ),(5)

where the infimum is taken over all piecewise linear functionsψ : [0, T ] → R
N+

with dS(φ,ψ) < δ and dS(·, ·) denotes the Skorohod metric (see Theorem 4.3
of [6]).

As it stands, the local large deviation principle is not sufficient to imply the
upperlarge deviation bound (2). In this setting, a proof of the upper large deviation
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bound has been proposed by Dupuis and Ellis [6]. It is not entirely correct for the
following reason: relation (4) shows that, for anyε > 0 and for any continuous
piecewise linear functionφ : [0, T ] → R

N+ , there existsδ = δφ > 0 depending onε
and also onφ such that

lim sup
n→∞

sup
z∈En : |z−φ(0)|<δ

1

n
logPz(‖φ − Zn‖∞ < δ) ≤ −I[0,T ](φ) + ε.

Let S be the set of all continuous piecewise linear pathsφ : [0, T ] → R
N+ . To obtain

the upper large deviation bound, the arguments of [6] consist in covering a compact
subsetK ⊂ D([0, T ],R

N+) by a finite family of open sets{ψ :‖ψ − φ‖ < δφ} with
φ ∈ S. While the setS is dense in the Skorohod spaceD([0, T ],R

N+), such a
coveringdoes not necessarily exist in generalbecause the quantityδφ depends
onφ.

Moreover, (5) gives only an implicit description of the rate functionI[0,T ]. Even
if the closed form expression of the local rate functionL(·, ·) is known, it is not
clear whether the functionI[0,T ] has an integral form. Such an explicit expression
of the rate function is important in view of applications.

1.3. Results. In the present paper, a complete proof of the upper large devia-
tion bound (2) is given and an integral representation of the rate functionI[0,T ] is
derived. The main arguments of the proof are now detailed.

For Markov processes considered in this paper, because of the partial homo-
geneity of the transitions, the local sample path large deviation principle is equiv-
alent to the existence of a collection of convex nonnegative functions onR

N ,

L�,� ⊂ {1, . . . ,N},
such that, for anyT > 0 and for any linear functionφ(s) = φ(0) + vs, s ∈
[0, T ], the sequence of scaled Markov processes(Zn(t), t ∈ [0, T ]) satisfies the
inequalities

w[0,T ](φ)
def= lim

δ→0
lim
ε→0

lim inf
n→∞ inf

z : |z−φ(0)|<ε

1

n
logPz(‖φ − Zn‖∞ < δ)

(6) ≥ −T L�(φ)(v)

and

W[0,T ](φ)
def= lim

δ→0
lim sup
n→∞

sup
z : |z−φ(0)|<δ

1

n
logPz(‖φ − Zn‖∞ < δ)

(7) ≤ −T L�(φ)(v),

where�(φ) is the set of all thosei ∈ {1, . . . ,N} for which φi(s) 
= 0 for all
s ∈ (0, T ). Inequalities (6) and (7) correspond to inequalities (3) and (4).
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In order to get our main result, (7) will be replaced by a slightly different
inequality, namely,

lim
δ→0

lim sup
n→∞

sup
z : |z−φ(0)|<δ

1

n
logPz

(|φ(T ) − Zn(T )| < δ andτ�,n > T
)

(8) ≤ −T L�(φ)(v),

whereτ�,n is the first time when the processZn(t) hits the set
⋃

i∈�{x :xi = 0}.
When the local estimates (6) and (8) are verified and when the local rate function

L{1,...,N} is finite in a neighborhood of zero, it is proved that, for any absolutely
continuous functionφ : [0, T ] → R

N+ ,

W[0,T ](φ) = w[0,T ](φ) = −I[0,T ](φ) = −
∫ T

0
L

(
φ(t), φ̇(t)

)
dt.(9)

It is shown that this result implies the whole sample path large deviation principle
when the general rough upper bound of [8] holds.

In the setting considered by Dupuis and Ellis [6], inequality (8) is proved
in Section 3 by using the method of convergence parameters of corresponding
local transform semigroups. This method was developed in [11] for partially
homogeneous discrete-time Markov chains. In this way, our results complete the
proof of the main result of [6].

The paper is organized as follows. Section 2 presents an overview of the main
results. In Section 3, as an application, these results are used to establish the sample
path large deviation principle for a general class of queueing networks. The proof
of the local estimates (6) and (8) is given. Section 4 is devoted to the proof of (9)
(this is the proof of Theorem 1 below). Using this relation and the general upper
bound of [8], the whole sample path large deviation principle (Theorem 2) is
derived in Section 5.

2. General results.

2.1. Definitions and assumptions.The following notation are used throughout
this paper. Forx ∈ R

N+ , �(x) is the set of those indicesi for which xi > 0. For a
subset� ⊂ {1, . . . ,N}:

(a) x� = (xi, i ∈ �);
(b) B� is the set of allx ∈ R

N+ with �(x) = �.

It is assumed that the subsets(En, n ≥ 1), the state spaces of scaled processes
(Zn,n ≥ 1), are dense inRN+ : for any x ∈ R

N+ there exists a sequence of points
xn ∈ En converging tox.

It is assumed that there is a collection of convex nonnegative functionsL�

on R
N satisfying the following conditions.
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(A1) For any� ⊂ {1, . . . ,N} andT > 0, and for any functionφ : [0, T ] → R
N+

with a constant velocitẏφ(t) = v and such thatφ(t) ∈ B� for 0< t < T , the
following inequality holds:

lim
δ→0

lim
ε→0

lim inf
n→∞ inf

z : |z−φ(0)|<ε

1

n
logPz(‖φ − Zn‖∞ < δ) ≥ −T L�(v).

(A2) The functionL{1,...,N} is finite in a neighborhood of zero.
(A3) For any� ⊂ {1, . . . ,N} andT > 0, and for anyx, y ∈ B�, the following

inequality holds:

lim
δ→0

lim sup
n→∞

sup
z : |z−x|<δ

1

n
logPz

(|Zn(T ) − y| < δ andτ�,n > T
)

≤ −T L�

(
y − x

T

)
,

whereτ�,n is the hitting time of the set
⋃

i∈�{x :xi = 0} by the process(Zn(t)).
In the next section we will see that these conditions are satisfied for a general class
of queueing networks.

For a continuous piecewise linear functionφ : [0, T ] → R
N+ , we define

J[0,T ](φ) =
∫ T

0
L

(
φ(s), φ̇(s)

)
ds

with L(x, v) = L�(x)(v) for all x ∈ R
N+ , v ∈ R

N . The functionI[0,T ] is defined on
D([0, T ],R

N+) by

I[0,T ](φ) = lim
δ→0

inf
ψ

J[0,T ](ψ),

the infimum being taken over all continuous piecewise linear functionsψ on [0, T ]
with dS(φ,ψ) < δ, wheredS(·, ·) is the Skorohod metric onD([0, T ],R

N+). It is
the lower semicontinuous regularization of the functionJ[0,T ].

2.2. The main theorems.The central result of our paper is the following
theorem.

THEOREM 1. Under the assumptions(A1), (A2) and(A3), for any absolutely
continuous functionφ : [0, T ] → R

N+ ,

I[0,T ](φ) =
∫ T

0
L

(
φ(t), φ̇(t)

)
dt = −W[0,T ](φ) = −w[0,T ](φ).

Recall that a mapping̃I[0,T ] :D([0, T ],R
N+) → R+ is a good rate function, if

the following assertions hold:
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(a) for any compact setV ⊂ R
N+ and for anyc > 0 the set of all functionsφ ∈

D([0, T ],R
N+) with φ(0) ∈ V satisfying the inequalitỹI[0,T ](φ) ≤ c is compact in

D([0, T ],R
N+);

(b) every functionφ ∈ D([0, T ],R
N+) with Ĩ[0,T ](φ) < ∞ is absolutely contin-

uous.

A general upper large deviation bound with a good rate function was obtained by
Dupuis, Ellis and Weiss [8]. The next theorem establishes thatI[0,T ] is a good rate
function and that the sequence of Markov processes(Zn(t)) satisfies the whole
sample path large deviation principle when the general upper bound of [8] holds.

THEOREM 2. Suppose that there is a good rate functionĨ[0,T ] satisfying
the upper large deviation bound and let the hypotheses(A1), (A2) and (A3)

be satisfied. Then, the sample path large deviation principle holds with the rate
functionI[0,T ] andI[0,T ] is also a good rate function.

The main steps of our proofs are now briefly outlined. The proof of Theorem 1
begins by showing that for any absolutely continuous functionφ : [0, T ] → R

N+ ,

I[0,T ](φ) ≤
∫ T

0
L

(
φ(t), φ̇(t)

)
dt.(10)

To obtain this inequality, the classical approach consists in constructing for every
ε > 0 a piecewise linear interpolationψε of φ such that‖φ − ψε‖∞ < ε and

I[0,T ](ψε) =
∫ T

0
L

(
ψε(t), ψ̇ε(t)

)
dt ≤

∫ T

0
L

(
φ(t), φ̇(t)

)
dt + ηε,

whereηε → 0 asε → 0.
For Markov processes with a discontinuity in the transition mechanism along

a hyperplane, such a construction was performed in Lemma 7.5.4 of [7] and in
Lemma 4.9 of [3]. In some particular cases, when there is a nonnegative function�

onR
N such thatc1�(v) ≤ L(x, v) ≤ c2�(v) for all x ∈ R

N+ and for allv ∈ R
N with

vi = 0 for i /∈ �(x), this method can be extended to higher dimensions; see [2].
In our setting, such a construction does not seem possible: whenN ≥ 3 and

when the trajectory{φ(t), t ∈ [0, T ]} has a spiral form with an infinite number
of linear segments on the boundary set

⋃
i{x :xi = 0} converging to the center

of the spiral 0∈ R
N , one can haveI[0,T ](ψ) = +∞ for every piecewise linear

interpolationψ of the functionφ.
Generally, a construction of the above piecewise linear interpolation is difficult

and sometimes impossible in a neighborhood of some irregular points (in the
above example, it is a center of the spiral). To avoid this difficulty, we slow
down the velocity of piecewise linear interpolations in a neighborhood of irregular
points. It is shown that, for anyε > 0, there is a piecewise linear interpolation
ψε of φ and there is a strictly increasing continuous piecewise linear mapping
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θε : [0, T ] → [0, θε(T )] with θε(0) = 0 andθ̇ε(t) ≥ 1 for almost allt ∈ [0, T ], such
that

I[0,T ](ψε ◦ θ−1
ε ) ≤

∫ T

0
L

(
φ(t), φ̇(t)

)
dt + ε

and such that‖φ − ψε‖∞ and supt∈[0,T ] |θε(t) − t | tend to 0 asε tends to 0. Since
θε(T ) ≥ T , the resulting functionψε ◦ θ−1 is piecewise linear and continuous
on [0, T ]. The functionφ being continuous, we obtain moreover that‖φ − ψε ◦
θ−1
ε ‖∞ converges to 0 asε tends to 0 and therefore, that (10) holds.

The next step is the proof of the inequality

W[0,T ](φ) ≤ −
∫ T

0
L

(
φ(t), φ̇(t)

)
dt

for any absolutely continuous pathφ. To obtain this inequality, (8) is used.
The proof of the last inequality as well as the proof of the existence ofψε

and θε is performed by a careful induction with respect to� ⊂ {1, . . . ,N} for
φ = (φ1, . . . , φN) : [0, T ] → R

N+ with φi(t) > 0 for all i ∈ � and for allt ∈ [0, T ].
Finally, with the lower large deviation bound of [6], we conclude that

−I[0,T ](φ) ≤ w[0,T ](φ) ≤ W[0,T ](φ) ≤ −
∫ T

0
L

(
φ(t), φ̇(t)

)
dt ≤ −I[0,T ](φ).

This completes the proof of Theorem 1. Theorem 2 is proved classically with the
results of Theorem 1.

3. Application: the large deviations of queueing networks. In this section
an application of our general results is presented to establish the sample path large
deviation principle for Markov processes describing a general class of queueing
networks.

For x ∈ Z
N+ , we consider a continuous-time Markov process(X(t, x)) on Z

N+
generated by

Lf (y) = ∑
y′∈Z

N+

q(y, y′)
(
f (y′) − f (y)

)
, y ∈ Z

N+,

with X(0, x) = x. The transition intensitiesq(y, y′) of this process are assumed to
satisfy the following conditions:

(B0) (Finite range.) There isd > 0 such thatq(y, y′) = 0 whenever|y − y′| > d.
(B1) (Communication condition.) There areC > 0 and 0< γ < 1 such that for

any y, y′ ∈ Z
N+ , there exists a sequencey0 = y, y1, . . . , yn = y′ ∈ Z

N+ with
n ≤ C|y − y′| such thatq(yi−1, yi) ≥ γ for all i = 1, . . . , n.

(B2) (Partial homogeneity.) For every� ⊂ {1, . . . ,N}, there is a nonnegative
measureµ� on Z

N \ {0} such that

q(y, y′) = µ�(y′ − y)

for anyy ∈ Z
N+ with �(y) = �, and for anyy′ ∈ Z

N+ .
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Recall that forx ∈ R
N+ , �(x) denotes the set of all thosei ∈ {1, . . . ,N} for

which xi > 0 and B� = {x ∈ R
N+ :�(x) = �}. For � ⊂ {1, . . . ,N} and x =

(x1, . . . , xN) ∈ R
N we denotex� = (xi; i ∈ �).

We prove that under the above assumptions, the sequence of scaled Markov
processes

Zn(t, z) = X(nt, nz)/n

satisfies the sample path large deviation principle inD([0, T ],R
N+) with a good

rate function having an integral representation.
To prove the local large deviation estimates (6) and (8), we use the local

Markov processes introduced in [6]. Roughly speaking, if the Markov process
(X(t)) describes a queueing network withN nodes, a local Markov process
(A�(t), Y�(t)) on

Z
� × Z

�c

+ = {z ∈ Z
N : zi ≥ 0 for all i ∈ �c}

describes a modified queueing network with the same parameters as the original
Markov process(X(t)), but without any boundary condition on the nodesi ∈ �:
the queue lengths at the nodesi ∈ � may be negative. Such a Markov process
(A�(t), Y�(t)) is generated by

L�f (z) = ∑
z′∈Z�×Z

�c
+

q�(z, z′)
(
f (z′) − f (z)

)
,

where q�(z, z′) = µ�∪�(z)(z
′ − z). Throughout this section, we identify(x�,

x�c) ∈ R
� × R

�c

+ with x = (x1, . . . , xN).
The transition intensitiesq�(z, z′) being invariant with respect to the transla-

tions on the first coordinatez�, following the usual terminology,(A�(t), Y�(t))

is a Markov-additive processwith additive partA�(t) on Z
� and with Markov-

ian partY�(t) on Z
�c

+ . The Markovian partY�(t) is a Markov chain onZ�c

+ . For
� = {1, . . . ,N}, the Markovian part is empty and the local processA{1,...,N}(t) is
a random walk onZN with transition intensitiesq{1,...,N}(z, z′) = µ{1,...,N}(z′ − z).

The local estimates (6) and (8) are proved and the local rate functionL�

is expressed by using the method of convergence parameters of transform
semigroups developed earlier in [11]. For a givenα ∈ R

�, thetransform semigroup
(P t

�(α)) of the Markov-additive process(A�(t), Y�(t)) is defined by

P t
�(α)f (y) = ∑

y′∈Z�c

P t
�(α;y, y′)f (y′) = E(0,y)

(
e〈α,A�(t)〉f

(
Y�(t)

))

for a nonnegative functionf :Z�c

+ → R. E(0,y)(·) denotes here a conditional
expectation given thatA�(0) = 0 andY�(0) = y. Under our assumptions, for all
� ⊂ {1, . . . ,N}, t > 0 andα ∈ R

�, the quantities

P t
�(α;y, y′) = E(0,y)

(
e〈α,A�(t)〉1{Y�c (t)=y′}

)
, y, y′ ∈ Z

�c

+ ,
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are finite. Moreover, because of the communication condition(B1), the infinite
matricesP t

�(α) = (P t
�(α;y, y′); y, y′ ∈ Z

�c

+ ) are irreducible. Using the inequal-
ity

P t+s+s′
� (α, y, y′) ≥ P s

�(α, y, z)P t
�(α, z, z′)P s′

�(α, z′, y′),

this implies that the limit

λ�(α) = lim sup
t→∞

1

t
logP t

�(α;y, y′)

does not depend ony, y′ ∈ Z
�c

+ . The quantity exp(−λ�(α)) is called the
convergence parameterof the semigroup(P t

�(α)). For� = {1, . . . ,N}, clearly

P t{1,...,N}(α) = E0
(
exp

{〈
α,A{1,...,N}(t)

〉})

= exp

(
t

∑
z∈Z : z 
=0

µ{1,...,N}(z)
(
e〈α,z〉 − 1

))

and

λ{1,...,N}(α) = ∑
z∈Z : z 
=0

µ{1,...,N}(z)
(
e〈α,z〉 − 1

)
.

For � ⊂ {1, . . . ,N}, we define the functionL� :RN → R by settingL�(v) =
λ∗

�(v�) whereλ∗
� is the convex conjugate of the functionλ�:

λ∗
�(v�) = sup

α∈R�

(〈α,v�〉 − λ�(α)
)

and we letL(x, v) = L�(v) if �(x) = �.
The main result of this section is the following theorem.

THEOREM 3. Under the hypotheses(B0), (B1) and (B2), the sequence of
scaled processes(Zn(t)) satisfies the sample path large deviation principle with a
good rate function

I[0,T ](φ) =



∫ T

0
L

(
φ(t), φ̇(t)

)
dt, if φ is absolutely continuous,

+∞, otherwise.

The following lemmas prove the local estimates (6) and (8).

LEMMA 3.1. For any � ⊂ {1, . . . ,N} and T > 0, and for any linear path
φ(s) = φ(0) + vt with φ(t) ∈ B� for s ∈ (0, T ), (6) holds.
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To prove this lemma it is sufficient to show that for any� ⊂ {1, . . . ,N},
T > 0 andv ∈ R

�, the local Markov-additive process(A�(t), Y�(t)) satisfies the
inequality

lim
δ→0

lim inf
n→∞

1

n
logP(0,0)

(
sup

t∈[0,nT ]
|A�(t) − tv| + |Y�(t)| < δn

)
≥ −T λ∗

�(v)(11)

(this is a consequence of Proposition 3.7 of [6]). In [11], this inequality was
proved for discrete-time Markov-additive processes. For continuous-time Markov-
additive processes the proof of (11) is quite similar. In the Appendix, we recall the
main steps of this proof.

LEMMA 3.2. For any� ⊂ {1, . . . ,N}, T > 0 andx, y ∈ B�, (8) holds.

PROOF. Remark that before the timeτ�,n when the processZn(t) = X(nt)/n

hits the set
⋃

i∈�{x :xi = 0} for the first time, the transition intensities of
the Markov processX(t) are the same as those of the local Markov process
(A�(t), Y�(t)). Hence, to prove (8) it is sufficient to show that the local Markov-
additive process(A�(t), Y�(t)) satisfies the inequality

lim
δ→0

lim sup
n→∞

sup
z : |z|<δn

1

n
logPz

(|A�(nT ) − nT v| + |Y�(nT )| < δn
)

(12) ≤ −T λ∗
�(v).

For δ > 0, n ∈ N andv ∈ R
�, denoteEnδ(v) = {|A�(nT ) − nT v| + |Y�(nT )| <

δn}. We will show that for anyα ∈ R
� such thatλ�(α) < +∞, and for any

λ > λ�(α),

lim
δ→0

lim sup
n→∞

sup
z : |z|<δn

1

n
logPz

(
Enδ(v)

) ≤ −T (〈α,v〉 − λ)(13)

from which (12) will follow.
Givenα ∈ R

� andλ > λ�(α), we consider the function

fλ(y) =
∫ ∞

0
P t

�(α;y,0)e−λt dt, y ∈ Z
�c

+ .

According to the definition ofλ�(α), the above integral converges and for any
t > 0,

P t
�(α)fλ ≤ eλtfλ.(14)

Furthermore, under the hypotheses(B0)–(B2), there areµ, C1 andC2 > 0 such
that for anyy ∈ Z

�c

+ there existsn satisfying the inequalitiesC1|y| ≤ n ≤ C2|y|
and

P t (α;y,0) ≥ P(0,y)

(
A�(t) = 0, Y�(t) = 0

) ≥ (γ t)ne−µt/n!
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for all t > 0. This implies that

fλ(y) ≥ γ n/(λ + µ)n+1.(15)

There exists moreoverm such thatC1|y| ≤ m ≤ C2|y| and

P t (α;0, y) ≥ P(0,0)

(
A�(t) = 0, Y�(t) = y

) ≥ (γ t)me−µt/m!
for all t > 0. Hence, using (14) we obtain

(γ t)mfλ(y)e−µt/m! ≤ P t (α;0, y)fλ(y) ≤ eλtfλ(0).

The last inequality witht = m and (15) show that for anyλ > λ�(α) there isc > 1
such that

c−|y| ≤ fλ(y) ≤ c|y|(16)

and hence, on the eventEnδ(v), the following inequality holds:

e〈α,A�(nT )〉fλ

(
Y�(nT )

) ≥ exp(nT 〈α,v〉 − |α|δn)c−δn.

By Chebyshev’s inequality, this implies that

Pz

(
Enδ(v)

) ≤ cδn exp(|α|δn − nT 〈α,v〉)Ez

(
e〈α,A�(nT )〉fλ

(
Y�(nT )

))
.

Moreover, using (14) it follows that

Ez

(
e〈α,A�(nT )〉fλ

(
Y�(nT )

)) = e〈α,z�〉P nT (α)fλ(z�c) ≤ e〈α,z�〉eλnT fλ(z�c)

and consequently, using again (16) we obtain

sup
z : |z|<δn

1

n
logPz

(
Enδ(v)

) ≤ 2δ logc + 2|α|δ − T 〈α,v〉 + λT .

Letting n → ∞ and δ → 0 in the last equality, (13) follows. Moreover, letting
λ → λ�(α) in (13), it follows that for allα ∈ dom(λ�) = {α :λ�(α) < +∞},

lim
δ→0

lim sup
n→∞

sup
z : |z|<δn

1

n
logPz

(
Enδ(v)

) ≤ −T
(〈α,v〉 − λ�(α)

)
and hence,

lim
δ→0

lim sup
n→∞

sup
z : |z|<δn

1

n
logP

(
Enδ(v)

) ≤ −T sup
α∈dom(λ�)

(〈α,v〉 − λ�(α)
)
.

The last inequality proves (12) because

λ∗
�(v) = sup

α∈R�

(〈α,v〉 − λ�(α)
) = sup

α∈dom(λ�)

(〈α,v〉 − λ�(α)
)

(see [12], Corollary 12.2.2 of Theorem 12.2).�

PROOF OFTHEOREM 3. We are ready now to prove Theorem 3. For this, it is
sufficient to show that the hypotheses of Theorem 2 are satisfied.
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Conditions (A1) and (A3) are satisfied because of Lemmas 3.1 and 3.2.
Moreover, under the hypotheses(B0) and (B1), the convex conjugate of the
function

λ{1,...,N}(α) = ∑
z∈Z : z 
=0

µ{1,...,N}(z)
(
e〈α,z〉 − 1

)

is finite in a neighborhood of zero and consequently, the condition(A2) is also
satisfied. Finally, under our hypotheses, the general upper large deviation bound
of [8] holds and hence, Theorem 2 can be applied.�

4. Proof of Theorem 1. Let D([a, b],R
N+) be the set of all functions

φ : [a, b] → R
N+ which are right-continuous and have left limits. It is convenient

to introduce the functionsI[a,b](·), w[a,b](·) and W[a,b](·) on D([a, b],R
N+) for

every interval[a, b] ⊂ R+. For φ ∈ D([a, b],R
N+), the expressionsw[a,b](φ) and

W[a,b](φ) are generalized as follows:

w[a,b](φ)
def= lim

δ→0
lim
ε→0

lim inf
n→∞ inf

z : |z−φ(t)|<ε

1

n
logPa,z

(
sup

s∈[a,b]
|φ(s) − Zn(s)| < δ

)

and

W[a,b](φ)
def= lim

δ→0
lim sup
n→∞

sup
z : |z−φ(t)|<δ

1

n
logPa,z

(
sup

s∈[a,b]
|φ(s) − Zn(s)| < δ

)
,

wherePa,z is a conditional probability given thatZn(a) = z ∈ En.
Recall that a continuous functionφ : [a, b] → R

N+ is called piecewise linear if
there isn ≥ 1 and there area = t0 ≤ t1 ≤ · · · ≤ tn = b such that for allt ∈ [ti−1, ti],
i = 1, . . . , n,

φ(t) = φ(ti−1) + (t − ti−1)
φ(ti) − φ(ti−1)

ti − ti−1
.

For a continuous piecewise linear functionψ : [a, b] → R
N+ we let

J[a,b](ψ) =
∫ b

a
L

(
ψ(t), ψ̇(t)

)
dt.

The functionI[a,b] is defined by

I[a,b](φ) = lim
δ→0

inf
ψ : dS(φ,ψ)<δ

J[a,b](ψ),

the infimum being taken over all continuous piecewise linearψ : [a, b] → R
N+ with

dS(φ,ψ) < δ wheredS(·, ·) is the Skorohod metric onD([a, b],R
N+).

We begin the proof of Theorem 1 with the following proposition.
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PROPOSITION 4.1. Under the hypotheses(A1)–(A3), for any absolutely
continuous functionφ : [a, b] → R

N+ ,

I[a,b](φ) ≤
∫ b

a
L

(
φ(t), φ̇(t)

)
dt.(17)

Recall that a piecewise linear functionψ is called a piecewise linear interpola-
tion of the functionφ ∈ D([a, b],R

N+) if there isn ≥ 1 and there area = t0 ≤ t1 ≤
· · · ≤ tn = b such that for allt ∈ [ti−1, ti], i = 1, . . . , n,

ψ(t) = φ(ti−1) + (t − ti−1)
φ(ti) − φ(ti−1)

ti − ti−1
.

To obtain (17), we show that for anyε > 0 there is a piecewise linear interpolation
ψε of φ and there is a strictly increasing continuous piecewise linear function
θε : [a, b] → R+ with θε(a) = a andθε(b) ≥ b, such that

I[a,θε(b)](ψε ◦ θ−1
ε ) ≤

∫ b

a
L

(
φ(t), φ̇(t)

)
dt + ε,

and such that supt∈[a,b] |t − θε(t)| → 0 and‖φ − ψε‖ → 0 whenε → 0. Then, the
functionφ being continuous,

‖ψε ◦ θ−1
ε − φ‖∞

= sup
t∈[a,b]

‖ψε ◦ θ−1
ε (t) − φ(t)‖

(18) = sup
t∈[a,θ−1

ε (b)]
‖ψε(t) − φ ◦ θε(t)‖

≤ ‖ψε − φ‖∞ + sup
t∈[a,θ−1

ε (b)]
‖φ(t) − φ ◦ θε(t)‖ → 0 asε → 0

and hence, (17) will follow.
For our purpose, it is convenient to introduce a new functionG[a,b] by letting

G[a,b](φ) = lim
δ→0

inf
ψ,θ

I[a,θ(b)](ψ ◦ θ−1),(19)

where the infimum is taken over all piecewise linear interpolationsψ of φ

such that‖φ − ψ‖∞ < δ and over all continuous piecewise linear functions
θ : [a, b] → R such thatθ(a) = a, supt∈[a,b] |t − θ(t)| < δ andθ̇ (t) ≥ 1 for almost
all t ∈ [a, b]. To prove Proposition 4.1 we will use the following properties of the
functionG[a,b].

LEMMA 4.1. For any continuous functionφ : [a, b] → R
N+ , and for anyc ∈

[a, b],
I[a,b](φ) ≤ G[a,b](φ) ≤ G[a,c](φ) + G[c,b](φ).(20)



LARGE DEVIATIONS FOR DISCONTINUOUS PROCESSES 1493

PROOF. The first inequality of (20) follows from (18). The second inequality
holds because

G[a,c](φ) + G[c,b](φ) = lim
δ→0

inf
ψ,θ

I[a,θ(b)](ψ ◦ θ−1),

where the infimum is taken over allψ and θ satisfying the same condition as
in (19) but withψ(c) = φ(c). �

To prove the next property of the functionG[a,b] we need the following lemma.

LEMMA 4.2. For any� ⊂ {1, . . . ,N} and for anyv ∈ R
N with v�c = 0,

L�(v) ≤ L{1,...,N}(v).(21)

PROOF. Let � ⊂ {1, . . . ,N} and letv ∈ R
N be such thatv�c = 0. Consider

x ∈ B� andT > 0 such thatφ(t) = x + vt ∈ B� for all t ∈ [0, T ]. Then because
of assumptions(A1) and(A3), the following relations hold:

w[0,T ](φ) = W[0,T ](φ) = −T L�(v).

Similarly for φn(t) = φ(t) + z/n with z = (1, . . . ,1),

w[0,T ](φn) = W[0,T ](φn) = −T L{1,...,N}(v).

The mappingφ → W[0,T ](φ) being upper semicontinuous, this proves (21).�

LEMMA 4.3. For any continuous functionφ : [a, b] → R
N+ ,

G[a,b](φ) ≤ lim
ε→0+ G[a+ε,b−ε](φ).(22)

PROOF. By definition, for any continuous functionφ = (φ1, . . . , φN) :
[a, b] → R

N+ ,

G[a,b](φ) = lim
δ→0+ inf{ti},{θi}

n∑
i=j

θj (tj − tj−1)L�j

(
φ(tj ) − φ(tj−1)

θj (tj − tj−1)

)
,

where for everyj = 1, . . . , n, �j is the set of all thosei ∈ {1, . . . ,N} for which

φi(tj−1) + (t − tj−1)
φi(tj ) − φi(tj−1)

tj − tj−1
> 0 for tj−1 < t < tj ,

and the infimum is taken over all partitionsa = t0 < t1 < · · · < tn = b with
maxi (ti − ti−1) < δ and over all real numbersθi ≥ 1, i = 1, . . . , n, such that

n∑
i=1

θi(ti − ti−1) ≤ b − a + θ.
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Letting t1 − t0 = ε and tn − tn−1 = ε′ and using Lemma 4.2, it follows therefore
that

G[a,b](φ) ≤ lim
δ→0

inf
ε,ε′,θ,θ ′ θεL{1,...,N}

(
φ(a + ε) − φ(a)

θε

)
+ G[a+ε,b−ε′](φ)

(23)
+ θ ′ε′L{1,...,N}

(
φ(b) − φ(b − ε′)

θ ′ε′
)
,

where the infimum is taken over allε, ε′ > 0, θ ≥ 1 andθ ′ ≥ 1 with εθ + ε′θ ′ < δ.
Recall that by assumption(A2), the functionL{1,...,N} is finite in a neighborhood
of 0∈ R

N . Being convex it is therefore bounded in a neighborhood of 0∈ R
N and

hence, there are two real numbersr > 0 andc > 0 such thatL{1,...,N}(v) ≤ c for all
v ∈ R

N with |v| ≤ r . Without any restriction of generality we suppose thatr < 1
andc > 1. For givenδ > 0, let us choose 0< εδ < δ/(2c) such that for 0< ε < εδ

|φ(a + ε) − φ(a)| < rδ/(2c) and letθ = max{1, |φ(a + ε) − φ(a)|/(rε)}. Then
|φ(a + ε) − φ(a)|/(εθ) ≤ r and hence,

θεL{1,...,N}
(

φ(a + ε) − φ(a)

θε

)
≤ θεc = c max{ε, |φ(a + ε) − φ(a)|/r} ≤ δ/2.

The same arguments show that there areε′
δ > 0 and θ ′(ε) ≥ 1 such that for

0< ε′ < ε′
δ

θ ′ε′L{1,...,N}
(

φ(b) − φ(b − ε′)
θ ′ε′

)
≤ θ ′ε′c = c max{ε′, |φ(b) − φ(b − ε′)|/r} ≤ δ/2.

For such ε, ε′, θ and θ ′, we haveθε + θ ′ε′ < θ and hence, using (23) we
obtain (22). �

LEMMA 4.4. For any � ⊂ {1, . . . ,N} and for any φ = (φ1, . . . , φN) ∈
D([a, b],R

N+) such thatφ(a),φ(b) ∈ B� andφi(t) > 0 for all i ∈ � and for all
t ∈ [a, b], the following inequality holds:

(b − a)L�

(
φ(b) − φ(a)

b − a

)
≤ I[a,b](φ).(24)

PROOF. Indeed, letx, y ∈ B� and letOδ be the set of allφ ∈ D([a, b],R
N+)

with |φ(b) − y| < δ and such thatφi(t) > 0 for all i ∈ � and for all t ∈ [a, b].
Then because of assumption(A3),

lim
δ→0

lim sup
n→∞

sup
y : |y−x|<δ

1

n
logPa,y

(
Zn(·) ∈ Oδ

) ≤ −(b − a)L�

(
y − x

b − a

)
.(25)

Moreover, recall that under the hypotheses(A1), the rate functionI[0,b−a] satisfies
the lower large deviation bound (1) withT = b − a. The setOδ being open, using
the Markov property we obtain

−I[a,b](φ) ≤ lim
ε→0

lim inf
n→∞ inf

y : |y−x|<ε

1

n
logPa,y

(
Zn(·) ∈ Oδ

)
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for anyφ ∈ Oδ with φ(a) = x andφ(b) = y. Letting in the last inequalityδ → 0
and using (25), (24) follows.�

The last lemma combined with Lemma 4.1 implies the following property of
the functionG[a,b].

LEMMA 4.5. For any � ⊂ {1, . . . ,N} and for any φ = (φ1, . . . , φN) ∈
D([a, b],R

N+) such thatφ(a),φ(b) ∈ B� andφi(t) > 0 for all i ∈ � and for all
t ∈ [a, b], the following inequality holds:

(b − a)L�

(
φ(b) − φ(a)

b − a

)
≤ G[a,b](φ).(26)

PROOF OF PROPOSITION 4.1. We are ready now to prove Proposition 4.1.
Because of Lemma 4.1, it is sufficient to show that for any absolutely continuous
functionφ = (φ1, . . . , φN) : [a, b] → R

N+ , the following inequality holds:

G[a,b](φ) ≤
∫ b

a
L

(
φ(t), φ̇(t)

)
dt.(27)

Suppose first thatφi(t) > 0 for all i = 1, . . . ,N and for allt ∈ [a, b]; then∫ b

a
L

(
φ(t), φ̇(t)

)
dt =

∫ b

a
L{1,...,N}

(
φ̇(t)

)
dt.

Moreover, for any piecewise linear interpolationψ = (ψ1, . . . ,ψN) of the
functionφ, we have alsoψi(t) > 0 for all i = 1, . . . ,N and for allt ∈ [a, b] which
implies that

I[a,b](ψ) =
∫ b

a
L

(
ψ(t), ψ̇(t)

)
dt =

∫ b

a
L{1,...,N}

(
ψ̇(t)

)
dt.

The functionL{1,...,N}(·) being convex, this implies that

I[a,b](ψ) =
∫ b

a
L{1,...,N}

(
ψ̇(t)

)
dt ≤

∫ b

a
L{1,...,N}

(
φ̇(t)

)
dt =

∫ b

a
L

(
φ(t), φ̇(t)

)
dt

and hence, (27) holds.
To prove (27) in the general case, let us consider for every� ⊂ {1, . . . ,N},

the set� of all absolutely continuous functionsφ = (φ1, . . . , φN) : [a, b] → R
N+

with arbitrarya < b such thatφi(t) > 0 for all t ∈ [a, b] and for all i ∈ �. We
prove (27) by induction with respect to� for φ ∈ �. Remark that for allφ ∈ �

with � = {1, . . . ,N}, this inequality is already verified.
Suppose that (27) is already verified for allφ ∈ �′ with �′ ⊂ {1, . . . ,N}

such that� ⊂ �′ 
= � and let us verify this inequality forφ ∈ �, φ =
(φ1, . . . , φN) : [a, b] → R

N+ . Because of our assumption, fora ≤ t ≤ t ′ ≤ b, the
inequality

G[t,t ′](φ) ≤
∫ t ′

t
L

(
φ(s), φ̇(s)

)
ds(28)
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is already verified if there existsi ∈ {1, . . . ,N} \ � such thatφi(s) > 0 for all
s ∈ [t, t ′].

Consider first the case whenφ(t) = (φ1(t), . . . , φN(t)) /∈ B� for all t ∈ [a, b].
Then there isε > 0 such that∑

i /∈�

φi(t) > ε for all t ∈ [a, b](29)

and there isσ > 0 such that for allt, s ∈ [a, b] satisfying the inequality|t − s| < σ ,
the inequality

∑
i |φi(t) − φi(s)| < ε/N holds. Consider an increasing sequence

a = t0 < t1 < · · · < tn = b with supl |tl+1 − tl| < σ . If for t ∈ [tl−1, tl], φi(t) = 0
for somei ∈ {1, . . . ,N} \ �, then because of (29) there isj ∈ {1, . . . ,N} \ �

such thatφj (t) > ε/(N − 1) and consequently, for anys ∈ [tl−1, tl], the following
inequality holds:

φj (s) >
ε

N − 1
− |φj (t) − φj (s)| > ε

N − 1
− ε

N
> 0.

This proves that for anyl = 1, . . . , n, there isjl ∈ {1, . . . ,N} \ � such that
φjl

(s) > 0 for all s ∈ [tl−1, tl] and hence, using (28) with[t, t ′] = [tl−1, tl] for
eachl = 1, . . . , n, we obtain

G[a,t1](φ) + G[t1,t2](φ) + · · · + G[tn−1,b](φ) ≤
∫ b

a
L

(
φ(t), φ̇(t)

)
dt.

The last inequality and Lemma 4.1 imply (27).
Consider now an arbitrary functionφ ∈ �, φ = (φ1, . . . , φN) : [a, b] → R

N+ .
Remark that for such a functionφ, (28) is already verified ifφ(s) /∈ B� for all
s ∈ [t, t ′]. The functionφ being continuous, the set

� = {t ∈ (a, b) :φ(t) /∈ B�} = ⋃
i∈�

{t ∈ (a, b) :φi(t) > 0}

is open and hence, it is a union of a countable family of open disjoint intervals
(tk, t

′
k), k ∈ N. For anyk ∈ N, and for any 0< σ < (t ′k − tk)/2, the inequality

G[tk+σ,t ′k−σ ](φ) ≤
∫ t ′k−σ

tk+σ
L

(
φ(s), φ̇(s)

)
ds

is already verified and hence, using Lemma 4.3 it follows that

G[tk,t ′k](φ) ≤ lim
σ→0

G[tk+σ,t ′k−σ ](φ) ≤
∫ t ′k

tk

L
(
φ(s), φ̇(s)

)
ds.

According to the definition of the functionG[tk,t ′k](φ) this implies that for given

ε > 0, there is a piecewise linear interpolationψk of the functionφ : [tk, t ′k] → R
N+

and a continuous piecewise linear functionθk : [tk, t ′k] → R with θk(tk) = tk and
θ̇k(t) ≥ 1 for almost allt ∈ [tk, t ′k], such that

sup
t∈[tk,t ′k]

|φ(t) − ψk(t)| < ε, sup
t∈[tk,t ′k]

|θk(t) − t | < ε/2k
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and

I[θ(tk),θ(t ′k)](ψk ◦ θ−1
k ) ≤

∫ t ′k

tk

L
(
φ(s), φ̇(s)

)
ds + ε/2k.(30)

Moreover, Lemma 4.5 shows that for anyk ∈ N, for whichφ(tk), φ(t ′k) ∈ B�, the
following inequality holds:

(t ′k − tk)L�

(
φ(t ′k) − φ(tk)

t ′k − tk

)
≤ G[tk,t ′k](φ).(31)

Givenε > 0 let us choosenε such that∑
k≥nε

(t ′k − tk) < ε/2(32)

and such thatnε ≥ k if tk = a or t ′k = b. Then for all k > nε, (31) holds and
consequently,

(t ′k − tk)L�

(
φ(t ′k) − φ(tk)

t ′k − tk

)
≤

∫ t ′k

tk

L
(
φ(s), φ̇(s)

)
ds.

For the function

φε(t) =




φ(tk) + (t − tk)
(
φ(t ′k) − φ(tk)

)
/(t ′k − tk),

for t ∈ (tk, t
′
k), k > nε,

φ(t), for t ∈ [a, b]
∖ ⋃

k>nε

(tk, t
′
k),

the above inequality implies that∫
[a,b]\⋃nε

k=1(tk,t
′
k)

L
(
φε(s), φ̇ε(s)

)
ds ≤

∫
[a,b]\⋃nε

k=1(tk,t
′
k)

L
(
φ(s), φ̇(s)

)
ds.(33)

The set(a, b) \ ⋃nε

k=1[tk, t ′k] is a union of a finite number of disjoint open intervals
(si, s

′
i), i = 1, . . . ,m. By construction,φ(si), φ(s′

i) ∈ B� for any i = 1, . . . ,m.
For everyi = 1, . . . ,m, we define a partitionsi = si0 < si1 < · · · < siki

= s′
i by

induction: if sij is already defined:

(a) we letsij+1 = s′
i andki = j + 1, if s′

i < sij + ε;
(b) otherwise, (32) shows that there issij + ε/2 < s < sij + ε such that

φ(s) ∈ B� and we letsij+1 = s.

Then the piecewise linear function

ξ(t) = φ(sij−1) + (t − sij−1)
φ(sij ) − φ(sij−1)

sij − sij−1
,

t ∈ [sij−1, sij ], j = 1, . . . , ki,
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satisfies the following relations:∫ s′
i

si

L
(
ξ(t), ξ̇ (t)

)
dt =

∫ s′
i

si

L�

(
ξ̇ (t)

)
dt

≤
∫ s′

i

si

L�

(
φ̇ε(t)

)
dt

=
∫ s′

i

si

L
(
φε(t), φ̇ε(t)

)
dt.

The first relation holds here becauseξ(t) ∈ B� for all t ∈ [sij−1, sij ]; the second
relation is verified because by construction,ξ is a piecewise linear interpolation
of φε and because the functionL�(·) is convex. Finally, the last identity is verified
becauseφε(t) ∈ B� for all t ∈ [sij−1, sij ]. Using (33) we conclude that∫

[a,b]\⋃nε
k=1(tk,t

′
k)

L
(
ξ(s), ξ̇ (s)

)
ds ≤

∫
[a,b]\⋃nε

k=1(tk,t
′
k)

L
(
φ(s), φ̇(s)

)
ds.(34)

Define now a piecewise linear interpolationψε of the functionφ on the whole
interval[a, b] by

ψε(t) =



ψk(t), for t ∈ (tk, t
′
k), k ≤ nε,

ξ(t), for t ∈ [a, b]
∖ ⋃

k≤nε

(tk, t
′
k),

and letθε : [a, b] → R be a continuous piecewise linear function withθε(a) = a

and

θ̇ε(t) =



θ̇k(t), for t ∈ (tk, t
′
k), k ≤ nε,

1, for t ∈ (a, b)
∖ ⋃

k≤nε

[tk, t ′k].

Then clearly, supt∈[a,b] |θε(t) − t | < ε and ‖φ − ψε‖∞ → 0 when ε → 0.
Moreover, (30) and (34) imply that

I[θε(a),θε(b)](ψε ◦ θ−1
ε ) =

∫
[a,b]\⋃nε

k=1(tk,t
′
k)

L
(
ξ(s), ξ̇ (s)

)
ds +

nε∑
i=1

I[θk(tk),θk(t
′
k)](ψk)

≤
∫ b

a
L

(
φ(t), φ̇(t)

)
dt + ε

and hence, lettingε → 0, (27) follows. Proposition 4.1 is therefore proved.�

PROPOSITION4.2. Under the hypotheses(A1) and (A3), for any absolutely
continuous functionφ : [a, b] → R

N+ ,

W[a,b](φ) ≤ −
∫ b

a
L

(
φ(t), φ̇(t)

)
dt.(35)
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PROOF. Let t → φ(t) = (φ1(t), . . . , φN(t)) be an absolutely continuous
mapping from[a, b] to R

N+ . When φi(t) > 0 for all t ∈ [a, b] and for all i =
1, . . . ,N , the proof of (35) is classical: for anya ≤ t ′ < t ′′ ≤ b and forδ > 0 small
enough, the first time when the process(X(t)) hits the set

⋃
1≤i≤N {x :xi = 0} is

greater thann(t ′′ − t ′) whenever

sup
t∈[0,t ′′−t ′]

|φ(t + t ′) − X(nt)/n| < δ.

Because of assumption(A3), this implies that

W[t ′,t ′′](φ) ≤ −(t ′′ − t ′)L{1,...,N}
(

φ(t ′′) − φ(t ′)
t ′′ − t ′

)

and using the Markov property it follows that

W[a,b](φ) ≤
n−1∑
i=0

W[ti ,ti+1](φ) ≤ −
n−1∑
i=0

(ti+1 − ti)L{1,...,N}
(

φ(ti+1) − φ(ti)

ti+1 − ti

)
(36)

for any sequencea = t0 < t1 < · · · < tn = b. For a piecewise linear continuous
functionφn : [a, b] → R

N+ with

φn(t) = φ(ti) + (t − ti)
φ(ti+1) − φ(ti)

ti+1 − ti
for t ∈ [ti , ti+1],

the right-hand side of the last inequality equals

−
∫ b

a
L{1,...,N}

(
φ̇n(t)

)
dt.

Whenn → ∞ and supi |ti+1 − ti | → 0, φ̇n(t) → φ̇(t) for almost allt ∈ [a, b]. By
the Fatou lemma, this implies that

lim inf
n→∞

∫ b

a
L{1,...,N}

(
φ̇n(t)

)
dt ≥

∫ b

a
L{1,...,N}

(
φ̇(t)

)
dt

because the convex functionL{1,...,N}(·) is lower semicontinuous. Letting therefore
n → ∞ and supi |ti+1 − ti | → 0 in (36), (35) follows.

Let us prove now (35) forφ ∈ � by induction with respect to� ⊂ {1, . . . ,N}.
Recall that � denotes the set of all absolutely continuous functionsφ =
(φ1, . . . , xN) : [a, b] → R

N+ with arbitrarya < b, such thatφi(t) > 0 for all i ∈ �

and for allt ∈ [a, b].
For φ ∈ � with � = {1, . . . ,N}, this inequality is already proved. Suppose

that (35) holds for allφ ∈ �′ with �′ ⊂ {1, . . . ,N} such that� ⊂ �′ 
= � and let
us considerφ ∈ �, φ = (φ1, . . . , φN) : [a, b] → R

N+ . Because of our assumption,
for [t ′, t ′′] ⊂ [a, b], the inequality

W[t ′,t ′′](φ) ≤ −
∫ t ′′

t ′
L

(
φ(t), φ̇(t)

)
dt(37)



1500 I. IGNATIOUK-ROBERT

is already verified if there existsi ∈ {1, . . . ,N} \ � such thatφi(s) > 0 for all
s ∈ [t ′, t ′′].

Consider first the case whenφ(t) /∈ B� for all t ∈ [a, b]. Then the same
arguments as in the proof of Proposition 4.1 show that there is a partitiona = a0 <

a1 < · · · < an = b and there arei1, . . . , in ∈ {1, . . . ,N} \ � such thatφil (s) > 0
for all l = 1, . . . , n and for alls ∈ [al−1, al]. Because of our assumption, we have
therefore

W[al−1,al ](φ) ≤ −
∫ al

al−1

L
(
φ(t), φ̇(t)

)
dt

for everyl = 1, . . . , n, and hence, using the Markov property, (35) follows.
Consider now an arbitrary functionφ ∈ �, φ = (φ1, . . . , φN) : [a, b] → R

N+ .
Remark that for such a functionφ, (37) is already verified ifφ(t) /∈ B� for all
t ∈ [t ′, t ′′]. The functionφ being continuous, the set

� = {t ∈ (a, b) :φ(t) /∈ B�} = ⋃
i∈�

{t ∈ (a, b) :φi(t) > 0}

is open and consequently, it is a union of a countable collection of open disjoint
intervals(tk, t ′k), k ∈ N. For anyk ∈ N and for anyσ < (t ′k − tk)/2 the inequality

W[tk+σ,t ′k−σ ](φ) ≤ −
∫ t ′k−σ

tk+σ
L

(
φ(t), φ̇(t)

)
dt

is therefore verified and hence, lettingσ → 0 we obtain

W[tk,t ′k](φ) ≤ lim
σ→0

W[tk+σ,t ′k−σ ](φ) ≤ −
∫ t ′k

tk

L
(
φ(t), φ̇(t)

)
dt.(38)

For givenn > 0, let us choosekn > 0 large enough so that∑
k≥kn

t ′k − tk < 1/n(39)

and so thatkn > k if tk = a or t ′k = b. The set(a, b) \ ⋃kn

k=1[tk, t ′k] is a union of
a finite number of disjoint intervals(si, s′

i), i = 1, . . . ,m. For everyi = 1, . . . ,m,
a partitionsi = si0 < si1 < · · · < siki

= s′
i is defined by induction. Ifsij is already

defined:

(a) we letsij+1 = s′
i andki = j + 1, if s′

i < sij + 2/n;
(b) otherwise, because of (38), there issij + 1/n < s < sij + 2/n such that

φ(s) ∈ B� and we letsij+1 = s.

Remark that for anyi = 1, . . . ,m and for anyj = 1, . . . , ki , by construction
φ(sij−1), φ(sij ) ∈ B�. Moreover, forδ > 0 small enough, the first time when the
Markov process(X(t)) hits the set

⋃
i∈�{x :xi = 0} is greater thann(sij − sij−1)

whenever the inequality

sup
t∈[0,sij−sij−1]

|φ(t + sij−1) − X(nt)/n| < δ
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holds and consequently, using assumption(A3) we get

W[sij−1,sij ](φ) ≤ −(sij − sij−1)L�

(
φ(sij ) − φ(sij−1)

sij − sij−1

)
.(40)

Define a functionψn : [a, b] → R
N+ by settingψn(t) = φ(t) for t ∈ ⋃kn

k=1(tk, t
′
k),

and by setting

ψn(t) = φ(sij−1) + (t − sij−1)
φ(sij ) − φ(sij−1)

sij − sij−1

if t ∈ [sij−1, sij ], i = 1, . . . , ki,

for t ∈ [si, s′
i], i = 1, . . . ,m. Then using the Markov property and (38), (40) we get

W[a,b](φ) ≤ −
∫ b

a
L

(
φn(t), φ̇n(t)

)
dt.(41)

Notice that by construction,∫
�

L
(
φn(t), φ̇n(t)

)
dt ≥

kn∑
k=1

∫ t ′k

tk

L
(
φ(t), φ̇(t)

)
dt →

∫
�

L
(
φ(t), φ̇(t)

)
dt

asn → ∞. Moreover,∫
[a,b]\�

L
(
φn(t), φ̇n(t)

)
dt =

∫
[a,b]\�

L�

(
φ̇n(t)

)
dt

because by constructionφn(t) ∈ B� for any t ∈ [a, b] \ �. The functionφ being
absolutely continuous, we havėφn(t) → φ̇(t) for almost all t ∈ [a, b] \ �. The
function L�(·) is lower semicontinuous because it is convex and hence by the
Fatou lemma,

lim inf
n→∞

∫
[a,b]\�

L�

(
φ̇n(t)

)
dt ≥

∫
[a,b]\�

L�

(
φ̇(t)

)
dt =

∫
[a,b]\�

L
(
φ(t), φ̇(t)

)
dt.

Letting thereforen → ∞ on the right-hand side of (41), (35) follows.�

PROOF OF THEOREM 1. Let a functionφ : [0, T ] → R
N+ be absolutely

continuous. Then using Propositions 4.1 and 4.2 it follows that

W[0,T ](φ) ≤ −
∫ T

0
L

(
φ(t), φ̇(t)

)
dt ≤ −I[0,T ](φ).

Moreover, under the hypotheses(A1), the rate functionI[0,T ](·) satisfies the lower
large deviation bound (1) (see the statement (c) in Theorem 4.3 of [6]) and
consequently,

W[0,T ](φ) ≥ w[0,T ](φ) ≥ −I[0,T ](φ).

This implies that for any absolutely continuous functionφ : [0, T ] → R
N+ ,

w[0,T ](φ) = W[0,T ](φ) = −
∫ T

0
L

(
φ(t), φ̇(t)

)
dt = −I[0,T ](φ)

and hence, Theorem 1 is proved.�
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5. Proof of Theorem 2. We begin the proof of this theorem with the following
lemma.

LEMMA 5.1. Under the hypotheses of Theorem2, the inequality

I[0,T ](φ) ≥ Ĩ[0,T ](φ)(42)

holds for every functionφ ∈ D([0, T ],R
N+).

PROOF. Indeed, suppose that the hypotheses(A1)–(A3) are satisfied and let
there exist a good rate functioñI[0,T ](·) satisfying the upper large deviation bound

lim
δ→0

lim sup
n→∞

sup
y∈En : |y−x|<δ

1

n
logPy

(
Zn(·) ∈ F

) ≤ − inf
φ∈F : φ(0)=x

Ĩ[0,T ](φ)(43)

for anyx ∈ R
N+ and for any closed setF ⊂ D([0, T ],R

N+). Then the lower large
deviation bound (1) is satisfied with the rate functionI[0,T ](·) and the inequality
w[0,T ](φ) ≥ −I[0,T ](φ) holds for all φ ∈ D([0, T ],R

N+). Moreover, using the
upper large deviation bound (43), it follows thatW[0,T ](φ) ≤ −Ĩ[0,T ](φ) and
consequently (42) holds.�

The next lemma proves thatI[0,T ] is a good rate function onD([0, T ],R
N+)

when the hypotheses of Theorem 2 are satisfied.

LEMMA 5.2. Under the hypotheses of Theorem2, for any compact set
V ⊂ R

N+ and for any c > 0 the set of all functionsφ ∈ D([0, T ],R
N+) with

φ(0) ∈ V and I[0,T ](φ) ≤ c is compact inD([0, T ],R
N+) and every functionφ

with I[0,T ](φ) < ∞ is absolutely continuous.

PROOF. Indeed, for any compact setV ⊂ R
N+ and for anyc > 0, the set{

φ :φ(0) ∈ V, I[0,T ](φ) ≤ c
}

is closed inD([0, T ],R
N+) because the rate functionI[0,T ] is lower semicontinu-

ous. Moreover, using (42) it follows that{
φ :φ(0) ∈ V, I[0,T ](φ) ≤ c

} ⊂ {
φ :φ(0) ∈ V, Ĩ[0,T ](φ) ≤ c

}
.

The rate functioñI[0,T ] being good, the set{φ :φ(0) ∈ V, Ĩ[0,T ](φ) ≤ c} is compact
in D([0, T ],R

N+) and every functionφ : [0, T ] → R
N+ with Ĩ[0,T ](φ) < ∞ is

absolutely continuous. The set{φ :φ(0) ∈ V, I[0,T ](φ) ≤ c} is therefore also
compact and every functionφ : [0, T ] → R

N+ with I[0,T ](φ) < ∞ is absolutely
continuous. �

The next lemma shows that the rate functionI[0,T ] satisfies the upper large
deviation bound (2).
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LEMMA 5.3. Under the hypotheses of Theorem2,

lim
δ→0

lim sup
n→∞

sup
y∈En : |y−x|<δ

1

n
logPy

(
Zn(·) ∈ F

) ≤ − inf
φ∈F : φ(0)=x

I[0,T ](φ)(44)

for anyx ∈ R
N+ and for any closed setF ⊂ D([0, T ],R

N+).

PROOF. Consider a closed setF ⊂ D([0, T ],R
N+), x ∈ R

N+ and let

c = inf
φ∈F : φ(0)=x

I[0,T ](φ).

The rate functionĨ[0,T ](·) being good, every functionφ ∈ F satisfying the
inequalityĨ[0,T ](φ) ≤ c is absolutely continuous and hence, by Theorem 1,

W[0,T ](φ) ≤ −I[0,T ](φ).

The last inequality implies that for anyε > 0 there existsδφ > 0 such that

lim sup
n→∞

sup
z∈En : |z−φ(0)|<δφ

1

n
logPz(‖φ − Zn‖ < δφ) ≤ −I[0,T ](φ) + ε

for all 0 < δ < δφ . The setK = {φ ∈ F :φ(0) = x, Ĩ[0,T ](φ) ≤ c} being compact,
there exists a finite collection of functionsφ1, . . . , φn ∈ K such that

K ⊂ O =
n⋃

i=1

{
φ :‖φi − φ‖ < δφi

}
and consequently,

lim
δ→0

lim sup
n→∞

sup
y∈En : |y−x|<δ

1

n
logPy

(
Zn(·) ∈ O

) ≤ − inf
1≤i≤n

I[0,T ](φi) + ε.(45)

Remark that for anyφ ∈ F \ O with φ(0) = x, the following inequality holds:

I[0,T ](φ) ≥ Ĩ[0,T ](φ) ≥ c = inf
φ∈F : φ(0)=x

I[0,T ](φ).

The setF \O being closed, using the upper large deviation bound (43), this implies
that

lim
δ→0

lim sup
n→∞

sup
y∈En : |y−x|<δ

1

n
logPy

(
Zn(·) ∈ F \ O

) ≤ − inf
φ∈F : φ(0)=x

I[0,T ](φ).

This inequality and (45) show that

lim
δ→0

lim sup
n→∞

sup
y∈En : |y−x|<δ

1

n
logPy

(
Zn(·) ∈ F

) ≤ − inf
φ∈F : φ(0)=x

I[0,T ](φ) + ε.

Letting in the last inequalityε → 0, (44) follows. �

The last lemma completes the proof of Theorem 2 (the lower large deviation
bound (1) is satisfied because of assumption(A1); this is a consequence of the
statement (c) of Theorem 4.3 of [6]).
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APPENDIX

In this section we prove inequality (11). This is a subject of the following
lemma.

LEMMA A.1. Under the hypotheses(B0)–(B2), for any � ⊂ {1, . . . ,N},
t > 0 andv ∈ R

�, the local Markov-additive process(A�(t), Y�(t)) satisfies the
inequality

lim
δ→0

lim inf
n→∞

1

n
logP(0,0)

(
sup

s∈[0,nt]
|A�(s) − sv| + |Y�(s)| < δn

)
≥ −tλ∗

�(v).(46)

PROOF. Given K ⊂ Z
�c

+ , let TK be the first time when the process(Y�(t))

exists from the setK and letK� be the collection of all the finite subsetsK of
Z

�c

+ for which the restriction of the Markov chain(Y�(t)) onK is irreducible. For
K ⊂ K�, the matricesP t

�,K(α) = (P t
�,K(α;y, y′); y, y′ ∈ K) with

P t
�,K(α;y, y′) = E(0,y)

(
e〈α,A�(t)〉1{Y�c (t)=y′ andTK>t}

)
are irreducible. Moreover,P t

�,K(α) = exp(t · Q�,K(α)) where the matrix
Q�,K(α) = (Q�,K(α;y, y′); y, y′ ∈ K) is defined by

Q�,K(α;y, y′) = ∑
x∈Z�

q�

(
(0, y), (x, y′)

)
e〈α,x〉.

Using the Perron–Frobenius theorem this implies that:

(a) The matrixQ�,K(α) has a unique maximal real eigenvalueλ�,K(α) and a
strictly positive unique to constant multiples right eigenvectorf α

�,K = (f α
�,K(y);

y ∈ K) associated withλ�,K(α).
(b) For everyt > 0, rt

�,K(α) = exp{tλ�,K(α)} is the unique Perron–Frobenius
eigenvalue of the matrixP t

�,K(α) andf α
�,K = (f α

�,K(y); y ∈ K) is its unique to
constant multiples right eigenvector associated withrt

�,K(α).
(c) The collection of the functionsλ�,K , K ∈ K�, is increasing with respect

to K and for ally, y′ ∈ K ,

λ�,K(α) = lim sup
t→∞

1

t
logP t

�,K(α;y, y′) ≤ λ�(α).

Moreover, an argument similar to one used to prove Lemma 1 of [11] shows that
the functionsλ�,K , K ∈ K�, are convex and infinitely differentiable onR�, and
using the arguments of the proof of Proposition 2 in [11] we obtain that

λ�(α) = sup
K∈K�

λ�,K(α).

Let λ∗
�,K be the convex conjugate of the functionλ�,K . Then the collection of the

functionsλ∗
�,K , K ∈ K�, is decreasing with respect toK and using Theorem 16.5
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of [12] it follows that the convex conjugateλ∗
� of the functionλ� is the closure of

the function

inf
K∈K�

λ∗
�,K.

The mapping

v → lim
δ→0

lim inf
n→∞

1

n
logP(0,0)

(
sup

s∈[0,nt]
|A�(s) − sv| + |Y�(s)| < δn

)

being upper semicontinuous onR
�, we conclude that to prove (46) it is sufficient

to show that

lim
δ→0

lim inf
n→∞

1

n
logP(0,0)

(
sup

s∈[0,nt]
|A�(s)−sv|+|Y�(s)| < δn

)
≥ −t inf

K∈K�

λ∗
�,K(v).

To prove the last inequality, it is sufficient to show that for any finite setK ∈ K�,

lim
δ→0

lim inf
n→∞

1

n
logP(0,0)

(
sup

s∈[0,nt]
|A�(s) − sv| < δn,TK > nt

)
≥ −tλ∗

�,K(v).(47)

For this we use the martingale method and the classical method of change of
measure.

Let {F �
t }t≥0 be the natural filtration of the Markov process(A�(t), Y�(t)). For

(x, y) ∈ Z
� × K andt ≥ 0 we define a new measureP

(α)
(x,y) on

F �
t ∩ {TK > t} = {

E ∩ {TK > t} :E ∈ F �
t

}
by setting

P
(α)
(x,y)(B) = E(x,y)

(
1B exp{〈α,A�(t) − x〉 − tλ�,K(α)}f α

�,K

(
Y�(t)

)
/f α

�,K(y)
)
.

Then clearlyP
(α)
(x,y)(TK > t) = 1 for all (x, y) ∈ Z

� × K and for all t > 0. This

implies that for alls > t > 0 and for allE ∈ F �
t ,

P
(α)
(x,y)(E ∩ {TK > s}) = P

(α)
(x,y)(E ∩ {TK > t})

and hence, letting

P
(α)
(x0,y0)

(E ∩ {TK = ∞}) = lim
s→∞ P

(α)
(x0,y0)

(E ∩ {TK > s})
for E ∈ ⋃

t≥0 F �
t we obtain a new probability measure on

⋃
t≥0 F �

t ∩ {TK = ∞}.
This is a distribution of a new Markov process onZ

� ×K with initial state(x0, y0)

and transition intensities

q
(α)
�,K

(
(x, y), (x′, y′)

) = q�

(
(x, y), (x′, y′)

)
e〈α,x′−x〉f α

�,K(y′)/f α
�,K(y)

x, x′ ∈ Z
�, y, y′ ∈ K .
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Let E
(α)
(x,y) denote the expectation with respect to the new probability measure

P
(α)
(x,y) and let En,δ = {sups∈[0,nt] |A�(s) − sv| < δn,TK > nt}. Without any

restriction of generality we will suppose that 0∈ K and thatf α
�,K(0) = 1. Then

using the standard arguments of the change of measure it follows that

logP(0,0)(En,δ)

= logE
(α)
(0,0)

(
1En,δ exp{−〈α,A�(nt)〉 + ntλ�,K(α)}f α

�,K

(
Y�(nt)

))
≥ logP

(α)
(0,0)(En,δ) + nt

(
λ�,K(α) + 〈α,v〉) − δn − max

y∈K
logf α

�,K(y).

Suppose first thatv ∈ ri(domλ∗
K). Then, the functionλK(·) being convex and

differentiable onR�, there isαv ∈ R
� such that

λ∗
�,K(v) = 〈αv, v〉 − λ�,K(αv)(48)

(see Corollary 26.4.1 of [12]). Using the last inequality withα = αv we obtain

lim
δ→0

lim inf
n→∞

1

n
logP(0,0)(En,δ) ≥ lim

δ→0
lim inf
n→∞

1

n
logP

(αv)
(0,0)(En,δ) + λ∗

�,K(v)

and hence, to get (47) it is sufficient to show that for anyδ > 0,

P
(αv)
(0,0)(En,δ) → 1 asn → ∞

or equivalently that

P
(αv)
(0,0)

(
sup

s∈[0,nt]
|A�(s) − sv| ≥ δn

)
→ 0 asn → ∞.(49)

For this we use a martingale technique. Straightforward calculations show that for
anyα ∈ R

�,

M(α, t) = 1{TK>t} exp
{〈α − αv,A�(t)〉 − (

λ�,K(α) − λ�,K(αv)
)
t
}

× f α
�,K

(
Y�(t)

)
/f

αv

�,K

(
Y�(t)

)
is a martingale relative to the new probability measureP

(αv)
(0,0) with

E
(αv)
(0,0)(M(α, t)) ≡ 1.

Moreover, because of (48)

M(α, t) = 1{TK>t} exp
{〈α − αv,A�(t) − vt〉 − (

λ�,K(α) − 〈α,v〉 + λ∗
�,K(v)

)
t
}

× f α
�,K

(
Y�(t)

)
/f

αv

�,K

(
Y�(t)

)
and hence, using Fenchel’s inequalityλ�,K(α) − 〈α,v〉 + λ∗

�,K(v) ≥ 0, it follows
that

�(t) = M(α, t)exp
{(

λ�,K(α) − 〈α,v〉 + λ∗
�,K(v)

)
t
}

= exp{〈α − αv,X(t) − vt〉}f α
�,K

(
Y�(t)

)
/f

αv

�,K

(
Y�(t)

)
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is a submartingale relative to the new probability measureP
(αv)
(0,0) with

E
(αv)
(0,0)(�(t)) = exp

{
t
(
λ�,K(α) − 〈α,v〉 + λ∗

�,K(v)
)}

.

Letting c(α) = miny∈K f α
�,K(y)/f

αv

�,K(y) and using submartingale inequality, it
follows that for anyγ > 0, and for anyα ∈ R

� with |α − αv| ≤ 1,

P
(αv)
(0,0)

(
sup

s∈[0,nt]
〈α − αv,A�(s) − vs〉 ≥ γ

)

≤ P
(αv)
(0,0)

(
sup

s∈[0,nt]
�(s) ≥ c(α)eγ

)
(50)

≤ c−1(α)exp
(−γ + nt

(
λ�,K(α) − 〈α,v〉 + λ∗

�,K(v)
))

.

Moreover, let

C = max
α : |α−αv |≤1

‖∂2
αλ�,K(α)‖,

where∂2
αλ�,K(α) denotes Hessian matrix ofλ�,K(·). Then for anyα ∈ R

� with
|α − αv| ≤ 1, the inequalityλ�,K(α) − 〈α,v〉 + λ∗

�,K(v) ≤ |α − αv|2C holds and
using (50) we get

P
(αv)
(0,0)

(
sup

s∈[0,nt]
〈α − αv,A�(s) − vs〉 ≥ γ

)

≤ c−1(α)exp(−γ + nt |α − αv|2C).

Let ε ∈ R� be a unit vector. Letting in the above inequalityα = αv + θε with
0< θ < 1 andγ = (Ct + 1)θ2n, we obtain

P
(αv)
(0,0)

(
sup

s∈[0,nt]
〈ε,A�(s) − vs〉 ≥ (Ct + 1)θn

)
≤ c−1(α)exp(−θ2n).

Finally, the unit vectorε being arbitrary, the last inequality proves that

P

(
sup

s∈[0,nt]
|A�(s) − vs| ≥ 2Nθ(Cτ + 1)n

)

≤ 2N max
ε

c−1(αv + θε)exp{−θ2n}
and hence, lettingδ = 2Nθ(Cτ + 1), (49) follows.

For v ∈ ri(domλ∗
K), (47) is therefore verified. The mapping

v → lim
δ→0

lim inf
n→∞

1

n
logP(0,0)

(
sup

s∈[0,nt]
|A�(s) − sv| < δn,TK > nt

)

being upper semicontinuous onR
�, this implies that (47) holds for everyv ∈ R

�

and hence, Lemma A.1 is proved.�
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