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THE MULTIFRACTAL SPECTRUM OF BROWNIAN
INTERSECTION LOCAL TIMES1

BY ACHIM KLENKE AND PETER MÖRTERS

Johannes Gutenberg-Universität Mainz and University of Bath

Let � be the projected intersection local time of two independent
Brownian paths inRd for d = 2,3. We determine the lower tail of the
random variable�(U), whereU is the unit ball. The answer is given in terms
of intersection exponents, which are explicitly known in the case of planar
Brownian motion. We use this result to obtain the multifractal spectrum, or
spectrum of thin points, for the intersection local times.

1. Introduction and main results.

1.1. Aims of the paper. Intersections of Brownian motion or random walk
paths have been studied for quite a long time in probability theory and statistical
mechanics. One of the reasons for this interest is that the properties of the
intersections are analogous to those of a number of more complicated models
in equilibrium statistical physics. There is trivial behavior in all dimensions
exceeding a critical dimension, which in our case isd = 4, but below the
critical dimension there are interesting critical exponents, which determine
the universality class of the model and enter into most of its quantitative
studies. Rigorous and nonrigorous techniques from mathematical physics, such
as renormalization group theory (see, e.g., [1]) and conformal field theory
(see, e.g., [6]), have been applied to the model and, more recently, finding the
intersection exponents of planar Brownian motion was one of the first problems
solved by the rigorous techniques based on the stochastic Löwner evolution
devised by Lawler, Schramm and Werner [19–21].

An interesting geometric characteristic for discrete and continuous models of
statistical physics is themultifractal spectrum, which originated in the study
of turbulence models. Loosely speaking, the multifractal spectrum evaluates the
degree of variation in the intensity of a spatial distribution. Calculations of
the multifractal spectrum in the physics literature are typically done using a
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multifractal formalism, based on large-deviation heuristics, which emerged in
the physics literature in the late 1980s; see, for example, [9]. This formalism
allows nonrigorous calculation of the multifractal spectrum in many models, either
explicitly or in terms of the critical exponents; see, for example, [5] for a survey
from a physicist’s point of view.

In some cases the multifractal spectrum could be calculated rigorously. For a
precise definition fix a locally finite, fractal measureµ, which may be random
or nonrandom. The valuef (a) of the multifractal spectrum is the Hausdorff
dimension of the set of pointsx with local dimension

lim
r↓0

logµ(B(x, r))

logr
= a,(1.1)

whereB(x, r) denotes the open ball of radiusr centered inx. In some cases
of interest, the limit in (1.1) has to be replaced by lim inf or lim sup to obtain
an interesting nontrivial spectrum. Examples of rigorously verified multifractal
spectra for measures arising in probability theory are the occupation measures of
stable subordinators, see [10], the states of super-Brownian motion, see [24] and
the harmonic measure on a Brownian path, see [15].

The main aim of the present paper is to find the multifractal spectrum of the
intersection local time of two independent Brownian paths ind = 2,3. In this
example it is not hard to check that the multifractal formalism predicts atrivial
spectrum, that is, that the set of points in the intersection of the paths where the
local dimension differs from the global dimension of the set has dimension zero.
This prediction is not correct; it turns out that there is a nontrivial spectrum to the
right of the typical value. The spectrum is given in terms of the critical exponents,
in this case the intersection exponents. Failure of the multifractal formalism for
natural random measures has been observed before; the most notable example is
the states of super-Brownian motion, see [24].

Let W1,W2 be two independent Brownian motions inRd , d = 2,3, with a joint
starting point and running for one unit of time. LetS = W1([0,1]) ∩ W2([0,1])
be the intersection set, which is equipped with a uniform measure, the intersection
local time�. It is well known that, almost surely,

lim
r↓0

log�(B(x, r))

logr
= 4− d for �-almost everyx ∈ S,

that is, the local dimension oftypical points equals 4− d, which is also the
Hausdorff dimension of the intersection setS. The multifractal spectrum deals
with sets ofexceptionalpoints, of which there may be two types: We call a point
x ∈ S a thin point if

lim sup
r↓0

log�(B(x, r))

logr
> 4− d,
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noting that this means that, for a sequencern ↓ 0, the mass�(B(x, rn)) is unusually
small, on a logarithmic scale. Analogously, a point would be called athick pointif

lim inf
r↓0

log�(B(x, r))

logr
< 4− d.

However, thick points in this sense do not exist; in fact, almost surely,

lim inf
r↓0

log�(B(x, r))

logr
= 4− d for everyx ∈ S.(1.2)

The upper bound in (1.2) is easy to show and the lower bound follows from
recent work by Dembo, Peres, Rosen and Zeitouni [4] ind = 2, and by König
and Mörters [13] ind = 3. Indeed, both papers show how a weaker notion of thick
points, which operates on a finer scale, can be defined in order to obtain a nontrivial
spectrum.

In this paper we are looking at the right end of the multifractal spectrum, asking
for the Hausdorff dimension of the set of thin points or, more precisely, the set of
pointsx where, for somea > 4− d,

lim sup
r↓0

log�(B(x, r))

logr
= a.

We show that, withξ = ξd(2,2) the intersection exponent, ind = 3, thin points
do exist for all values 1< a ≤ ξ/(ξ − 1), but not for anya > ξ/(ξ − 1). In d = 2
we show that thin points exist for all values 2< a ≤ 2ξ/(ξ − 2), but not for any
a > 2ξ/(ξ −2). Moreover, we show that the Hausdorff dimension spectrum of thin
points is given by

dim
{
x ∈ S : lim sup

r↓0

log�(B(x, r))

logr
= a

}
= (4− d)

ξ

a
+ 4− d − ξ,(1.3)

almost surely for all values ofa ≥ 4− d where the right-hand side is nonnegative.
This result is in contrast to the behavior of Brownian occupation measure, the
natural analogue for the casep = 1, where no thin points (in our sense) exist;
see [2].

Our paper is also in the tradition of a series of papers by Lawler, who first
observed that intersection exponents enter into the Hausdorff dimension of various
subsets of the Brownian path. The most famous example is the planar Brownian
frontier, which has dimension 2− ξ2(2,0); others are the set of cut points, which
have dimension 2− ξd(1,1), and the multifractal spectrum of harmonic measure
on a planar Brownian path, which is the concave Legendre transform of the strictly
convex functionλ → 2− ξ2(2, λ). See [14] for one of the earliest papers and [17]
for a survey.

Before formulating our precise results in Section 1.3 we briefly review the
definition and some results about intersection exponents, which are relevant for
our work.
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1.2. Intersection exponents.SupposeM,N ∈ N and letW1, . . . ,WM+N be
a family of independent Brownian motions inRd , d = 2,3, started uniformly on
∂B(0,1). We divide the motions into two packets and look at the union of the paths
in each family,

B1(R) =
M⋃
i=1

Wi([0, τ i
R]) and B2(R) =

M+N⋃
i=M+1

Wi([0, τ i
R]),

whereτ i
R is the first exit time ofWi from the ballB(0,R).

The event that the two packets of Brownian paths fail to intersect has a
decreasing probability asR ↑ ∞. Indeed, it is easy, using subadditivity, to show
that there exists a constantξd(M,N) such that

P{B1(R) ∩ B2(R) = ∅} = R−ξd (M,N)+o(1) asR ↑ ∞.(1.4)

The numbersξd(M,N) are called theintersection exponents. There are natural
extensions of the intersection exponents to the case thatM = 0, thedisconnection
exponents, and to noninteger numbersM,N > 0 of Brownian motions, but we do
not need this here.

Physicists, for example, [6], have made conjectures about the precise values of
the intersection exponents for a long time now. In particular, they conjectured that
in the plane many of these exponents are rational numbers. Very recently, Lawler,
Schramm and Werner, in a seminal series of papers [19–21], have been able to
verify this rigorously; see [18] for a survey over the complete series of papers.
They have shown that

ξ2(M,N) = (
√

24M + 1+ √
24N + 1− 2)2 − 4

48
.(1.5)

This gives ξ2(2,2) = 35/12. As the proof of (1.5) is based on conformal
invariance, there is no analogue ind = 3. The only value known in dimension
d = 3 is ξ3(1,2) = ξ3(2,1) = 1. Indeed, there is no reason whyξ3(2,2) should be
a rational number. The known bounds show that

2= 2ξ3(2,1) > ξ3(2,2) > ξ3(2,1) = 1,

where the strict inequalities follow from the strict concavity ofλ 
→ ξ3(2, λ)

established in [16].
Extensions of the notion of intersection exponents top > 2 packets of Brownian

motions in the plane are usually based on the event that there are nopairwise
intersections of the setsB1(R), . . . ,Bp(R). The behavior of intersection local
times ofp Brownian motions is, of course, related to the event that there are no
joint intersections of all packets. Again, subadditivity may be used to show that
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there exists a numberξ̄2(M
1, . . . ,Mp) > 0 such that

P{B1(R) ∩ · · · ∩ Bp(R) = ∅} = R−ξ̄2(M
1,...,Mp)+o(1) asR ↑ ∞,(1.6)

where B1(R), . . . ,Bp(R) are packets ofM1, . . . ,Mp independent Brownian
motions each started uniformly on∂B(0,1) and running up to the first exit from
B(0,R). This class of exponents does not seem to be treated in the literature so far.
Note that the exponents̄ξ are smaller than all the exponents discussed before, but
it is an open problem to determine their value.

1.3. Main results.

1.3.1. Lower tails for intersection local times.We now formulate our main
results precisely, starting with a result about thelower tails of the intersection
local times. As we believe that this is of some independent interest, we formulate
the result in a somewhat greater generality than needed in our multifractal analysis.

To this end we letM,N ∈ N and letW1, . . . ,WM+N be independent Brownian
motions in Rd , d = 2,3, started in the origin. We define the lifetimes of the
Brownian motionsWi , 1≤ i ≤ M + N , by

ζ i := τ i
R = inf{t > 0 :Wi(t) /∈ B(0,R)},

whereR ∈ (1,∞] may be infinite ifd ≥ 3.
We divide the Brownian motions, as before, in two packetsB1(R) and

B2(R) of M , respectivelyN , motions. On the intersection of the two packets,
S = B1(R) ∩ B2(R), one can define a natural locally finite measure�, the
( projected) intersection local time, which can be described symbolically by the
formula

�(A) =
M∑
i=1

M+N∑
j=M+1

∫
A

dy

∫ ζ i

0
ds

∫ ζ j

0
dt δy

(
Wi(s)

)
δy

(
Wj(t)

)
(1.7)

for A ⊂ Rd Borel.

Rigorous constructions of the random measure� are reviewed in ([13], Sec-
tion 2.1). Note that in other sections of this paper we use the same symbol,�,
for intersection local times of Brownian motions running for fixed time. It should
always be clear from the context to which situation we are referring.

Let U := B(0,1) ⊂ Rd be the open unit ball inRd . In [13] the authors determine
the upper tails of the random variables�(U) in the caseM = N = 1. It turns out
there thatP{�(U) > δ} ≈ exp(−θδ−1/2) asδ ↑ ∞, with the rateθ given in terms
of a variational problem. Our first result shows that the lower tails are fatter, the
probabilitiesP{�(U) < δ} decaying only polynomially whenδ ↓ 0.

Recall the definition of the intersection exponentξd(M,N) from (1.4).
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THEOREM 1.1.

lim
δ↓0

logP{�(U) < δ}
− logδ

= −ξd(M,N)

4− d
.

An important aspect of this result lies in the fact that the proof also provides
an intuitive description of thestrategyby which the Brownian paths achieve the
event{�(U) < δ}. Loosely speaking, all Brownian paths run freely until they hit
the boundary of the ballB(0, δ1/(4−d)) for the first time. By this time they have
accumulated an intersection local time of the orderδ. From then on they do not
intersect anymore until they exit the unit ballU for the first time, and after that
they never return to the unit ball again. The proof of Theorem 1.1 will be given in
Section 2.

1.3.2. The multifractal spectrum.We now suppose thatW1, . . . ,Wp are
independent Brownian motions inRd , d = 2,3, started in the origin and running
for one unit of time. By classical results of Dvoretzky, Erdős, Kakutani and Taylor
(see, e.g., [11, 22] for modern proofs) almost surely the intersection set

S = W1([0,1]) ∩ · · · ∩ Wp([0,1])(1.8)

contains points different from the origin if and only ifp(d −2) < d. In these cases
the intersection local time� is given by the symbolic formula

�(A) =
∫
A

dy

p∏
i=1

∫ 1

0
dt δy

(
Wi(t)

)
for A ⊂ Rd Borel.(1.9)

We focus on the case of two independent Brownian motionsW1 andW2 in Rd ,
d = 2,3, but come back to the case ofp > 2 motions in the next section.

The fatness of the lower tails observed in Theorem 1.1 is the reason for the
existence of thin points, that is, for the fact that there is a nontrivial multifractal
spectrum for� to the right of the typical value 4− d. Our main result determines
this spectrum.

DEFINITION 1.2. Denote by

T (a) =
{
x ∈ S : lim sup

r↓0

log�(B(x, r))

logr
≥ a

}
,

T s(a) =
{
x ∈ S : lim sup

r↓0

log�(B(x, r))

logr
= a

}
the sets ofa-thin points, respectively, strictlya-thin points inS.

Recall from (1.2) that ford = 2 andd = 3 there are not thick points; that is,
T s(a) = ∅ for a < 4− d andT (a) = T (4− d) for a ≤ 4− d.
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THEOREM 1.3. Suppose� is the intersection local time of two Brownian
motions inRd , for d = 2,3, starting in the origin and running for one unit of
time.

(i) In d = 2 we have

P{T s(a) 
= ∅} > 0 iff P{T s(a) 
= ∅} = 1 iff 2≤ a ≤ 2ξ2(2,2)

ξ2(2,2) − 2
.

Moreover, for these values ofa, almost surely,

dimT (a) = dimT s(a) = 2
ξ2(2,2)

a
+ 2− ξ2(2,2).

(ii) In d = 3 we have

P{T s(a) 
= ∅} > 0 iff P{T s(a) 
= ∅} = 1 iff 1≤ a ≤ ξ3(2,2)

ξ3(2,2) − 1
.

Moreover, for these values ofa, almost surely,

dimT (a) = dimT s(a) = ξ3(2,2)

a
+ 1− ξ3(2,2).

The result remains unchanged if the motions are running for any finite amount
of time or, in the cased = 3, even for infinite time. Note that in the cased = 2,
by (1.5), we get an explicit multifractal spectrumf (a) = (1/12)(70/a − 11). Let
us point out here that the multifractal spectrum for the intersection local times is
strictly convex, hence it cannot be found by means of the multifractal formalism,
which always predicts concave spectra. The proof of Theorem 1.3 is given in
Section 3.

1.3.3. Intersections of more than two paths.Recall from [2] that there is
no analogous result in the case of a single Brownian path equipped with the
occupation measure, as in this case the lower tails are also exponential and thin
points fail to exist. There are, however, analogous results for the intersection of
any numberp ≥ 2 of Brownian paths in the plane, which we now formulate.

THEOREM 1.4. Suppose� is the intersection local time ofp planar Brownian
motions, starting in the origin and running for one unit of time. Let ξ = ξ̄2(2,
p. . . ,2) > 0 be the multiple intersection exponent introduced in(1.6).Then,

P{T s(a) 
= ∅} > 0 iff P{T s(a) 
= ∅} = 1

iff

{
2 ≤ a ≤ 2ξ/(ξ − 2), if ξ > 2,

2 ≤ a < ∞, if ξ ≤ 2.

Moreover, for these values ofa,

dimT (a) = dimT s(a) = 2
ξ

a
+ 2− ξ almost surely.
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Forp = 2 we havēξ2(2,2) = 35/12> 2, and hence there is a finite critical value
2ξ/(ξ −2) = 70/11 beyond which noa-thin points exist. We donotknow whether
the critical value is still finite for larger values ofp. The proof of Theorem 1.4 is
very similar to the proof of Theorem 1.3 and hence details are omitted here.

1.4. Overview. We have divided the remainder of this paper into two sections.
Section 2 is devoted to the tail asymptotics at zero of the intersection local times,
and Section 3 is devoted to the proof of the multifractal spectrum of intersection
local time.

In Section 2.1 we show that, if two Brownian paths intersect, they instantly
produce some positive amount of intersection local time. This is a nontrivial fact,
as times when the paths intersect arenot stopping times for at least one of the
Brownian motions. The exact statement, Proposition 2.3, is a crucial ingredient in
the proof of the upper bound in the tail asymptotics. The proof uses the nonpolarity
of one Brownian path to show that ifone intersection occurs, we immediately
have a large number of intersections. We then use self-similarity of the paths and
a decoupling techniqueto argue that this necessarily leads to positive intersection
local time.

In Section 2.2 we give the proof of the upper bound in Theorem 1.1. The
proof is based on acoarse grainingtechnique. We split the Brownian paths into
pieces using suitably defined stopping times. Whenever two pieces intersect, by
Proposition 2.3, some positive amount of intersection local time is produced. As
the total amount of intersection local time allowed is small, many pieces do not
intersect, leading to the upper bound in the probability. This fairly rough argument
is only able to givelogarithmicasymptotics in Theorem 1.1; one would conjecture
that P{�(U) < δ} can be estimated up to constants by a power ofδ, but our
technique fails to achieve this.

Section 2.3 contains the proof of the lower bound in Theorem 1.1. Here we only
have to show that the following strategy (explained already after the theorem) is
successful: Put no restrictions on the Brownian motions until they leave the small
ball of radiusδ1/(4−d) for the first time, but demand that their paths do not intersect
afterwards. A difficulty lies in the fact that the paths might return to this ball and
produce more intersection local time by intersecting with “old” pieces of the path.
We solve this problem by giving a separate bound for the intersection mass in
the small ball. An alternative would be to use results of Lawler [14] to control
the probability that Brownian motions do not intersect and simultaneously do not
return to the small ball except in a small neighborhood of their respective starting
points, but we have opted for the more self-contained argument here.

In Section 2.4 we establish the connection between our tail asymptotics and
the multifractal spectrum, providing “local versions” of the tail results in the form
needed in the proof of Theorem 1.3; see Lemmas 2.9 and 2.11. Clearly, one can
obtain the tail behavior ofsmallballs of radiusr > 0, by Brownian scaling using
that, in law,rd−4�R(B(0, r)) = �R/r(B(0,1)), where the index at� indicates the
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size of the ball where the Brownian motions are stopped. In Lemma 2.11, instead
of looking at a pair of Brownian motions started in the same point, we fix a
point x different from the motions’ starting points, and give the probability that
the intersection local time�(B(x, r)) is smaller thanra , if both Brownian motions
are conditioned on hittingx. Heuristically, we split the Brownian paths upon first
hitting ∂B(x, ra/(4−d)). To the incoming paths we apply atime-reversaland end up
with two pairs of paths which are approximately independent Brownian motions,
started uniformly on∂B(x, ra/(4−d)). Now Theorem 1.1 and Brownian scaling
yield that the desired probability is of orderrξd(2,2)(1−a/(4−d)). Lemma 2.11 is
used in the proof of the upper bound in Theorem 1.3, and Lemma 2.9 is a variant
tailored for use in the lower bound in Theorem 1.3.

In Section 3.1 we verify the upper bounds in Theorem 1.3; see Proposition 3.1.
Given Lemma 2.11 these are relatively standard and based on thefirst moment
method, that is, on estimating expectations.

In Section 3.2 we explain the setup of the proof of the lower bounds in
Theorem 1.3. Our technique usespercolation limit sets	[γ ] as test sets to
determine the Hausdorff dimension of a fractal. More precisely, if a fractalA,
in our case the set of thin points, hits a test set with a certain parameterγ with
positive probability, this gives aγ -dependent lower bound on the dimension ofA;
see Lemma 3.3. The crucial hitting estimate of	[γ ] and the set of thin points is
formulated as Proposition 3.5, and in Section 3.2 we only show that the upper
bounds in Theorem 1.3 follow from this. The remainder of the paper is then
devoted to the proof of Proposition 3.5.

In Section 3.3 we show how to overcome the main obstacle in the proof of
Proposition 3.5, the long-range dependence. Note that (other than in the thick
points problem) long-range dependence is intrinsic in the problem of thin points: If
a ball carries very small intersection local time over some time interval,anyof the
two Brownian motions may always return to that ball and create more intersection
local time. The main result of this section, Proposition 3.8, shows that in a suitable
sense a large number of dyadic cubes are visited only once by both Brownian
motions. The proof uses atwo-scale techniquesimilar to the one used in [2]. On
the coarsescale we use a dimension argument to ensure that we have enough
cubes which are visited by both Brownian motions and retained in the percolation
procedure. Within every such big cube we can independently use arguments on the
finescale, based ondecouplingand delicatesecond moment estimates, which show
that we have sufficiently many small scale cubes, which are not revisited before the
motions leave the big cube. Finally, ensuring that the motions do not revisit many
small cubes after leaving the big cube only needs afirst momenttechnique. This
section is the technically most demanding part of the paper.

In Section 3.4 we complete the proof of Proposition 3.5. Thanks to Proposi-
tion 3.8 one can focus on alocalizednotion of thin points, and use the decoupling
technique and Lemma 2.9 to ensure the existence of thin points in the percolation
limit set. This final part of the proof follows largely the arguments of [13].
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2. Lower tail asymptotics. Throughout the paper we use the following
notation. For any open or closed setsA1, A2, . . . andi = 1, . . . , p define

τ i(A1) := inf{t ≥ 0 :Wi(t) ∈ A1},
(2.1)

τ i(A1, . . . ,An) :=


inf{t ≥ τ i(A1, . . . ,An−1) :Wi(t) ∈ An},
if τ i(A1, . . . ,An−1) < ∞,

∞, otherwise.

Further forn ∈ N andR1, . . . ,Rn > 0 let

τ i
R1,...,Rn

:= τ i(∂B(0,R1), . . . , ∂B(0,Rn)
)

(2.2)

be the hitting time of∂B(0,Rn) after having hit (in this order)∂B(0,R1), . . . ,

∂B(0,Rn−1).
For the reader’s convenience we recall the following well-known lemma for

the hitting time of concentric balls. For a single Brownian motionW let τ(A) :=
inf{t ≥ 0 :W(t) ∈ A} andτr := τ(∂B(0, r)) be the first exit time fromB(0, r).

LEMMA 2.1. Let r1 ≤ r ≤ r2 and letW be a Brownian motion started in some
point in ∂B(0, r). Then

P
{
τr1 < τr2

}= fd(r, r1, r2) :=


log(r/r2)

log(r1/r2)
, if d = 2,

(r2/r) − 1

(r2/r1) − 1
, if d = 3,

and

P
{
τr1 < ∞}=

{
1, if d = 2,

r1/r, if d = 3.

The proof is standard and can be found in textbooks, for example, in ([7],
Chapter 3). From this statement we get the following useful corollary.

COROLLARY 2.2. Let ρ ∈ (0,1/2) andx ∈ Rd and assumer1 < ρr < ρ2r2.
Let D, D1 and D2 be each either a ball of radiusr (resp. r1 or r2) or a box
of sidelengthr (resp. r1 or r2), centered inx. Further let y ∈ ∂D and z ∈ ∂D2
and let W be a Brownian motion started iny. Then there exists a constant
c̃ := c̃(ρ) ∈ (0,∞) depending only onρ such that

1

c̃
fd(r, r1, r2) ≤ P{τ(∂D1) < τ(∂D2)} ≤ c̃fd(r, r1, r2),

(2.3)
1

c̃
fd(r, r2, r1) ≤ P{τ(∂D2) < τ(∂D1)} ≤ c̃fd(r, r2, r1),
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and, in the case whereD2 is a ball,

1

c̃
fd(r, r1, r2) ≤ P

{
τ(∂D1) < τ(∂D2)|W (

τ(∂D2)
)= z

}≤ c̃fd(r, r1, r2).(2.4)

PROOF. Without loss of generality we may assumex = 0. Note that, in the
case whereD1 is a box, changingD1 into a ball of radiusr1/2 only decreases the
probability we want to estimate. Now

f3(r, r1/2, r2)

f3(r, r1, r2)
= r2/r1 − 1

2r2/r1 − 1
≥ ρ−2 − 1

2ρ−2 − 1
> 0

and

f2(r, r1/2, r2)

f2(r, r1, r2)
= log(r1/r2)

log(r1/r2) − log(2)
≥ 2 log(ρ)

2 log(ρ) − log(2)
> 0.

On the other hand, changingD1 into a ball of radiusr1 increases the probability
we want to estimate. By a similar argument we may assume thatD is a ball. For
the first equation in (2.3) it is sufficient to apply the same argument once more
to D2, and the proof of the second equation is analogous.

The proof of (2.4) requires a little more work. We may now assume thatD1,
D andD2 are balls. Define the open annulusAr := {u ∈ Rd :‖u‖ ∈ (3r/4,3r/2)}.
Note thatAr ∩ D1 = ∅ and∂D ⊂ Ar ⊂ D2. Define the random time

T := sup{t ≥ 0 :W(t) ∈ ∂D andW(s) ∈ A for all s ≤ t},
which is the starting time of the first excursion off∂D that leavesA. Note that
[with Ur the normalized Lebesgue measure on∂B(0, r)] there is a constantc > 0,
independent ofy, u andr , such that

c−1 ≤ Py{W(T ) ∈ du}
Ur (du)

≤ c.

Further, foru ∈ ∂D let Qu be the law of a Brownian motion started inu and
conditioned to leaveA before it returns to∂D (if it does),

Qu := Lu

(
W |W(t) /∈ D for all t ∈ (0, τ (Ac)

))
.

We can now decompose the Brownian motion path into the piece before and into
the piece afterT to obtain for any measurable setB ⊂ ∂D2:

Py

{
τ(∂D1) < τ(∂D2) andW

(
τ(∂D2)

) ∈ B
}

=
∫
∂D

Py{W(T ) ∈ du}Qu

{
τ(∂D1) < τ(∂D2) andW

(
τ(∂D2)

) ∈ B
}

≥ 1

c

∫
∂D

Ur (du)Qu

{
τ(∂D1) < τ(∂D2) andW

(
τ(∂D2)

) ∈ B
}
.
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By rotational symmetry this equals

1

c
Ur2(B)

∫
∂D

Ur (du)Qu{τ(∂D1) < τ(∂D2)}

= 1

c
Ur2(B)

∫
∂D

Ur (du)Pu{τ(∂D1) < τ(∂D2)}

= 1

c
Ur2(B)fd(r, r1, r2).

Analogously we getPy{τ(∂D1) < τ(∂D2) andW(τ(∂D2)) ∈ B} ≤ cUr2(B)fd(r,

r1, r2). For a constantc′ ∈ (0,∞) such that 1/c′ ≤ Py{W(τ(∂D2)) ∈ du}/
Ur2(du) ≤ c′, (2.4) holds withc̃ = c · c′. �

2.1. Intersecting paths produce intersection local time.A basic principle in
the proof of Theorem 1.1 is that, whenever two paths intersect, they immedi-
ately produce a positive amount of intersection local time. This statement, Propo-
sition 2.3, is proved using adecoupling technique, which is also a fundamental
tool in the proof of the lower bound for the multifractal spectrum, performed in
Section 3.

PROPOSITION 2.3. Let W1, W2 be two independent Brownian paths with
W1(0),W2(0) ∈ U and τ1 = τ1(Uc), τ2 = τ2(Uc) be the first exit times from the
unit ball. Moreover letS = W1([0, τ1]) ∩ W2([0, τ2]) be the intersection of the
paths, and let � be the intersection local time of the paths stopped at timeτ1,
respectively, τ2. Then

P{�(U) > 0|S 
= ∅} = 1.

PROOF. First fix the pathW1 and letA := W1([0, τ1]). Define a stopping time
σ = inf{t > 0 :W2(t) ∈ A} for W2 and recall that, ifσ < τ2, the pointW2(σ ) is
regular for the setA, which means that

inf{t > σ :W2(t) ∈ A} = σ almost surely.

As points are polar, almost surely, there existst ∈ (σ, τ2) such thatW2(t) ∈
A \ {W2(σ )}. Hence, givenδ > 0 we can find a smallε > 0 such that

P
{
inf
{
t > σ :W2(t) ∈ A \ B

(
W2(σ ), ε

)}
< τ2|σ < τ2}> 1− δ.

For every integerM ≥ 2 we can iterate this procedureM2d times and, averaging
overW1 again, we can find for everyδ > 0 anε > 0 such that the event

AM = {there existx1, . . . , xM2d ∈ S with |xi − xj | > ε ∀ i 
= j, |xi | < 1− ε ∀ i}
satisfiesP{AM |S 
= ∅} > 1− δ. Hence

P{�(U) = 0|S 
= ∅} ≤ P{S 
= ∅}−1P
({�(U) = 0} ∩ AM

)+ δ.
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It therefore suffices to show that there exists an absolute constantε̃ > 0 such that,
for any largeM ,

P
({�(U) = 0} ∩ AM

)≤ 2d(1− ε̃)M
M→∞−→ 0.(2.5)

To verify (2.5) we write Dk for the collection of all dyadic cubesV =∏d
i=1[ki/2k, (ki + 1)/2k), k1, . . . , kd integers. For each such cubeV we denote

by B(V ) the open ball centered in the center ofV , of radius 2−k . We denote

Dk(U) := {V ∈ Dk :B(V ) ⊂ U}.
Furthermore divideDk(U) into m = 2d subfamiliesDk(U,1), . . . ,Dk(U,m) such
thatB(V ) ∩ B(V ′) = ∅ if V 
= V ′ are in the same subfamily.

Fix k such that
√

d 2−k < ε. For eachj = 1, . . . ,m we now introduce a
decouplingσ -field Fk(j). The idea is to consider the first entranceρ(1) of a path
into one of the cubesV (1) ∈ Dk(U, j), then its first exitσ(1) [after ρ(1)] of the
ball B(V (1)), afterσ(1) its first entranceρ(2) into some new boxV (2), and so
on. Fk(j) will then use information of the pathsbetweenthe successive times of
leavingB(V (n)) and enteringV (n + 1), n ∈ N.

For the moment we suppressj in the notation. Formally fori = 1,2 we
introduce a sequence of (random) sets(V i(n) :n = 1, . . . , νi) and stopping times

0= σ i(0) < ρi(1) < σ i(1) < ρi(2) < · · · < σi(νi) < τ i < ρi(νi + 1),

by

ρi(1) := inf{τ i(V ) :V ∈ Dk(U, j)},
τ i(V i(n)) = ρi(n) [this definesV i(n)],

σ i(n) = τ i(V i(n),B
(
V i(n)

)c) if ρi(n) < ∞,

ρi(n + 1) = inf
{
τ i(V ) :V ∈ Dk(U, j) \ {V i(1), . . . , V i(n)}},

νi := max{n :ρi(n) < τ i}.
Now define

F i
k (j) := σ

(
Wi(σ i(n) + t

)
, t ∈ [0, ρi(n + 1) − σ i(n)], n = 0, . . . , νi),

andFk(j) := F 1
k (j) ∨ F 2

k (j). Denote

Bk(j) := {V ∈ Dk(U, j) : τ i(V ) < τ i for all i = 1,2},
and note that the events{V ∈ Bk(j)}, for V ∈ Dk , are inFk(j). Also observe that

AM ⊂
m⋃

j=1

{#Bk(j) ≥ M},

and that

{#Bk(j) ≥ M} ∈ Fk(j) for everyj.
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It follows easily from the nontriviality of the intersection local times and the
boundedness of the density of the harmonic measure, that there exists an absolute
constant̃ε > 0 such that, for allk ∈ N, V ∈ Dk , x1, x2 ∈ ∂V , y1, y2 ∈ ∂B(V ),

Px1,x2
{
�V (B(V )) > 0|W1(τ1(B(V )c

))= y1,W2(τ2(B(V )c
))= y2}> ε̃,

where Px1,x2 refers to two Brownian motionsW1,W2 with W1(0) = x1 and
W2(0) = x2, and�V is the intersection local time of the pathsW1([0, τ1(B(V )c)])
andW2([0, τ2(B(V )c)]).

Note that, givenFk(j), the family of random variables(�V :V ∈ Bn(j)) are
independent. We can now put this information together and get

P
({�(U) = 0} ∩ AM

)
≤

m∑
j=1

P{�V (B(V )) = 0 for all V ∈ Bk(j), #Bk(j) ≥ M}

=
m∑

j=1

E
[
P{�V (B(V )) = 0 for all V ∈ Bk(j)|Fk(j)}1{#Bk(j)≥M}

]

=
m∑

j=1

E

[ ∏
V ∈Bk(j)

P{�V (B(V )) = 0|Fk(j)}1{#Bk(j)≥M}
]

≤ m(1− ε̃)M,

which is (2.5), and hence the proof is complete.�

2.2. Proof of Theorem1.1, upper bound. The idea of the proof is to use a
sequence of stopping times to divide each Brownian path into disjoint pieces.
Whenever there is an intersection between matching pieces of the two packets,
a certain amount of intersection local time is produced. The task is to establish
some form of independence between the pieces and estimate the probability of no
intersection between matching pieces.

We need three lemmas to prepare the proof of Theorem 1.1. Forr > 0 denote
by Ur the uniform distribution on∂B(0, r). For x ∈ B(0, r) let mr,x(dy) =
P{W(τr) ∈ dy|W(0) = x} be the harmonic measure on∂B(0, r) for Brownian
motion started inx. If x ∈ ∂B(0, r) andα > 1, let

Cα := sup
y∈∂B(0,αr)

mαr,x(dz)

Uαr(dz)

∣∣∣∣
z=y

, cα := inf
y∈∂B(0,αr)

mαr,x(dz)

Uαr(dz)

∣∣∣∣
z=y

(2.6)

be the maximal and minimal value of the density ofmαr,x with respect to the
uniform distribution on∂B(0, αr). Note that, by Brownian scaling and rotational
symmetry, both values depend neither onx nor on r . Further note that (by the
Markov property ofW ), α 
→ Cα is decreasing andα 
→ cα is increasing. For finite
measuresµ andν we use the orderingµ ≤ ν iff µ(A) ≤ ν(A) for all measurableA.
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LEMMA 2.4. LetLx andLUr denote the laws of Brownian motionW started
in x ∈ ∂B(0, r), respectively, in a point uniformly distributed on∂B(0, r). Given a
Brownian pathW : [0,∞) → Rd andK > 4 we define

W(r) : [0, τKr/2 − τ2r ] → Rd, W(r)(t) = W(τ2r + t).

With the notation of(2.6)we have for ally ∈ ∂B(0,Kr) that

Lx

(
W(r)|W(τKr) = y

)≤ (C2
2/c2)LUr

(
W(r)).

PROOF. Fix B ⊂ ∂B(0,Kr) Borel and a suitable (say bounded continuous)
test function� :C([0,∞);Rd) → R. The strong Markov property and three
applications of (2.6) yield

Ex

[
�
(
W(r))1W(τKr )∈B

]
=
∫
∂B(0,2r)

m2r,x(dz)E
[
�
(
W(r))1W(τKr )∈B |W(τ2r ) = z

]
≤ C2

∫
∂B(0,2r)

U2r (dz)E
[
�
(
W(r))1W(τKr )∈B |W(τ2r ) = z

]
= C2

∫
∂B(0,r)

Ur (dy)

∫
∂B(0,2r)

Py{W(τ2r ) ∈ dz}

× E
[
�
(
W(r))1W(τKr )∈B |W(τ2r ) = z

]
= C2EUr

[
�
(
W(r))1W(τKr )∈B

]
= C2

∫
∂B(0,Kr/2)

EUr

[
�
(
W(r))|W(τKr/2) = z

]
P{W(τKr/2) ∈ dz}mKr,z(B)

≤ C2
2EUr

[
�
(
W(r))]UKr(B)

≤ (C2
2/cK)EUr

[
�
(
W(r))]Px{W(τKr) ∈ B},

from which the result readily follows.�

Fix an arbitrary smallε > 0 and assume thatr ∈ (0,1/4) is such that

r ≤ (
4ξd (M,N)(C2

2/c2)
M+N )−1/ε

.(2.7)

For i = 1, . . . ,M + N and any nonnegative integerk, let

Ri
k := τ i

2rk+1, Si
k := τ i

4rk+1, T i
k := τ i

rk .

Note that for Brownian motions withWi(0) = 0 for i = 1, . . . ,N + M , we have
Ri

k < Si
k < T i

k < Ri
k−1 < · · · for every positive integerk. The idea is to consider

the Brownian paths in the intervals[Si
k, T

i
k ], k ≥ 1, only, and to use the remaining
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intervals for a decoupling of these paths. Hence, we letLk be the intersection local
time of the packets

W1
k :=

M⋃
i=1

Wi([Si
k, T

i
k ]) and W2

k :=
M+N⋃

i=M+1

Wi([Si
k, T

i
k ]).

LEMMA 2.5. P{L0 = 0} = P{W1
0 ∩ W2

0 = ∅}.

PROOF. This is immediate from Proposition 2.3 and Brownian scaling.�

In addition to 4r < 1 and (2.7) we assume thatr is small enough such that

P{L0 = 0} = P{W1
0 ∩ W2

0 = ∅} ≤ 1
2(4r)ξd(M,N)−ε,

which is possible by Lemma 2.5, the definition (1.4) ofξd(M,N) and Brownian
scaling. We let

F := σ
(
Wi(Ri

k), i = 1, . . . ,M + N, k ≥ 0
)
.

GivenF , the random variablesLk depend only on packets of Brownian motions
with disjoint time intervals and fixed initial and exit points, hence by the strong
Markov property the sequence(Lk)k∈N is independent.

LEMMA 2.6. Let X0,X1, . . . be independent copies ofL0 and defineC1 :=
(C2

2/c2)
M+N . Then almost surely, for n ∈ N,

L
(
(Lk)k=1,...,n|F )≤ Cn

1L
((

r(4−d)kXk

)
k=1,...,n

)
.

PROOF. As we know already the independence of(Lk)k∈N given F , it
remains to show that

L(Lk|F ) ≤ C1L
(
r(4−d)kXk

)
for all k ∈ N.

By Brownian scaling the law ofr−(4−d)kLk givenF is the law ofL0 with respect
to an(M +N)-tuple of independent Brownian motions each started at a fixed point
on ∂B(0,2r) and conditioned to exitB(0,2) in a fixed point. Hence the result is a
direct consequence of Lemma 2.4.�

PROOF OF THEOREM 1.1, UPPER BOUND. We are now ready to prove the
upper bound in Theorem 1.1.

Let m ∈ N be large enough such that, withθ := r(4−d)m,

P{X0 < θ} ≤ 4ξd (M,N)rξd(M,N)−ε.
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This choice is possible by the definition ofξd(M,N) in (1.4) and by Lemma 2.5.
We first look at the sequenceδn = r(4−d)n, n ∈ N. By Lemma 2.6 we have

P{�(B(0,1)) < δn}

≤ P

{
n−m∑
k=1

Lk < δn

}
≤ Cn−m

1 P

{
n−m∑
k=1

r(4−d)kXk < δn

}

≤ Cn−m
1 P

{
n−m∑
k=1

Xk < r(4−d)(m−n)δn

}
= Cn−m

1 P

{
n−m∑
k=1

Xk < θ

}

≤ (C1P{X0 < θ})n−m ≤ (
4ξd (M,N)C1

)n
θ−ξd(M,N)δ(ξd(M,N)−ε)/(4−d)

n

≤ θ−ξd (M,N)δξd(M,N)/(4−d)−2ε
n ,

where we used (2.7) in the last inequality. Hence

lim sup
n→∞

− logP{�(B(0,1)) < δn}
logδn

≤ −ξd(M,N)

4− d
+ 2ε.

By monotonicity, and using that logδn/ logδn+1 → 1, we get the statement for
arbitrary sequencesδ ↓ 0. Finally, the upper bound in the assertion follows asε > 0
was arbitrary. �

2.3. Proof of Theorem1.1, lower bound. For the proof of the lower bound, in
principle, we have to present one particular strategy to attain a small amount of
intersection local time and then prove that this strategy is sufficiently likely.

As pointed out before, the strategy is to put no restrictions on the motions until
they leave a small ball of radiusδ for the first time, but demand that they do not
intersect afterwards. Note, however, that paths may return toB(0, δ) and contribute
to the intersection local time there by intersecting an initial piece of the path.
This means that the actual decoupling at the boundary∂B(0, δ) is rather involved.
We circumvent these difficulties by following a slightly different route and give a
strong upper bound forP{�(B(0, δ1+ε)) > δ4−d} asδ ↓ 0 as well as a lower bound
for P{�(B(0,1) \ B(0, δ1+ε)) = 0}.

Recall that our Brownian motions are stopped upon leavingB(0,R) where
R ∈ (1,∞) if d = 2 andR ∈ (1,∞] if d = 3.

LEMMA 2.7. Let ε > 0. For all δ > 0 sufficiently small

P
{
�
(
B(0, δ1+ε)

)
> δ4−d}≤ exp(−δ−ε/4).(2.8)

PROOF. By [13], Theorem 1.1, there exists a constantθ = θ(R) ∈ (0,∞) such
that

lim
a→∞a−1/2 logP{�(B(0,1)) > a} = −θ.(2.9)
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The probabilities on the left-hand side are increasing inR, the constantθ depends
on R, but in the cased = 3, we haveθ(R) ↓ θ(∞) > 0 asR ↑ ∞. Hence, for
d = 3 we can restrict attention to the caseR = ∞ and get, by Brownian scaling,
for sufficiently smallδ > 0,

P
{
�
(
B(0, δ1+ε)

)
> δ

}= P{�(B(0,1)) > δ−ε} ≤ exp(−δ−ε/4).(2.10)

For the cased = 2 we have to spend a little more work, as Brownian scaling does
not apply directly. We have to consider our Brownian motionsWi stopped upon
leavingB(0,R) for different values ofR now and writeWi

R , �R and so on for the

corresponding random objects. Forδ > 0 let R(δ) := δ−(1+ε)R. Now Brownian
scaling yields

P
{
�
(
B(0, δ1+ε)

)
> δ2}= P

{
�R

(
B(0, δ1+ε)

)
> δ2}= P

{
�R(δ)(B(0,1)) > δ−2ε}.

For i = 1, . . . ,M + N let τ i(1) := τ i
R,1, τ i(2) := τ i

R,1,R,1 [recall the notation
from (2.2)] and so on. Define

Xi := min
{
n ∈ N : τ i(n) > τ i

R(δ)

};
this is (one plus) the number of downcrossings of the annulusB(0,R) \B(0,1) by
the stopped Brownian motionWi

R(δ).
Before we continue the main argument we establish some auxiliary inequalities

for theXi . The distribution ofXi is geometric with failure parameter

p(δ) := P
{
τ i(1) < τ i

R(δ)

}
= Px

{
τ1 < τR(δ)

} [for x ∈ ∂B(0,R)]
= 1− log(R)

log(R(δ))
= 1− log(R)

log(R) − (1+ ε) log(δ)
.

Hence

E[Xi] = 1

1− p(δ)
= log(R) − (1+ ε) log(δ)

log(R)
,

and forK ∈ N,

E
[
X11{X1≥K}

]= (
K

p(δ)
+ 1

1− p(δ)

)
p(δ)K.

In particular, forK = K(δ) = δ−ε/2 andδ > 0 sufficiently small

(M + N)MNE[X1]M+N−1E
[
X11{X1≥K(δ)}

]
< 1

2 exp(−δ−ε/4).(2.11)

On the other hand, by (2.9) forδ > 0 small enough

MNK(δ)2P

{
�R(B(0,1)) >

δ−2ε

MN K(δ)2

}
≤ 1

2
exp(−δ−ε/4).(2.12)
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Now we come back to the main argument. A simple coupling argument shows
that the contribution ofWi to � betweenτ i(n) andτ i(n + 1) is stochastically no
larger than the contribution between time 0 andτ i(1), that is, between 0 andτ i

R .
For k = (k1, . . . , kM+N) ∈ NM+N abbreviate

σ(k) := (k1 + · · · + kM)(kM+1 + · · · + kM+N) ≤ MN

M+N∏
i=1

ki.

We get

P
{
�R(δ)(B(0,1)) > δ−2ε}

≤
∞∑

k1=1

· · ·
∞∑

kM+N=1

σ(k)P

{
�R(B(0,1)) >

δ−2ε

σ (k)
;

Xi = ki, for all i = 1, . . . ,M + N

}
.

Decomposing the sum into the contribution coming fromk1, . . . , kM+N all smaller
thanK(δ) on the one hand, and the contribution coming from allk1, . . . , kM+N

with someki > K(δ) on the other hand, we can bound the right-hand side by

MNK(δ)2P

{
�R(B(0,1)) >

δ−2ε

MNK(δ)2

}
+ (M + N)MNE[X1]M+N−1E

[
X11{X1≥K(δ)}

]
≤ 1

2
exp(−δ−ε/4) + 1

2
exp(−δ−ε/4),

where we used (2.11) and (2.12) in the last step. This was the claim.�

The second ingredient for the proof of the lower bound is an estimate on the
probability that a certain annulus has zero intersection local time.

LEMMA 2.8. LetR ∈ (1,∞) if d = 2, andR ∈ (1,∞] if d = 3. Then

lim inf
δ↓0

logP{�(B(0,1) \ B(0, δ)) = 0}
− logδ

≥ −ξd(M,N).

PROOF. Denote, forR > 0,

W1(R) =
M⋃
i=1

Wi([0, τ i
R]) and W2(R) =

M+N⋃
i=M+1

Wi([0, τ i
R]).

Further for r > 0 let Pr denote the probability measure under whichWi(0),
i = 1, . . . ,M + N , are independent and uniformly distributed on∂B(0, r). In the
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caseR < ∞ we have by (1.4) and Brownian scaling, asδ ↓ 0 (here we do not need
Lemma 2.5 which would yield equality in the first step)

P
{
�
(
B(0,1) \ B(0, δ)

)= 0
}≥ Pδ{W1(R) ∩ W2(R) = ∅}

(2.13)

≥
(

δ

R

)ξd (M,N)+o(1)

.

In the cased = 3 andR = ∞ this estimate is apparently not good enough.
However, due to transience, we can postulate that our Brownian motions do not
return toB(0,1) once they have leftB(0,2) and then apply (2.13) withR = 2.
Indeed, consider the events [recall (2.2)]

Ai = {τ i
2,1 = ∞} and A =

M+N⋂
i=1

Ai.

Note that Pδ(A
i) = 1

2 for all i and δ ∈ [0,1], hencePδ(A) = 2−(M+N). By
the strong Markov property applied toτ i

2, the family ({W1(2) ∩ W2(2) =
∅}, A1, . . . ,AM+N) is independent underPδ for all δ ∈ (0,1). Thus

P
{
�
(
B(0,1) \ B(0, δ)

)= 0
}

≥ Pδ

({W1(2) ∩ W2(2) = ∅} ∩ A
)

≥ 2−(M+N+ξd (M,N))δξd(M,N)+o(1) asδ ↓ 0. �

PROOF OFTHEOREM1.1,LOWER BOUND. We can now assemble the pieces.
Fix ε > 0. We make the simple observation that forδ > 0

P{�(B(0,1)) < δ4−d}
≥ P

{
�
(
B(0,1) \ B(0, δ1+ε)

)= 0
}− P

{
�
(
B(0, δ1+ε)

)≥ δ4−d}.
By Lemmas 2.7 and 2.8 the second term on the right-hand side is of smaller order
than the first term, which is of order≥ δξd(M,N)(1+ε)+o(1) asδ ↓ 0. This yields

lim inf
δ↓0

logP{�(B(0,1)) < δ}
− logδ

≥ −ξd(M,N)

4− d
(1+ ε).

As ε > 0 was arbitrary, the lower bound of Theorem 1.1 is established. This
completes the proof of the theorem.�

2.4. Reversing paths: local versions of the tail asymptotics.The aim of this
section is to prove the two results, Lemma 2.9 and Lemma 2.11, which reformulate
the tail asymptotics established in the previous sections in a form suitable for use in
the proof of Theorem 1.3. The two proofs are largely analogous and make the time-
reversal of paths (mentioned in the overview, Section 1.4) precise. We start with
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the result needed for the lower bound, which strictly speaking is a reformulation
of the definition of the intersection exponents.

Recall from (2.2) that forr, s > 0, τ i
r is the first hitting time of∂B(0, r) andτ i

r,s

is the first hitting time of∂B(0, s) afterτ i
r , for the Brownian motionWi .

LEMMA 2.9. Fix b > 1> c andr > 0. Suppose thatW1,W2 are independent
Brownian paths started uniformly on the sphere∂B(0, r) ⊂ Rd , for d = 2,3. Then

lim
r↓0

1

log(1/r)
logP{W1([0, τ1

rb,r
])

∩W2([0, τ2
rb,r

]) = ∅|τ1
rb < τ1

rc , τ
2
rb < τ2

rc}(2.14)

= ξd(2,2)(1− b).

PROOF. We look at theupper boundand define random times

τ i∗ = sup{t < τ i
rb : |Wi(t)| = r} for i = 1,2.

The pathsei : [0, τ i
rb − τ i∗] → Rd , ei(t) = Wi(t + τ i∗), areBrownian excursions

from ∂B(0, r) to ∂B(0, rb), and hence the time-reversed paths

ei∗ : [0, τ i
rb − τ i∗] → Rd, ei∗(t) = ei(τ i

rb − τ i∗ − t)

are Brownian excursions from∂B(0, rb) to ∂B(0, r). Now fix b > β > 1 and
defineσ i = inf{t > 0 :|ei∗(t)| = rβ}. As the transition semigroup of a Brownian
excursion inB(0, r) \ B(0, rb) is the same as for Brownian motion killed upon
leavingB(0, r) \ B(0, rb), the processes

W
i
: [0, τ i

rb − τ i∗ − σ i] → Rd, W
i
(t) = ei∗(σ i + t),

are independent Brownian motions, started in a uniformly chosen point on
∂B(0, rβ) killed upon leavingB(0, r) \ B(0, rb) and conditioned to hit∂B(0, r)

before∂B(0, rb). Denoting the first hitting times of∂B(0, s) by the motionW
i

by τ i
s , we get

P{W1[0, τ1
rb,r

] ∩ W2[0, τ2
rb,r

] = ∅|τ1
rb < τ1

rc , τ
2
rb < τ2

rc}
≤ P{(W1[τ1∗ , τ1

rb ] ∪ W1[τ1
rb , τ

1
rb,r

])
∩ (W2[τ2∗ , τ2

rb ] ∪ W2[τ2
rb , τ

2
rb,r

]) = ∅|τ1
rb < τ1

rc , τ
2
rb < τ2

rc}
≤ P{(W1[0, τ1

r ] ∪ W1[τ1
rb , τ

1
rb,r

])
∩ (W

2[0, τ2
r ] ∪ W2[τ2

rb , τ
2
rb,r

]) = ∅|τ i
rb < τ i

rc , τ
i
r < τ i

rb for i = 1,2}
≤ P{(W1[0, τ1

r ] ∪ W̃1[0, τ̃1
r ])

∩ (W
2[0, τ2

r ] ∪ W̃2[0, τ̃2
r ]) = ∅|τ1

r < τ1
rb , τ

2
r < τ2

rb},



1276 A. KLENKE AND P. MÖRTERS

whereW̃ i is a Brownian motion which [except for the starting point on∂B(0, rβ)]

is independent ofW
i

and which is stopped at the timẽτ i
r when it first hitsB(0, r).

By Lemma 2.1, for each Brownian motionW
i

the probability of the conditioning
event{τ i

r < τ i
rb} is equal to(β −b)/(1−b) in d = 2 and, ind = 3, it is converging

to 1, asr ↓ 0. In any case we findε > 0 such that

P{τ i
r < τ i

rb} > ε for all i = 1,2 and 0< r < 1
2.

We can thus continue and find

P{W1[0, τ1
rb,r

] ∩ W2[0, τ2
rb,r

] = ∅|τ1
rb , τ

2
rb < ∞}

≤ P{(W1[0, τ1
r ] ∪ W̃1[0, τ̃1

r ])
∩ (W

2[0, τ2
r ] ∪ W̃2[0, τ̃2

r ]) = ∅|τ1
r < τ1

rb , τ
2
r < τ2

rb}
≤ ε−2P{(W1[0, τ1

r ] ∪ W̃1[0, τ̃1
r ]) ∩ (W

2[0, τ2
r ] ∪ W̃2[0, τ̃2

r ]) = ∅}.
By Brownian scaling the probability of the last event is equal to the probability
that for two familiesB1, B2 of two Brownian paths started on the unit sphere we
observeB1(r1−β) ∩ B1(r1−β) = ∅. Recalling the definition of the intersection
exponentξd(2,2), this leads to

lim sup
r↓0

1

log(1/r)
logP{W1[0, τ1

rb,r
] ∩ W2[0, τ2

rb,r
] = ∅|τ1

rb < τ1
rc , τ

2
rb < τ2

rc}

≤ ξd(2,2)(1− β).

Lettingβ ↑ b gives the upper bound.
For the proof of thelower boundwe argue similarly. Letc < γ < 1. Note that

P{W1[0, τ1
rb,r

] ∩ W2[0, τ2
rb,r

] = ∅|τ1
rb < τ1

rc , τ
2
rb < τ2

rc}
≥ P{W1[0, τ1

rb,r
] ∩ W2[0, τ2

rb,r
] = ∅|τ1

rb < τ1
rγ , τ2

rb < τ2
rγ }

×
[

P{τ1
rb < τ1

rγ }
P{τ1

rb < τ1
rc}

]2

.

By Lemma 2.1, there existsε > 0 and such that the fraction is bigger thanε for all
0< r < 1/2. We can write

Wi[0, τ i
rb,r

] = Wi[0, τ i
rb ] ∪ Wi[τ i

rb , τ
i
rb,r

].
Under the new conditioning thefirst path Wi[0, τ i

rb ] can be seen as part of a
Brownian excursion from∂B(0, rγ ) to ∂B(0, rb), or, by time-reversal as part of
a Brownian excursionei∗ from ∂B(0, rb) to ∂B(0, rγ ). This excursion naturally is

part of a Brownian motionW
i
started in a point uniformly distributed on∂B(0, rb)
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and stopped upon hittingB(0, rγ ), say at timeτ i
rγ . By extending thesecond path

W1[τ1
rb , τ

1
rb,r

] to the right by a Brownian motion path until it hitsrγ , we see that

we can replace it by a Brownian motioñW1 started atW1(τ1
rb ) and stopped at its

first hitting time of∂B(0, rγ ), which we denote bỹτ1
rγ . Hence,

P{W1[0, τ1
rb,r

] ∩ W2[0, τ2
rb,r

] = ∅|τ1
rb < τ1

rγ , τ2
rb < τ2

rγ }
≥ P{(W1[0, τ1

rγ ] ∪ W̃1[0, τ̃1
rγ ]) ∩ (W

2[0, τ2
rγ ] ∪ W̃2[0, τ̃2

rγ ]) = ∅}.
Apart from the starting point,W

1
is independent of̃W1, andW

2
is independent

of W̃2. As the starting pointsW1(τ1
rb ) andW2(τ2

rb ) are independent and uniformly
distributed on∂B(0, rb) we get

lim inf
r↓0

1

log(1/r)
logP{W1[0, τ1

rb,r
] ∩ W2[0, τ2

rb,r
] = ∅|τ1

rb , τ
2
rb < ∞}

≥ ξd(2,2)(γ − b).

Now lettingγ ↑ 1 gives the result. �

REMARK 2.10. In Lemma 2.9 we could fix vectorsu1, . . . , u4 ∈ ∂B(0,1)

with {u1, u3} ∩ {u2, u4} = ∅. Replacing the starting points by fixed points
W1(0) = ru1 andW2(0) = ru2 and also fixing the exit points from the ballB(0, r)

asW1(τ1
rb,r

) = u3r andW2(τ2
rb,r

) = u4r , the result remains unchanged. Moreover,
the convergence is uniform inu1, . . . , u4 as long as the minimal distance between
points of{u1, u3} and{u2, u4} is bounded away from zero. This can be done by
a standard argument, as performed, for example, in [13], Lemma 5.7; see also
Lemma 2.4.

We now formulate a version of Theorem 1.1 which represents the connection
between the tail behavior of the intersection local time and the multifractal
spectrum. The following lemma plays a crucial role in the proof of the upper bound
of Theorem 1.3.

LEMMA 2.11. For all a > 4− d, andε > 0,

lim
r↓0

1

− logr
logP

{
�(B(x, r)) < ra|τ1(B(x, ra/(4−d)))< 1− ε,

τ2(B(x, ra/(4−d)))< 1− ε
}

(2.15)

= ξd(2,2)

(
1− a

4− d

)
.

PROOF. We only show the upper bound in Lemma 2.11, as the lower bound is
not used in the paper, and the proof is quite similar. For notational simplicity we
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replacea by a(4− d) and let

p(x, r, a) := 1

− logr
logP

{
�(B(x, r)) < r(4−d)a|τ1(B(x, ra)

)
< 1− ε,

τ2(B(x, ra)
)
< 1− ε

}
.

For an upper bound, we can always replace the Brownian paths by smaller pieces,
effectively making the intersection local time smaller. Hence we may start the
motionsWi at timeτ i(B(x, r)) and stop them at timeτ i(B(x, ra), ∂B(x, r)), if
this time is smaller than 1. We may assume the latter as

P
{
τ i(B(x, ra), ∂B(x, r)

)≥ 1|τ i(B(x, ra)
)
< 1− ε

}
is decaying faster than exponentially. Let̃W1, . . . , W̃4 be independent Brownian
motions started inx and stopped upon leavingB(x, r). Let �̃ denote the
intersection local time of̃W1, W̃2 with W̃3, W̃4. Let ε̃ > 0 be small. Arguing
as in the proof of Lemma 2.9 we can replaceW1([τ1(B(x, r)), τ1(∂B(x, ra))])
andW1([τ1(∂B(x, ra)), τ1(B(x, ra), ∂B(x, r))]) by W̃1, W̃2 and the analogous
pieces ofW2 by W̃3, W̃4. We obtain

lim sup
r↓0

p(x, r, a) ≤ lim sup
r↓0

1

− logr
P
{
�̃
(
B(x, r) \ B

(
x, ra−ε̃))< r(4−d)a}.

We argue as in the proof of the lower bound of Theorem 1.1. Write

P
{
�̃
(
B(x, r) \ B

(
x, ra−ε̃))< r(4−d)a}

≤ P
{
�̃(B(x, r)) < r(4−d)(a−3ε̃)}+ P

{
�̃
(
B
(
x, ra−ε̃))> r(4−d)(a−2ε̃)}.

Using Lemma 2.7 we see that the second term on the right-hand side is negligible.
Hence,

lim sup
r↓0

p(x, r, a) ≤ lim sup
r↓0

1

− logr
P
{
�̃(B(x, r)) < r(4−d)(a−3ε̃)}

= ξd(2,2)
(
1− (a − 3ε̃)

)
,

from Theorem 1.1 (and Brownian scaling). The result follows asε̃ can be
arbitrarily close to 0. �

3. Multifractal spectrum. In this section we prove Theorem 1.3 by showing
the upper bound and the lower bound separately.

3.1. Proof of Theorem1.3, upper bounds. This follows from a standard first
moment method.
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PROPOSITION3.1 (Upper bound). Almost surely, for everya ≥ 4− d,

dimT (a) ≤ (4− d)
ξd(2,2)

a
+ (4− d) − ξd(2,2),

where negative values of the dimension indicate that the set is empty.

PROOF. The proof makes use of Lemma 2.11. The casea = 4 − d is trivial,
hence we may fixa > 4 − d. Now fix a cubeC of unit length that has positive
distance, sayδ, to the origin. Also fixε > 0 and letTε(a) be the set ofa-thin
points x, such that the first visit of both motions tox is before time 1− ε.
Abbreviatingξ := ξd(2,2), it now suffices to prove

dim
(
Tε(a) ∩ C

)≤ ξ

(
4− d

a
− 1

)
+ (4− d).(3.1)

For k ∈ N denote byDk the set of dyadic cubes with respect toC with
sidelength 2−k . For each cubeE ∈ Dk and r > 0 let B(E, r) denote the ball of
radiusr centered in the center ofE.

Let 4 − d < b < a. For k large enough dist(0,B(E,2−k(4−d)/a)) ≥ δ/2 for
all E ∈ Dk . Hence there exists a constantc > 0 such thatL(Wi(τ i(B(E,

2−k(4−d)/a)))) ≥ cU(∂B(E,2−k(4−d)/a)), whereU is the uniform distribution on
the boundary ofB(E,2−k(4−d)/a). Hence by Lemma 2.11 for 4− d < b′ < b and
for k ≥ k0 = k0(b, b′) large enough,

P
{
�
(
B
(
E, 1

22−k(4−d)/b))≤ 2−k(4−d)|τ1(B(E,2−k)
)
,

τ2(B(E,2−k)
)
< 1− ε

}
(3.2)

≤ 2kξ((4−d)/b′−1),

for all E ∈ Dk . Let

Dk(b) := {
E ∈ Dk : τ i(B(E,2−k)

)
< 1− ε, for i = 1,2,

there existsx ∈ S ∩ E with �
(
B
(
x,2−k(4−d)/b))≤ 2−k(4−d)}.

Then, for anyk1 ∈ N, the collection
⋃

k≥k1
Dk(b) is a covering ofTε(a) ∩ C.

Cased = 3. There exists a constantC such that

P
{
τ1(B(E,2−k)

)
< 1− ε, τ2(B(E,2−k)

)
< 1− ε

}≤ C2−2k.(3.3)

By (3.3) and (3.2) for anyk ≥ k0,

P{E ∈ Dk(b)} ≤ C 2kξ((1/b′)−1) 2−2k,

for all E ∈ Dk. Thus forα ≥ 0∑
k≥k1

2−αkE[#Dk(b)] ≤ C
∑
k≥k1

2−αk2k2kξ((1/b′)−1),
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which is finite, if and only ifα > 1+ ξ((1/b′) − 1). This yields

dim
(
Tε(a) ∩ C

)≤ 1+ ξ

(
1

b′ − 1
)
.

As b′ ∈ (1, a) could be chosen arbitrarily close toa, this yields the upper bound

dim
(
T (a) ∩ C

)≤ 1+ ξ

(
1

a
− 1

)
.

Cased = 2. In this case

P{E ∈ Dk(b)} ≤ P
{
E ∈ Dk(b)|τ1(B(E,2−k)

)
, τ2(B(E,2−k)

)
< 1− ε

}
≤ 2kξ(2/b′−1).

Thus E[#Dk(b)] ≤ 22k2ξk(2/b′−1). Continuing the argument as above yields the
claim. �

3.2. Lower bounds: the percolation technique.In order to prove the lower
bound, we fixR >

√
d and work with the intersection local time� of two Brownian

motions running up to the first exit time for a large ballBR := B(0,R). We
denote the set ofa-thin points, respectively, strictlya-thin points, byT (a,R),
respectively,T s(a,R). The arguments following Proposition 3.5 show how to get
rid of this assumption and get the bound for Brownian motions running for any
finite amount of time.

To obtain lower bounds we use the method of intersection with independent
random sets; see, for example, [12] for an extensive account of this. However, to
realize this method new techniques are needed. Compared to the approach of [12]
we are facing two additional difficulties: on the one hand the presence of long-
range dependence thanks to the recurrence of Brownian motion ind = 2, and on
the other hand the lack of a natural parametrization ofS by a nonrandom set. Note
in particular, thatT (a) arenot lim sup random fractals in the sense of [12] or [2], as
they are not dense in a nonrandom set. We shall show in Sections 3.3 and 3.4 how to
overcome these difficulties by adapting and combining ideas of [2], which handles
long-range dependence, and of [13], which deals with subfractals of random sets.

Suppose now thatC⊂ Rd is a fixed compact unit cube not containing the origin.
We denote byDn the collection ofcompactdyadic subcubes (relative toC) of
sidelength 2−n. We also letD =⋃∞

n=0 Dn. Givenγ ∈ [0, d] we construct a random
compact set	[γ ] ⊂ C inductively as follows: We keep each of the 2d compact
cubes inD1 independently with probabilityp = 2−γ . Let P1 be the collection of
cubes kept in this procedure and let	1[γ ] be their union. Pass fromPn to Pn+1
by keeping each cube ofDn+1, which is not contained in a previously rejected
cube, independently with probabilityp, and again let	n+1[γ ] be the union of the
surviving cubes.
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DEFINITION 3.2. The random set

	[γ ] :=
∞⋂

n=1

	n[γ ]

is called a percolation limit set.

The usefulness of percolation limit sets in fractal geometry comes from the
following lemma (see, e.g., [23] for a proof ).

LEMMA 3.3. For everyγ ∈ [0, d] and every Borel setA ⊂ C the following
properties hold:

(i) if dimA < γ , thenP{A ∩ 	[γ ] 
= ∅} = 0,
(ii) if dimA > γ , thenP{A ∩ 	[γ ] 
= ∅} > 0,
(iii) if dimA > γ , then

P{dim(A ∩ 	[γ ]) ≤ dimA − γ } = 1

and

P{dim(A ∩ 	[γ ]) ≥ dimA − γ − ε} > 0 for all ε > 0.

We now suppose that the random set	[γ ] and two Brownian motions
W1 and W2, started at the origin, are realized independently on the same
probability space, and we writeP for the joint distribution of the motions and	[γ ].
Observe that the first part of Lemma 3.3 gives alower boundγ for the Hausdorff
dimension of the setT (a,R), if we can show thatT (a,R) ∩ 	[γ ] 
= ∅ with
positive probability. The following lemma shows that this approach also allows
us to compare the sets of thin and strictly thin points (recall Definition 1.2). Recall
that we abbreviateξ = ξd(2,2).

LEMMA 3.4. If γ = (4− d)
ξ
a

+ (4− d) − ξ , then

P{T (a,R) ∩ 	[γ ] = T s(a,R) ∩ 	[γ ]} = 1.(3.4)

PROOF. An obvious modification of the upper bound established in Proposi-
tion 3.1 shows that dim(T (a + 1

n
,R)) < γ, and, by Lemma 3.3(ii), we have that

T (a + 1
n
,R) ∩ 	[γ ] = ∅ almost surely for alln. Hence, almost surely,

T s(a,R) ∩ 	[γ ] = T (a,R) ∩ 	[γ ] ∩
∞⋂

n=1

T (a + 1/n,R)c

= T (a,R) ∩ 	[γ ]. �

Hence the crucial part in establishing the lower bound on the dimension in
Theorem 1.3 is the following proposition, whose proof will be given in the
subsequent sections.



1282 A. KLENKE AND P. MÖRTERS

PROPOSITION 3.5 (Lower bound). Let γ = (4 − d)
ξ
a

+ (4 − d) − ξ . Then
P{T (a,R) ∩ 	[γ ] 
= ∅} > 0.

PROOF OFTHEOREM1.3,LOWER BOUND. Proposition 3.5 implies the result
of Theorem 1.3 by the following consideration. We use the following simple fact
noted in [3], (3.2):

Let A ⊂ Rd be a fixed analytic set, and let W be a Brownian motion with
arbitrary starting point; then

dim
(
A \ W

([0,∞)
))= dimA almost surely.(3.5)

Indeed, to verify (3.5), suppose that dimA > α. Then, by Frostman’s lemma,
see, for example, [8], 4.11, there exists a measureν 
= 0 on A such thatν(B) ≤
(diam(B))α for all balls B. By Fubini’s theoremE[ν(W([0,∞)))] = ∫

P{x ∈
W([0,∞))}ν(dx) = 0, and henceν is concentrated onA \ W([0,∞)) almost
surely. Hence, dim(A \ W([0,∞))) ≥ α almost surely, by the mass distribution
principle; see, for example, [8], 4.2.

Now fix a compact unit cubeC ⊂ BR at positive distance from the origin. By
Proposition 3.5 and Lemma 3.4 we get

P{T s(a,R) ∩ 	[γ ] 
= ∅} > 0.

Together with Lemma 3.3(i) this implies

P{dimT s(a,R) ≥ γ } = p(R) > 0.

By Brownian scaling the probabilityp(R) does not depend on the choice ofR > 0,
hence we may writep = p(R) > 0. Now define events

Dn := {dimT s(a,1/n) ≥ γ } for all n ∈ N.

By (3.5) withA = T s(a, 1
n+1) andW([0,∞)) replaced byW1([τ1

1/(n+1), τ
1
1/n]) ∪

W2([τ2
1/(n+1), τ

2
1/n]), and the strong Markov property we have that

P(Dn+1 \ Dn) = 0 for all n ∈ N.

Hence

P

( ∞⋂
n=1

Dn

)
= lim

n→∞ P(Dn) = p > 0.

The event
⋂∞

n=1 Dn is in the germσ -field of Brownian motion and hence, by
Blumenthal’s zero–one law, the probabilityp is actually equal to 1. Now, back
to the situation where the Brownian motions are running for a fixed time, we have

P{dimT s(a) ≥ γ } ≥ P

( ∞⋂
n=1

Dn

)
− P

(
{dimT s(a) < γ } ∩

∞⋂
n=1

Dn

)
.

The first probability on the right-hand side is 1, and the second is easily seen to
vanish, using again (3.5) and the strong Markov property. Together with the upper
bound, already verified in Section 3.1, this completes the proof.�
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3.3. Lower bounds: removing long-range dependence.In this section we give
the core argument which allows us to handle long-range dependence in our
problem. We shall not refer directly to the problem of thin points in order to
simplify future use of this new technique. The key result is Proposition 3.8, which
shows that there exists a large number of cubesE of sidelength 2−k that are in
thekth step of the percolation, such that both Brownian motions hitE but do not
return toE after first leaving a slightly larger cube aroundE.

In Section 3.4 we will separate theglobal random structure of the paths, which
leads to the creation of these cubes, from thelocal random structure which, given
the global structure, is independent for each cubeE. This idea of separation of a
local and a global level, using conditional independence at different places, is also
the key to this section (see Lemma 3.10) though it is used here on a larger scale.

As in [2] the proof of Proposition 3.8 works essentially in two different scales.
In the coarse scale we use a dimension argument to make sure that there exist
enough cubes of a certain type of sidelength 2−K for someK � k. To that end we
construct a subsetS∗ ⊂ S with nicer regularity features. The setS∗ is nonempty
with positive probability and all the statements in this section which hold with
positive probability actually hold almost surely on the event{S∗ 
= ∅}.

LEMMA 3.6 (Regularization). There exists a compact setS∗ ⊂ S ∩ 	[γ ] such
that, almost surely, for every open setU ⊂ C:

(i) U ∩ S∗ 
= ∅ impliesdim(U ∩ S∗) > 0,
(ii) dim(U ∩ S ∩ 	[γ ]) > 0 impliesU ∩ S∗ 
= ∅.

Property(ii) implies, in particular, that P{S∗ 
= ∅} > 0.

PROOF. To construct the setS∗ we fix a countable baseB of open subsets
of C. We define a compact random set

S∗ = (S ∩ 	[γ ]) \⋃{B ∈ B : dim(B ∩ S ∩ 	[γ ]) = 0}.
Clearly, it suffices to verify (i), (ii) for a fixed setU ∈ B. Suppose first that
U ∩ S∗ 
= ∅; then dim(U ∩ S ∩ 	[γ ]) > 0 and hence dim(U ∩ S∗) > 0, which
establishes (i). If dim(U ∩S ∩	[γ ]) > 0, thenU ∩S∗ 
= ∅ by construction, which
shows (ii). �

ForU ⊂ Rd let

Dk(U) := {E ∈ Dk :E ⊂ U}.
Now fix a bounded open setU and note that there exists a constantc(U) ∈ (0,∞)

such that

c(U)−12dk ≤ #Dk(U) ≤ c(U)2dk for all k ∈ N.(3.6)
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For k ∈ N andi = 1,2 consider the set of cubes

H i
k := {E ∈ Dk(U) : τ i(E) < τ i(Bc

R)},
(3.7)

H i
k,δ := {

E ∈ Dk(U) : τ i(B(E,2−k(1−δ)))< τi(Bc
R)
}

for δ ∈ [0,1),

that are hit by theith motion, respectively, where a certain ball around the box is
hit. We also write

Hk := Pk ∩ H1
k ∩ H2

k and Hk,δ := Pk ∩ H1
k,δ ∩ H2

k,δ.(3.8)

DEFINITION 3.7 (Admissible cubes). Fix ε > 0 and consider the subset of
those cubes that are hit by theith motion but which are not visited again after first
leavingB(E,2−(1−ε)k):

Ai
k := {

E ∈ H i
k : τ i(E,B

(
E,2−(1−ε)k)c,E)> τi(Bc

R)
}
.

Now we define

Ak := Pk ∩ A1
k ∩ A2

k

to be the set of admissible cubesE ∈ Dk(U).

PROPOSITION3.8. Fix ε > 0 and let(ak)k∈N be a sequence of nonnegative
real numbers such thatk2ak → 0 if d = 2, andak → 0 if d = 3. Then

lim
k→∞P

{
#Ak ≤ ak2(4−d−γ )k|U ∩ S∗ 
= ∅

}= 0.

The remainder of this section is devoted to the proof of Proposition 3.8. By the
preceding lemmaU ∩ S∗ 
= ∅ implies dim(U ∩ S∗) > 0 almost surely. Hence, it is
enough to show for everyδ ∈ (0,2− γ )

lim
k→∞P

{
#Ak ≤ ak2(4−d−γ )k|dim(U ∩ S∗) > δ

}= 0.(3.9)

Let ε0 > 0 be arbitrary. Below we fixK ∈ N representing the coarse scale, and
divideDK(U) into finitely many, saym, subgridsDK(U,1), . . . ,DK(U,m) such
that

d∞(V ,V ′) ≥ 4 · 2−K for all V,V ′ ∈ DK(U, j), j = 1, . . . ,m,(3.10)

where we denote byd∞(V ,V ′) the maximum norm distance of the centers of
V andV ′.

The idea is to show that there exists a constantε̃, independent ofK , such
that #{E ∈ Ak :E ⊂ V } is large with probability at least̃ε, for any givenV ∈
PK ∩ H1

K ∩ H2
K . Further one needs to show that for anyM one can chooseK

so large that with high probability, there are at leastM such cubesV in at least
one subgridDK(U, j). Finally, using some kind of independence between the
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blocksV in DK(U, j) we infer that the left-hand side of (3.9) is at most(1− ε̃)M .
As ε̃ is independent ofM , we can letM tend to infinity to infer the statement.

Define

Nk(j) := #
(
Dk(U, j) ∩ Hk,0

)
.

By definition of the Hausdorff dimension,

{dim(U ∩ S∗) > δ} ⊂
{

m
max
j=1

Nk(j) ≥ 2δk for all but finitely manyk
}
,

hence we get that there exists aK = K(ε0, δ) such thatP{AK |U ∩ S∗ 
= ∅} ≥
1− ε0, where

AK := ⋂
k≥K

m⋃
j=1

{Nk(j) ≥ 2δk},

and such that 2δK ≥ M . Fix thisK from now on.
The next task is to impose a localization that produces the desired independence.

This proceeding was inspired by ideas of [2]. Assume thatk ∈ N is larger than 2K .
ForV ∈ DK(U) let

H i
k(V ) := {

E ∈ Dk(V ) : τ i(E) < τ i(V,B(V,2−K+1)c
)}

,

Ai
k(V ) := {

E ∈ H i
k(V ) : τ i(E,B

(
E,2−(1−ε)k)c,E)> τi(Bc

R)
}
,(3.11)

Ai
k,loc(V ) := {

E ∈ H i
k(V ) : τ i(E,B

(
E,2−(1−ε)k)c,E)> τi(B(E,1/k)c

)}
.

Finally let

Hk(V ) := Pk ∩ H1
k (V ) ∩ H2

k (V ),

Ak(V ) := Pk ∩ A1
k(V ) ∩ A2

k(V ),(3.12)

Ak,loc(V ) := Pk ∩ A1
k,loc(V ) ∩ A2

k,loc(V ).

Clearly #Ak,loc(V ) ≥ #Ak(V ). Also note that

#Ak ≥ #Ak(V ) for all V ∈ DK(U).

Note that the information about the value of #Ak,loc(V ) is contained inPk

and in the Brownian motion paths betweenτ i(V ) andτ i(V ,B(V,2−K+1)c). By
construction, see (3.10), the intervals(τ i(V ), τ i(V ,B(V,2−K+1)c)) are disjoint
for different V ∈ DK(U, j) and fixedj . This will later provide the necessary
independence.

Let (bk)k∈N be a sequence of nonnegative real numbers such thatk2bk −→ 0
and (k3/ log(k))bk −→ ∞ if d = 2, or bk −→ 0 and(2k/k)bk −→ ∞ if d = 3.
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Then we have

P
{
#Ak ≤ ak2(4−d−γ )k|U ∩ S∗ 
= ∅

}
≤ P

{
#Ak(V ) ≤ ak2(4−d−γ )k for all V ∈ DK(U)|U ∩ S∗ 
= ∅

}
≤ P{U ∩ S∗ 
= ∅}−1

× ∑
V ∈DK(U)

P
[{

#Ak,loc(V ) − #Ak(V ) > bk2(4−d−γ )k}∩ AK

]
+ P{U ∩ S∗ 
= ∅}−1(3.13)

× P
[{

#Ak,loc(V ) ≤ (ak + bk)2
(4−d−γ )k

for all V ∈ DK(U)
}∩ AK

]
+ P{Ac

K |U ∩ S∗ 
= ∅}
=: P{U ∩ S∗ 
= ∅}−1(I1

k + I2
k ) + P{Ac

K |U ∩ S∗ 
= ∅}.
As P{Ac

K |U ∩ S∗ 
= ∅} ≤ ε0, it suffices to show that lim supI1
k = 0 and

lim supI2
k ≤ (1− ε̃)M for someε̃ independent ofM .

Estimate ofI1
k . We do this estimate by first computing the first moment of

#Ak,loc(V ). As we need it again later, we formulate the result as a lemma.

LEMMA 3.9. There are constantsc1, c2 ∈ (0,∞) depending only onU such
that forx1, x2 ∈ ∂B(V,2−K) and fork ≥ 2K ,

c1

(
ε

k

)2

2(2−γ )(k−K) ≤ Ex1,x2[#Ak,loc(V )] ≤ c2

(
ε

k

)2

2(2−γ )(k−K) if d = 2,

and

c12(1−γ )(k−K) ≤ Ex1,x2[#Ak,loc(V )] ≤ c22(1−γ )(k−K) if d = 3,

where we used the abbreviation

Ex1,x2[#Ak,loc(V )]
:= E

[
#Ak,loc(V )|V ∈ HK,0,W

i(τ i(B(V,2−K)
))= xi for i = 1,2

]
.

PROOF. We formulate the proof only for the upper bound in the cased = 2.
The other three cases are quite similar. By Corollary 2.2 there exists an absolute
constant̃c such that for allyi ∈ ∂B(E,2−(1−ε)k) and allk,

Pyi

{
τ(E) > τ

(
B(E,1/k)c

)}≤ c̃
εk

k − log(k)/ log(2)
≤ 2εc̃,
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wherePyi and τ refer to a Brownian motion started inyi . We write Px1,x2 for
the probability measure corresponding toEx1,x2. Again by Corollary 2.2 and the
strong Markov property of Brownian motion applied atτ i(B(V,2−K)) we get

Px1,x2
{
τ i(E) < τ i(V,B(V,2−K+1)c

)}≤ c̃

k − K + 1
≤ 2c̃

k
.

Thus, by independence and the strong Markov property of Brownian motion
applied atτ i(E,B(E,2(1−ε)k)c), we get

Ex1,x2[#Ak,loc(V )]
= E

∑
E∈Dk(V )∩Pk

Px1,x2
{
τ i(E) < τ i(V,B(V,2−K+1)c

)
,

τ i(E,B
(
E,2−(1−ε)k)c,E)> τi(B(E,1/k)c

)
for all i = 1,2

}
≤ 4c̃2ε2E

∑
E∈Dk(V )∩Pk

Px1,x2
{
τ i(E) < τ i(V,B(V,2−K+1)c

)
for all i = 1,2

}
≤ 16c̃4ε2k−2E[#{E ∈ Dk(V ) ∩ Pk}|V ∈ PK ]
= 16c̃4ε2k−22(2−γ )(k−K).

This yields the upper bound ford = 2 with c2 = 16c̃4. �

The next step is to computeE[#Ak,loc(V ) − #Ak(V )]. By definition

#Ak,loc(V ) − #Ak(V )

= #
(
Ak,loc(V ) \ Ak(V )

)
= #

(
Pk ∩ A1

k,loc(V ) ∩ A2
k,loc(V ) ∩ ((A1

k(V )
)c ∪ (A2

k(V )
)c))

.

For given E ∈ Dk(V ), by independence of the Brownian motions and the
percolation,

P{E ∈ Ak,loc(V )}

= 2−γ k
2∏

i=1

P
{
τ i(E) < τ i

R,(3.14)

τ i(E,B(E,1/k)c
)
< τi(E,B

(
E,2−(1−ε)k)c,E)}.

Note that τ i(E,B(E,1/k)c) = τ i(E,B(E,2−(1−ε)k)c,B(E,1/k)c). Hence by
Corollary 2.2 and the strong Markov property applied toτ i(E,B(E,2−(1−ε)k)c)

we can bound (fork ≥ k0 depending only onR) the right-hand side of(3.14) by

2−γ kc̃4
(

log(R)

k log(2) + log(R)

)2( εk

k − log(k)/ log(2)

)2

≤ 2c̃4ε22−γ kk−2 if d = 2,
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and similarly by

2c̃42−γ k2−2k if d = 3.

Using again the strong Markov property withτ i(E,B(E,1/k)c) we obtain for all
E ∈ D(V ), i = 1,2 andk ≥ k0 depending only onR andε,

P
{
E ∈ (Ai

k(V )
)c|E ∈ Ak,loc(V )

}= P
{
E ∈ (Ai

k(V )
)c|E ∈ Ai

k,loc(V )
}

≤ sup
x∈∂B(E,1/k)

Px{τ(E) < τR}

≤


c̃

logk + logR

k log2+ logR
≤ 2c̃k−1 log(k), if d = 2,

c̃
Rk − 1

R2k − 1
≤ c̃2−kk, if d = 3.

Altogether we have fork ≥ k0 andE ∈ Dk(V )

P{E ∈ Ak,loc(V ) \ Ak(V )} ≤
{

4c̃5ε22−γ kk−3 log(k), if d = 2,

4c̃52−γ k2−3kk, if d = 3.

As #Dk(V ) = 2d(k−K) we conclude that there is a constantC such that fork ≥ k0

E[#Ak,loc(V ) − #Ak(V )] ≤
{

C2(2−γ )kk−3 log(k), if d = 2,

C2(1−γ )k2−kk, if d = 3.
(3.15)

Hence by the definition ofI1
k and by the assumptions made on(bk) we get by

Markov’s inequality,

I1
k ≤ #DK(U)

(
b−1
k 2−(4−d−γ )k) sup

V ∈DK(U)

E[#Ak,loc(V ) − #Ak(V )]

≤ C ×


log(k)

k3bk

, if d = 2

k2−k/bk, if d = 3

−→ 0 ask → ∞.

Estimate ofI2
k . The estimate of the second term in (3.13) is much more

delicate. Clearly

I2
k ≤ max

{
P
{
#Ak,loc(V ) ≤ (ak + bk)2

(4−d−γ )k

for all V ∈ DK(U, j), NK(j) ≥ M
}
, j = 1, . . . ,m

}
.

Now fix j . The strategy is to introduce aσ -field FK(j) such that the events
{#Ak,loc(V ) ≤ (ak + bk)2(4−d−γ )k, V ∈ DK(U, j)} become independent given
FK(j) and such that for thoseV that contribute toNK(j), and fork large enough

P
{
#Ak,loc(V ) > (ak + bk)2

(4−d−γ )k|FK(j)
}≥ ε̃1{V ∈DK(U,j)∩HK,0}(3.16)
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for some ε̃ that does not depend onK or M . One can then conclude that
lim supk→∞ I2

k ≤ (1 − ε̃)M , which can be made arbitrarily small by letting
M → ∞.

We construct a decouplingσ -algebraFK(j) as in the proof of Proposition 2.3.
For the moment we suppressj in the notation. Formally fori = 1,2 we introduce
a sequence of (random) sets(V i(n) :n = 1, . . . , νi) and stopping times

0= σ i(0) < ρi(1) < σ i(1) < ρi(2) < · · · < σi(νi) < τ i
R < ρi(νi + 1),

by

ρi(1) := inf
{
τ i(B(V,2−K)

)
:V ∈ DK(U, j)

}
,

τ i(B(V i(n),2−K)) = ρi(n) [this definesV i(n)],

σ i(n) = τ i(B(V i(n),2−K),B(V i(n),2−K+1)c)
if ρi(n) < ∞,(3.17)

ρi(n + 1) = inf
{
τ i(B(V,2−K)

)
:

V ∈ DK(U, j) \ {V i(1), . . . , V i(n)}},
νi := max{n :ρi(n) < τ i

R}.
Now define

F i
K(j) := σ

(
Wi(t + σ i(n)

)
, t ∈ [0, ρi(n + 1) − σ i(n)], n = 0, . . . , νi)

and

FK(j) := F 1
K(j) ∨ F 2

K(j) ∨ σ(PK).

The following lemma is immediate from the construction ofFK(j) and the fact
that (for fixedj ) the ballsB(V,2−K+1), V ∈ DK(U, j), are mutually disjoint
by (3.10).

LEMMA 3.10. The family of random variables(#Ak,loc(V ), V ∈ DK(U, j))

is independent conditional onFK(j).

We use the notation

PFK(j) := P{ · |FK(j)}
andEFK(j) for the corresponding conditional expectation. Hence, by Lemma 3.9
there exist constantsc1, c2 ∈ (0,∞) such that fork ≥ K almost surely

c1

(
ε

k

)2

2(2−γ )k1{V ∈HK,0} ≤ EFK(j)[#Ak,loc(V )]

≤ c2

(
ε

k

)2

2(2−γ )k1{V ∈HK,0} if d = 2,
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and

c12(1−γ )k1{V ∈HK,0} ≤ EFK(j)[#Ak,loc(V )] ≤ c22(1−γ )k1{V ∈HK,0} if d = 3.

By the assumption thatk2(ak + bk) → 0 if d = 2, andak + bk → 0 if d = 3, we
get that fork large enough

EFK(j)[#Ak,loc(V )] ≥ 2(ak + bk)2
(4−d−γ )k1{V ∈HK,0}.

Thus if we can replace #Ak,loc(V ) in (3.16) by EFK(j)[#Ak,loc(V )], then
we are done. To this end we have to show tightness of(#Ak,loc(V )/

EFK(j)[#Ak,loc(V )])k∈N. We do so by computing second moments. Note that
for k large enough on{V ∈ HK,0}, using the Paley–Zygmund inequality in the
second step,

PFK(j)

{
#Ak,loc(V ) > (ak + bk)2

(4−d−γ )k}
≥ PFK(j)

{
#Ak,loc(V ) ≥ 1

2
EFK(j)[#Ak,loc(V )]

}

≥ 1

4

EFK(j)[#Ak,loc(V )]2
EFK(j)[(#Ak,loc(V ))2] .

Hence the proof of Proposition 3.8 is accomplished if we can show the following
lemma.

LEMMA 3.11. There exists a constantc ≥ 1 (independent ofM) such that, for
all j = 1, . . . ,m and allV ∈ DK(U, j)

EFK(j)

[(
#Ak,loc(V )

)2]≤ cEFK(j)[#Ak,loc(V )]2.
Before we prove the lemma, we show how Proposition 3.8 can be inferred. Clearly
[recallNK(j) = #(DK(U, j)∩HK,0)] with ε̃ := 1/(4c) we get from Lemma 3.10

lim sup
k→∞

I2
k

≤ m
max
j=1

lim sup
k→∞

P
{
NK(j) ≥ M and #Ak,loc(V ) ≤ (ak + bk)2

(4−d−γ )k

for all V ∈ DK(U, j) ∩ HK,0
}

= m
max
j=1

lim sup
k→∞

E

[( ∏
V ∈DK(U,j)∩HK,0

PFK(j)

{
#Ak,loc(V )

≤ (ak + bk)2
(4−d−γ )k})

× 1{NK(j)≥M}
]

≤ (1− ε̃)M −→ 0 asM → ∞.
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PROOF OF LEMMA 3.11. We do the proof explicitly only ford = 2 as the
cased = 3 is quite similar. The only difference is that we have to plug in the other
hitting estimates from Corollary 2.2.

By Lemma 3.9 it is enough to show that there exists a constantC < ∞ that is
independent ofK and such that fork large enough

EFK(j)

[(
#Ak,loc(V )

)2]≤ Ck−44(2−γ )(k−K).

Let E,F ∈ Dk(V ) and let l = 2kd∞(E,F ). Recall thatd∞ is the maximum
distance of the centers ofE andF . Clearly

PFK(j){E ∈ Pk} = 2−γ (k−K)1{V ∈PK }.

In order to computePFK(j){E,F ∈ Pk} we define thegenealogical distanceof
E andF

dgen(E,F ) := k − sup
{
s ∈ {0, . . . , k} :E,F ∈ W for someW ∈ Ds

}
.

Note that 2dgen(E,F ) ≥ 2kd∞(E,F ) = l. Hence, on{V ∈ PK},
PFK(j){E,F ∈ Pk} = 2−γ (k−K+dgen(E,F )) ≤ 2−γ (k−K)l−γ .(3.18)

Now we come to the hitting estimates. Assumel = 2kd∞(E,F ) ≥ 2. Hence, for
i = 1,2, by the strong Markov property and Corollary 2.2, fork large enough on
{V ∈ HK,0},

PFK(j)

{
τ i(E) < τ i(V,B(V,2−K+1)c

)
, τ i(F ) < τ i(V,B(V,2−K+1)c

)}
≤ PFK(j)

{
τ i(E) < τ i(V,B(V,2−K+1)c

)}
× sup

x∈∂E

Px

{
τ(F ) < τ

(
V,B(V,2−K+1)c

)}
+ PFK(j)

{
τ i(F ) < τ i(V,B(V,2−K+1)c

)}
× sup

x∈∂F

Px

{
τ(E) < τ

(
V,B(V,2−K+1)c

)}
≤ 2c̃2 1

k + K − 1

log(l2−k) − log(2−K+1)

log(2−k) − log(2−K+1)

≤ Ck−1
(

1− log(l)/ log(2)

k − K + 1

)
,

and in particular

PFK(j)

{
τ i(E) < τ i(V,B(V,2−K)c

)}≤ Ck−1,

for some constantC that does not depend onM or K . Combining these estimates
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we get on{V ∈ HK,0},
EFK(j)

[(
#Ak,loc(V )

)2]
≤ ∑

E∈Dk(V )

∑
F∈Dk(V )

PFK(j){E,F ∈ Pk}

× PFK(j)

{
τ i(E) < τ i(V,B(V,2−K+1)c

)
,

τ i(F ) < τ i(V,B(V,2−K+1)c
)

for all i = 1,2
}

≤ ∑
E∈Dk(V )

2k−K∑
l=1

∑
F∈Dk(V )

d∞(E,F )=l2−k

PFK(j){E,F ∈ Pk}C2k−2
(

1− log(l)/ log(2)

k − K + 1

)2

+ ∑
E∈Dk(V )

PFK(j){E ∈ Pk}C2k−2

≤ 16C2k−22−γ (k−K)
∑

E∈Dk(V )

2k−K∑
l=1

l1−γ

(
1− log(l)/ log(2)

k − K + 1

)2

+ C2k−22(2−γ )(k−K).

Since #Dk(V ) = 4k−K , it is enough to show that

2k−K∑
l=1

l1−γ

(
1− log(l)/ log(2)

k − K + 1

)2

≤ C
2(2−γ )(k−K+1)

(k − K + 1)2(3.19)

for some constantC (independent ofK). To this end note that we can compare the
sum with the integral

2k−K∑
l=1

l1−γ

(
1− log(l)/ log(2)

k − K + 1

)2

≤ 2
∫ 2k−K+1

1
x1−γ

(
1− log(x)/ log(2)

k − K + 1

)2

dx

= 2(k − K + 1) log(2)

∫ 1

0
e(2−γ )(k−K+1) log(2)y(1− y)2 dy

= 2(k − K + 1) log(2)e(2−γ )(k−K+1) log(2)
∫ 1

0
e(2−γ )(k−K+1) log(2)yy2 dy

≤ 4

log(2)2(2− γ )3

2(2−γ )(k−K+1)

(k − K + 1)2 . �

Having proved the lemma, the proof of Proposition 3.8 is now complete.
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3.4. Lower bounds: proof of Proposition3.5.

3.4.1. Admissible cubes, locally and globally thin points. Fix 1 < b < a/

(4− d) and by our choiceγ = (4− d)ξ/a + (4− d) − ξ one can chooseε > 0 so
small that 4− d − γ − 2dε > (4− d)(b − 1)ξ/a + 8bε/(1− ε).

Suppose thatE ∈ Dk is an open dyadic cube and that both Brownian motions
W1 andW2 hit the cubeE. Then we writeσ i

E := τ i(E,B(E,2−k(1−ε))c) for the
first exit times fromB(E,2−k(1−ε)) after they first hitE, for i = 1,2. We let

S(E) = W1([0, σ 1
E]) ∩ W2([0, σ 2

E])(3.20)

be the intersection of the paths up to these stopping times.

DEFINITION 3.12 (Thin points). We define the sets

Tk,b := ⋃
0<r<2−k

0<δ<1<η

{
x ∈ S∗ :

(
B(x, rη) \ B(x, rbδ)

)∩ S = ∅
}
,

T loc
k,b := ⋃

E∈Dk

⋃
0<r<2−k

0<δ<1<η

{
x ∈ E ∩ S∗ :

(
B(x, rη) \ B(x, rbδ)

)∩ S(E) = ∅
}
.

We call the points inTk,b and T loc
k,b globally (k, b)-thin, respectively, locally

(k, b)-thin.

Note that the parametersδ, η ensure thatTk,b andT loc
k,b are open sets. Recall that

Pk is the set of cubes kept in thekth step of the percolation.
Recall from Definition 3.7 that, fork ∈ N and an open setU ⊂ C,

Ak = {
E ∈ Dk(U) ∩ Pk : τ i(E) < τ i(Bc

R),

τ i(E,B
(
E,2−k(1−ε))c,E)> τi(Bc

R), for i = 1,2
}

is the set ofadmissiblecubes inE ∈ Dk(U).
Consider the open setU fixed for the moment. We subdivideDk(U) into mk

disjoint subcollectionsDk(U,1), . . . ,Dk(U,mk) such that

c1 := inf{2−2dkεmk, k ∈ N} > 0,
(3.21)

c2 := sup{2−2dkεmk, k ∈ N} < ∞
and

B
(
E,2−k(1−2ε))∩ F = ∅ for all E,F ∈ Dk(U, j), E 
= F,

(3.22)
j ∈ {1, . . . ,mk}, andk ∈ N.

We further define

Ak(j) := Ak ∩ Dk(U, j).(3.23)



1294 A. KLENKE AND P. MÖRTERS

We now introduce aσ -algebraFk(j) which makes #Ak(j) measurable without
using too much information of the paths inside a sufficiently large number of
cubesE ∈ Dk(U, j). The idea, as twice before, is to consider the first entrance
of a path in any boxE(1), after that its first exit of the ballB(E(1),2−k(1−ε))

aroundE(1), after that its first entrance into a new boxE(2) and so on.Fk(j) will
then use information of the paths between the successive times of leaving
B(E(n),2−k(1−ε)) and enteringB(E(n + 1)), n ∈ N, as well as the information
of Pk (the percolation at generationk).

We fix j and for the moment suppress it in the notation. Formally fori = 1,2 we
introduce a sequence of (random) sets(Ei(n) :n = 1, . . . ,mi) and stopping times

0= σ i(0) < ρi(1) < σ i(1) < ρi(2) < · · · < σi(mi) < ρi(mi + 1)

by

ρi(1) := inf{τ i(E) :E ∈ Dk(U, j)},
τ i(Ei(n)) = ρi(n) [this definesEi(n)],

σ i(n) = τ i(Ei(n),B
(
Ei(n),2−k(1−ε))c) if ρi(n) < τ i(Bc

R),(3.24)

ρi(n + 1) = inf
{
τ i(E) :E ∈ Dk(U, j) \ {Ei(1), . . . ,Ei(n)}},

mi := max{n :ρi(n) < τ i(Bc
R)}.

Let W̃ i
n(t) = Wi(t + σ i(n)), for 0≤ t ≤ ρi(n + 1) − σ i(n). Denote

F i
k (j) = σ

(
W̃ i(t), t ∈ [0, ρi(n + 1) − σ i(n)], n = 0, . . . ,mi),

Fk(j) = F 1
k (j) ∨ F 2

k (j) ∨ σ(Pk).

The following lemma is immediate from the construction ofFk(j).

LEMMA 3.13. Admissibility of a cube is anFk(j)-measurable event,

{E ∈ Ak(j)} ∈ Fk(j) for E ∈ Dk(U, j).

We now use Proposition 3.8 to make sure that there is a sufficiently large
number of admissible cubes. Fix someζ such that 4− d − γ − 2dε > ζ >

((4− d)ξ/a + ε)(b − 1) + 8bε/(1− ε).

LEMMA 3.14.

lim
k→∞P{#Ak(j) ≤ 2ζk for all 1≤ j ≤ mk|U ∩ S∗ 
= ∅} = 0.

PROOF. Note that, for all sufficiently largek, the event #Ak > c2 2(ζ+2dε)k

[recallc2 from (3.21)] implies that there exists a 1≤ j ≤ mk with the property that
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#Ak(j) > 2kζ . Recalling Proposition 3.8 we obtain

lim sup
k→∞

P{#Ak(j) ≤ 2ζk for all 1≤ j ≤ mk|U ∩ S∗ 
= ∅}

≤ lim sup
k→∞

P
{
#Ak ≤ c22(ζ+2dε)k|U ∩ S∗ 
= ∅

}= 0. �

Fix m such that(1− ε)m ≤ (k + 5)b < (1− ε)m+ 1. ForE ∈ Dk(U) andm let

Dk,m(E) = {
F ∈ Dm :F ⊂ E, dist(F, ∂E) ≥ 5

122−k}.
The numbers are carefully chosen such that⋃

G∈Dk,m(E)

G ⊂ B
(
F, 1

32−k)⊂ E for anyF ∈ Dk,m(E).(3.25)

Recall the definition ofS(E) from (3.20).

DEFINITION 3.15 (Successful cubes). A cubeE in

Sk(U) := {
E ∈ Ak : there existsF ∈ Dk,m(E) such that

F ∩ S∗ 
= ∅ and
(
B
(
F, 1

32−k)∖B(F,2−(1−ε)m))∩ S(E) = ∅
}

is called successful.

LEMMA 3.16. E ∩ Tk,b 
= ∅ for all E ∈ Sk(U), if k is sufficiently large.

PROOF. Let E ∈ Sk(U). We first show thatE ∩ T loc
k,b 
= ∅. SupposeF ∈

Dk,m(E) satisfies the conditions in the definition ofSk(U). Pickx ∈ F ∩ S∗, and
let r = 2−k−3, andη = 2, andδ = 1/2. Then we haveB(x, rη) ⊂ B(F, 1

32−k)

andB(x, rbδ) ⊃ B(F,2−(1−ε)m). Hencex ∈ T loc
k,b . Finally, note thatx ∈ T loc

k,b and
x ∈ E for someE ∈ Ak impliesx ∈ Tk,b. �

3.4.2. The main step. The following proposition is at the heart of our proof.

PROPOSITION3.17. Almost surely, Tk,b is dense inS∗ for all k ∈ N.

The rest of this section is devoted to the proof of Proposition 3.17. We have
to show that, for everyk ∈ N and every open setU in a countable basis of the
topology onC we haveP{Tk,b ∩ U 
= ∅|U ∩ S∗ 
= ∅} = 1. For this purpose keep
U fixed, as in the previous section, note thatTk+1,b ⊂ Tk,b, and note that it is
sufficient to show that

lim
k→∞P{Sk(U) = ∅|U ∩ S∗ 
= ∅} = 0.
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We make the rough estimate

P{Sk(U) = ∅|U ∩ S∗ 
= ∅}
≤ P{#Ak(j) ≤ 2ζk ∀ j = 1, . . . ,mk|U ∩ S∗ 
= ∅}

+
mk∑
j=1

P{Dk(U, j) ∩ Sk(U) = ∅|#Ak(j) > 2ζk}
P{U ∩ S∗ 
= ∅} .

We know from Lemma 3.14 that thefirst term on the right-hand side converges
to zero. Hence, it suffices to show that thesecondterm on the right-hand side
vanishes ask → ∞.

For this purpose fixk ∈ N, j ∈ {1, . . . ,mk} and E ∈ Ak(j). Recall that the
random collectionAk(j) is Fk(j)-measurable. Further recall thatτ i(E) is the
time of first entry ofWi into E andτ i(E,B(E,2−k(1−ε))c) its first time to exit
B(E,2−k(1−ε)) again. Letσ i

E := τ i(E,B(E,2−k(1−ε))c) − τ i(E) and

V i
E : [0, σ i

E] → B
(
E,2−k(1−ε)), t 
→ Wi(t + τ i(E)

)
.

Conditional onFk(j) eachV i
E is a conditioned Brownian motion with fixed start

and exit points.
Write G(E) for the event that there existsF ∈ Dk,m(E) such that:

(a) dim(V 1
E[0, σ 1

E] ∩ V 2
E[0, σ 2

E] ∩ 	[γ ] ∩ F) > 0,
(b) (B(F, 1

32−k) \ B(F,2−(1−ε)m)) ∩ S(E) = ∅.

By Lemma 3.6(ii), item (a) impliesF ∩ S∗ 
= ∅, and henceG(E) implies that
E ∈ Sk(U). Moreover, conditional onFk(j), the family (G(E), E ∈ Ak(j)) is
independent. Next we give a lower bound forP{G(E)|Fk(j)} on {E ∈ Ak(j)}.

LEMMA 3.18. There exists a constantk0 = k0(b, ε) such that, almost surely,
for k ≥ k0,

P{G(E)|Fk(j)} ≥ 2−k(((4−d)ξ/a+ε)(b−1)+8kε/(1−ε))1{E∈Ak(j)}.

PROOF. We use the notationPFk(j) := P{·|Fk(j)}.
We first fix a cubeF ∈ Dk,m(E) and give a lower bound for the probability that

F satisfies the conditions (a) and (b). Note that there is a constantC0 > 0 such that
the event

H(F) := {
τ i(B(F, 1

32−k))< τi(Bc
R) for i = 1,2,

and
∣∣W1(τ1(B(F, 1

32−k)))− W2(τ2(B(F, 1
32−k)))∣∣> 1

62−k}
has probabilityPFk(j)(H(F )) > C0. Moreover, denote

I (F ) :=
2⋂

i=1

{
τ i(B(F, 1

22−(1−ε)m))< τi(Bc
R)
}
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and

J (F ) :=
2⋂

i=1

{
τ i(B(F, 1

22−(1−ε)m),B(E,2(1−ε)k)c)
< τi(B(F, 1

22−(1−ε)m),B(E, 1
22(1−ε)k)c),B(F,2−(1−ε)m)}.

By Corollary 2.2, there exists a constantC1 > 0 such that almost surely,

PFk(j)

(
I (F )|H(F)

)
> C122(d−2)(k−m)1{E∈Ak(j)}.

Now assume thatH(F) andI (F ) hold. We split each path into three pieces,

Wi
(1) :

[
0, τ i(B(F, 1

22−(1−ε)m))− τ i(B(F, 1
32−k))]→ Rd,

Wi
(1)(t) = Wi(τ i(B(F, 1

32−k))+ t
)
,

W i
(2) :

[
0, τ i(B(F, 1

22−(1−ε)m), ∂B
(
F,2−(1−ε)m))− τ i(B(F, 1

22−(1−ε)m))]→ Rd,

Wi
(2)(t) = Wi(τ i(B(F, 1

22−(1−ε)m))+ t
)
,

Wi
(3) :

[
0, τ i(B(F, 1

22−(1−ε)m), ∂B
(
E, 1

22−k(1−ε)))
− τ i(B(F, 1

22−(1−ε)m), ∂B
(
F,2−(1−ε)m))]→ Rd,

Wi
(3)(t) = Wi(τ i(B(F, 1

22−(1−ε)m), ∂B
(
F,2−(1−ε)m))+ t

)
.

We now form the packet consisting of the first and last part of theith motion
(i = 1,2),

W i
1∪3 = Wi

(1)

[
0, τ i(B(F, 1

32−(1−ε)m))− τ i(B(F, 1
32−k))]

∪ Wi
(3)

[
0, τ i(B(F, 1

22−(1−ε)m), ∂B
(
E, 1

22−k(1−ε)))
− τ i(B(F, 1

22−(1−ε)m), ∂B
(
F,2−(1−ε)m))].

Using Lemma 2.9 and the subsequent Remark 2.10 we get that for a suitable
constantk0, depending only onb andε, and for allk ≥ k0,

PFk(j){W1
1∪3 ∩ W2

1∪3 = ∅|H(F) ∩ I (F )} ≥ 2(ξ+ε)(k−m)1{E∈Ak(j)}.(3.26)

Observe that this event as well asH(F) andI (F ) are measurable with respect to
the σ -field G := σ(W1

(1),W
2
(1),W

1
(3),W

2
(3)). Now define the ranges of the middle

pieces

W i
2 := Wi

(2)

[
0, τ i(B(F, 1

22−(1−ε)m), ∂B
(
F,2−(1−ε)m))− τ i(B(F, 1

22−(1−ε)m))]
for i = 1,2,

where we agree thatWi
(1) = Wi andWi

(3) = Wi
(2) = ∅ if H(F) does not occur.

We can find a constantC2 > 0 such that almost surely,

PFk(j){dim(W1
2 ∩W2

2 ∩F ∩	[γ ]) > 0|G} ≥ C22γ (k−m)−2mε1{E∈Ak(j)}1H(F)∩I (F ).
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Indeed, on{E ∈ Ak(j)} the probability thatF is retained in the percolation equals
2γ (k−m) and onI (F ) the probability that both motions hit the cubeF is no smaller
than a constant multiple of 2−2mε. Given that both motions hitF andF ∈ Pm,
by Lemma 3.3(iii) there is a positive probability thatW1

2 ∩ W2
2 ∩ F ∩ 	[γ ] has

positive dimension, and it is easy to see by Brownian scaling that this probability
does not depend on the scale, that is, onm.

Finally, a simple argument shows that, for anyx ∈ ∂B(E, 1
22−(1−ε)k),

PFj (k)

(
J (F )|G)≥ c2Px

{
τ
(
B
(
E,2−(1−ε)k)c)< τ

(
B(E,2−k)

)}21I (F ),

where [recall thatUr is the uniform distribution on∂B(0, r)]

c = inf
x∈∂B(0,1)

inf
y∈∂B(0,2)

Px{W(τ(B(0,2)) ∈ dy}
U2(dy)

> 0.

Hence, by Lemma 2.1 there exists a constantC3 = C3(ε) > 0 such that

PFk(j)

(
J (F )|G)≥ C3 1I (F ).

Note that{W1
1∪3 ∩ W2

1∪3 = ∅} ∩ J (F ) implies item (b).
Altogether, the probability that afixedcubeF ∈ Dk,m(E) satisfies (a) and (b) is

(with C = C1 · C2 · C3)

PFk(j){F satisfies (a) and (b)}
(3.27)

≥ C2(γ+2(d−2))(k−m)+(ξ+ε)(k−m)−2mε1{E∈Ak(j)},

almost surely. Note now that ifF satisfies (b) then, by (3.25) no cube inDk,m(E)

which does not intersectB(F,2−(1−ε)m) satisfies (a). Hence (a) and (b) are
satisfied by at most a constant multiple of 2dmε cubes inDk,m(E) simultaneously.
As the total number of cubesF ∈ Dk,m(E) is at least a constant multiple of
2d(m−k), we have constantsC4,C5 > 0 such that, on{E ∈ Ak(j)},

PFk(j)(G(E)) ≥ C42−dmε
∑

F∈Dk,m(E)

PFk(j){F satisfies (a) and (b)}1{E∈Ak(j)}

≥ C52(γ+d−4)(k−m)+(ξ+ε)(k−m)−5mε1{E∈Ak(j)}.

By definition ofγ , we haveγ + d − 4 + ξ = (4 − d) ξ/a < 3 and, by definition
of m, k − m ≥ k(1 − b) − mε + 5b, andm ≤ (k + 5)b/(1 − ε), which gives the
claimed lower bound. �

Using this lemma and the conditional independence of the family(G(E), E ∈
Ak(j)) we get fork ≥ k0, almost surely,

P{Dk(U, j) ∩ Sk(U) = ∅|Fk(j)} ≤ (
1− 2−k(((4−d)ξ/a+ε)(b−1)+8bε/(1−ε)))#Ak(j)

.
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Finally, this gives fork ≥ k0

mk∑
j=1

P{Dk(U, j) ∩ Sk(U) = ∅|#Ak(j) > 2ζk}

≤ c222dkε(1− 2−k(((4−d)ξ/a+ε)(b−1)+8bε/(1−ε)))2ζk

.

By our choice of parametersζ > ((4 − d)ξ/a + ε)(b − 1) + 8bε/(1 − ε) and
hence the right-hand side converges to 0 ask → ∞. This completes the proof of
Proposition 3.17.

3.4.3. Completing the proof of Proposition3.5: a density argument.Recall
thatb ∈ (1, a/(4− d)) was chosen arbitrarily. Note that

∞⋂
k=1

Tk,b ⊂ T
(
b(4− d),R

)∩ S∗.

Indeed, ifx ∈⋂∞
k=1 Tk,b, thenx ∈ S∗ and there exists a sequencerk ↓ 0 with(

B(x, rk) \ B(x, rb
k )
)∩ S = ∅.

Then, by [13], (1.17), ifd = 3 and by [4], (1.6), ifd = 2, there exists a constant
C > 0 such that for sufficiently largek ∈ N,

�
(
B(x, rk)

)= �
(
B(x, rb

k )
)≤ Cr

b(4−d)
k [log(1/rk)]2,

and hencex ∈ T (b(4− d),R).
ClearlyTk,b ⊂ Tk,c for b > c, andT (a,R) =⋂

b<a T (b,R). Thus

∞⋂
n=1

∞⋂
k=1

Tk,a/(4−d)−(1/n) ⊂ T (a,R) ∩ S∗.

Next recall thatTk,a/(4−d)−(1/n) is relatively open inS∗ and, by Proposition 3.17,
also dense inS∗ for anyk,n. AsS∗ is compact, hence complete, one can infer from
Baire’s theorem that

⋂∞
k,n∈N Tk,a/(4−d)−(1/n) is dense inS∗ almost surely. Hence

P{T (a,R) ∩ S∗ 
= ∅|S∗ 
= ∅} = 1 and, sinceS∗ ⊂ 	[γ ] ∩ S ⊂ 	[γ ], we have

P{T (a,R) ∩ 	[γ ] 
= ∅} ≥ P{T (a,R) ∩ S∗ 
= ∅}
= P{T (a,R) ∩ S∗ 
= ∅|S∗ 
= ∅}P{S∗ 
= ∅}
= P{S∗ 
= ∅} > 0.

This completes the proof of Proposition 3.5.
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