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VALIDITY OF THE EXPECTED EULER
CHARACTERISTIC HEURISTIC

BY JONATHAN TAYLOR, AKIMICHI TAKEMURA AND ROBERT J. ADLER

Stanford University, University of Tokyo and Technion

We study the accuracy of the expected Euler characteristic approximation
to the distribution of the maximum of a smooth, centered, unit variance
Gaussian processf . Using a point process representation of the error,
valid for arbitrary smooth processes, we show that the error is in general
exponentially smaller than any of the terms in the approximation. We also
give a lower bound on this exponential rate of decay in terms of the maximal
variance of a family of Gaussian processesf x , derived from the original
processf .

1. Introduction. In this paper, we study the expected Euler characteristic
approximation to

P
(

sup
x∈M

f (x) ≥ u

)
(1)

wheref is the restriction toM of f̂ , aC2 process on aC3 manifoldM̂ , andM is
an embedded piecewiseC3 submanifold ofM̂ .

When the procesŝf is Gaussian with zero mean and has unit variance, the
expected Euler characteristic approximation is given by

P̂
(

sup
x∈M

f (x) ≥ u

)
= E

(
χ

(
M ∩ f̂ −1[u,+∞)

))
(2)

=
dimM∑
j=0

Lj (M)(2π)−(j+1)/2
∫ ∞
u

Hj (r)e
−r2/2 dr,

where Hj is the j th Hermite polynomial,χ(M ∩ f̂ −1[u,+∞)) is the Euler
characteristic of the excursion off above the levelu and theLj (M) are the
intrinsic volumes, or Lipschitz–Killing curvatures of the parameter spaceM

[20, 22], measured with respect to a Riemannian metric induced byf , which is
discussed below in Section 2. In [20] only the special case of finite Karhunen–
Loève processes (see below) was treated and in [22] the case of manifolds with
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smooth boundaries was treated. The result, proved in the generality described
above, is to appear in [4]. With a slight abuse of notation, we have usedP̂ to denote
our approximation to (1); that is, we are usingP̂ in the statistical sense of a “point
estimator” and not as some alternative probability measure.

As noted above, the case when̂M is C∞ and f̂ is a centered, unit variance,
finite Karhunen–Loève expansion process was studied in [20]. These assumptions
imply that there exist a mapϕ : M̂ → S(Rn) whereS(Rn) is the unit sphere inRn

and a random vectorξ(ω) ∼ N(0, In×n) such that

f̂ (x,ω) = 〈ϕ(x), ξ(ω)〉Rn =
n∑

j=1

ξj (ω)ϕj (x).

In this setting, without loss of generality, we can assume thatM̂ is an embedded
submanifold ofS(Rn) andϕ is just the inclusion map. Using the volume of tubes
approach [18, 23], it was shown in [20] that ifM is a piecewiseC∞ submanifold
of S(Rn) the error in the above approximation is bounded by∣∣∣∣P(

sup
x∈M

f (x) ≥ u

)
− P̂

(
sup
x∈M

f (x) ≥ u

)∣∣∣∣
≤ C

�(n/2)2(n−2)/2

∫ ∞
u/cosθc(M)

wn−1e−w2/2 dw(3)

= C × P
(
χ2

n ≥ u2/cos2 θc(M)
)

whereθc(M) is a geometric quantity known as the critical radius ofM [11, 12,
18, 21]. ForM ⊂ S(Rn), the critical radius is roughly defined by the following
property: for every 0< θ < θc(M) and arbitraryz ∈ S(Rn)

dS(Rn)(z,M) ≤ θ �⇒ argmin
x∈M

dS(Rn)(z, x) is unique

where the metric onS(Rn) is the geodesic metric

dS(Rn)(x, z) = cos−1(〈x, y〉).
In another setting, when̂f is “almost” isotropic onR

k , then, with some
additional assumptions onM (cf. Theorem 4.5.2 in [3]) Piterbarg [17] showed
using the “double-sum” method that the error in using the expected Euler
characteristic approximation is bounded by∣∣∣∣P(

sup
x∈M

f (x) ≥ u

)
− P̂

(
sup
x∈M

f (x) ≥ u

)∣∣∣∣ ≤ Ce−αu2/2(4)

for someα > 1, though no expression forα is given. In the one-dimensional case,
more was previously known [5, 13, 16] (see below).

Note that both bounds show that the error in approximating (1) isexponentially
smaller than all terms in the expected Euler characteristic approximation. While



1364 J. TAYLOR, A. TAKEMURA AND R. J. ADLER

undeniably useful, these two situations do not cover all possibilities. Referring
to (4), certainly not every smooth Gaussian process of interest is isotropic, nor
are the conditions required ofM easily interpretable (cf. Definition 4.5.1 in [3]).
Referring to (3), while every Gaussian process does admit aninfinite orthogonal
expansion, see [2]

f (x,ω) =
∞∑

j=1

ξj (ω)ϕj (x)(5)

through its reproducing kernel Hilbert space (RKHS), it is clear that substituting
n = ∞ into (3) is meaningless. In fact, the situation is even worse in that the two
cases do not even overlap: an isotropic field restricted to a bounded domainT ⊂ R

k

cannot have a finite Karhunen–Loève expansion [19]!
This brings us to the main result of this work, Theorem 4.3, which, when

f is a constant variance Gaussian process as in the works cited above, provides
bounds for the error in using the expected Euler characteristic approximation
to (1). Specifically, whenf has unit variance, we show that

lim inf
u→∞ −u−2 log

∣∣∣∣P(
sup
x∈M

f (x) ≥ u

)
− P̂

(
sup
x∈M

f (x) ≥ u

)∣∣∣∣ ≥ 1

2
+ 1

2σ 2
c (f )

.(6)

Above, the “critical variance”σ 2
c (f ) depends on the variance of an auxiliary

family of Gaussian processes(f x)x∈M , defined in (27) below.
An alternative approximation to (1) is to use the expected number of (extended

outward) local maxima [10]. The term “approximation” is used in a somewhat
loose sense, as, to the authors’ knowledge, there are no generally applicable known
closed form expressions for the number of extended outward local maxima of
a smooth process. The only results known are ones which relate the asymptotic
behavior of the expected number of local maxima of a Gaussian field on a manifold
without boundary (which renders the qualifier “extended outward” unnecessary)
to the expected Euler characteristic approximation, see [10]. Nevertheless,if one
could compute the expected number of local maximaexactly, as one can the
expected Euler characteristic in certain cases, one might expect to get a better
approximation to (1). Virtually identical arguments to those used in this paper
show that whenM is a manifold without boundary andf is Gaussian with constant
variance, on an exponential scale the errors in the approximations are equivalent,
though, in the interest of brevity, we do not pursue this here. When the manifold
M has a boundary, the situation is more subtle and it may indeed be the case that
the expected number of extended outward local maxima may be more accurate on
an exponential scale.

The critical varianceσ 2
c (f ) is closely related to the critical radius appearing

in (3). Specifically, whenf is a centered, unit variance, finite Karhunen–Loève
expansion process, andM is a manifold without boundary, it is proven in
Lemma 5.1 that

σ 2
c (f ) = cot2 θc(M)



EXPECTED EULER CHARACTERISTIC 1365

whereθc(M) is the critical radius ofM , mentioned above and used in [21].
We note that, while (3)is an explicit bound for finite Karhunen–Loève

expansion Gaussian processes, it is not sharp, nor generally applicable. In
particular it depends on the (generally unknown) dimension of the sphere into
which M is embedded, that is, the dimension of the sphere in whichM sits. In
a companion paper [14], whenf is a centered, unit variance, finite Karhunen–
Loève expansion Gaussian process, the asymptotic error asu → ∞ is evaluated
using a Laplace approximation, rather than just the exponential behavior, which
is the topic of this paper. In some one-dimensional stationary cases, the exact
asymptotics of the error were found by Piterbarg in [16]. The results were
generalized in [5], enlarging the class of processes covered by Piterbarg’s result.
Roughly speaking, the results of [5, 16] hold when the critical varianceσ 2

c (f )

of the stationary processf is achieved locally. In this case, the critical variance
is explicitly computable in terms of the spectral moments off (see Lemma 5.3
below).

Our main result, Theorem 4.3, is formally an application of Theorem 3.3 to
the case whenf is Gaussian with constant variance. Theorem 3.3 gives a bound
for the error of the expected Euler characteristic approximation for the restriction
of an arbitrary suitably regular (cf. [1, 22]) procesŝf on a C3 manifold M̂

to any embedded piecewiseC2 submanifoldM ⊂ M̂ . Theorem 3.3 is, to the
authors’ knowledge, the only available bound for the error in the expected Euler
characteristic approximation for arbitrary, suitably regular, smooth random fields
and should prove useful in studying the accuracy of the Euler characteristic
approximation to non-Gaussian fields [8, 9, 24]. The analogy to (3) for nonconstant
variance Gaussian fields using a variant of the volume of tubes approach is
presented in [15].

Another noteworthy feature to our approach is that it is adirect approach to
determining the error in using the Euler characteristic approximation. This should
be contrasted with the bounds (3) and (4) which were both arrived at indirectly in
the sense that the bounds were derived for the “volume of tubes” approach and the
“double-sum” approach and subsequently shown to hold for the expected Euler
characteristic approximation.

The proof of Theorem 3.3 depends on a point set representation for the global
maximizers ofh = ĥ|M , the restriction toM of a smooth deterministic function
ĥ : M̂ → R, above the levelu. Of course, there is a trivial, and not very useful,
point set representation of the set of maximizers ofh above the levelu:{

x ∈ M :h(x) = max
y∈M

h(y),h(x) ≥ u

}
.

Lemma 2.2 gives an alternative point set representation of the maximizers using
an auxiliary family of functions(hx)x∈M . Once we have a point set representation
of the maximizers of a smooth function, we apply a “meta-theorem” for the density
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of point processes arising from smooth processes of [1, 3, 4, 7, 22]. If the global
maximizer of the processf is almost surely unique, the total mass of the density
of the point process of maximizers above the levelu is therefore just (1). The
auxiliary family of processes(f x)x∈M mentioned above is, in some sense, the
stochastic analogue of(hx)x∈M in the deterministic setting.

After defining the processesf x and describing their properties, we derive the
following almost sure bound:∣∣1{supx∈M f (x)≥u} − χ

(
M ∩ f −1[u,+∞)

)∣∣
≤ #

{
x ∈ M :x is an extended outward critical point off ,

f (x) ≥ u, sup
y∈M\{x}

f x(y) > f (x)

}
where extended outward critical points are defined in a suitable fashion (cf.
Section 2) and, for eachx ∈ M , the processf x is uncorrelated withf (x).
Therefore, the points that contribute to the error are points where a Gaussian
random variablef (x) and the supremum of a processf x(y), independent off (x),
are above the levelu. The variance of the processesf x is what establishes
the exponentially small relative error in (6). The only point where the Gaussian
assumption is used is in bounding the expected number of points above, and
the argument used here can be expected to extend to non-Gaussian processes as
well.

The organization of the paper follows. Sections 2 lays out the regularity
conditions needed for Theorem 3.3, and reviews some notions of piecewise smooth
manifolds. Theorem 3.3 is proved in Section 3, and Section 4 deals with the unit
variance Gaussian case, where Theorem 4.3 is proven. We conclude in Section 5
with some examples; specifically we computeσ 2

c (f ) for stationary processes onR

and isotropic processes onR
k restricted to compact convex subsets.

2. Suitably regular processes on piecewise C2 manifolds. In this section
we describe the class of processes to which Theorem 3.3 will apply. Before
setting out our assumptions, we recall some basic facts about piecewiseCl (l ≥ 2)

submanifolds of an ambientCj (j ≥ l) manifold M̂ . For a more detailed self-
contained treatment of the material in this section, specifically as it relates to
smooth processes, the reader is referred to [4].

A k-dimensional piecewiseC2 manifold has a (not necessarily unique)
decomposition intoC2 i-dimensional manifolds without boundary, 0≤ i ≤ k;
namely,

M =
k⋃

i=0

∂Mi.
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Associated to every pointx ∈ M is its support cone inTxM̂ , the tangent space
to M̂ atx

SxM = {
Xx ∈ TxM̂ :∃ δ > 0, c ∈ C1((−δ, δ), M̂

)
,

c(t) ∈ M ∀ t ∈ [0, δ), c(0) = x, ċ(0) = Xx

}
.

In words, the support cone ofM at x is the set of all directions in which a smooth
curve can leavex into M , but, in an infinitesimally small time period, still remain
in M .

WhenM̂ is endowed with a Riemannian metric it is possible to define the dual
cone ofSxM . The following Riemannian metric will be essential to our analysis:
anL2 differentiable process induces a natural Riemannian metric onM̂ given by
(cf. [22])

ĝx(Xx,Yx)
�= Cov(Xxf̂ , Yxf̂ ),

for all Xx,Yx ∈ TxM̂.

The dual cone ofSxM , SxM
∗, in this case called thenormal cone in M̂ at

x ∈ M , is defined by

NxM = SxM
∗ = {Xx ∈ TxM̂ : ĝx(Xx,Yx) ≤ 0, ∀Yx ∈ SxM}.

For x ∈ ∂Mk = M◦, NxM = (TxM
◦)⊥, the orthogonal complement ofTx ∂Mk

in TxM̂ . The normal cone figures prominently in the approximation, and in the
main result of this paper, as both the Euler characteristic and the global maximizer
point processes are defined in terms ofextended outward critical points, that is,
critical points at which the gradient (viewed as a tangent vector in the ambient
space) is in the normal cone of the set at the critical point. Roughly speaking, this
means that the function is increasing along curves leaving the set along certain
“normal directions.”

To avoid trivialities, we further assume our decomposition ofM is such that for
every 0≤ i ≤ k and eachx ∈ ∂Mi, the tangent spaceTx ∂Mi is the largest subspace
contained inSxM . This condition rules out trivial decompositions of a nice open
setO ⊂ R

2 into {O \ F,F } for a finite point set or some smooth closed curve
F ⊂ O. This condition is not strictly necessary for the Morse theorem of [20].
In its place, we could impose a condition on the Morse functions to not have any
extended outward critical points on suchF ’s. As this will almost surely be the case
for the paths of suitably regular processes this point is somewhat moot.

For our purposes here, piecewise smooth manifolds are required to have the
additional property that they are locally approximated bySxM in the sense that,
for everyx ∈ M , there exists a diffeomorphism

ϕx :Ux ⊂ M̂ → ϕx(Ux) ⊂ TxM̂(7)

of some neighborhoodUx of x ∈ M̂ , whose inverse, when restricted toSxM , maps
any sufficiently small neighborhood of the origin to a neighborhood ofx ∈ M . This
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condition, for instance, rules out cusps inM as can occur when two manifolds
intersect nontransversally. The importance of this condition, besides the fact that
it is necessary in order to use the Morse theorem of [20], is that it implies that the
set {

Xx ∈ N(∂Mi) :Xx ∈ (
P ⊥

Tx∂Mi
NxM

)◦}(8)

is open inN(∂Mi) where(P ⊥
Tx∂Mi

NxM)◦ is the (relative) interior ofP ⊥
Tx∂Mi

NxM

in Tx∂M⊥
i andN(∂Mi) is the normal bundle of∂Mi in M̂ .

Having defined piecewise smooth manifolds, we now set out the assumptions
on the processesf defined on our piecewise smooth manifolds.

ASSUMPTION 2.1. We assume thatf is the restriction off̂ to M , wheref̂

is a square-integrableC2 process on̂M , aC3 q-dimensional manifold, andM is a
compact, embedded piecewiseC2 k-dimensional submanifold of̂M such thatSxM

is a convex cone for eachx ∈ M . We further assume that, for eachi, the gradient
of f|∂Mi

read off in some nonrandom orthonormal frame fieldEi = (X1, . . . ,Xi)

on ∂Mi satisfies the conditions of Lemma 2.5 of [22]. We denote thisR
i-valued

process by∇f|∂Mi,Ei
. These conditions are satisfied if̂f|∂Mi

is suitably regular in
the sense of [22]. Finally, we assume that

ρ(x, y)
�= Cor

(
f̂ (x), f̂ (y)

) = 1 ⇐⇒ x = y.

At this point, it is probably worth describing the significance of the above
assumptions. In point form, the significance of these assumptions are:

1. The requirements thatf = f̂|M for a C2 process on̂M and that the support
cone SxM is convex for eachx ∈ M are necessary for the point process
representation of the Euler characteristic and to apply the Morse theorem
of [20].

2. The conditions on the process∇f|∂Mi,Ei
ensure that the expected number of

critical points off|∂Mi
is finite and the density of point processes based on the

critical points has an explicit integral representation in terms of a point process
“meta-theorem” [3, 22].

3. The condition onρ(x, y) ensures that the mapx �→ f̂ (x) is an embedding of̂M
into L2(�,F ,P) which rules out “global” singularities in the process.

2.1. A point set representation for the global maximizers of deterministic
functions. Although our primary interest is with stochastic processes, we begin
here with the deterministic case, stating and proving Lemma 2.2 which describes a
point process representation of the global maximizers of a deterministic functionh.
However, along each stratum∂Mi the point process depends on aC2 function
defined on

∂Mi × M− �= ∂Mi × M \ {(x, y) ∈ ∂Mi × M :x = y}
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which is singular near the “diagonal”{(x, y) ∈ ∂Mi × M :x = y}. We resolve this
singularity in Corollary 2.6, and arrive at the point process representation for the
global maximizers in Corollary 2.7.

LEMMA 2.2. Suppose h = ĥ|M , the restriction of ĥ ∈ C2(M̂ ). Fix x ∈ ∂Mi ,
and choose αx ∈ C2(M, (−∞,1]) such that

αx(y) = 1 �⇒ h(x) = h(y), αx(x) = 1.

Then, x is a maximizer of h above the level u if, and only if, the following three
conditions hold:

(i) h(x) ≥ u.
(ii) ∇ĥ(x) ∈ NxM . That is, x is an extended outward critical point of h.
(iii) h(x) ≥ supy∈M\{x} hx(y), where, for all y ∈ M

hx(y)
�=


h(y) − αx(y)h(x)

1− αx(y)
, if αx(y) �= 1,

h(y), if αx(y) = 1.

Further, if ∇2αx(x) is nondegenerate, and x is a critical point of h|∂Mi
, then,

for any C2 curve c : (−δ, δ) → ∂Mi with c(0) = x, ċ(0) = Xx ∈ Tx∂ Mi ,

lim
t→0

hx(c(t)) = ∇2h|∂Mi
(x)(Xx,Xx) − ∇2αx|∂Mi

(x)(Xx,Xx)h(x)

−∇2αx|∂Mi
(x)(Xx,Xx)

.(9)

REMARK. The condition thatαx(x) = 1 ensures that for eachx ∈ M , x is a
critical point ofαx .

PROOF OF LEMMA 2.2. The conditionh(x) ≥ u is self-evident. Suppose,
then, thatx ∈ ∂Mi,0≤ i ≤ k, is a maximizer ofh. Then∇ĥ(x) ∈ NxM ; otherwise
there exists a directionXx ∈ SxM such that̂gx(Xx,∇ĥ(x)) > 0 andx cannot be a
maximizer.

Becausex is a maximizer, for ally such thatαx(y) < 1 it follows that

h(y) − αx(y)h(x)

1− αx(y)
< h(x).

On the other hand, ifαx(y) = 1, then, by choice ofαx , h(y) = h(x) which proves
that

h(x) ≥ sup
y∈M\{x}

hx(y).

To prove the reverse implication, assume thatx is an extended outward critical
point ofh|∂Mi

and

h(x) ≥ sup
y∈M\{x}

hx(y).
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Now suppose thatx is not a maximizer ofh; then there existsy ∈ M \ {x} such
that

h(x) < h(y).

In particular, for such ay, our choice ofαx implies thatαx(y) < 1. It follows that

h(x) <
h(y) − αx(y)h(x)

1− αx(y)

which is a contradiction.
The limit (9) follows from two applications of l’Hôpital’s rule. Specifically, we

note thatx is a critical point ofh|∂Mi
by assumption and the properties ofαx imply

that it must also be a nondegenerate critical point ofαx . Therefore,

lim
t→0

h(c(t)) − αx(c(t))h(x)

1− αx(c(t))
= lim

t→0

(d/dt)(h(c(t)) − αx(c(t))h(x))

d/dt (1− αx(c(t)))

= lim
t→0

(d2/dt2)(h(c(t)) − αx(c(t))h(x))

(d2/dt2)(1− αx(c(t)))
.

Sincex is also a nondegenerate critical point of 1− αx(·) the conclusion now
follows from the fact that, for anyβ ∈ C2(∂Mi) and anyC2 curvec : (−δ, δ) →
∂Mi with x = c(0) a critical point ofβ ∈ C2(∂Mi) andċ(0) = Xx

lim
t→0

d2

dt2β(c(t)) = ∇2β(x)(Xx,Xx). �

Condition (iii) above will be crucial to our later results as it is the condition
which determines whether a given critical point is indeed a maximizer ofh. The
condition is not quite “ready to use,” as we will need to consider an analogy to the
quantity

W̃ (x)
�= sup

y∈M\{x}
hx(y)(10)

as a function ofx. However, it is not hard to show, again by two applications of
l’Hôpital’s rule, that

∇ĥ(x) ∈ NxM ⇐⇒ sup
y∈M\{x}

hx(y) < ∞,(11)

∇ĥ(x) ∈ NxM �⇒ inf
y∈M\{x}h

x(y) = −∞.(12)

In other words, the above quantity is only finite at extended outward critical points
of h and the process is singular even if∇ĥ(x) ∈ NxM .

Although neither Lemma 2.2 nor (11) is exactly what we will need later, they
contain a somewhat simplified version of our later arguments.
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2.2. Continuity of W̃ (x): the “blow-up” of h. As previously noted, the
function

(x, y) �→ hx(y)(13)

is singular wheny is nearx even though it isC2 on ∂Mi × M−. In particular

lim
y→x

hx(y)

is undefined. Ultimately, for the point process representation, we are interested in
the continuity of̃W(x) on∂Mi , and this singularity can make the arguments a little
delicate.

In this section our main result shows that̃W(x) is continuous. Our strategy is
to “blow up” M around a neighborhood ofx ∈ ∂Mi , and to relatehx(y), for x

in this neighborhood, to a continuous function on the “blow-up.” We use the term
“blow-up” as we relate the functionhx(y) to a “desingularized” version ofh on
the blow-up ofM nearx.

By assumption, the parameter setM is locally approximated by its support
cone and we can, without loss of generality, describe the blow-up ofM under
the assumption thatM ⊂ M̂ = R

q and for some neighborhoodUx

Ux ∩ M = {x} ⊕ SxM ∩ Ux.

We can assume this because we have assumed in (7) that everyx ∈ M has such
a neighborhood, and to establish continuity ofW̃ (x) only local properties (inx)
of hx(y) are needed.

For x ∈ ∂Mi , the support coneSxM contains thei-dimensional tangent
spaceTx ∂Mi . By our assumptions on the decomposition ofM , this subspace is
maximal inSxM . Therefore, we can decomposeSxM as

Tx ∂Mi × Kx

whereKx is a convex cone that contains no subspace.
For ease of exposition, for the moment we move to a simple Euclidean setting

and replaceSxM by

K̂ = L × K ⊂ R
q

with L a subspace, andK a convex cone containing no subspaces. We will describe
the “blow-up” construction first in this scenario, and then move back to piecewise
smooth spaces. In what follows,h = ĥ|K̂ will be the restriction of a generic
function onR

q to R̂q . We first define the “blow-up”B(K̂) of K̂ alongL as the
disjoint union of the spaces

X = L × (K̂ \ {0}),
∂X = L × (

K̂ ∩ S(Rq)
)
.
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Above,X should be thought of as the image of

L × K̂ \ {(x, y) ∈ L × K̂ :x = y},
under the map

(x, y)
��→ (x, y − x)(14)

and the second space∂X as the “boundary” ofX. The boundary is attached as
follows: a sequence of points(xn, yn) ∈ X converges to(x0, y0) ∈ ∂X if, and
only if,

xn → x0, ‖yn‖ → 0,
yn

‖yn‖ → y0.

This notion of convergence corresponds to a sequence�−1(xn, yn) = (xn, xn+yn)

converging to the diagonal

{(x, y) ∈ L × K̂ :x = y}
along a well-defined direction.

REMARK. Identifying the tangent bundleT (Rq) with R
q × R

q , we can
think of B(K̂) as a subset ofT (Rq), in which they ’s above are replaced with
Xx ∈ SxM ⊂ TxR

q . When convenient, we will considerB(K̂) as either a subset
of R

2q or a subset ofT (Rq).

In Lemma 2.2,(αx)x∈M was a family of functions which did not necessarily
arise as the partial map of a functionα : M̂ × M̂ → (−∞,1]. In some cases,
particularly in the stochastic setting below, this is a natural assumption to make.

LEMMA 2.3. Suppose α ∈ C2(Rq × R
q) is such that the partial map

αx(y) = α(x, y)

satisfies the conditions of Lemma 2.2 at every x ∈ L and such that the Hessian of
the partial map αx is nondegenerate at every x ∈ L. Then, any ĥ ∈ C2(Rq) maps

to a continuous function ĥα,K̂ on B(K̂) as follows:

ĥα,K̂ (x, y) = ĥ(x + y) − α(x, x + y)ĥ(x) − 〈∇ĥx, y〉Rq

1− α(x, x + y)

and for (x, y) ∈ ∂X

lim
(t,s)→(x,y)

ĥα,K̂ (t, s) = ĥ(x) + ∇2ĥ(x)(y, y)

−∇2α(x)(y, y)
.



EXPECTED EULER CHARACTERISTIC 1373

PROOF. Two applications of l’Hôpital’s rule. �

The term

〈∇ĥx, y〉Rq

1− α(x, x + y)

above “resolves” the singularity along the diagonal in some sense. In effect, it
forces everyx ∈ L to be a critical point of the map

R
q � y �→ ĥ(x + y) − α(x, x + y) · ĥ(x) − 〈∇ĥ(x), y〉Rq

1− α(x, x + y)
.

Our motivation for introducinĝhα,K̂ is to describe the singularities in the
functionhx(y) at critical pointsx of h|L (recall from above thatL takes the place
of Tx ∂Mi in our general conêK). We are therefore interested in points wherex is
a critical point ofh|L = ĥ|L . Note that ifx is a critical point ofh|L, then, for all
y ∈ R

q

hx(x + y) = h(x + y) − α(x, x + y) · h(x) − 〈∇h(x), y〉Rq

1− α(x, x + y)

+ 〈P ⊥
L ∇h(x), y〉Rq

1− α(x, x + y)
(15)

= ĥα,K̂ (x, y) + 〈P ⊥
L ∇h(x), y〉Rq

1− α(x, x + y)

whereP ⊥
L represents orthogonal projection ontoL⊥, the orthogonal complement

of L in R
q . The expression (15) indicates that at critical pointsx of h|L, hx(y) is

the sum of a well-behaved term,̂hα,K̂ and a singular term. The above relation
holds for all critical points ofh|L. However, for our later arguments we would like
to have this relation hold for allx ∈ L to avoid having to condition on a set of
measure zero. We therefore redefinehx as follows:

hx(y)
�=


h(y) − αx(y)h(x) − 〈PL∇h(x), y〉Rq

1− αx(y)
, if αx(y) �= 1,

h(y), if αx(y) = 1.
(16)

With this redefinition ofh, relation (15) holds for allx ∈ L and, for each critical
pointx of h|L the two definitions ofhx coincide. For the remainder of this section,
we will use the definition (16).

LEMMA 2.4. If P ⊥
L ∇h(x) ∈ K∗, the dual of K ⊂ L⊥, then for any bounded

neighborhood Ox � x

sup
y∈Ox\{x}

hx(y) < +∞.
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PROOF. If P ⊥
L ∇h(x) ∈ K∗, then (15) implies that for ally

hx(y) ≤ ĥα,K̂ (x, x + y)

and ĥα,K̂ is continuous iny, and therefore bounded on bounded sets. If, on the
other hand,P ⊥

L ∇h(x) /∈ K∗, then there exists a unit vectorv ∈ K̂ such that
〈P ⊥

L ∇h(x), v〉Rq > 0 and x + tv ∈ Ox for sufficiently small t . Relation (15)
implies that

lim
t↓0

hx(x + tv) = +∞.

This follows from the fact that the numerator in the expression on the right-hand
side of (15) is strictly positive of orderO(t) for t small, while the denominator is
of orderO(t2). �

LEMMA 2.5. If P ⊥
L ∇h(x) ∈ (K∗)◦, then for any bounded neighborhood O of

the origin in R
q

W̃O(x) = sup
y∈K̂∩({x}⊕O)\{x}

hx(y) = sup
v∈K̂∩(O\{0})

(
ĥα,K̂ (x, v) + 〈P ⊥

L ∇h(x), v〉Rq

1− α(x, x + v)

)
is continuous at x.

PROOF. We first note that by (15) the two suprema above are equal, and it
suffices to consider the supremum on the right.

Consider a convergent sequence(
x, vn(x)

)
n≥0 → (

x, v∗(x)
)

in B(K̂) along which the supremum̃WO(x) is approached. Then either
‖vn(x)‖Rq > 0 for all n sufficiently large, or‖vn(x)‖Rq → 0. In the first case it
is immediate that(x, v∗(x)) is in X and, as we will show in a moment, in the sec-
ond case(x, v∗(x)) ∈ ∂X∩L×S(L), whereS(L) is the unit sphere inL. In other
words, the limiting directionv∗(x) is in S(L). Further, if‖vn(x)‖Rq → 0, then it
is easy to see that the sequence(x,PLvn(x)) also achieves the supremum̃WO(x).

To see whyv∗(x) must be inS(L) in the second case, suppose that(x, vn(x))

converges to(x, v∗(x)) with v∗(x) ∈ K̂ \ L. As P ⊥
L ∇h(x) ∈ (K∗)◦ it follows that

〈P ⊥
L ∇h(x), v∗(x)〉Rq < 0.

Therefore, applying the same argument as in (15),

lim
n→∞

〈P ⊥
L ∇h(x), vn(x)〉Rq

1− α(x, x + vn(x))
= −∞,

which contradicts the assumption that

lim
n→∞hx(

x + vn(x)
) = W̃O(x).
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The above implies that for anyx ∈ L, and any convergent sequence(x, vn(x))

achievingW̃O(x), we can either assume that‖vn(x)‖ is bounded uniformly below,
or that vn(x) ∈ L for all n. Continuity of W̃O(x) now follows, as, for such
sequences andε > 0 sufficiently small

sup
y∈B(x,δ(ε))

∣∣ĥa,K̂(
x, vn(x)

) − B(ĥ,α, K̂)
(
y, vn(x)

)∣∣ < ε,

sup
y∈B(x,δ(ε))

∣∣∣∣〈P ⊥
L ∇h(x), vn(x)〉Rq

1− α(x, x + vn(x))
− 〈P ⊥

L ∇h(y), vn(x)〉Rq

1− α(y, y + vn(x))

∣∣∣∣ < ε. �

Returning to piecewise smooth spaces, the above arguments will need slight
modifications. Specifically, the map�, defined in (14), has no natural replacement
candidate for a piecewise smooth space. However, as noted in a remark above,
we can think ofB(K̂) as a subset of the tangent bundleT (Rq) in which case
� :Rq ×R

q → T (Rq). In the piecewise smooth setting, we must therefore replace
the map� with a mapH : M̂ × M̂ → T (M̂ ) such that for eachx ∈ M̂ ,

H({x} × M̂ ) ⊂ TxM̂.(17)

One of the key properties of� was that the sequence�(xn, yn) converges to a
point inX asn → 0 as long asxn → x and the unit vector

yn − xn

‖yn − xn‖Rq

converges inS(Rq). We can replace this property of� by asking the following
of H . For any C1 curve c : (−δ, δ) → M̂ × M̂ with c(0) = (c1(0), c2(0)) =
(x, x), ċ2(0) = Xx , we require that

lim
t→0

H(x, c2(t)) − H(x, x)

t
= Xx.(18)

Given such anH , we can, as in (16), redefinehx for a C2 function on a
piecewise smooth spaceM . Forx ∈ ∂Mi , we redefinehx as follows:

hx(y)
�=


h(y) − αx(y)h(x) − ĝ(∇h|∂Mi

(x),H(x, y) − αx(y)H(x, x))

1− αx(y)
,

if αx(y) �= 1,

h(y), if αx(y) = 1.

(19)

With hx redefined, by working in suitably chosen charts, it is not difficult to prove
the following.

COROLLARY 2.6. Suppose that α ∈ C2(M̂ × M̂ ) is such that the partial map

αx(y) = α(x, y)
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satisfies the conditions of Lemma 2.2 at every x ∈ M and such that the Hessian
of the partial map αx is nondegenerate at every x ∈ M . Further, suppose H : M̂ ×
M̂ → T (M) satisfies (17), (18)and let hx be defined as in (19). Then, the first
conclusion of Lemma 2.2holds if we replace (i) with:

(i ′) h(x) − ĝ
(
H(x, x),∇h|∂Mi

(x)
) ≥ u.

The second conclusion of Lemma 2.2reads: for every x ∈ ∂Mi and any C2 curve
c : (−δ, δ) → ∂Mi with c(0) = x, ċ(0) = Xx ,

lim
t→0

hx(c(t)) = ∇2(h(·) − ĝ(Hx(·),∇h|∂Mi
(x)))(Xx,Xx)

−∇2αx|∂Mi
(x)(Xx,Xx)(20)

− (
h(x) − ĝ

(
Hx(x),∇h|∂Mi

(x)
))

,

where Hx(·) is the partial map Hx(y) = H(x, y).
Furthermore, the function

W̃ (x)
�= sup

y∈M\{x}
hx(y)

is, for each 0≤ i ≤ k, continuous on the set{
x ∈ ∂Mi :P ⊥

Tx∂Mi
∇h(x) ∈ (

P ⊥
Tx∂Mi

NxM
)◦}

,

where P ⊥
Tx ∂Mi

represents projection onto the orthogonal complement of Tx∂Mi

in TxM̂ .

2.3. A point process for the global maximizers of stochastic processes. For
the remainder of this work, we choose a fixed piecewise smooth spaceM and a
processf̂ on M̂ ⊃ M satisfying Assumption 2.1.

In this section, we describe process analogies ofhx , α andH in the case for
which ĥ is replaced with the smooth procesŝf . Specifically, we take

α(x, y) = ρ(x, y),

(21)
H(x, y) = F(x, y)

�=
q∑

j=1

Cov
(
f (y),Xj f̂ (x)

)
Xj,x,

for some orthonormal frame field(X1,x, . . . ,Xq,x) onTxM̂.

The following is the stochastic analogy of Lemma 2.6, that is, the point process
representation of the maximizers off .

COROLLARY 2.7. Under Assumption 2.1, almost surely, the maximizers
of f are isolated and the maximizers of f are the points x ∈ ∂Mi,0 ≤ i ≤ k,
such that:

(i) ∇f|∂Mi
(x) = 0;
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(ii) f (x) − ĝ(F x(x),∇f|∂Mi
(x)) ≥ u;

(iii) P ⊥
Tx∂Mi

∇f̂ (x) ∈ (P ⊥
Tx∂Mi

NxM)◦;

(iv) f (x) ≥ supy∈M\{x} f̃ x(y), where

f̃ x(y)
�=


f (y) − ρ(x, y)f (x) − ĝ(F x(y) − ρ(x, y)F x(x),∇f|∂Mi

(x))

1− ρ(x, y)
,

if ρ(x, y) �= 1,

f (y), if ρ(x, y) = 1.

(22)

NOTE. If the joint density of∇f̂ (x), read off in some orthonormal basis of
TxM̂ , is bounded by some constantK uniformly in x ∈ M̂ , then, almost surely,
there will be no critical points off|∂Mi

such thatP ⊥
Tx∂Mi

∇f̂ (x) ∈ ∂Nx M ⊂
Tx ∂M⊥

i . Therefore, almost surely, all global maximizers will be such that
P ⊥

Tx ∂Mi
∇f̂ (x) is in the relative interior ofNxM in Tx∂M⊥

i . As for the proof of
Lemma 2.10 below, the proof of this is reasonably standard, and follows along the
lines of similar results in, for example, Chapters 11 and 12 of [4]. We therefore
omit the details.

PROOF OFCOROLLARY 2.7. The only part of the argument in Lemma 2.2
that needs to be modified is what happens whenαx(y) = ρ(x, y) = 1. In the
deterministic case, we assumed thatαx(y) = 1 implied h(x) = h(y). In the
random case, we know thatαx(y) = 1 implies f (x) − E(f (x)) = (f (y) −
E(f (y)))σ (x)/σ (y) almost surely, where

σ 2(x) = Var(f (x)).

Almost surely, then, it is still true that ifx is a maximizer off , thenf (x) ≥ f̃ x(y)

for all y such thatρx(y) = 1, since otherwisex cannot be a maximizer. The reverse
implication follows similarly. �

With f̃ defined as above, it is easy to see that Corollary 2.6 holds almost surely
with hx replaced byf̃ x , α by ρ andH by F .

2.4. Point process representation for the difference between the expected EC
and the true probability. Our assumptions allow us to use the Morse theorem
of [20] to express the expected Euler characteristic of the excursionsM ∩
f̂ −1[u,+∞) as integrals overM . The formula is not new, though we repeat it here
for use in deriving bounds on the error in the Euler characteristic approximation.

What is new, and is crucial to the entire paper, is the exact expression in
Proposition 2.9 for the supremum distribution (1).



1378 J. TAYLOR, A. TAKEMURA AND R. J. ADLER

PROPOSITION2.8. Under Assumption 2.1,and with the notation there,

P̂
(

sup
x∈M

f (x) ≥ u

)
= E

(
χ

(
M ∩ f̂ −1[u,+∞)

))
(23)

=
k∑

i=0

∫
∂Mi

E
(
det

(−∇2f|∂Mi,Ei
(x)

)
1AEC

x

∣∣∇f|∂Mi,Ei
(x) = 0

)
× ϕ∇f|∂Mi ,Ei

(x)(0) dHi (x)

where Hi is an i-dimensional Hausdorff measure induced by ĝ, ϕ∇f|∂Mi ,Ei
(x) is the

density of ∇f|∂Mi,Ei
(x) and

AEC
x = {f (x) ≥ u,∇f̂ (x) ∈ NxM}.

Suitable regularity of the process∇f|∂Mi,Ei
(x) implies that the maximizers

of f are almost surely isolated, though it does not guarantee uniqueness. If
W̃ (x) were continuous when restricted to∂Mi , Assumption 2.1 would allow us
to apply the general point process Lemmas 2.4 and 2.5 of [22] to the point process
representation of the maximizers in Corollary 2.7. The almost sure analogy of
Corollary 2.6 shows that̃W(x) is not continuous, but it is continuous on the
open set {

x ∈ ∂Mi :P ⊥
Tx∂Mi

∇f̂ (x) ∈ (NxM)◦
}
.

Further, we are only interested in its behavior on this set. Straightforward
modifications of the above cited lemmas, which we omit, lead to the following
representation for the supremum distribution.

PROPOSITION2.9. Suppose that, almost surely, f has a unique maximum and
that Assumption 2.1holds. Furthermore suppose that, for every x ∈ M ,

P
(
W̃ (x) = f (x)

) = P
(
W̃ (x) = u

) = 0.

Then,

P
(

sup
x∈M

f (x) ≥ u

)

=
k∑

i=0

∫
∂Mi

E
(
det

(−∇2f|∂Mi,Ei
(x)

)
1ASUP

x
|∇f|∂Mi,Ei

(x) = 0
)

(24)

× ϕ∇f|∂Mi ,Ei
(x)(0) dHi (x),

where

ASUP
x = {f (x) ≥ u ∨ W̃ (x),∇f̂ (x) ∈ NxM}.
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The discrepancy between the expected Euler characteristic approximation and
the true supremum distribution is

Diff f,M(u)
�= P̂

(
sup
x∈M

f (x) ≥ u

)
− P

(
sup
x∈M

f (x) ≥ u

)

=
k∑

i=0

∫
∂Mi

E
(
det

(−∇2f|∂Mi,Ei
(x)

)
1AERR

x
|∇f|∂Mi,Ei

(x) = 0
)

(25)

× ϕ∇f|∂Mi ,Ei
(x)(0) dHi (x)

where

AERR
x = {u ≤ f (x) ≤ W̃ (x),∇f̂ (x) ∈ NxM}.

Before concluding this section, we provide a lemma giving sufficient conditions
for the uniqueness of the global maximum off . As mentioned above, the proof
is reasonably standard fare and so omitted. Detailed arguments for very similar
cases can be found in Chapters 11 and 12 of [4]. In the nonmanifold setting,
these arguments are classical. (E.g., see Theorem 3.2.1 of [1] or [6] and references
therein.)

LEMMA 2.10. Suppose that for all pairs 1≤ i, j ≤ k and all pairs {(x, y) :x ∈
∂Mi, y ∈ ∂Mj } the random vector

V (x, y) = (
f (x) − f (y),∇f|∂Mi,Ei

(x),∇f|∂Mj ,Ej
(y)

)
has a density, bounded by some constant K(x, y). Then,

P
({∃ (x, y) :x ∈ ∂Mi, y ∈ ∂Mj ,V (x, y) = 0 ∈ R

i+j+1}) = 0.

3. Bounding the error. Expression (25) is an explicit formula for the error
in the expected Euler characteristic approximation. A similar explicit formula can
be derived for the error of the approximation based on the expected number of
local maxima above the levelu, though we do not pursue this here. However, as
described in Section 2, the processf̃ x is singular nearx, and actually has infinite
variance nearx, which means that standard tools such as the Borell–Tsirelson
inequality cannot be used to bound its supremum distribution.

To see that the process̃f x can have infinite variance, assume thatf is the
restriction of an isotropic field to[0,1]2. Fix a point(x,0). We will compute the
variance off̃ x along the curve

c(t) = (x,0) − t · (1,0).

Straightforward calculations show that

Fx(c(t)) = 0, F x(x) = 0,
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so that

f̃ x(c(t)) = f (y) − ρ(x, y)f (x)

1− ρ(x, y)
.

In this case, the variance of̃f x(y) is easily seen to be

Var(f̃ x(y)) = 1+ ρ(x, y)

1− ρ(x, y)

and

lim
y→x

Var(f̃ x(y)) = lim
y→x

1+ ρ(x, y)

1− ρ(x, y)
= +∞.

In general, ifx ∈ ∂Mi , then, along a curvec : (−δ,0] → M with ċ(0) = −Xx ∈
SxM \ Tx ∂Mi ,

lim
t↑0

Var(f x(c(t))) = +∞.

Although this is somewhat worrying, in (25) we only care about largepositive
values off̃ x , and, further, we only care about the behavior off̃ x on the set{

(x,ω) :P ⊥
Tx∂Mi

∇f̂ (x)(ω) ∈ (
P ⊥

Tx∂Mi
NxM

)◦}
.(26)

We exploit these facts and introduce a processf x in this section which has,
under some conditions, finite variance and dominatesf̃ x on the set (26). It is
this process whose variance appears in the exponential bound for the behavior
of Diff f,M(u) in the Gaussian case.

Obviously, the processf x , which we define below, does not dominate the
absolute value off̃ x . Indeed, if this were true, the processf x would have infinite
variance as well.

The processf x is defined as follows:

f x(y)
�=


f (y) − ρx(y)f (x) − ĝ(F̂ x(y) − PNxMF̂ x(y),∇f̂ (x))

1− ρx(y)
,

if ρx(y) �= 1,

f (y) − ĝ
(
F̂ x(y) − PNxMF̂ x(y),∇f̂ (x)

)
, if ρx(y) = 1,

(27)

where PNxM :TxM̂ → NxM represents orthogonal projection ontoNxM and
F̂ : M̂ × M̂ → T (M̂ ) is given by

F̂ (x, y) =
{

F(x, y) − ρ(x, y)F (x, x), if ρ(x, y) �= 1,

F(x, y), if ρ(x, y) = 1,
(28)

whereF is defined in (21).
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LEMMA 3.1. On the set (26) of extended outward normal points, for every
y ∈ M ,

f x(y) ≥ f̃ x(y).

If x ∈ ∂Mk = M◦, then equality holds above.

PROOF. First, we note that(
1− ρx(y)

) · (
f̃ x(y) − f x(y)

) = ĝ
(
F̂ x(y) − PNxMF̂ x(y),P ⊥

Tx∂Mi
∇f̂ (x)

)
.

As NxM is a convex cone, it follows that for anyYx ∈ TxM̂

Yx − PNxMYx ∈ NxM
∗

whereNxM
∗ is the dual cone ofNxM , which is just the convex hull ofSxM . By

duality,

ĝ(Yx − PNxMYx,Vx) ≤ 0

for everyVx ∈ NxM . Consequently, on the set (26)

ĝ
(
Yx − PNxMYx,P

⊥
Tx∂Mi

∇f̂ (x)
) ≤ 0

for everyYx ∈ TxM̂ . As F̂ x(y) ∈ TxM̂ for eachy, the first claim holds.
As for the second, ifx ∈ ∂Mk , thenNxM = Tx ∂M⊥

k andPNxMVx = 0 for all
Vx ∈ Tx ∂Mk. Similarly,

ĝ
(
Vx,P

⊥
Tx∂Mi

∇f̂ (x)
) = 0.

Therefore, on this set

ĝ
(
F̂ x(y) − PNxMF̂ x(y),∇f̂ (x)

) = 0. �

As far as the continuity (inx) of

W(x)
�= sup

y∈M\{x}
f x(29)

is concerned, it is not difficult to show that, almost surely, Corollary 2.6 holds with
f̃ x replaced byf x , that is, thatW(x) is continuous on the set{

x ∈ ∂Mi :P ⊥
Tx∂Mi

∇f̂ (x) ∈ (
P ⊥

Tx∂Mi
NxM

)◦}
.

As we will see in the proof of Theorem 3.3, Lemma 3.1 provides the basic
bounds for Difff,M(u). The following corollary to Lemma 2.2 will also be of use
to us.
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COROLLARY 3.2. If f has unit variance, then, for any C1 unit speed curve
c : (−δ, δ) → ∂Mk with c(0) = x, ċ(0) = Xx ,

lim
t→0

f x(c(t)) = −∇2f|∂Mk
(x)(Xx,Xx) − ∇2ρx(x)(Xx,Xx)f (x)

−∇2ρx(x)(Xx,Xx)

= −∇2f|∂Mk
(x)(Xx,Xx) + f (x).

Further,

sup
Xx∈S(Tx∂Mk)

∣∣ −∇2f|∂Mk
(x)(Xx,Xx) + f (x)

∣∣ ≤ sup
y∈M\{x}

|f x(y)|.(30)

PROOF. The proof is essentially just the second conclusion of Lemma 2.2,
recast in the stochastic process framework. The only thing that needs to be verified
is that

∇2ρx(x)(Xx,Xx) = −1,

but this follows from the fact that

∇2ρx(y)(Xy,Yy) = Cov
(∇2f|∂Mk

(y)(Xy,Yy), f (x)
)

and the fact that, as a double form

Cov
(∇2f|∂Mk

(x)(Xx,Yx), f (x)
) = −ĝx(Xx,Yx),

(cf. [22]). �

Using the results of Lemma 3.1 we have the following theorem.

THEOREM 3.3. Suppose that f has a unique maximum, almost surely, and
Assumption 2.1holds. Further suppose that, for every x ∈ M ,

P
(
W(x) = f (x)

) = P
(
W(x) = u

) = 0.

Then,

|Diff f,M(u)|

≤
k∑

i=0

∫
∂Mi

E
(∣∣det

(−∇2f|∂Mi,Ei
(x)

)∣∣1BERR
x

|∇f|∂Mi,Ei
(x) = 0

)
(31)

× ϕ∇f|∂Mi ,Ei
(x)(0) dHi (x)

where

BERR
x = {u ≤ f (x) ≤ W(x)}.
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4. Gaussian fields with constant variance. In this section, using Theo-
rem 3.3, we derive an explicit bound for the exponential behavior of Difff,M(u)

whenf̂ is a Gaussian field with constant variance, satisfying Assumption 2.1. The
assumption of constant variance implies certain random variables are uncorrelated,
hence independent in the Gaussian case. In particular, the assumption of constant
variance implies that forx ∈ ∂Mi,0 ≤ i ≤ k, the entire process(f x(y))y∈M\{x}
is independent off (x) as well as∇f|∂Mi

(x). This allows us to remove the con-
ditioning on∇f|∂Mi

(x) below. Once this conditioning is removed, the rest of the
argument relies only on the Borell–Tsirelson inequality [2].

Our first observation is that, whetherf has constant variance or not, for each
x ∈ M , the processf x(y) is uncorrelated with the random vector∇f|∂Mi

(x).
Hence, in the Gaussian case,f x(y) is independent of∇f|∂Mi

(x).

LEMMA 4.1. For every x ∈ ∂Mi,0≤ i ≤ k and every y ∈ M \ {x}
Cov

(
f x(y),Xxf

) = 0

for every Xx ∈ Tx ∂Mi .

PROOF. We first note that, ifρx(y) �= 1, then(
1− ρx(y)

)
Cov

(
f x(y),Xxf

)
= Cov

(
f (y) − ρx(y)f (x),Xxf

)
− Cov

(
ĝ
(
F̂ x(y) − PNxMF̂ x(y),∇f̂ (x)

)
,Xxf

)
= Cov

(
f (y) − ρx(y)f (x),Xxf

) − ĝ
(
F̂ x(y) − PNxMF̂ x(y),Xx

)
.

If, on the other hand,ρx(y) = 1, then

Cov
(
f x(y),Xxf

) = Cov
(
f (y),Xxf

)
− Cov

(
ĝ
(
Fx(y) − PNxMFx(y),∇f̂ (x)

)
,Xxf

)
= Cov

(
f (y),Xxf

) − ĝ
(
Fx(y) − PNxMFx(y),Xx

)
.

The conclusion will therefore follow once we prove, for everyy ∈ M ,

Cov
(
f (y),Xxf

) = ĝ
(
Fx(y) − PNxMFx(y),Xx

)
,

Cov
(
f (y) − ρx(y)f (x),Xxf

) = ĝ
(
F̂ x(y) − PNxMF̂ x(y),Xx

)
.

As the two arguments are similar, we just prove the first equality. The mapFx

can be decomposed as follows:

Fx(y) = PTx∂Mi
F x(y) + P ⊥

Tx∂Mi
F x(y),
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where

PTx∂Mi
F x(y) =

i∑
j=1

Cov
(
f (y),Xjf (x)

)
Xj,x,

P ⊥
Tx∂Mi

F x(y) =
q∑

j=i+1

Cov
(
f (y),Xjf (x)

)
Xj,x,

and the orthonormal basis(X1,x, . . . ,Xq,x) is chosen so that the set(X1,x, . . . ,

Xi,x) forms an orthonormal basis forTx ∂Mi and (Xi+1,x, . . . ,Xq,x) forms an
orthonormal basis forTx ∂M⊥

i , the orthogonal complement ofTx ∂Mi in TxM̂ .
Further, becausêg(Xx,Vx) = 0 for every Xx ∈ Tx∂Mi and Vx ∈ NxM , it

follows that

PNxMFx(y) = PNxMP ⊥
Tx∂Mi

F x(y)

and for everyXx ∈ Tx ∂Mi

ĝ
(
Fx(y) − PNxMFx(y),Xx

) = ĝ
(
PTx∂Mi

F x(y),Xx

)
+ ĝ

(
P ⊥

Tx∂Mi
F x(y) − PNxMP ⊥

Tx∂Mi
F x(y),Xx

)
= ĝ

(
PTx∂Mi

F x(y),Xx

)
=

i∑
j=1

Cov
(
f (y),Xjf (x)

)
ĝ(Xj,x,Xx)

= Cov
(
f (y),Xxf

)
. �

As noted above, the independence between∇f|∂Mi
(x) and the processf x

allows us to remove the conditioning on∇f|∂Mi
(x) in the expression for

Diff f,M(u), whetherf has constant variance or not.

COROLLARY 4.2. Suppose f is a Gaussian process satisfying the conditions
of Theorem 3.3.Then,

|Diff f,M(u)| ≤
k∑

i=0

∫
∂Mi

E
(∣∣det

(−∇2f|∂Mi,Ei
(x)

)|1CERR
x

)
(32)

× ϕ∇f|∂Mi ,Ei
(x)(0) dHi (x)

where

CERR
x = {

u ≤ f (x) − ĝ
(
PTx∂Mi

F x(x),∇f̂ (x)
) ≤ W(x)

}
.

If f has constant variance, then Fx(x) = 0 ∈ TxM and

CERR
x = {u ≤ f (x) ≤ W(x)}.



EXPECTED EULER CHARACTERISTIC 1385

PROOF. The only thing that needs to be proven is that, in the eventCERR
x the

condition{u ≤ f (x) ≤ W(x)} can be replaced with{
u ≤ f (x) − ĝ

(
PTx∂Mi

F x(x),∇f̂ (x)
) ≤ W(x)

}
and the conditioning can be removed.

The reason that the above replacement is justified is that, on the set
{∇f|∂Mi

(x) = 0}
f (x) = f (x) − ĝ

(
PTx∂Mi

F x(x),∇f̂ (x)
)
.

Further, f (x) − ĝ(PTx∂Mi
F x(x),∇f̂ (x)) is independent of∇f|∂Mi

(x), and
Lemma 4.1 implies thatW(x) is also independent of∇f|∂Mi

(x). Therefore, the
conditioning on∇f∂Mi

(x) can be removed.�

We are now ready to prove the following theorem.

THEOREM 4.3. Let f̂ be a Gaussian process with constant, unit variance,
on M̂ and let f = f̂|M be such that f satisfies Assumption 2.1.Then,

lim inf
u→∞ −u−2 log|Diff f,M(u)| ≥ 1

2

(
1+ 1

σ 2
c (f )

)
where

σ 2
c (f, x)

�= sup
y∈M\{x}

Var(f x(y))(33)

and

σ 2
c (f )

�= sup
x∈M

σ 2
c (f, x).(34)

PROOF. We must find an upper bound for (32). Writing

∇2f|∂Mi,Ei
(x)

= ∇2f|∂Mi,Ei
(x) − E

(∇2f|∂Mi,Ei
(x)

∣∣f (x)
) + E

(∇2f|∂Mi,Ei
(x)|f (x)

)
= ∇2f|∂Mi,Ei

(x) + f (x)I − f (x)I

(cf. [22]), and applying Hölder’s inequality to (32) yields, for any conjugate
exponentsp,q,

|Diff f,M(u)| ≤
k∑

i=0

∫
∂Mi

i∑
j=0

E
(
f (x)j1{f (x)≥u}

)
× E

(∣∣detri−j

(−∇2f|∂Mi,Ei
(x) − f (x)I

)∣∣p)1/p

× P
(
W(x) ≥ u

)1/q
dHi (x)
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where detrk(A) is thekth “det-trace” of the square matrixA which is defined to be
the sum of the determinants of allk × k principal minors ofA.

Define

µ
�

sup
x∈M

E

(
sup

y∈M\x
f x(y)

)
.

For

u ≥ µE
(
f x(y)

) + µ+

the Borell–Tsirelson inequality implies that

P
(
W(x) ≥ u

) ≤ 2e−(u−µ+)2/2σ2
c (f,x).

Recalling thatf x(x) = f (x), for suchu, it also follows that

E
(
f (x)j1{f (x)≥u}

) ≤ Cju
j−1e−(u−µ+)2/2.

Putting these facts together, for any conjugate exponentsp,q

|Diff f,M(u)|
≤ Cku

k−1e−((u−µ+)2/2)(1+1/qσ2
c (f ))

×
k∑

i=0

∫
∂Mi

i∑
j=0

E
(∣∣detri−j

(−∇2f|∂Mi,Ei
(x) − f (x)I

)∣∣p)1/p
dHi (x).

The result now follows after noting that we can chooseq close to 1, andu(q)

so that, foru ≥ u(q), the remaining terms are arbitrarily small logarithmically,
compared tou2. �

Theorem 4.3 provides a lower bound on the exponential decay of Difff,M(u).
We believe that the lower bound is generally tight when a maximizer ofσ 2

c (f )

occurs in∂Mk , in the sense that the term corresponding to∂Mk in the sum defining
Diff f,M(u) in (25) is exponentially of the same order as the upper bound; however,
we were unable to prove this conjecture as it seems difficult to establish the sign of
the error of the lower-order terms. In the piecewise smooth setting, it is therefore
still open as to whether the lim infu→∞ in Theorem 4.3 can be replaced with
limu→∞ as we cannot rule out the possibility that some terms in the sum (25)
cancel each other out, leading to a faster rate of exponential decay. Although we
have not settled the issue completely, these situations seem somewhat pathological.

5. Examples. In this section, we computeσ 2
c (f ) for some simple examples,

strengthening earlier results of [13, 16, 17]. Before turning to the examples,
however, we discuss the relation betweenσ 2

c (f ) and the critical radius of a tube
aroundM whenf is assumed to be centered with unit variance. Specifically, we



EXPECTED EULER CHARACTERISTIC 1387

describe the geometry of the situation in the case of “global overlap,” that is, when
the supremum

σ 2
c (f ) = sup

x∈M

sup
y∈M\{x}

Var(f x(y))

is achieved at a pair(x∗, y∗), x∗ �= y∗.

5.1. Geometric picture in the case of global overlap. Here, we describe the
notion of “global overlap” and describe the geometry of the processf near pairs
(x∗, y∗) achieving the critical varianceσ 2

c (f ). Roughly speaking, this situation
occurs whenM , the parameter space off , “wraps around itself” and, for some
x ∈ M there is a pointy ∈ M that is close tox in theL2-metric but far in terms of
geodesic distance fromx. To describe the geometry involved in this situation we
turn to spherical geometry iñHf , the RKHS off . Recall thatH̃f is defined by the
reproducing kernel condition

〈R(s, ·),R(t, ·)〉H̃f
= R(t, s)

and there exists an isometry that mapsH̃f onto the linear spanHf of {f (x), x ∈
M} in L2(�,F ,P). Without loss of generality, then, we can describe the geometry
in terms ofHf . Let � :M → Hf ⊂ L2(�,F ,P) denote the map

x �→ f (x).

If S(Hf ) is the unit sphere inHf , and f is centered with unit variance,
then �(M) ⊂ S(Hf ), and our standing assumptions, namely thatf is C2 and
ρ(x, y) �= 1 if x �= y, imply that� is a piecewiseC2 embedding. Further, it is not
hard to see that

�∗(Xx) = Xxf,

so that the tangent spaceTf (x)�(M) is spanned by(X1,xf, . . . ,Xk,xf ) for some
basis{X1,x, . . . ,Xk,x} of TxM .

We denote the orthogonal complement ofTf (x)�(M) in Tf (x)Hf by
T ⊥

f (x)�(M), and the orthogonal complement ofTf (x)�(M) in Tf (x)S(Hf ) by
Nf (x)�(M).

Given a pointf (x) and a unit normal vectorvf (x) ∈ Nf (x)�(M) we denote the
geodesic, inS(Hf ), originating atf (x) in the directionvf (x) by cf (x),vf (x)

. That
is,

cf (x),vf (x)
(t) = cost · f (x) + sint · vf (x), 0≤ t < π.

As discussed in [21], up to a certain point alongcf (x),vf (x)
, the points on

cf (x),vf (x)
metrically project uniquely tox. That is, for t small enough, the

unique point on�(M) closest tocf (x),vf (x)
(t) is f (x). We denote the largestt

for which this is true byθ(f (x), vf (x)) and we call it thelocal critical radius
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(angle) at f (x) in the direction vf (x). Taking the supremum over all directions
vf (x) ∈ S(Nf (x)�(M)) we obtainθ(f (x)), thelocal critical radius at f (x),

θc(f (x)) = inf
vf (x)∈S(Nf (x)�(M))

θ
(
f (x), vf (x)

)
(35)

and the global critical radius

θc = θc(�(M)) = inf
x∈M

θc(f (x)).(36)

The relation between these critical angles andσ 2
c (f, x) in (33) is given in the

following lemma.

LEMMA 5.1. Suppose f = f̂|M is the restriction of a centered, unit variance
Gaussian process on M̂ , to M , a piecewise C2 k-dimensional submanifold of M̂ .
Suppose that � : M̂ → Hf is a C2 embedding. Then, for all x ∈ ∂Mk ,

σ 2
c (f, x) = cot2(θc(x)).

PROOF. Forx ∈ ∂Mk , NxM = TxM
⊥ is a linear space, therefore

F̂ x(y) − PNxMF̂ x(y) = PTx∂Mj
F̂ x(y).

Furthermore, becausef has constant varianceFx(x) = 0. Putting these facts
together shows that

f x(y) = f (y) − ρx(y)f (x) − ĝ(F̂ x(y),∇f̂ (x))

1− ρx(y)

= f (y) − ρx(y)f (x) − ∑k
i=1 Cov(f (y),Xif (x))Xif (x)

1− ρx(y)

for some orthonormal frame field(X1, . . . ,Xk) onM .
Turning to the picture in terms of geodesics, fixf (x) andvf (x). Suppose that for

a certaint the pointcf (x),vf (x)
(t) does not metrically project tof (x). This implies

there is a pointf (y) ∈ �(M) such that

d
(
cf (x),vf (x)

(t), f (y)
) = cos−1(〈cf (x),vf (x)

(t), f (y)
〉
Hf

)
< d

(
cf (x),vf (x)

(t), f (x)
)

= cos−1(〈cf (x),vf (x)
(t), f (x)

〉
Hf

)
.

Alternatively,〈
cf (x),vf (x)

(t), f (y)
〉
Hf

= cost · 〈f (x), f (y)〉Hf
+ sint · 〈

vf (x), f (y)
〉
Hf

= cost · ρ(x, y) + sint · 〈
vf (x), f (y)

〉
Hf

>
〈
cf (x),vf (x)

(t), f (x)
〉
Hf

= cost.
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After a little rearranging, we see that this is true if and only if

cott <
〈vf (x), f (y)〉Hf

1− ρ(x, y)
.

Therefore,

cotθc

(
f (x), vf (x)

) = sup
y∈M\{x}

〈vf (x), f (y)〉Hf

1− ρ(x, y)
.

Taking the supremum over allvf (x) ∈ Nf (x)�(M) we see that

cotθc(f (x)) = sup
vf (x)∈S(Nf (x)�(M))

sup
y∈M\{x}

〈vf (x), f (y)〉Hf

1− ρ(x, y)

= sup
y∈M\{x}

‖PNf (x)�(M)f (y)‖Hf

1− ρ(x, y)

wherePNf (x)�(M) represents orthogonal projection ontoNf (x)�(M). Therefore,

cot2 θc(f (x)) = sup
y∈M\{x}

‖PNf (x)�(M)f (y)‖2
Hf

(1− ρ(x, y))2

and it remains to show that∥∥PNf (x)�(M)f (y)
∥∥2
Hf

= Var

(
f (y) − ρ(x, y)f (x) −

k∑
i=1

Cov
(
f (y),Xif (x)

)
Xif (x)

)
.

This, however, follows from the fact thatNf (x)�(M) is the orthogonal comple-
ment (inTf (x)Hf ) of the subspaceLx = span{f (x),X1f (x), . . . ,Xkf (x)}, and
the fact that

ρ(x, y)f (x) +
k∑

i=1

Cov
(
f (y),Xif (x)

)
Xif (x)

= 〈f (x), f (y)〉Hf
f (x) +

k∑
i=1

〈f (y),Xif (x)〉Hf
Xif (x)

= PLxf (y). �

We now consider the case whenM is a manifold without boundary and the
supremum in

cot2(θc) = sup
x∈M

sup
y∈M\{x}

‖PNf (x)�(M)f (y)‖2
Hf

(1− ρ(x, y))2(37)
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is achieved at some(x∗, y∗). Thinking of the critical variance as the cotangent
of some critical distance onM , then, geometrically, the tube of radiusθc should
self-intersect along a geodesic fromx∗ to y∗ in such a way that the tube viewed
locally from the pointx∗ shares a hyperplane with the tube viewed locally from
the pointy∗. Alternatively, at the point of self-intersection the outward pointing
unit normal vectors should be pointing in opposite directions.

The simplest way of seeing this is to think ofM as just two points{p1,p2}
in R

2. In this case the tube of radiusr aroundM consists of the union of two discs
of radiusr . Whenr = d(p1,p2)/2 the two discs self-intersect at exactly one point,
and the unit normal vectors are pointing in opposite directions.

We can make this statement precise in the following lemma.

LEMMA 5.2. Suppose (x∗, y∗) achieve the supremum in (37).Then,

f (y∗) = cos(2θc) · f (x∗) + sin(2θc) · v∗
f (x∗),

where

v∗
f (x∗) = PNf (x∗)�(M)f (y∗)

‖PNf (x∗)�(M)f (y∗)‖Hf

is the direction of the geodesic between f (x∗) and f (y∗). For any Xx∗ ∈ Tx∗M
and any Xy∗ ∈ Ty∗M ,

Cov
(
Xx∗f,f (y∗)

) = 〈�∗(Xx∗), f (y∗)〉Hf
= 0,

Cov
(
Xy∗f,f (x∗)

) = 〈�∗(Xy∗), f (x∗)〉Hf
= 0.

Further, the partial map

ρx∗
(y)

�= ρ(x∗, y)

has a local maximum at y∗, and the partial map

ρy∗
(x)

�= ρ(x, y∗)
has a local maximum at x∗.

PROOF. If (x∗, y∗) achieve the supremum in (37), then there exists a point
z equidistant fromf (x∗) andf (y∗) and unit vectorsvf (x∗) ∈ Nf (x∗)�(M) and
wf (y∗) ∈ Nf (y∗)�(M) such that

z = cosθc · f (x∗) + sinθc · vf (x∗) = cosθc · f (y∗) + sinθcwf (y∗).

It is not a priori obvious thatwf (y∗) ∈ Nf (y∗)�(M). However, if this were not
the case, there existst ∈ M , t �= y, such thatd(t, z) < θc. This contradicts the
assumption that(x∗, y∗) achieve the supremum in (37) and the critical radius isθc.
The proof that this is a contradiction is left to the reader, though it follows similar
lines to the argument at the end of this proof.
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To prove the first claim, therefore, it is enough to show that the unit tangent
vectorsċf (x∗),vf (x∗)

(θc) andċf (y∗),wf (y∗)
(θc) at z satisfy

u = ċf (x∗),wf (x∗)
(θc) + ċf (y∗),wf (y∗)

(θc) = 0 ∈ TzHf .

Suppose then thatu �= 0. A simple calculation shows that

〈u,f (x∗)〉Hf
= 〈u,f (y∗)〉Hf

= cos(2θc) − 〈f (x∗), f (y∗)〉Hf

sinθc

.

If u �= 0, thenf (x∗), f (y∗) andz are not on the same geodesic and the triangle
inequality implies that

cos(2θc) < 〈f (x∗), f (y∗)〉Hf

which implies

〈u,f (x∗)〉Hf
= 〈u,f (y∗)〉Hf

< 0.

Consider the geodesic originating atz in the directionu∗ = u/‖u‖Hf

cz,u∗(t) = cost · z + sint · u∗.
Assumingu∗ �= 0,

〈ċz,u∗(0), f (y∗)〉Hf
= 〈ċz,u∗(0), f (x∗)〉Hf

= 〈u∗, f (x∗)〉 < 0.

This implies that for sufficiently small|s|, s < 0,

〈f (x∗), cz,u∗(s)〉Hf
= 〈f (y∗), cz,u∗(s)〉Hf

> cosθc.

For such ans, there exist distinct pointŝx(s) andŷ(s) such that

d
(
cz,u∗(s), x̂(s)

)
< θc, d

(
cz,u∗(s), ŷ(s)

)
< θc

such that the geodesic connectingx̂(s) andcz,u∗(s) is normal toM at x̂(s), and
the geodesic connectinĝy(s) andcz,u∗(s) is normal toM at ŷ(s).

Without loss of generality, we assume that

d
(
cz,u∗(s), x̂(s)

) ≤ d
(
cz,u∗(s), ŷ(s)

)
.

In this case, the geodesic connectingŷ to cz,u∗(s) is no longer a minimizer of
distance once it passes the pointcz,u∗(s), which is of distance strictly less thanθc

from ŷ(s). That is, for some point̂z(s) along the geodesic connectingŷ(s) and
cz,u∗(s), beyondcz,u∗(s) but of distance strictly less thanθc from ŷ(s), there exist
points inM strictly closer toẑ(s) thanŷ(s). We therefore have a contradiction, as
the critical radius of�(M) is θc.

To prove the second claim, we note thatf (y∗) is a linear combination off (x∗)
and vf (x∗) which are perpendicular to every vector inTf (x∗)�(M). Similarly,
f (x∗) is a linear combination off (y∗) and wf (y∗) which are perpendicular to
every vector inTf (x∗)�(M). The fact that the partial mapsρx∗

(y) and ρy∗
(x)

have local maxima follows from the same contradiction argument used above.�
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5.2. Centered stationary processes on [0, T ]. In this sectionf (x), x ∈ [0, T ],
is assumed to be a centeredC2 stationary process with unit variance and covariance
functionR. As in [13] we change the time scale so that Var(ḟ (x)) = −R̈(0) = 1.

Fix a pointx ∈ (0, T ), in which case the processf x is given by

f x(y) = f (y) − R(x − y)f (x) − Ṙ(x − y)ḟ (x)

1− R(x − y)

and the critical variance atx is given by

σ 2
c (f, x) = sup

y∈[0,T ]\{x}
Var(f (y) | f (x), ḟ (x))

(1− R(x − y))2

= sup
−x≤t≤T −x

t �=0

1− R(t)2 − Ṙ(t)2

(1− R(t))2 .

The critical variance in the interior is

σ 2
c

(
f, (0, T )

) = sup
x∈(0,T )

σ 2
c (f, x) = sup

0<t<T

1− R(t)2 − Ṙ(t)2

(1− R(t))2 .(38)

A local version of critical varianceσ 2
c,loc(x, (0, T )) is obtained by lettingt → 0

in (38), that is,

σ 2
c,loc

(
x, (0, T )

) = lim
t→0

1− R(t)2 − Ṙ(t)2

(1− R(t))2 = R(4)(0) − 1

where the last conclusion follows from some simple calculus. An alternative
interpretation of the quantityσ 2

c,loc(x, (0, T )), is the following:

σ 2
c,loc

(
x, (0, T )

) = Var
(
f̈ (x)|f (x)

)
.

The local critical variance at the end points{0, T } needs slightly more attention.
We consider the pointx = 0 without loss of generality. The normal cone atx = 0 is

N0[0, T ] = ⋃
c≤0

c
d

dx
⊂ T0R.

For ease of notation, we just writeN0 for N0[0, T ].
The projection ontoN0 is just

PN0

(
a

d

dx

)
= 1{a≤0}

(
a

d

dx

)
.

As

Cov
(
ḟ (0), f (y)

) = −Ṙ(y)
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the processf 0(y) is given by

f 0(y) = f (y) − R(y)f (0) − 1{Ṙ(y)≤0}Ṙ(y)ḟ (0)

(1− R(y))2 .

The local critical variance atx = 0 is given by

σ 2
c (f,0) = sup

0≤t≤T

1− R(t)2 − Ṙ(t)2 + max(Ṙ(t),0)2

(1− R(t))2

(39)

≥ sup
0≤t≤T

1− R(t)2 − Ṙ(t)2

(1− R(t))2 .

The inequality above implies thatσ 2
c (f,0) ≥ σ 2

c (f, y),0 ≤ y ≤ T . Therefore the
critical varianceσ 2

c (f ) is attained at the end pointst = 0, T .
Note that this does not exclude the case that the critical radius is also attained in

the interior 0< t < T . Under some circumstances, the critical variance is attained
everywhere, as demonstrated in the following lemma.

LEMMA 5.3. Suppose f is a centered, unit variance C2 stationary process on
R such that −R̈(0) = 1 and Ṙ(t) ≤ 0 for all t ≥ 0. Then

σ 2
c (f ) = σ 2

c,loc(f, x) = Var
(
f̈ (x)|f (x)

)
.

PROOF. As noted above, we just have to computeσ 2
c (f,0). BecauseṘ(t) ≤ 0

we see that

σ 2
c (f,0) = sup

0≤t≤T

1− R(t)2 − Ṙ(t)2

(1− R(t))2 .

Now suppose that this supremum is achieved. Lemma 5.2 implies that for anyt

that achieves this supremum,Ṙ(t) = 0, andt is a local maximum ofR(t). Let

T ∗ = {t > 0|Ṙ(t) = 0,R(t) = cos(2θc)}.
As T ∗ is a closed set there exists a minimum value ofT ∗:

t∗ = minT ∗ > 0.

Becauset∗ is a local maximum ofR, there existsε > 0 such that

R(t) ≤ R(t∗) ∀ t ∈ (t∗ − ε, t∗).
But R(t) is assumed to be nonincreasing and we have

R(t) ≥ R(t∗) ∀ t < t∗.
Therefore

R(t) = R(t∗) ∀ t ∈ (t∗ − ε, t∗).
This, however, contradicts the minimality oft∗. �
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REMARK. Presumably, the same ideas as in [5] could be used to generalize
Lemma 5.3 to a larger class of covariance functions, though we will leave that as
an exercise for the reader.

5.3. Isotropic fields on R
m with monotone covariance functions. In this

section, we compute the critical variance for centered, unit variance isotropic
processes restricted to a compact, convex setM . In particular, we prove the
following proposition, which shows that the exponential behavior of Difff,M(u)

for such processes is determined solely by the conditional variance of the second
derivative, given the field.

PROPOSITION 5.4. Let f̂ be an isotropic process on R
m that induces the

standard metric on R
m satisfying Assumption 2.1 and let f = f̂|M be the

restriction of f̂ to a compact, convex set M with piecewise smooth boundary. If
the covariance function

R(‖x‖) = Cov
(
f (x + t), f (t)

)
is monotone nonincreasing, then the critical variance is attained locally and is
given by

σ 2
c (f ) = Var

(
∂2f

∂t2
1

(0)
∣∣∣f (0)

)
.

PROOF. Fix t ∈ M◦. Similar computations to those in Section 5.2 show that

Var(f t (s)) = 1− R2(‖s − t‖) − Ṙ2(‖s − t‖)
(1− R(‖s − t‖))2 .

BecauseR is assumed monotone nonincreasing, the arguments used in Lemma 5.3
imply that

sup
s∈M\{t}

Var(f t (s)) = Var
(

∂2f

∂t2
1

(0)
∣∣∣f (0)

)
.

We therefore turn to the boundary∂M , assumed to be piecewise smooth.
Fix t ∈ ∂M ands �= t . Let Xs

t be the unit vector inTtR
m in the directions − t .

SinceM is convex,Xs
t ∈ StM and

Xs
t ‖ F̂ t (s) ∈ StM,

that is,Xs
t is parallel toF̂ t

s , so thatPNxMF̂ t (s) = 0. Therefore,

Var(f t (s)) = 1− R2(‖s − t‖) − Ṙ2(‖s − t‖)
(1− R(‖s − t‖))2 .
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We see that we do not incur any additional penalty for the local critical radius at
the boundary points ifM is convex. Again, the arguments of Lemma 5.3 imply
that

σ 2
c (f, t) = Var

(
∂2f

∂t2
1

(0)
∣∣∣f (0)

)
.

The conclusion now follows. �
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