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Let ¢ be the projected intersection local time of two independent
Brownian paths inRY for d = 2,3. We determine the lower tail of the
random variableé (U), whereU is the unit ball. The answer is given in terms
of intersection exponents, which are explicitly known in the case of planar
Brownian motion. We use this result to obtain the multifractal spectrum, or
spectrum of thin points, for the intersection local times.

1. Introduction and main results.

1.1. Aims of the paper. Intersections of Brownian motion or random walk
paths have been studied for quite a long time in probability theory and statistical
mechanics. One of the reasons for this interest is that the properties of the
intersections are analogous to those of a number of more complicated models
in equilibrium statistical physics. There is trivial behavior in all dimensions
exceeding a critical dimension, which in our casedis= 4, but below the
critical dimension there are interesting critical exponents, which determine
the universality class of the model and enter into most of its quantitative
studies. Rigorous and nonrigorous techniques from mathematical physics, such
as renormalization group theory (see, e.g., [1]) and conformal field theory
(see, e.g., [6]), have been applied to the model and, more recently, finding the
intersection exponents of planar Brownian motion was one of the first problems
solved by the rigorous techniques based on the stochastic Léwner evolution
devised by Lawler, Schramm and Werner [19-21].

An interesting geometric characteristic for discrete and continuous models of
statistical physics is thenultifractal spectrum which originated in the study
of turbulence models. Loosely speaking, the multifractal spectrum evaluates the
degree of variation in the intensity of a spatial distribution. Calculations of
the multifractal spectrum in the physics literature are typically done using a
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1256 A. KLENKE AND P. MORTERS

multifractal formalism based on large-deviation heuristics, which emerged in
the physics literature in the late 1980s; see, for example, [9]. This formalism
allows nonrigorous calculation of the multifractal spectrum in many models, either
explicitly or in terms of the critical exponents; see, for example, [5] for a survey
from a physicist’s point of view.

In some cases the multifractal spectrum could be calculated rigorously. For a
precise definition fix a locally finite, fractal measyre which may be random
or nonrandom. The valug (a) of the multifractal spectrum is the Hausdorff
dimension of the set of pointswith local dimension

logu(B(x,r))
m—————=ua
rl0 logr

’

(1.1)

where B(x, r) denotes the open ball of radiuscentered inx. In some cases

of interest, the limit in (1.1) has to be replaced by liminf or limsup to obtain
an interesting nontrivial spectrum. Examples of rigorously verified multifractal
spectra for measures arising in probability theory are the occupation measures of
stable subordinators, see [10], the states of super-Brownian motion, see [24] and
the harmonic measure on a Brownian path, see [15].

The main aim of the present paper is to find the multifractal spectrum of the
intersection local time of two independent Brownian pathglig 2, 3. In this
example it is not hard to check that the multifractal formalism predidtévaal
spectrumthat is, that the set of points in the intersection of the paths where the
local dimension differs from the global dimension of the set has dimension zero.
This prediction is not correct; it turns out that there is a nontrivial spectrum to the
right of the typical value. The spectrum is given in terms of the critical exponents,
in this case the intersection exponents. Failure of the multifractal formalism for
natural random measures has been observed before; the most notable example is
the states of super-Brownian motion, see [24].

Let W1, W2 be two independent Brownian motionsif, 4 = 2, 3, with a joint
starting point and running for one unit of time. Le&t= W([0, 1]) N W2([0, 1])
be the intersection set, which is equipped with a uniform measure, the intersection
local timeZ. It is well known that, almost surely,

m loge(B(x,r)) _

4—d for ¢-almost every € S,
ri0 logr

that is, the local dimension diypical points equals 4- d, which is also the
Hausdorff dimension of the intersection s&t The multifractal spectrum deals
with sets ofexceptionabpoints, of which there may be two types: We call a point
x € S athin pointif

lim Supw >

4-d,
rl0 logr
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noting that this means that, for a sequengc¢ 0, the masg(B(x, r,)) is unusually
small, on a logarithmic scale. Analogously, a point would be callick pointif

liminf w <

4—d.
rl0 logr

However, thick points in this sense do not exist; in fact, almost surely,

(1.2) liming C9LB@ 1) _

4—d for everyx € S.
rl0 logr

The upper bound in (1.2) is easy to show and the lower bound follows from
recent work by Dembo, Peres, Rosen and Zeitouni [4f i& 2, and by Konig
and Morters [13] ird = 3. Indeed, both papers show how a weaker notion of thick
points, which operates on a finer scale, can be defined in order to obtain a nontrivial
spectrum.

In this paper we are looking at the right end of the multifractal spectrum, asking
for the Hausdorff dimension of the set of thin points or, more precisely, the set of
pointsx where, for some > 4 —d,

lim Supw —=a
rl0 |Ogr

We show that, witht = £;(2, 2) the intersection exponent, th= 3, thin points
doexist for all values .k a <&/(¢§ — 1), butnotforanye > £¢/(§ —1). Ind =2

we show that thin points exist for all values<2a < 2¢/(&€ — 2), but not for any

a > 2& /(¢ —2). Moreover, we show that the Hausdorff dimension spectrum of thin
points is given by

1.3) dimjx limsu
( ) { €5 rl0 P |Ogl’
almost surely for all values aef > 4 — d where the right-hand side is nonnegative.
This result is in contrast to the behavior of Brownian occupation measure, the
natural analogue for the cage= 1, where no thin points (in our sense) exist;
see [2].

Our paper is also in the tradition of a series of papers by Lawler, who first
observed that intersection exponents enter into the Hausdorff dimension of various
subsets of the Brownian path. The most famous example is the planar Brownian
frontier, which has dimension-2 £2(2, 0); others are the set of cut points, which
have dimension 2 £;(1, 1), and the multifractal spectrum of harmonic measure
on a planar Brownian path, which is the concave Legendre transform of the strictly
convex functiom. — 2 — £3(2, 1). See [14] for one of the earliest papers and [17]
for a survey.

Before formulating our precise results in Section 1.3 we briefly review the
definition and some results about intersection exponents, which are relevant for
our work.

w:akm—dé%—d—%’
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1.2. Intersection exponents.SupposeM, N € N and letwl, ..., WMtV pe
a family of independent Brownian motions Rf, d = 2, 3, started uniformly on
9B(0, 1). We divide the motions into two packets and look at the union of the paths
in each family,

BLR) = LAj Wi([0,7f]) and BA(R) = MON W ([0, T41)
= » TR = » TR1Ds
i=1 i=M+1

wherer} is the first exit time o'’ from the ballB(0, R).

The event that the two packets of Brownian paths fail to intersect has a
decreasing probability aB 1 co. Indeed, it is easy, using subadditivity, to show
that there exists a constaft(M, N) such that

(1.4) P{BYR) NB?(R) = @} = R &M:N+o)  35R 4 0.

The numbers,; (M, N) are called thantersection exponent§here are natural
extensions of the intersection exponents to the case\that0, thedisconnection

exponentsand to noninteger numbedg, N > 0 of Brownian motions, but we do
not need this here.

Physicists, for example, [6], have made conjectures about the precise values of
the intersection exponents for a long time now. In particular, they conjectured that
in the plane many of these exponents are rational numbers. Very recently, Lawler,
Schramm and Werner, in a seminal series of papers [19-21], have been able to
verify this rigorously; see [18] for a survey over the complete series of papers.
They have shown that

(W2AM + 1+ /24N +1—-2)2—4
48 '

This gives £>(2,2) = 35/12. As the proof of (1.5) is based on conformal
invariance, there is no analogue dn= 3. The only value known in dimension
d =3is&3(1,2) =£3(2,1) = 1. Indeed, there is no reason wiy(2, 2) should be

a rational number. The known bounds show that

(1.5) §2(M,N) =

2=2£3(2,1) > £3(2,2) > £3(2,1) =1,

where the strict inequalities follow from the strict concavity of> £3(2, 1)
established in [16].

Extensions of the notion of intersection exponentg te 2 packets of Brownian
motions in the plane are usually based on the event that there gpaimase
intersections of the se81(R), ..., BP(R). The behavior of intersection local
times of p Brownian motions is, of course, related to the event that there are no
joint intersections of all packets. Again, subadditivity may be used to show that
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there exists a numbé@(Ml, ..., MP) > 0 such that
1.6) P{BLR)N---NBP(R) = &) = R-2M e MN+0) ggR 4 o0,
(

where BL(R), ..., BP(R) are packets ofM!, ..., M? independent Brownian
motions each started uniformly @B (0, 1) and running up to the first exit from

B(0, R). This class of exponents does not seem to be treated in the literature so far.
Note that the exponentsare smaller than all the exponents discussed before, but
it is an open problem to determine their value.

1.3. Main results.

1.3.1. Lower tails for intersection local times.We now formulate our main
results precisely, starting with a result about tbever tails of the intersection
local times. As we believe that this is of some independent interest, we formulate
the result in a somewhat greater generality than needed in our multifractal analysis.
To this end we leM, N e N and letw?!, ..., WM+N be independent Brownian
motions inR<, d = 2, 3, started in the origin. We define the lifetimes of the
Brownian motionsW!, 1<i <M + N, by

¢i=th =inf{t > 0:W'(t) ¢ B(O, R)},

whereR € (1, co] may be infinite ifd > 3.

We divide the Brownian motions, as before, in two pack®$(R) and
B2(R) of M, respectivelyN, motions. On the intersection of the two packets,
S =BL(R)NB2(R), one can define a natural locally finite measurethe
(projected) intersection local timgewhich can be described symbolically by the
formula

M M+N

¢ ¢/ , :
(A= > /Ady/O dsfo dt 8y (W' ()8, (W’ (1))

(1.7) i=1j=M+1
for A c R? Borel.

Rigorous constructions of the random measdrare reviewed in ([13], Sec-
tion 2.1). Note that in other sections of this paper we use the same syMmbol,
for intersection local times of Brownian motions running for fixed time. It should
always be clear from the context to which situation we are referring.

LetU := B(0, 1) ¢ R? be the open unit ball ilR?. In [13] the authors determine
the upper tails of the random variabléd)) in the caseM = N = 1. It turns out
there thatP{£(U) > 8} ~ exp(—05~1/2) ass 1 oo, with the rate given in terms
of a variational problem. Our first result shows that the lower tails are fatter, the
probabilitiesP{£(U) < §} decaying only polynomially whe# | 0.

Recall the definition of the intersection exponéptM, N) from (1.4).
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THEOREM1.1.

| logP{e(U) <8} &a(M,N)
510 —logs - 4—-d

An important aspect of this result lies in the fact that the proof also provides
an intuitive description of thetrategyby which the Brownian paths achieve the
event{£(U) < §}. Loosely speaking, all Brownian paths run freely until they hit
the boundary of the balB(0, §¥/*~9) for the first time. By this time they have
accumulated an intersection local time of the ordleFrom then on they do not
intersect anymore until they exit the unit ballfor the first time, and after that
they never return to the unit ball again. The proof of Theorem 1.1 will be given in
Section 2.

1.3.2. The multifractal spectrum.We now suppose thaw?!,..., W? are
independent Brownian motions ¢, d = 2, 3, started in the origin and running
for one unit of time. By classical results of Dvoretzky, Gsd Kakutani and Taylor
(see, e.g., [11, 22] for modern proofs) almost surely the intersection set

(1.8) S=wi(o, 1) n---NnWP([0, 1))

contains points different from the origin if and onlyjifd — 2) < d. In these cases
the intersection local timéis given by the symbolic formula

p 1 )
(1.9) Z(A):/A dy ]‘[/0 dt8,(Wi(t))  for A c R? Borel.
i=1

We focus on the case of two independent Brownian motidriisand W2 in R?,
d = 2, 3, but come back to the case pf> 2 motions in the next section.

The fatness of the lower tails observed in Theorem 1.1 is the reason for the
existence of thin points, that is, for the fact that there is a nontrivial multifractal
spectrum for? to the right of the typical value 4 d. Our main result determines
this spectrum.

DEFINITION 1.2. Denote by

T (a)= {x € S:Iimsupw za},
rl0 |Ogl’

I
T5(a) = {x € S:Iimsupw :a}
10 logr

the sets ofi-thin points, respectively, strictly-thin points inS.

Recall from (1.2) that foed = 2 andd = 3 there are not thick points; that is,
TS5@=0ofora<4—dandT(a) =T (4—-d)fora<4—d.
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THEOREM 1.3. Supposel is the intersection local time of two Brownian
motions inR?, for d = 2, 3, starting in the origin and running for one unit of
time

(i) Ind =2we have

P{(T()#2)>0 iff P(T ) #£2)=1 iff 2<a< 522(522(—22)3)2
Moreoverfor these values af, almost surely
dim7T (@) =dim7 @) =22%2 12502,
a
(i) Ind =3 we have
P{(T5()#2)>0 iff P(Ta)#£2)=1 iff 1<a< ;;(;2)211

Moreover for these values af, almost surely

dim7 (a) = dim T (a) = w +1-£32,2).

The result remains unchanged if the motions are running for any finite amount
of time or, in the cas@ = 3, even for infinite time. Note that in the cage= 2,
by (1.5), we get an explicit multifractal spectrufita) = (1/12)(70/a — 11). Let
us point out here that the multifractal spectrum for the intersection local times is
strictly convex, hence it cannot be found by means of the multifractal formalism,
which always predicts concave spectra. The proof of Theorem 1.3 is given in
Section 3.

1.3.3. Intersections of more than two pathsRecall from [2] that there is
no analogous result in the case of a single Brownian path equipped with the
occupation measure, as in this case the lower tails are also exponential and thin
points fail to exist. There are, however, analogous results for the intersection of
any numberp > 2 of Brownian paths in the plane, which we now formulate.

THEOREM1.4. Suppos¢ is the intersection local time of planar Brownian
motions starting in the origin and running for one unit of timeet & = &>(2,
2., 2) > 0be the multiple intersection exponent introducedlir6). Then

P{T5() £ 2} >0 iff P{T°@) £2)=1
2<a=<2/E -2, if &> 2,

2<a< oo, if &€ <2.

iff

Moreover for these values af,

3

dim7 (@) =dim7T (@) =2>+2—-¢ almost surely
a
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For p = 2 we haveix(2, 2) = 35/12 > 2, and hence there is a finite critical value
2¢ /(£ —2) = 70/11 beyond which na-thin points exist. We daotknow whether
the critical value is still finite for larger values @f. The proof of Theorem 1.4 is
very similar to the proof of Theorem 1.3 and hence details are omitted here.

1.4. Overview. We have divided the remainder of this paper into two sections.
Section 2 is devoted to the tail asymptotics at zero of the intersection local times,
and Section 3 is devoted to the proof of the multifractal spectrum of intersection
local time.

In Section 2.1 we show that, if two Brownian paths intersect, they instantly
produce some positive amount of intersection local time. This is a nontrivial fact,
as times when the paths intersect ace stopping times for at least one of the
Brownian motions. The exact statement, Proposition 2.3, is a crucial ingredient in
the proof of the upper bound in the tail asymptotics. The proof uses the nonpolarity
of one Brownian path to show that d@ne intersection occurs, we immediately
have a large number of intersections. We then use self-similarity of the paths and
adecoupling technigu argue that this necessarily leads to positive intersection
local time.

In Section 2.2 we give the proof of the upper bound in Theorem 1.1. The
proof is based on aoarse grainingtechnigue. We split the Brownian paths into
pieces using suitably defined stopping times. Whenever two pieces intersect, by
Proposition 2.3, some positive amount of intersection local time is produced. As
the total amount of intersection local time allowed is small, many pieces do not
intersect, leading to the upper bound in the probability. This fairly rough argument
is only able to givdogarithmicasymptotics in Theorem 1.1; one would conjecture
that P{¢(U) < 8} can be estimated up to constants by a powe#,obut our
technique fails to achieve this.

Section 2.3 contains the proof of the lower bound in Theorem 1.1. Here we only
have to show that the following strategy (explained already after the theorem) is
successful: Put no restrictions on the Brownian motions until they leave the small
ball of radiuss'/ =% for the first time, but demand that their paths do not intersect
afterwards. A difficulty lies in the fact that the paths might return to this ball and
produce more intersection local time by intersecting with “old” pieces of the path.
We solve this problem by giving a separate bound for the intersection mass in
the small ball. An alternative would be to use results of Lawler [14] to control
the probability that Brownian motions do not intersect and simultaneously do not
return to the small ball except in a small neighborhood of their respective starting
points, but we have opted for the more self-contained argument here.

In Section 2.4 we establish the connection between our tail asymptotics and
the multifractal spectrum, providing “local versions” of the tail results in the form
needed in the proof of Theorem 1.3; see Lemmas 2.9 and 2.11. Clearly, one can
obtain the tail behavior admallballs of radius- > 0, by Brownian scaling using
that, in law,r=4¢g(B(0, r)) = €g,-(B(0, 1)), where the index at indicates the
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size of the ball where the Brownian motions are stopped. In Lemma 2.11, instead
of looking at a pair of Brownian motions started in the same point, we fix a
point x different from the motions’ starting points, and give the probability that
the intersection local timé&(B(x, r)) is smaller than?, if both Brownian motions

are conditioned on hitting. Heuristically, we split the Brownian paths upon first
hitting 3 B(x, r*/ A=) To the incoming paths we applytime-reversahnd end up

with two pairs of paths which are approximately independent Brownian motions,

started uniformly om B(x, r%/4~4). Now Theorem 1.1 and Brownian scaling
yield that the desired probability is of ordef:(22(1-a/@=d) | emma 2.11 is
used in the proof of the upper bound in Theorem 1.3, and Lemma 2.9 is a variant
tailored for use in the lower bound in Theorem 1.3.

In Section 3.1 we verify the upper bounds in Theorem 1.3; see Proposition 3.1.
Given Lemma 2.11 these are relatively standard and based dirdhenoment
method that is, on estimating expectations.

In Section 3.2 we explain the setup of the proof of the lower bounds in
Theorem 1.3. Our technique usesrcolation limit setsI'[y] as test sets to
determine the Hausdorff dimension of a fractal. More precisely, if a frattal
in our case the set of thin points, hits a test set with a certain parametéth
positive probability, this gives a-dependent lower bound on the dimensiomof
see Lemma 3.3. The crucial hitting estimatel¥§/] and the set of thin points is
formulated as Proposition 3.5, and in Section 3.2 we only show that the upper
bounds in Theorem 1.3 follow from this. The remainder of the paper is then
devoted to the proof of Proposition 3.5.

In Section 3.3 we show how to overcome the main obstacle in the proof of
Proposition 3.5, the long-range dependence. Note that (other than in the thick
points problem) long-range dependence is intrinsic in the problem of thin points: If
a ball carries very small intersection local time over some time inteawglof the
two Brownian motions may always return to that ball and create more intersection
local time. The main result of this section, Proposition 3.8, shows that in a suitable
sense a large number of dyadic cubes are visited only once by both Brownian
motions. The proof usestao-scale techniqueimilar to the one used in [2]. On
the coarsescale we use a dimension argument to ensure that we have enough
cubes which are visited by both Brownian motions and retained in the percolation
procedure. Within every such big cube we can independently use arguments on the
finescale, based atecouplingand delicatesecond moment estimatagich show
that we have sufficiently many small scale cubes, which are not revisited before the
motions leave the big cube. Finally, ensuring that the motions do not revisit many
small cubes after leaving the big cube only needissh momentechnique. This
section is the technically most demanding part of the paper.

In Section 3.4 we complete the proof of Proposition 3.5. Thanks to Proposi-
tion 3.8 one can focus onlacalizednotion of thin points, and use the decoupling
technique and Lemma 2.9 to ensure the existence of thin points in the percolation
limit set. This final part of the proof follows largely the arguments of [13].
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2. Lower tail asymptotics. Throughout the paper we use the following
notation. For any open or closed sdtg Ao, ...andi =1, ..., p define

(A1) :=inf{r = 0: Wi (r) € A1},

(2.1) inf{r >t/ (A1,..., A, 1)1 Wi(t) € Ay},
(AL, ..., Ay) = if T'(A1,..., Ap_1) < 00,
00, otherwise.

Further forn e NandRq,..., R, > 0 let
(2.2) ok, =T (3B(0, R1), ..., dB(0, Ry))

.....

be the hitting time ofd B(0, R,,) after having hit (in this order) B(0, R1), ...,
dB(0, R,y_1).

For the reader’'s convenience we recall the following well-known lemma for
the hitting time of concentric balls. For a single Brownian motigret t(A) :=
inf{r >0:W(t) € A} andt, := (0 B(0, r)) be the first exit time fronB (0, ).

LEMMA 2.1. Letry <r <rpand letW be a Brownian motion started in some
pointindB(0, r). Then

log(r/r2)

ogra/ra TR
r r
Plt,, < T} = fa(r,r1.10) = e
ra/r)—1
_— if d =3,
(rz/r1) —1
and
1, ifd =2,

Pl < oo} = ri/r ifd=3

The proof is standard and can be found in textbooks, for example, in ([7],
Chapter 3). From this statement we get the following useful corollary.

COROLLARY 2.2. Letp € (0,1/2) andx € R? and assume; < pr < p2rs.
Let D, D1 and D, be each either a ball of radius (resp r1 or r2) or a box
of sidelengthr (resp r1 or r2), centered inx. Further lety €e 3D andz € D2
and let W be a Brownian motion started ip. Then there exists a constant
¢:=c(p) € (0, 00) depending only op such that

1
:fd(rv rlarZ) = ]P){T(aDl) < T(aDZ)} = Efd(n ri, r2),
2.3)

z fa(r,r2,r) =Pt (3D2) < t(dDD)} < ¢ fa(r r2, 1),



BROWNIAN INTERSECTIONS 1265

and, in the case wher®; is a ball,

1
(2.4) Efd(”, r1,r2) <P{t(dD1) < t(3D2)|W(t(dD2)) =z} <& falr,r1,r2).

PrRoOOF Without loss of generality we may assume= 0. Note that, in the
case wherd); is a box, changind1 into a ball of radius-1/2 only decreases the
probability we want to estimate. Now

farryj2.r) _ra/ri=1 _ p2-1

= 0
f3(r,r1,r2) 2ro/r1—1" 2072 -1 =~

and

fa(r,r1/2,r2) _ log(r1/r2) - 2log(p) -
fa(r,r1,r2)  log(ri/r2) —log(2) — 2log(p) — log(2)

On the other hand, changin@; into a ball of radius1 increases the probability
we want to estimate. By a similar argument we may assumelHhata ball. For
the first equation in (2.3) it is sufficient to apply the same argument once more
to Do, and the proof of the second equation is analogous.
The proof of (2.4) requires a little more work. We may now assume Ehat
D and D, are balls. Define the open annulds := {u € R? : ||u|| € (3r/4, 3r/2)}.
Note thatA, N D1 =@ anddD C A, C D,. Define the random time

T:=supt>0:W(t)eaDandW(s) € Aforall s <t},

which is the starting time of the first excursion @fp that leavesA. Note that
[with U, the normalized Lebesgue measured@(0, r)] there is a constant > 0,
independent of, u andr, such that

1 BAWT) edu)
T Ur(du) '

Further, foru € 9D let Q, be the law of a Brownian motion started inand
conditioned to leavel before it returns t@ D (if it does),

Qu =Ly (W|W () ¢ Dforallz € (0, 7(A))).

We can now decompose the Brownian motion path into the piece before and into
the piece aftef” to obtain for any measurable setc 9 D2:

Py{t(dD1) < t(3D2) andW(t(3D2)) € B}

- '/;D]P’y{W(T) € du}Q,{t(0D1) < T(dD2) andW (r(3Dy)) € B}

> }/ U, (du)Q, {T(3D1) < T(3D2) andW (1(3D2)) € B).
Cc JoD
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By rotational symmetry this equals

1
“U,,(B) / U, (du)Qu{t(3D1) < 1(3D2))
C oD
1
= Up(B) [ U @B, [r(2Dy) < 7(@D)
C oD

1
= ;urz(B)fd(r’ ri, r2).

Analogously we geP,{t(dD1) < 1(dD2) andW (t(dD2)) € B} < cU,,(B) fu(r,
r1,r2). For a constant’ € (0,00) such that tc’ < Py{W(z(dD2)) € du}/
Ur,(du) < ', (2.4) holds withc =c¢ - ¢/. O

2.1. Intersecting paths produce intersection local timé basic principle in
the proof of Theorem 1.1 is that, whenever two paths intersect, they immedi-
ately produce a positive amount of intersection local time. This statement, Propo-
sition 2.3, is proved using decoupling techniguewhich is also a fundamental
tool in the proof of the lower bound for the multifractal spectrum, performed in
Section 3.

PROPOSITION2.3. Let W1, W2 be two independent Brownian paths with
Ww(0), W2(0) e U and r! = t1(U), 12 = 2(U°) be the first exit times from the
unit ball. Moreover letS = W([0, t1]) N W2([0, 2]) be the intersection of the
paths and let¢ be the intersection local time of the paths stopped at tithe
respectivelyr2. Then

P{e(U) > O[S # &) = 1.
PROOF.  First fix the pathw! and letA := W([0, t1]). Define a stopping time

o =inf{r > 0:W2(t) € A} for W2 and recall that, i < 72, the pointW?(o) is
regular for the ses, which means that

inf{r >0 :W2(r)e A}y=0  almost surely.

As points are polar, almost surely, there exists (o, %) such thatW?(t) e
A\ {W2(0)}. Hence, givers > 0 we can find a small > 0 such that

P{inf{t > 0 : W?(r) € A\ B(W?(0),¢)} < 7?|0 <%} >1-38.

For every intege > 2 we can iterate this proceduté2 times and, averaging
over W1 again, we can find for everyy> 0 ane > 0 such that the event

Ay = {there existry, ..., xy00 € SWith |x; —xj| >eVi#j, [xi| <1—eVi}
satisfiedP{Ay|S # @} > 1 — 8. Hence
P{e(U) =0|S # @} <P{S # @}‘1]P>({£(IU) =0lNAy)+3.
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It therefore suffices to show that there exists an absolute coristaftsuch that,
for any largeM,

(2.5) P({e(U) =0} N Ay) <291 —5)M "= 0,

To verify (2.5) we write ®; for the collection of all dyadic cube¥y =
M [ki /2%, (ki 4+ 1)/2%), Ky, ..., kg integers. For each such cullewe denote
by B(V) the open ball centered in the centerofof radius 2. We denote

Di(U) :={V eDr:B(V)CU}.

Furthermore dividé&, (U) into m = 2¢ subfamiliesD (U, 1), ..., Dx(U, m) such
thatB(V)N B(V') =@ if V # V' are in the same subfamily.

Fix k such thaty/d2% < ¢. For eachj = 1,...,m we now introduce a
decouplingo -field (7). The idea is to consider the first entrangd) of a path
into one of the cube¥ (1) € ® (U, j), then its first exito (1) [after p(1)] of the
ball B(V (1)), aftero (1) its first entrancep (2) into some new boX/ (2), and so
on. £ (j) will then use information of the pathsetweerthe successive times of
leaving B(V (n)) and entering/ (n + 1), n € N.

For the moment we suppressin the notation. Formally fori = 1,2 we
introduce a sequence of (random) s@té(n):n =1, ..., v) and stopping times

0=0'0<p (D<o’ D <p@<-<o' ()<t <p'(V+1),

by
p' (1) :=inf{r’ (V):V e Dx(U, )},
' (Vi(n)) =p'(n)  [this definesVi (n)],
o'(n) =t (Vitm), B(VI(n)))  if p'(n) < oo,
p'n+1) =inf{t"(V):V e Dp(U, H\{VQ),...,Vim)}},
vii=maxn:p'(n) < t'}.
Now define

FL() =0 (Wi(o'(n)+1), t€[0,p'(n+1) —o'(n)], n=0,...,'),
andF(j) := FL(j) v F2(j). Denote
Br(j):={V e (U, j):t' (V) <ti foralli =1, 2},
and note that the event¥ € B,(j)}, for V € Dy, are inF;(j). Also observe that
Ay C |J#Bi(j) = M),
j=1
and that
#Br(j) > M} e Fi(j)  foreveryj.
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It follows easily from the nontriviality of the intersection local times and the
boundedness of the density of the harmonic measure, that there exists an absolute
constan€ > 0 such that, foralk e N, V € ®y, x1, x2€ 3V, y1, y2 € 9B(V),

P12 {ly (B(V)) > OW(zH(B(V)9)) = y!, W2 (z2(B(V)Y)) = y?} > &,

where P, » refers to two Brownian motions¥?, W2 with W(0) = x* and
W?2(0) = x2, andly is the intersection local time of the paths([0, tX(B(V)°)])
andW2([0, T2(B(V)9)]).

Note that, given¥;(j), the family of random variable&y : V € 9,(j)) are
independent. We can now put this information together and get

P({(U) =0} N Ay)

3

<) Py (B(V))=0forallV e Bi(j), #B:(j) = M}
=1

~
1

Il
NE

E[P{ev(B(V)) =0forall V e B ()| Fr ()} Lpsmi(jy=m]

~.
[|
=

Il

E[ I1 P{KV(B(V))=0|?k(1)}1{#%k(j)zM}]Sm(l—é)M,

1 LveBi())

J

which is (2.5), and hence the proof is completé]

2.2. Proof of Theoreml.1, upper bound. The idea of the proof is to use a
sequence of stopping times to divide each Brownian path into disjoint pieces.
Whenever there is an intersection between matching pieces of the two packets,
a certain amount of intersection local time is produced. The task is to establish
some form of independence between the pieces and estimate the probability of no
intersection between matching pieces.

We need three lemmas to prepare the proof of Theorem 1.1: Edd denote
by U, the uniform distribution ondB(0,r). For x € B(0,r) let m,(dy) =
P{W(z,) € dy|W(0) = x} be the harmonic measure @B(0, r) for Brownian
motion started inx. If x € 9B(0,r) anda > 1, let
mar,x(dz) . mtxr,x(dz)

Cq =

26) Cy:= su =
( ) o p yedB(0,ar) ‘um(dz) 7=y

yedBO.ar) Uar(d2) |o=y’
be the maximal and minimal value of the densitymaf, . with respect to the
uniform distribution ond B(0, «r). Note that, by Brownian scaling and rotational
symmetry, both values depend neither omor onr. Further note that (by the
Markov property ofW), « — C, is decreasing and — c,, is increasing. For finite
measureg andv we use the ordering < v iff £(A) < v(A) for all measurablel.
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LEMMA 2.4. LetL, andLy, denote the laws of Brownian motid¥ started
in x € dB(0, r), respectivelyin a point uniformly distributed 0a B(0, r). Given a
Brownian pathW : [0, oo) — R? and K > 4 we define

W0, 1k, 2 — T2l > R WO ) = Wt +1).
With the notation of2.6) we have for ally € 3 B(0, Kr) that
L (WOIW (k,) = ) < (C5/c2) Lo, (WD)
PROOF Fix B C dB(0, Kr) Borel and a suitable (say bounded continuous)

test functionW: C ([0, oo); RY) — R. The strong Markov property and three
applications of (2.6) yield

E[% (W) 1w (rg,)e8]

= m d2)E(W W(r) 1 W(to,) = z
9B(0.2r) 2 [@DE[W (W) L (o8I W (72) = 2]

<G U (dD)E[Y (W) Ly oy W (T27) = 2]
0B(0,2r)

o f U, (dy) P, (W (12) € dz)
aB(0,r) 0B(0,2r)

x E[W(W) Ly gy W (12) = 2]
= CoBay, [W(W) 1w (rg,)e8]

=C; Eq, [¥ (W)W (tkr/2) = 2]P{W (tk/r/2) € d2}mk,;(B)
dB(0,Kr/2)

< C5Eq, [W(W") Uk, (B)
< (C3/ck)Ea, [¥ (W )P (W (tk,) € B,

from which the result readily follows.

Fix an arbitrary smalt > 0 and assume thate (0, 1/4) is such that
2.7) r < (45N (€2 ) MAN) e,
Fori =1,..., M + N and any nonnegative integerlet
R,i = rérkﬂ, S,i = tirkﬂ, Tkl~ = rrik.

NQte that for_ Brownian motions withv:(0) =0 fori =1,..., N + M, we have
R, < S, <T{ <R;_, <--- for every positive integek. The idea is to consider
the Brownian paths in the interva(ls,’;, Tk"], k > 1, only, and to use the remaining
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intervals for a decoupling of these paths. Hence, wé jdte the intersection local
time of the packets

M ] ) ] M-+N ) ) )
W= WS, T{D and W= | WIISL TiD.
i=1 i=M+1

LEMMA 2.5. P{Lg=0}=P{WinN W3 =2)}.
PROOFE This is immediate from Proposition 2.3 and Brownian scalirig.

In addition to 4 < 1 and (2.7) we assume thats small enough such that
P{Lo=0}= ]P){'W& N 'Wg =g} < %(4,»)€d(M,N)—8’

which is possible by Lemma 2.5, the definition (1.4)éptM, N) and Brownian
scaling. We let

Fi=c(W(RL),i=1...,M+N, k>0).

Given #, the random variables; depend only on packets of Brownian motions
with disjoint time intervals and fixed initial and exit points, hence by the strong
Markov property the sequencé; )i is independent.

LEMMA 2.6. Let Xp, X1,... be independent copies @f and defineC; :=
(C2/c2)M*+N . Then almost surejyor n € N,

L((Lik=1...n|F) < CLL((r P X1) ey
PrROOF As we know already the independence @f;)ren given F, it
remains to show that

LLL|F) < C1Lr*DEx,)  forallk eN.

By Brownian scaling the law of~“~9k L, given # is the law ofLg with respect

to an(M + N)-tuple of independent Brownian motions each started at a fixed point
on d B(0, 2r) and conditioned to exiB (0, 2) in a fixed point. Hence the resultis a
direct consequence of Lemma 2.4.]

PROOF OF THEOREM 1.1, UPPER BOUND We are now ready to prove the
upper bound in Theorem 1.1.
Letm € N be large enough such that, with= r4-9m

P{Xg <0} < QE1(M.N) & (M.N)—s
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This choice is possible by the definition §f(M, N) in (1.4) and by Lemma 2.5.
We first look at the sequendg = r*~9" n e N. By Lemma 2.6 we have

P{e(B(0, 1) <8}

n—m n—m
< IP’: Y Li< 5n} < c;'—mP{ > Dkx, < sn}

k=1 k=1

n—m n—m
< Ci’_’"P{ Y Xi< r<4—d)(’"—”)8,,} = Cf—’"IP{ Y X< 9}
k=1 k=1

< (C1P{Xg < OH"™ < (4$d(M,N)C1)”9—Sd(M»N)ar(lEd(M,N)—8)/(4—d)

< &M N) SEa(M.N) /(A=) =25,

where we used (2.7) in the last inequality. Hence

lim sup— logP{¢(B(0,1)) <éu} _ _&a(M,N)

2e.
n—00 Ioch,, - 4—d e

By monotonicity, and using that Idg/logé,+1 — 1, we get the statement for
arbitrary sequenceés| 0. Finally, the upper bound in the assertion follows as0
was arbitrary. O

2.3. Proof of Theoreni.1,lower bound. For the proof of the lower bound, in
principle, we have to present one particular strategy to attain a small amount of
intersection local time and then prove that this strategy is sufficiently likely.

As pointed out before, the strategy is to put no restrictions on the motions until
they leave a small ball of radiusfor the first time, but demand that they do not
intersect afterwards. Note, however, that paths may retuBi@ps) and contribute
to the intersection local time there by intersecting an initial piece of the path.
This means that the actual decoupling at the bounda&, §) is rather involved.

We circumvent these difficulties by following a slightly different route and give a
strong upper bound fd{¢(B(0, §11¢)) > 84~} ass | 0 as well as a lower bound
for P{¢(B(0, 1) \ B(0, 81¢)) =0}.

Recall that our Brownian motions are stopped upon leaw@, R) where
Re(1,00)if d=2andR e (1, 00] if d = 3.

LEMMA 2.7. Lete > 0. For all § > 0 sufficiently small
(2.8) P{¢(B(0,8%+%)) > 649} < exp(—8~*/%).

PrROOF By [13], Theorem 1.1, there exists a constaat 6 (R) € (0, oo) such
that

(2.9) aleooa—l/ZlogP{e(B(o, 1) > a} = —6.
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The probabilities on the left-hand side are increasing ithe constand depends
on R, but in the casel = 3, we haved(R) | 6(co) > 0 asR 1 oo. Hence, for
d = 3 we can restrict attention to the caBe= co and get, by Brownian scaling,
for sufficiently smalls > 0,

(2.10)  P{¢(B(0,8¥)) > 8} = P{¢(B(0,1)) > 8¢} < exp(—8 /%),

For the cas@ = 2 we have to spend a little more work, as Brownian scaling does
not apply directly. We have to consider our Brownian motid¥is stopped upon
leaving B(0, R) for different values of® now and writeWy, £z and so on for the

corresponding random objects. Foe 0 let R(8) := 8-+ R. Now Brownian
scaling yields

P{¢(B(0, 811%)) > 82} = P{¢r(B(0, §17%)) > 62} = P{Lr(s)(B(0, 1)) > 6~ %}.

Fori=1,....M + N let (1) := 1} ;, 7/(2) := 1§ 1 , [recall the notation
from (2.2)] and so on. Define

X = min{n € N:zi(n) > T;«a)};

this is (one plus) the number of downcrossings of the annB{OsR) \ B(0, 1) by
the stopped Brownian motioWp, s, .

Before we continue the main argument we establish some auxiliary inequalities
for the X*. The distribution ofX’ is geometric with failure parameter

p(8) :=P{r' (1) < r;‘w)}
=P{t1 < tR(5)} [for x € 9B(0, R)]

_ og®) log(R)
log(R(9)) log(R) — (14 ¢)log(s)
Hence
E[X] = 1 _ log(R) — (1+¢) Iog(6),
1-p@) log(R)
and forK € N,

K 1
k.
p<8>+1—p<8)>”()

In particular, fork = K (§) = §¢/2 ands$ > 0 sufficiently small

(211) (M + N)YMNEX TV IE[X M y10 5] < 5 X(—87/4).

E[Xl]]_{xlzK}] = (

On the other hand, by (2.9) fér> 0 small enough

—2¢ 1
2 s - _s—¢/4
(2.12) MNK(®) IP’{IZR(B(O, 1) > MNK((S)Z}S 5 EXP(=87¢/%),
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Now we come back to the main argument. A simple coupling argument shows
that the contribution of¥’ to ¢ betweent’ (n) andt! (n + 1) is stochastically no
larger than the contribution between time 0 ardl), that is, between 0 anf.;e
Fork = (ki,...,kM*Ny e NM+N ahbreviate

M+N
o (k)= (k" 4+ M EM 4 kM < MN T K
i=1
We get

P{€r(s)(B(0, 1)) > §~%)
—2¢

<> > a(k)IP’{ZR(B(O,l))>G

Kl=1 kM+N=1 )

X =k, foralli:l,...,M+N}.

Decomposing the sum into the contribution coming fieim. .., k" all smaller
than K (§) on the one hand, and the contribution coming fromkall. .., kM+N
with somek’ > K (§) on the other hand, we can bound the right-hand side by

8—28
2
MNK () P{ER(B(O, 1) > 7MNK(8)2}

+ (M + N)MNE[X TN TE[ XM 00 6]
1 1
=3 exp(—8 /%) + 5 exp(—8 /%),
where we used (2.11) and (2.12) in the last step. This was the claim.

The second ingredient for the proof of the lower bound is an estimate on the
probability that a certain annulus has zero intersection local time.

LEMMA 2.8. LetRe (1, 00)ifd=2,andR € (1,00] if d =3.Then
logP{¢(B(0,1) \ B(O,é)) = 0}

Ilrwa “logs —&§a(M, N).
ProOOF.  Denote, forR > 0,
M+N
WR) = UW (0.7 and W R)= [J W0, 7}]).
i=1 i=M+1

Further forr > 0 let P, denote the probability measure under whigti(0),
i=1,...,M+ N, are independent and uniformly distributed @B(0, r). In the
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caseR < oo we have by (1.4) and Brownian scaling,éa$ 0 (here we do not need
Lemma 2.5 which would yield equality in the first step)

P{£(B(0, 1) \ B(0,8)) = O} > Ps{ W (R) N WA(R) = &}
(2.13)

>

R

In the cased = 3 and R = oo this estimate is apparently not good enough.
However, due to transience, we can postulate that our Brownian motions do not
return to B(0, 1) once they have lefB(0, 2) and then apply (2.13) witlR = 2.
Indeed, consider the events [recall (2.2)]

< Iy )Sd(M,NH'O(l)

] ) M+N )
Al={tj; =00} and A= () A"
i=1

Note thatPs(A’) = 3 for all i and § € [0, 1], hencePs(A) = 2-(M+N)_ By
the strong Markov property applied te), the family ((W1(2) N W?(2) =
@}, AL, ..., AM+N)is independent undék; for all § € (0, 1). Thus
P{¢(B(0,1)\ B(0,8)) =0}
> Ps({WH(2) N W2(2) = 2} N A)
> 2~ (M+N+E,(M,N)) s64(M,N)+o(1) ass | 0. O

PROOF OFTHEOREM1.1,LOWER BOUND. We can now assemble the pieces.
Fix ¢ > 0. We make the simple observation that ot O

P{£(B(0, 1)) < 8%}
> P{¢(B(0,1) \ B0, %)) =0} — P{£(B(0, 81%)) > 644).

By Lemmas 2.7 and 2.8 the second term on the right-hand side is of smaller order
than the first term, which is of order §5M.N)1+e)+o(D) g5 | 0. This yields

logP{¢(B(0, 1)) < &} - _gd(M, N)
—logé - 4—d

As ¢ > 0 was arbitrary, the lower bound of Theorem 1.1 is established. This
completes the proof of the theorenti]

1+ o).

liminf
510

2.4. Reversing pathdocal versions of the tail asymptoticsThe aim of this
section is to prove the two results, Lemma 2.9 and Lemma 2.11, which reformulate
the tail asymptotics established in the previous sections in a form suitable for use in
the proof of Theorem 1.3. The two proofs are largely analogous and make the time-
reversal of paths (mentioned in the overview, Section 1.4) precise. We start with
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the result needed for the lower bound, which strictly speaking is a reformulation
of the definition of the intersection exponents. .
Recall from (2.2) that for, s > 0, ; is the first hitting time ob B(0, r) andz,

is the first hitting time 0B B(0, s) aftert/, for the Brownian motiori".

LEMMA 2.9. Fixb > 1> c andr > 0. Suppose tha!, W? are independent
Brownian paths started uniformly on the sphé®(0, r) c R, for d = 2, 3. Then

: 1 1 1

LliT(\) log(1/r) logP{W=([0, 75 1)

(2.14) NWA(0,75 ) = @It} <7, 15 < 7}
=£4(2,2)(1-b).

PrROOF We look at theupper boundand define random times
ti=supt <7, W () =r} fori=12
The pathse' : [0, 7/, — 7] — RY, ¢/ (1) = W' (z 4 {), areBrownian excursions
from 8 B(0, r) to d B(0, r*), and hence the time-reversed paths
efk [0, ‘E:b — rj;] — Rd, ei(t) = ei(rrib — r,i —1)
are Brownian excursions froB(0, r?) to 9B(0,r). Now fix b > B > 1 and
definec’ =inf{r > 0:]el(r)| = rB}. As the transition semigroup of a Brownian

excursion inB(0, r) \ B(0, r?) is the same as for Brownian motion killed upon
leavingB(0, r) \ B(O, r”), the processes

W0t —ti—o'1>R:, W) =ei(o! +1),
are independent Brownian motions, started in a uniformly chosen point on
dB(0, r#) killed upon leavingB(0, ) \ B(0, r?) and conditioned to hi# B(0, r)

befored B(O, rP). Denoting the first hitting times o B(0, s) by the motionW"
by T}, we get

1 1 2 2 1 1 .2 2
P{W [0, trb,r] Nnw [0, trb,r] = ®|frb < T, frb < Trc}

<P{W) hluwich. o) D

r rb,r

re»

NW2[e2, Th1U W2t 75 1) = @It < 176, 15 < 15}
<P((W'0,THU Wz}, <5 )

NWO0. 21U Wt3, €3 1) = o), < 7, Th <7, fori = 1,2)
<P{(W'I0, 751U W0, 71

—2 _ ~ ~ — 1 — —
N (W0, tf] U W2[O, ‘crz]) = ®|‘r} < rrlb, ‘L'rz < ‘rfb},
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whereW' is a Brownian motion which [except for the starting pointa®(0, )
is independent o' and which is stopped at the tinig when it first hitsB(0, r).

By Lemma 2.1, for each Brownian motidi' the probability of the conditioning
event{t, <7 ,}isequalta —b)/(1—b)ind =2and, ind = 3, itis converging
to 1, asr | 0. In any case we find > 0 such that

1

Pr. <7,}>¢ foralli=12and0<r < 3.
We can thus continue and find
P{WHO, 75 1N W20, 75 1=}, 15 < 00}
< P{(W'[0, 7 U W0, 7))
N (W20, 721U W2[0,72)) = oltt < 75, 72 < T5)
< e~ 2P((W'0, 721U W0, 7)) N (W2[0,72] U W2[0, 72]) = o).

By Brownian scaling the probability of the last event is equal to the probability
that for two familiesB!, 82 of two Brownian paths started on the unit sphere we
observe®B1(r1-#) n B1(+1-F) = @. Recalling the definition of the intersection
exponent,; (2, 2), this leads to

limsup
rl0 |Og(1/l”)

<&(2,2(1-p).

Letting 8 1 b gives the upper bound.
For the proof of thdower boundwe argue similarly. Let < y < 1. Note that

logP{W [0, 7}, . 1N W?[0, 75 1= 2|1}, < 170, 75 < 13}

P{W'O, 7 1N W0, 75 1=0lt} <1k, 15 < 1f7)
>PWHO, 75 1nW30,73 1=w|t} <7} .15 <13}
P{t} <1} 172
X P{zl <71y
rb re

By Lemma 2.1, there exists> 0 and such that the fraction is bigger thafor all
0<r <1/2. We can write

W0, 7}, 1= W0, 7, U W[z}, 7)) 1.

Under the new conditioning théirst path W[O0, rri,,] can be seen as part of a

Brownian excursion frprr&)B(O, r¥) to dB(0, r?), or, by time-reversal as part of
a Brownian excursioe,, from 9 B(0, rP) to dB(0, r?). This excursion naturally is

part of a Brownian motio' started in a point uniformly distributed &8 (0, r?)
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and stopped upon hitting (0, r?), say at time?iy. By extending thesecond path
W[}, ] 1to the right by a Brownian motion path until it hitg, we see that
we can replace it by a Brownian motid#i® started at*(z%,) and stopped at its
first hitting time ofa B(0, '), which we denote by“rly. Hence,

]P’{Wl[O, ‘L'lb AN WZ[O, T,Zb’,] = ®|‘L'1b < ‘L'rly, ‘L'rzb < ‘L'rzy}
> P{(W'[0, 75, 1U W0, £ 1) N (W20, 721U W20, £2 1) = 2.

Apart from the starting pointW1 is independent of¥'1, andW? is independent
of W2. As the starting point®*(c},) andW?(z3) are independent and uniformly

distributed ord B(0, r?) we get

I 1
IIrPiI(I)’lf log(1/r) logP{W?[0, rrl,,’r] N w2[0, Trzb,r] = ®|rr1,,, trz,, < oo}

>§4(2,2)(y — b).
Now lettingy 1 1 gives the result. O

REMARK 2.10. In Lemma 2.9 we could fix vectors, ..., us € 0B(0, 1)
with {u1,u3} N {u2, us} = @. Replacing the starting points by fixed points
W(0) = rus andW?(0) = ru» and also fixing the exit points from the bal{0, )
asz(r b, ) =ugr andWZ(r b ) =uar, the result remains unchanged. Moreover,
the convergence is unlform wh, ..., ugq as long as the minimal distance between
points of {u1, u3} and{us, ua} is bounded away from zero. This can be done by
a standard argument, as performed, for example, in [13], Lemma 5.7; see also
Lemma 2.4.

We now formulate a version of Theorem 1.1 which represents the connection
between the tail behavior of the intersection local time and the multifractal
spectrum. The following lemma plays a crucial role in the proof of the upper bound
of Theorem 1.3.

LEMMA 2.11. Foralla >4 —d,ande > 0,
lim
r10 —logr

(2.15) 2(B(x, r¢/@ D)) < 1—¢)

logP{¢(B(x,r)) < ri |t} (B(x, r/@ D)) < 1—¢,

e 2)(1— 4“—d)

PrOOF We only show the upper bound in Lemma 2.11, as the lower bound is
not used in the paper, and the proof is quite similar. For notational simplicity we
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replacea by a(4 — d) and let

p(x,r a):= 1 . logP{¢(B(x,r)) < r(4*d)a|r1(B(x, rY)) <1l—ce,

—log
rZ(B(x, rY)) <1—e}.

For an upper bound, we can always replace the Brownian paths by smaller pieces,
effectively making the intersection local time smaller. Hence we may start the
motions W' at time ! (B(x, r)) and stop them at time’ (B(x, r%), dB(x, r)), if

this time is smaller than 1. We may assume the latter as

P{ti(B(x,ra), dB(x,r)) > 1|ri(B(x, rY) <1l—c¢}

is decaying faster than exponentially. L&, ..., W* be independent Brownian
motions started inx and stopped upon leavin@(x,r). Let ¢ denote the
intersection local time o, W2 with W3, W2. Let # > 0 be small. Arguing
as in the proof of Lemma 2.9 we can replaé@ ([t1(B(x, r)), 1 (3 B(x, r*))])
and Wi([z1(0B(x, r")), tX(B(x, r%), 3B(x, r))]) by W1, W2 and the analogous
pieces ofW2 by W3, W*. We obtain

limsupp(x, r,a) <limsup
rl0 ri0  —

ingF’{f(B(x, r)\ B(x, r“—é)) < r(4—d)a}‘

We argue as in the proof of the lower bound of Theorem 1.1. Write
P{E(B(x, r)\ B(x, r“ié)) < r(4*d)“}
<P{{(B(x,r)) < r& D@3 L PIG(B(x, r*F)) > p- D@20}

Using Lemma 2.7 we see that the second term on the right-hand side is negligible.
Hence,

limsupp(x,r,a) <limsup
rl0 rd0 —
=£1(2,2)(1 - (a — 3§)),

from Theorem 1.1 (and Brownian scaling). The result followséasan be
arbitrarily close to 0. (I

1 ~ .
Pli(B (4—d)(a—38)
ogr {e(B(x,r) <r }

3. Multifractal spectrum. In this section we prove Theorem 1.3 by showing
the upper bound and the lower bound separately.

3.1. Proof of Theorent.3, upper bounds. This follows from a standard first
moment method.
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PropPosITION3.1 (Upper bound). Almost surelyfor everya > 4 —d,
§1(2,2)

a
where negative values of the dimension indicate that the set is empty

dim7 (a) <(4—-4d)

+(@4—d) —§4(22),

PrROOF The proof makes use of Lemma 2.11. The case4 — d is trivial,
hence we may fixu > 4 — d. Now fix a cubeC of unit length that has positive
distance, say, to the origin. Also fixe > 0 and letT;(a) be the set of-thin
points x, such that the first visit of both motions to is before time 1— ¢.
Abbreviatingé := £,4(2, 2), it now suffices to prove

(3.1) dim(7%(a) N C) §§<4;—d — 1) +(@4-4d).

For k € N denote by®; the set of dyadic cubes with respect @ with
sidelength 2*. For each cubek € ©; andr > 0 let B(E, r) denote the ball of
radiusr centered in the center &.

Let 4—d < b < a. For k large enough dig0, B(E, 2 kK4-d/ayy > 5/2 for
all E € ©;. Hence there exists a constant- 0 such thatL (Wi (<! (B(E,
2-k@4=d)/ayyyy > YU B(E, 2 k(4=D/ay) whereU is the uniform distribution on
the boundary oB(E, 2-¥(4-9/a) Hence by Lemma 2.11 for4d < b’ < b and
for k > ko = ko(b, b') large enough,

P{¢(B(E, 27 K4-D/b)) < 27k4=D 11 (B(E, 27F)),
(3.2) t?(B(E,27%)) <1—¢)
< QkE((4—d) /b1
forall E € ;. Let
D(b) :=[E €Dy 1t (B(E,27%) <1—¢, fori=1,2,
there exists € S N E with £(B(x, 27%@=D/b)) < p=kA=d)},

Then, for anyk; € N, the collection -, D (b) is a covering ofre (a) N C.
Cased = 3. There exists a consta@tsuch that

(3.3)  P{tY(B(E,27%) <1—¢,t?(B(E,27%) <1—¢} <C27%.
By (3.3) and (3.2) for any > ko,

P{E € Dy (b)} < C 2K6(Q/DH=D =2k
forall E € ©;. Thus fora >0

Z Z—QkE[#Qk(b)] < C Z 2—ak2k2k€((1/b/)—l),
k>k1 k>kq
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which is finite, if and only ife > 1+ &((1/b’) — 1). This yields
, 1
dim(7:(a) N C) < 1+$<§ — 1).
As b’ € (1, a) could be chosen arbitrarily close &g this yields the upper bound
1
dim(T(@) N Q) < 1+g(— - 1).
a

Cased =2. Inthis case

P{E € Di(b)} < P{E € D (b)|t1(B(E, 27%)), ?(B(E, 27%)) < 1—¢]

< QkEQ@/Y 1),

Thus E[#D, (b)] < 2225k@/6'=1)  Continuing the argument as above vyields the
claim. O

3.2. Lower boundsthe percolation technique.ln order to prove the lower
bound, we fixR > +/d and work with the intersection local tinfeof two Brownian
motions running up to the first exit time for a large b&lk := B(0, R). We
denote the set od-thin points, respectively, strictly-thin points, by7 (a, R),
respectivelyg *(a, R). The arguments following Proposition 3.5 show how to get
rid of this assumption and get the bound for Brownian motions running for any
finite amount of time.

To obtain lower bounds we use the method of intersection with independent
random sets; see, for example, [12] for an extensive account of this. However, to
realize this method new technigues are needed. Compared to the approach of [12]
we are facing two additional difficulties: on the one hand the presence of long-
range dependence thanks to the recurrence of Brownian motide-=i, and on
the other hand the lack of a natural parametrizatiofi by a nonrandom set. Note
in particular, that () arenotlim sup random fractals in the sense of [12] or [2], as
they are not dense in a nonrandom set. We shall show in Sections 3.3 and 3.4 how to
overcome these difficulties by adapting and combining ideas of [2], which handles
long-range dependence, and of [13], which deals with subfractals of random sets.

Suppose now that c R? is a fixed compact unit cube not containing the origin.
We denote by®,, the collection ofcompactdyadic subcubes (relative 1©) of
sidelength 2. We also le®® = | ;2 ,®D,. Giveny € [0, d] we construct a random
compact sel’[y] c Cinductively as follows: We keep each of thé ompact
cubes in®1 independently with probability =277 Let &1 be the collection of
cubes kept in this procedure and I&f[y] be their union. Pass from®, to £,1
by keeping each cube @, 1, which is not contained in a previously rejected
cube, independently with probability, and again lef",,+1[y] be the union of the
surviving cubes.
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DEFINITION 3.2. The random set
o
Ily]:= () Taly]
n=1
is called a percolation limit set.

The usefulness of percolation limit sets in fractal geometry comes from the
following lemma (see, e.g., [23] for a proof).

LeEmmA 3.3. For everyy € [0,d] and every Borel se C C the following
properties hold

() ifdimA < y,thenP{ANT[y]# @} =0,
(i) ifdimA > y,thenP{ANT[y]+# 2} >0,
(iii) if dimA > y, then
P{dim(ANT[y]) <dimA—y}=1
and
P{dim(ANT[y]) >dmA —y —&} >0 forall ¢ > 0.

We now suppose that the random dety] and two Brownian motions
w1 and W2, started at the origin, are realized independently on the same
probability space, and we writefor the joint distribution of the motions arid|y].
Observe that the first part of Lemma 3.3 giveswer boundy for the Hausdorff
dimension of the sef (a, R), if we can show thati (a, R) N I'[y] # @ with
positive probability. The following lemma shows that this approach also allows
us to compare the sets of thin and strictly thin points (recall Definition 1.2). Recall
that we abbreviaté = £;(2, 2).

LEMMA 3.4. If y =(4—d)E + (4—d) — &, then
(3.4) P{T (a,R)NT[yl=T"(, R)NT[y]} =1.

PROOF An obvious modification of the upper bound established in Proposi-
tion 3.1 shows that dif¥ (a + % R)) < vy, and, by Lemma 3.3(ii), we have that

T (a+ % R) NT'[y] = @ almost surely for alk. Hence, almost surely,

Ta, )NT[yl=T(@ R)NT[yIN () T(a+1/n, R
n=1

=T (a, R)NT[y]. O

Hence the crucial part in establishing the lower bound on the dimension in
Theorem 1.3 is the following proposition, whose proof will be given in the
subsequent sections.
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PROPOSITION3.5 (Lower bound). Lety = (4 — d)% + (4 —d) — &. Then
P{T (a, R) NT[y] # @} > 0.

PROOF OFTHEOREM1.3,LOWER BOUND. Proposition 3.5 implies the result
of Theorem 1.3 by the following consideration. We use the following simple fact
noted in [3], (3.2):

Let A ¢ R? be a fixed analytic setand let W be a Brownian motion with
arbitrary starting point then

(3.5) dim(A \ W([0, 00))) =dimA  almost surely.

Indeed, to verify (3.5), suppose that didin> «. Then, by Frostman’s lemma,
see, for example, [8], 4.11, there exists a measuge0 on A such thatv(B) <
(diam(B))“ for all balls B. By Fubini’s theoremE[v(W ([0, c0)))] = [P{x €
W ([0, c0))}v(dx) = 0, and hence» is concentrated om \ W ([0, co)) almost
surely. Hence, dirfd \ W ([0, c0))) > « almost surely, by the mass distribution
principle; see, for example, [8], 4.2.

Now fix a compact unit cub€ C By at positive distance from the origin. By
Proposition 3.5 and Lemma 3.4 we get

P{7%(a, R) NT[y]# @} > 0.

Together with Lemma 3.3(i) this implies
P{dim7*(a, R) > y} = p(R) > 0.
By Brownian scaling the probability(R) does not depend on the choicefot 0,
hence we may writ¢ = p(R) > 0. Now define events
D, :={dim7*(a,1/n) >y} foralln e N.
By (3.5) with A = 7 (a, 31) andW ([0, o0)) replaced byWw ([t 4, 71,1 U
W2([2£,,41) T4/n)), @nd the strong Markov property we have that
P(D,11\ D,) =0 foralln € N.

Hence
o0
IP’( ﬂl Dn> = lim P(D,)=p>0.
n=

The event(;2, D, is in the germo-field of Brownian motion and hence, by
Blumenthal’s zero—one law, the probabilipyis actually equal to 1. Now, back
to the situation where the Brownian motions are running for a fixed time, we have

o0 o0
P{dimT*(a) > y} > IP’( N Dn> —P({dim?‘s(a) <yin) Dn).
n=1 n=1
The first probability on the right-hand side is 1, and the second is easily seen to
vanish, using again (3.5) and the strong Markov property. Together with the upper
bound, already verified in Section 3.1, this completes the prdaf.
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3.3. Lower boundsremoving long-range dependencdn this section we give
the core argument which allows us to handle long-range dependence in our
problem. We shall not refer directly to the problem of thin points in order to
simplify future use of this new technique. The key result is Proposition 3.8, which
shows that there exists a large number of cubesf sidelength 2* that are in
the kth step of the percolation, such that both Brownian motion€Hhiut do not
return toE after first leaving a slightly larger cube arousd

In Section 3.4 we will separate tlghobal random structure of the paths, which
leads to the creation of these cubes, fromltdwal random structure which, given
the global structure, is independent for each cibd&his idea of separation of a
local and a global level, using conditional independence at different places, is also
the key to this section (see Lemma 3.10) though it is used here on a larger scale.

As in [2] the proof of Proposition 3.8 works essentially in two different scales.
In the coarse scale we use a dimension argument to make sure that there exist
enough cubes of a certain type of sidelengt Zor somek « k. To that end we
construct a subset* C S with nicer regularity features. The s&t is nonempty
with positive probability and all the statements in this section which hold with
positive probability actually hold almost surely on the evifit# o}.

LEMMA 3.6 (Regularization). There exists a compact s&t ¢ SN I'[y] such
that, almost surelyfor every open sdt/ C C:

(i) UNS*#oimpliesdim(U N S*) > 0,
(i) dmU NSNTI[y]) >0impliesU N §* # 2.

Property(ii) implies in particular, that P{S* # @} > 0.
PROOF To construct the sef* we fix a countable bas# of open subsets
of C. We define a compact random set
S*=EnTlyD\|J{BeB:dimBNSNT[y]) =0}

Clearly, it suffices to verify (i), (ii) for a fixed setV € 9. Suppose first that
U N S*=#g; then dimU N SNT[y] > 0 and hence dig/ N $*) > 0, which
establishes (i). If dify N SNT[y]) > 0, thenU N §* # & by construction, which
shows (ii). O
ForU c R? let
D (U):={E € Dy:E CU}.

Now fix a bounded open sét and note that there exists a constafit) < (0, oo)
such that

(3.6) c(U) 2% <#9,(U) <c(U)2%  forallk e N.
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Fork e N andi = 1, 2 consider the set of cubes

a7 Hi = {E e D;(U): 7' (E) < 7' (BS)),
. Hi 5= E eDpU):7"(B(E,27%179)) < ¢/(Bg)}  fors [0, 1),

that are hit by théth motion, respectively, where a certain ball around the box is
hit. We also write

(3.8) Hy= PN HENHE and Hys = P N HE 5 N HE .
DEFINITION 3.7 (Admissible cubgs Fix ¢ > 0 and consider the subset of

those cubes that are hit by thia motion but which are not visited again after first
leaving B(E, 2~ (1=)):

A =E e #:7'(E, B(E,2~ Y95 E) > t/(BS)).
Now we define
Ay 1= P N AL N A2
to be the set of admissible cubEss Dy (U).
PrROPOSITION3.8. Fix ¢ > 0 and let(a;)ren be a sequence of nonnegative
real numbers such tha&a; — 0if d = 2,anda; — 0if d = 3. Then

lim P{#A; < @24 VMuns o) =0.
k— 00

The remainder of this section is devoted to the proof of Proposition 3.8. By the
preceding lemm& N S* # & implies dimU N §*) > 0 almost surely. Hence, it is
enough to show for everye (0,2 — y)

(3.9) klim P{#tAr < a2k dim(U N §*) > §} = 0.
—00

Let g > O be arbitrary. Below we fix € N representing the coarse scale, and
divide ® ¢ (U) into finitely many, sayn, subgridsDk (U, 1), ...,D g (U, m) such
that

(3.10) duo(V,V>4.27K  forall v,V e®kU,j), j=1,...,m,

where we denote by, (V, V') the maximum norm distance of the centers of
VandV'.

The idea is to show that there exists a cons&@nindependent ok, such
that #{E € A, : E C V} is large with probability at least, for any givenV €
Px N Hi N Hz. Further one needs to show that for akyone can choos&
so large that with high probability, there are at ledstsuch cubed/ in at least
one subgrid® (U, j). Finally, using some kind of independence between the
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blocksV in ®k (U, j) we infer that the left-hand side of (3.9) is at most- )M
As ¢ is independent oM, we can letM tend to infinity to infer the statement.
Define

Ni(j) :=#®Dy (U, j) N Hp.0).

By definition of the Hausdorff dimension,
(dim(U N §*) > 8} C {mmalxNk(j) > 2%k for all but finitely manyk},
]:

hence we get that there existska= K (g, §) such thatP{Ag|U N S* #£ &} >
1— &g, where

Ag = () UINe(j) = 2%,
k>K j=1

and such that > M. Fix this K from now on.

The next task is to impose a localization that produces the desired independence.
This proceeding was inspired by ideas of [2]. Assume haiN is larger than £ .
ForV e g (U) let

HI(V):=|E eDp(V):t'(E) < 7' (V, B(V,27K+1)e)},
(3.11) AL(V):={E e H.(V):'(E, B(E, 2719 E) > ¢/ (B,
Al oe(V) = {E € #{(V): T (E, B(E, 279 E) > T/(B(E, 1/k)°)}.

Finally let
Hi (V) = P N HEV) O HEV),
(3.12) Ap(V) 1= P N AL(V) N AZ(V),
At loc(V) 1= P N AL oo (V) N A joo(V).

Clearly #Ay 10c(V) > #A, (V). Also note that
#AL > #AL(V) forall V e Dk (U).

Note that the information about the value of#oc(V) is contained inx
and in the Brownian motion paths betweehV) andt!(V, B(V, 2~ X+1)). By
construction, see (3.10), the intervais (V), t/(V, B(V, 2-K+1))) are disjoint
for different V € Dk (U, j) and fixedj. This will later provide the necessary
independence.

Let (bx)ren be a sequence of nonnegative real numbers suchkfhat—s 0
and (k3/log(k))by —> oo if d = 2, orby —> 0 and(2¥/k)by —> o if d = 3.



1286 A. KLENKE AND P. MORTERS

Then we have
Pl{#tAr < 24K U N §* £ o)
< P{#AL(V) < @ 2%k for all V e Dk (U)|U N S* # &)
<P{UNS*#£2)t

x Z P[{#Ak 10c(V) — #AL(V) > 5247477k 0 Ak ]
Vedk (U)

(3.13) +PUNS* £}t
x P[{#Ar10c(V) < (ax + b2 77"
forall V e Dk (U)} N Ak]
+P{AS|U N S* # &)
= P(U N S* £} UL+ 17) + P{AY U N S* # @),

As P{A%|U N §* # @} < o, it suffices to show that Iimsu&‘,;1L =0 and
lim suplk2 < (1—%)M for somez independent oM.

Estimate oflkl. We do this estimate by first computing the first moment of
#Ak 10c(V). As we need it again later, we formulate the result as a lemma.

LEMMA 3.9. There are constants, ¢> € (0, co) depending only o/ such
that forx1, x2 € 9B(V, 2~ X) and fork > 2K,

2 2
c1<%) 22K <y oA joo(V)] < cz(%) 22 NE-K) g2,

and
128K < By oA ioc(V)] < 280 it g =3,
where we used the abbreviation
Ey1 2[#Ak 1oc(V)]
= E[#Ar1oc(V)|V € Hi.0, W (t (B(V,275))) =xfori =1,2].
ProOF We formulate the proof only for the upper bound in the cése?2.

The other three cases are quite similar. By Corollary 2.2 there exists an absolute
constant such that for ally’ € 9 B(E, 2~ 1=9)) and allk,

ek

Pyde(B) > w(B(E /R = C—5 0@ =%

¢,
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whereP; andt refer to a Brownian motion started iyi. We write P,1 > for
the probability measure correspondingig 2. Again by Corollary 2.2 and the

strong Markov property of Brownian motion appliedwtB(V, 2~X)) we get

i i - c ¢ 2c

P 2{t'(E) <7'(V,B(V,27¥thH)} < CRKIic
Thus, by independence and the strong Markov property of Brownian motion
applied atc’ (E, B(E, 21-9%)¢) we get

B, 2[#Atloc(V)]
=E Y Pa,eld(E) <t(V,B(v,27 K+,

Ee® (V)NPx
t'(E, B(E, 2798 E) > ¢(B(E, 1/k)°)
foralli =1,2}
<APE Y P o{t(E) <7 (V. B(V,27 K thH) foralli = 1, 2}
Ee®i(V)NP

< 16¢%%k 2E[#E € D (V) N PV € Pk]
= 1654222 k=K),

This yields the upper bound far= 2 with co = 16¢4. O

The next step is to compul&{#Ax 1oc(V) — #A,(V)]. By definition
#Ak,loc(v) — #HAR(V)
= #(Ak,loc(v) \ eA’k(V))
= #(Pk N AL 1o (V) NAL 1oc(V) N (AL (V) U (AF(V)))).

For given E € ©¢(V), by independence of the Brownian motions and the
percolation,

P{E € Ar,loc(V)}

2
(3.14) =27 [ P{7'(E) < 7.
i=1
t'(E, B(E,1/k)) < ' (E, B(E, 2= 9K E)}.
Note thatt/(E, B(E,1/k)°) = t/(E, B(E,2-1=9%)¢ B(E, 1/k)°). Hence by
Corollary 2.2 and the strong Markov property appliedtoE, B(E, 2-(1-8)k)c)
we can bound (fok > kg depending only orR) the right-hand side of3.14) by

_yk54< log(R) >2< ck )2
klog(2) + log(R) k —log(k)/log(2)
<23%227 k=2 ifd =2,



1288 A. KLENKE AND P. MORTERS

and similarly by
¢4 vk it g =3
Using again the strong Markov property with(E, B(E, 1/k)¢) we obtain for all
E e®(V),i =1,2andk > kg depending only oIR ande,
P{E € (A} (V) |E € Arjoc(V)} =P{E € (AL(V))|E € A 10c(V)}

< sup Py {t(E) <1g}
x€dB(E,1/k)

_ logk +1logR 1 _
——— < 2ck”~log(k ifd=2
CklogZ+IogR =< 9k, ’

- Rk —1 .
C oot =1 = &2k, ifd=3.

Altogether we have fok > kg andE € D¢ (V)
P(E € A joc(V) \ AL(V)) 4ee"2 ik Ploglh). - ifd =2

c <
floo FRE= aeBovho-3ky if d = 3.

As #9, (V) = 2¢*=K) we conclude that there is a constghsuch that fok > kg
C2@=Vkk=3logk), ifd=2,

3.15) E[#A V) —#A(V)] <

Hence by the definition ofkl and by the assumptions made @n) we get by
Markov’s inequality,

I <#0gU) (b 1274 47K)  sup  E[#Arioc(V) — #AL (V)]
VeDg(U)

lo
log(k). i 2

<Cx{ k3 —0 ask — oo.
k27K /by, ifd=3

Estimate oflkz. The estimate of the second term in (3.13) is much more
delicate. Clearly
I < max{P{#Ag loc(V) < (ax + )27k
forall V e ©x (U, j), Nk(j)= M}, j=1,....m}.

Now fix j. The strategy is to introduce @-field ¥k (j) such that the events
#ALI0c(V) < (ax + b)244=Vk v e D (U, j)} become independent given
Fx (j) and such that for thosg that contribute taVg (), and fork large enough

(3.16) Pl#Arioc(V) > (ax + b2 VK F ()} = ELivem o w. j)nstx o)
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for some ¢ that does not depend ok or M. One can then conclude that
limsup,_, « Ik2 < (1 — &M, which can be made arbitrarily small by letting
M — o0.

We construct a decoupling-algebraFx () as in the proof of Proposition 2.3.
For the moment we suppregsn the notation. Formally for = 1, 2 we introduce
a sequence of (random) sgt&' (n) :n =1, ..., v') and stopping times

0=0'0) <p'(D) <o’ () <p' (@< <o’ (V) <1 <p'(V +1),
by
o' () :=inf{t'(B(V,27%)): v e Dk (U, j)},
T (B(Vi(n),27 %)) =p'(n)  [this definesVi (n)],
o'(n) =7 (B(Vin),27%), B(Vin), 27 K+19)
(3.17) if p'(n) < oo,
p'(n+1) =inf{t'(B(V,27%)):
VeDdx WU, H\IV'QD,....VIm}},
pi= max{n:,oi(n) < T;Q}.
Now define
Fr(j)=a(W(t+0o'(n), tel0,p'(n+1) —a' ()], n=0,...,v")
and
Fi(j) = FFG) v FEG)V o (P).

The following lemma is immediate from the construction%¢ (j) and the fact
that (for fixed j) the ballsB(V,2-K+1), v € D (U, j), are mutually disjoint
by (3.10).

LEMMA 3.10. The family of random variable@tAx joc(V), V € Dk (U, j))
is independent conditional afix ().

We use the notation
Py ) :=P{- |[Fx ()}

andEg, ;) for the corresponding conditional expectation. Hence, by Lemma 3.9
there exist constantsg, ¢z € (0, co) such that fokk > K almost surely

2
& _
Cl(;) 22y gy o1 < B () [#Ak Joc(V))]

2
= Cz(%) 25 M yepe g fd=2,
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and
128 M v ey o) < By (y A oc (V)] < 225 M Uy egee i d=3.

By the assumption that?(ax + bx) — 0 if d = 2, anday + by — 0 if d = 3, we
get that fork large enough

Eg () [#Ak l0c(V)] = 2(ax + bk)2(4_d_y)k]l{VleK,o}.

Thus if we can replace A joc(V) In (3.16) by Egz; (j)[#Ak 0c(V)], then
we are done. To this end we have to show tightness (#®#h oc(V)/
E#x () [#Ak10c(V)Dken. We do so by computing second moments. Note that
for k large enough oV € F#k o}, using the Paley—Zygmund inequality in the
second step,

Pz () {#Arl0c(V) > (ar + bk)2(4*dfy>k}
1
> P?’K(,/'){#Ak,loc(v) > EE?'K(j)[#Ak,Ioc(V)]}

_ 1 Eg#rioc (V)P

T 4 Egy () [(HAk0c(V))?]
Hence the proof of Proposition 3.8 is accomplished if we can show the following
lemma.

LEMMA 3.11. There exists a constant> 1 (independent o#/) such thatfor
all j=1,...,mandallVe®g U, j)

Egy () [ (#Ar10c(V))?] < cE g () [#oi toc(V)]2.

Before we prove the lemma, we show how Proposition 3.8 can be inferred. Clearly
[recall Nk (j) =#(®Dk (U, j) N Hk o)] with & := 1/(4c) we get from Lemma 3.10

limsup/?

k— o0

< miaxlim SUpP( N (/) = M and #Agoc(V) < (ai + b 244"

7=l k>0

forall Ve Dk (U, j) N Hk.o)

= mrfalxllm SupE|:( 1_[ IP)g:K(j) {#AkJoc(V)
J=% k—oo Ve (U, j)NHk o

< (ax+ bk)2(4dy)k})

X ﬂ{NK<j>zM}]

<@1-9d" 50 asM — oo.
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PROOF OFLEMMA 3.11. We do the proof explicitly only fa = 2 as the
cased = 3 is quite similar. The only difference is that we have to plug in the other
hitting estimates from Corollary 2.2.

By Lemma 3.9 it is enough to show that there exists a conglaatoo that is
independent oK and such that fok large enough

Ey ([ #rioc(V))?] < Ck44@ 0 *=K),

Let E, F € D, (V) and letl = 2d . (E, F). Recall thatd., is the maximum
distance of the centers & and F. Clearly

Pre()iE € P} =277 yepy.

In order to computé#, ;\{E, F € #} we define thegenealogical distancef
E andF

dgen(E, F):=k —supfs € {0, ..., k}: E, F € W for someW € D}.
Note that ZeenE-F) > 2kg_ (E F)=1. Hence, oV € Pk},
(3.18)  Pr (HE, F € P} =27y k=Khdged E.F)) < o=y k=K)j=y,

Now we come to the hitting estimates. Assuime 2*d..(E, F) > 2. Hence, for
i =1, 2, by the strong Markov property and Corollary 2.2, folarge enough on
{V € Jk o},
Prc (it (E) <t/ (V, B(V,275tHe) 2i(F) < (v, B(V, 27 K+1)<))
<Pg [t (E) <7'(V, B(V,27K+1)o))

x supP,{t(F) < t(V, B(V,2-Kt1)e))
xedE
+ Pyl (F) <7/ (V, B(V,27K+19))
x SUpP,{t(E) < (V, B(V,2 K+1))}
xeoF
1 log(27*) —log(2~X+1)
k+ K — 1 log(2=%) — log(2-k+1)

_log®)/ |Og(2)>
k—K+1 )

< 262

< Ck—l(l
and in particular
Py (plt' () <7/ (V, B(V,275))} <ck ™,

for some constant that does not depend gl or K. Combining these estimates
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we get on{V € Hk o},
Ey () (#Ak0c(V))7]

< > Y Pr(E.Fem)

Ee®i (V) FeED(V)
X Py iyt (E) < T (V, B(V,27K+hye),
t'(F) <<'(V, B(V,27 X+ forall i = 1, 2}

2k—K

~ log(l)/log(2)
<Y ¥ > Pr ) E, FeP)C% 2(1—75 1/r< gl >
Ec®i(V) I=1  Fe®i(V) AT

N

doo(E,F)=I2"%
+ > PrHEeP)C%* 2
Ec®Dr(V)
- 22 log(!)/10g(2)\ 2
C1ec 2Ry Y (1 90/ oa®)
E€D(V) I=1 k—K+1

+ C%22@ ) k=K),

Since #; (V) = 4K itis enough to show that

(3.19)

zg iy (1 log(/)/log(2) )2 e 2(2-y)(k—K+1)
=1 k—K+1 =S K2

for some constant’ (independent oK’). To this end note that we can compare the
sum with the integral

2k—K 2

) ll—;/(l_ log(!)/ Iog(2))

] k—K+1
2k7K+l

2
xl—V<1_W) dx
k—K+1

<2
1

1
—2(k — K + 1)log(2) f @ Vk=K+DIog@y (1 _ )2y
0

1
=2k — K +1) |Og(2)e(2—)/)(k—K+1) |09Q)f() 2=V k—=K+1) |Og(2)yy2dy

4 2(2—y)(k—K+1)
< .
~ log(2)2(2—y)3 (k— K +1)2 O

Having proved the lemma, the proof of Proposition 3.8 is now complete.
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3.4. Lower boundsproof of Propositior3.5.

3.4.1. Admissible cubedocally and globally thin points. Fix 1 < b < a/
(4 —d) and by our choicey = (4 — d)&/a + (4 — d) — & one can choose> 0 so
smallthat 4—d — y — 2de > (4—d)(b — 1) /a + 8be /(1 —¢).

Suppose thakE € ©; is an open dyadic cube and that both Brownian motions
w1 and W2 hit the cubeE. Then we writeo, := 7/ (E, B(E, 27%1-9)¢) for the
first exit times fromB(E, 2-¥(19)) after they first hite, fori = 1, 2. We let

(3.20) S(E)=W(10,0%]) N W([0,0%])
be the intersection of the paths up to these stopping times.

DEFINITION 3.12 (Thin point3. We define the sets
Tin= |J {xeS*:(Bax,rn)\ Bk, r’8))ns=2o},

O<r<2-k
O<d<1<p

7= ) U reEns:(Bax,rm\ Bk, r"8))NSE) =o).

Ee®y 0<r<2-k
O<é<l<ny

We call the points in7;, and ’J‘k'f;f globally (k, b)-thin, respectively, locally
(k, b)-thin.

Note that the parametessn ensure thafy ; andi'f}f are open sets. Recall that
P is the set of cubes kept in th¢h step of the percolation.
Recall from Definition 3.7 that, fok € N and an open séf c C,

Ar={E e Di(U)N Pyt (E) < T (BY),
t/(E, B(E,27*1= E) > ¢ (B%), fori =1,2}

is the set ofadmissiblecubes IinE € D (U).
Consider the open sét fixed for the moment. We subdivid®; (U) into my
disjoint subcollection®; (U, 1), ..., D (U, my) such that

c1:=inf{27%*¢m; k e N} > 0,

(3.21)
c2 = SU[XZdekSmk, keN} <oo
and
B(E,27*1=20nF=g  forall E,F e®(U,j), E#F,
(3.22)

jell,...,my}, andk e N.
We further define
(3.23) A (j) = Ay N Dy (U, j).
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We now introduce a-algebra#;(j) which makes #,;(j) measurable without
using too much information of the paths inside a sufficiently large number of
cubesE € D (U, j). The idea, as twice before, is to consider the first entrance
of a path in any boxE (1), after that its first exit of the balB(E (1), 2-¥(1-#)
aroundkE (1), after that its first entrance into a new bfx2) and so onF () will
then use information of the paths between the successive times of leaving
B(E(n), 2%~y and enteringB(E(n + 1)), n € N, as well as the information
of # (the percolation at generatidi).

We fix j and for the moment suppress it in the notation. Formally ferl, 2 we
introduce a sequence of (random) s@té(n):n =1, ..., m') and stopping times

0=0'(0) <p'(D) <0’ (D) <p' (2 <--<o'(m) <p'(m +1)
by
p' (1) :=inf{z' (E): E € Di(U, j)},
T (E'(n)) =p'(n) [this definesE! (n)],
(324)  o'(m) =7'(E'(n), B(E'(m),27*49)) if p'(n) <7 (BR),
p'(n+1) =inf{t"(E): E e D (U, )\ (E'QD),..., E'(n)}},
m' :=maxn:p'(n) <t'(Bg)}.
Let Wi(1) = Wit + o' (n)), for0<t < p'(n + 1) — o’ (n). Denote
Fl(H=c(Wt), tel0,p'(n+1) —o'(m)], n=0,....,m'),
Fi(j) = FEG) v FEG) V o (P5).

The following lemma is immediate from the constructionff( ;).

LEMMA 3.13. Admissibility of a cube is aff; (j)-measurable event

{E €A}y e Fr(j)  for E€Di(U, j).

We now use Proposition 3.8 to make sure that there is a sufficiently large
number of admissible cubes. Fix somesuch that 4~ d — y — 2de > ¢ >
(A—d)e/a+¢e)(b—1)+8be/(1— ).

LEMMA 3.14.

klim P{#tAr(j) <2k forall 1< j <m|UNS* £ @} =0.
— 00

PROOF Note that, for all sufficiently largé, the event #; > ¢y 2(¢+2de)k
[recall ¢z from (3.21)] implies that there exists a<lj < my with the property that
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#A1(j) > 24, Recalling Proposition 3.8 we obtain

lim supP{#Ar(j) < 2% forall 1 < j <mi|U N S* # &}

k—o00

< limsupP{#A; < c22¢ T2k |y N §* £ @) =0.

k— 00

O

Fixm suchthall—e)ym < (k+5b < (1—e)m+1.ForE € ©,(U) andm let
Dm(E)={F €D,,:F CE, dist(F,dE) > 52 *}.
The numbers are carefully chosen such that

(3.25) U GcB(F.327%CcE foranyF e D m(E).
GEDpm(E)

Recall the definition of(E) from (3.20).

DEFINITION 3.15 Successful cubis A cubeE in
8k (U) :=|E € Ay : there exist¥ € Dy ,,(E) such that
FNS*#@and(B(F, 327"\B(F, 2 Y9") N S(E) = 2}

is called successful.
LEMMA 3.16. ENTip # @ forall E € 8, (U), if k is sufficiently large

PROOF Let E € 4, (U). We first show thatt N Tk"}f # &. SupposeF e
Di.m(E) satisfies the conditions in the definition §f(U). Pickx € F N §*, and
let r = 27%=3, andn = 2, and§ = 1/2. Then we haveB(x,rn) C B(F, 3275
and B(x, r?8) D B(F,2-1=9) Hencex e 7,)°C. Finally, note that € 7,¢ and
x € E for someE € A; impliesx € 7,p. O ’

3.4.2. The main step. The following proposition is at the heart of our proof.
PROPOSITION3.17. Almost surely7y , is dense ins* for all k € N.

The rest of this section is devoted to the proof of Proposition 3.17. We have
to show that, for everg € N and every open sdf in a countable basis of the
topology onC we haveP{7; , N U # @|U N S* # &} = 1. For this purpose keep
U fixed, as in the previous section, note tlat.1, C 7% 5, and note that it is
sufficient to show that

lim P(8,(U) =2|UNS* # 2} =0,
— 00
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We make the rough estimate
P{8(U) = @|U N §* # &)
<P{#A() <2k Vji=1,...,m|UNS* + 2}
PO (U, J) N8 (U) = Bl#AL) > 2%}

+jZ::1 P{U N S* # @)

We know from Lemma 3.14 that tHast term on the right-hand side converges
to zero. Hence, it suffices to show that tbecondterm on the right-hand side
vanishes ag — oc.

For this purpose fixx e N, j € {1,...,m;} and E € A(j). Recall that the
random collectionA;(j) is F(j)-measurable. Further recall that(E) is the
time of first entry of W into E andt’(E, B(E, 2 ¥-9)¢) its first time to exit
B(E,27k1=#)) again. Leto}, := t/(E, B(E,27*1=9)¢) — 7{(E) and

Vii0,0L]— B(E,27*179) 115 Wit + T(E)).

Conditional onF;(j) eachVé is a conditioned Brownian motion with fixed start
and exit points.
Write G (E) for the event that there exists € ©y ,, (E) such that:

(@) dim(VA[0, 011N V2[0,062]1NT[y]1NF) >0,
(b) (B(F,327%)\ B(F,2=@9m)) N S(E) = 2.

By Lemma 3.6(ii), item (a) implies N $* # &, and henceG (E) implies that
E € 8, (U). Moreover, conditional or¥;(j), the family (G(E), E € Ax(j)) is
independent. Next we give a lower bound R{IG (E)| % (j)} On{E € Ar(j)}.

LEMMA 3.18. There exists a constakp = ko(b, ¢) such thatalmost surely
for k > ko,
P{G(E)|Fc(j)} > Z*k(((4*d)5/a+8)(h*1)+8k8/(1*€))E{EGAkU)}.
PROOF We use the notatioR ¢, ;) := P{-| i (j)}.
We first fix a cubeF’ € ©y ,, (E) and give a lower bound for the probability that

F satisfies the conditions (a) and (b). Note that there is a conSgant0 such that
the event

H(F):={t'(B(F.327%)) <t/ (BY) fori =1,2,
and|Wh(c (B (F, $274))) - W3(r3(B(F. 127))| > 427%)
has probabilityP ¢, ;y(H (F)) > Co. Moreover, denote

2
I(F):= ({7 (B(F, 327 9™)) <t/ (BR)}
i=1
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and

2
J(F) = m {fi(B(F, %2—(1—£)m)’ B(E, 2(1—8)k)c)
i=1

<t/ (B(F, 327179m), B(E, 32179K)), B(F,27179m)}.
By Corollary 2.2, there exists a constant > 0 such that almost surely,
Py (L(F)H(F)) > C122720 10y,
Now assume thal/ (F) and (F) hold. We split each path into three pieces,
Wiy, [0, 7/ (B(F, 327 49™) — o/ (B(F, 327%))] > RY,
Wiy () = Wi (' (B(F, 327%)) +1),
Wiy [0,/ (B(F, 327 49™) aB(F, 2" 4=9m)) — ¢/(B(F, 327 19™))] > R?,
Wiy (t) = Wit/ (B(F, 327 379™)) +1),
Wis 1[0, 7/ (B(F, 327 49™) 9 B(E, 327%19))
— /(B(F, 32749 yB(F, 2~ 1"9m))] > RY,
Wiy (t) = W' (t/ (B(F, 327 079™) 9 B(F, 27 19™)) +1).

We now form the packet consisting of the first and last part ofithemotion
(i=12),

Wha = Wiy [0, (B(F, 32-0-) — «/(B(F, §2))
U Wiy [0, ¢/ (B(F, 1274-9m) 3 B(E, 127+1-2)))
_ .[i (B(F, %2—(1—8)"’1)’ BB(F, 2—(1—£)m))]‘

Using Lemma 2.9 and the subsequent Remark 2.10 we get that for a suitable
constantg, depending only o ande, and for allk > kg,

(3.26) P (j){WijaN Wiz = @|H(F) NI(F)} = 26F9Cm g0 Gy

Observe that this event as well B F) and (F) are measurable with respect to
the o-field § := a(W(ll), W(Zl), W(13), W(ZS)). Now define the ranges of the middle
pieces

Wh = W, [0. 7' (B(F, $2-d=om) §B(F,271=9m)) — ¢ (B(F, 327 17m))]
fori =1, 2,

where we agree thav(;, = W and W/ = W/, = @ if H(F) does not occur.
We can find a constarti, > 0 such that almost surely,

Pgrk(j){dim(wzlﬂ szﬂFﬂF[)/]) >0/} > C22y(k—n1)—2msl{E€Ak(j)}]lH(F)ﬂI(F)‘
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Indeed, o E € A (j)} the probability thatF is retained in the percolation equals
2vk=m) and onl (F) the probability that both motions hit the cubes no smaller
than a constant multiple of 2"¢_ Given that both motions hif and F € #,,,
by Lemma 3.3(iii) there is a positive probability tha#t} N 'W22 N FNTI[y] has
positive dimension, and it is easy to see by Brownian scaling that this probability
does not depend on the scale, that ispon

Finally, a simple argument shows that, for ang d B(E, 32-1=%),

Pyy0 (4 (F)|§) = PPr{e(B(E, 27 %)) < o(B(E, 27) L1,
where [recall thafl, is the uniform distribution 0@ B(0, )]

e inf g PxW(@(B0.2) € dy} 0.
x€dB(0,1) yed B(0,2) U2(dy)

Hence, by Lemma 2.1 there exists a constagt= C3(¢) > 0 such that
Pr.)(J(F)I$) = C3li(r).

Note that{ W} 5 N W2 , = @} N J(F) implies item (b).
Altogether, the probability thatfxedcubeF € ©; ,,(E) satisfies (a) and (b) is
(withC =C1-C2-C3)

Pz F satisfies (a) and ()

(3.27)

> C2(y+2(d—2))(k—m)-i—(rif+8)(k—m)—2m£]]_{EeAk(j)}’
almost surely. Note now that i satisfies (b) then, by (3.25) no cubein ,, (E)
which does not intersecB(F, 2-1-9) satisfies (a). Hence (a) and (b) are
satisfied by at most a constant multiple 6f'2 cubes in®;._,, (E) simultaneously.
As the total number of cubes € ©; ,,(E) is at least a constant multiple of
24m=k) ‘e have constantSs, Cs > 0 such that, oRE € A (j)},

Py (G(E)) = C427% Y~ Pg ;) {F satisfies (a) and (B)£ea ()
Fegk,m(E)

> C52(}/+d—4) (k—m)+(§+¢)(k—m)—5me ﬂ{EGAk )

By definition of y, we havey +d —4+ & = (4 —d)&/a < 3 and, by definition
of m,k —m >k(1—b) —me + 5b, andm < (k + 5)b/(1 — ¢), which gives the
claimed lower bound. OJ

Using this lemma and the conditional independence of the fafGily), E €
A1 (j)) we get fork > kg, almost surely,

PDx(U, j) N (V) = | Fr(j)) < (1 — 27 (=D ate) b= 80/ A=en)yFAl),
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Finally, this gives fork > kg

mg
Y PO, j) N8 (U) = DlHA(j) > 25
j=1

< 6222dke(1 _ 2—k(((4—d)$/a+s)(b—l)+8bs/(l—s)))2§k‘
By our choice of parameters > ((4 — d)é/a + ¢)(b — 1) + 8be/(1 — ¢) and

hence the right-hand side converges to @ as oo. This completes the proof of
Proposition 3.17.

3.4.3. Completing the proof of PropositioB.5: a density argument. Recall
thatb € (1, a/(4 — d)) was chosen arbitrarily. Note that

DY

Tip C T (b(4—d), R) N S*.

k=1

Indeed, ifx € N{21 T%.», thenx € $* and there exists a sequenge] 0 with
(B(x,r) \ B(x,r’)) NS =2.

Then, by [13], (1.17), i = 3 and by [4], (1.6), ifd = 2, there exists a constant
C > 0 such that for sufficiently large e N,

e(B(x, r) = £(B(x, rP)) < Cr™*Pllog(a/ri) 1%,

and hencer € 7 (b(4—d), R).
Clearly 7.» C Tk.c for b > ¢, and7 (a, R) =y, T (b, R). Thus

00
N
n=1

Next recall that7y /a—a)—(1/n) is relatively open ins* and, by Proposition 3.17,
also dense is* for anyk, n. As §* is compact, hence complete, one can infer from
Baire’s theorem thaﬂ,ff’neN Tk,a)(4—d)—(1/n) IS dense inS* almost surely. Hence
P{T (a, R) N S* # @&|S* # @} =1 and, sinces* Cc I'[y] N S C I'[y], we have

DL:

Tk.a)b—d)—1/ny C T (a, R) N S*.

k=1

P{T (a, R) NT[y] £ 2} > P{T (a, R) N $* # o)
—P{T (a, R) N S* # 2|S* £ Z)P(S* + o)
= P{S* £ 2} > 0.

This completes the proof of Proposition 3.5.
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