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VALIDITY OF THE EXPECTED EULER
CHARACTERISTIC HEURISTIC

BY JONATHAN TAYLOR, AKIMICHI TAKEMURA AND ROBERTJ. ADLER
Sanford University, University of Tokyo and Technion

We study the accuracy of the expected Euler characteristic approximation
to the distribution of the maximum of a smooth, centered, unit variance
Gaussian procesg. Using a point process representation of the error,
valid for arbitrary smooth processes, we show that the error is in general
exponentially smaller than any of the terms in the approximation. We also
give a lower bound on this exponential rate of decay in terms of the maximal
variance of a family of Gaussian processgs, derived from the original
processf.

1. Introduction. In this paper, we study the expected Euler characteristic
approximation to

&) P( sup s =u)
xeM
where f is the restriction taV of f, aC? process on &3 manifold M, andM is
an embedded piecewi€®® submanifold ofi .
When the procesg is Gaussian with zero mean and has unit variance, the
expected Euler characteristic approximation is given by

I?’( SUpf(x) = u) =E(x(M N fHu, +00)))
(2) i dimM
= Y £;(M)@m)"UD/2 f Hi(rye " ar,

j=0

where H; is the jth Hermite polynomial,x (M N fu, +00)) is the Euler
characteristic of the excursion gf above the levek and the.L;(M) are the
intrinsic volumes, or Lipschitz—Killing curvatures of the parameter spate

[20, 22], measured with respect to a Riemannian metric induced, byhich is
discussed below in Section 2. In [20] only the special case of finite Karhunen—
Loeve processes (see below) was treated and in [22] the case of manifolds with
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EXPECTED EULER CHARACTERISTIC 1363

smooth boundaries was treated. The result, proved in the generality described
above, is to appear in [4]. With a slight abuse of notation, we haveRisedenote

our approximation to (1); that is, we are usiRgn the statistical sense of a “point
estimator” and not as some alternative probability measure.

As noted above, the case whaf is C® andf is a centered, unit variance,
finite Karhunen—Loéve expansion process was studied in [20]. These assumptions
imply that there exist a map: M — S(R") whereS(R") is the unit sphere ifR"
and a random vectdr(w) ~ N (0, I,,x,,) such that

f )= (p(), E@)rr = Y £;(@)pj(x).

j=1

In this setting, without loss of generality, we can assume Mas an embedded
submanifold ofS(R™) andg is just the inclusion map. Using the volume of tubes
approach [18, 23], it was shown in [20] thatM is a piecewise&” > submanifold

of S(R™) the error in the above approximation is bounded by

‘P( sup f(x) > u> —’li( sup f(x) > u>

xeM xeM
C o0 2
3 < —/ n—1,~w?/2 4
) S T/220 272 Jyycopn . C Y

=C x P(x2 > u?/ cog 6.(M))

wheref.(M) is a geometric quantity known as the critical radiusMf[11, 12,
18, 21]. ForM c S(R"), the critical radius is roughly defined by the following
property: for every G< 6 < 6.(M) and arbitrary, € S(R")

dswmy(z, M) <0 = argmindsrgn(z, x) is unique
xeM

where the metric o (R") is the geodesic metric

dsny(x, 7) = COS ((x, ¥)).

In another setting, whery is “almost” isotropic onRR¥, then, with some
additional assumptions o (cf. Theorem 4.5.2 in [3]) Piterbarg [17] showed
using the “double-sum” method that the error in using the expected Euler
characteristic approximation is bounded by

< Ce—auz/Z

4) ‘F’( sup f(x) > u) - f’( sup f (x) > u)

xXeM xeM

for somex > 1, though no expression faris given. In the one-dimensional case,
more was previously known [5, 13, 16] (see below).

Note that both bounds show that the error in approximating (@ypsnentially
smaller than all terms in the expected Euler characteristic approximation. While
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undeniably useful, these two situations do not cover all possibilities. Referring
to (4), certainly not every smooth Gaussian process of interest is isotropic, nor
are the conditions required af easily interpretable (cf. Definition 4.5.1 in [3]).
Referring to (3), while every Gaussian process does adniitfaite orthogonal
expansion, see [2]

o.¢]
(5) fx.o)=) &j(@)p;x)

j=1
through its reproducing kernel Hilbert space (RKHS), it is clear that substituting
n = oo into (3) is meaningless. In fact, the situation is even worse in that the two
cases do not even overlap: an isotropic field restricted to a bounded ddnzaikf
cannot have a finite Karhunen—Loéeve expansion [19]!

This brings us to the main result of this work, Theorem 4.3, which, when
f is a constant variance Gaussian process as in the works cited above, provides
bounds for the error in using the expected Euler characteristic approximation
to (1). Specifically, whery has unit variance, we show that

(6) liminf —u‘zlog‘P< sup f(x) > u> —I3( sup f(x) > u>

xeM xeM

1
202(f)

Above, the “critical variance”o—f( f) depends on the variance of an auxiliary
family of Gaussian processésg™).cu, defined in (27) below.

An alternative approximation to (1) is to use the expected number of (extended
outward) local maxima [10]. The term “approximation” is used in a somewhat
loose sense, as, to the authors’ knowledge, there are no generally applicable known
closed form expressions for the number of extended outward local maxima of
a smooth process. The only results known are ones which relate the asymptotic
behavior of the expected number of local maxima of a Gaussian field on a manifold
without boundary (which renders the qualifier “extended outward” unnecessary)
to the expected Euler characteristic approximation, see [10]. Neverthiéless
could compute the expected number of local maxiekactly, as one can the
expected Euler characteristic in certain cases, one might expect to get a better
approximation to (1). Virtually identical arguments to those used in this paper
show that wher/ is a manifold without boundary anglis Gaussian with constant
variance, on an exponential scale the errors in the approximations are equivalent,
though, in the interest of brevity, we do not pursue this here. When the manifold
M has a boundary, the situation is more subtle and it may indeed be the case that
the expected number of extended outward local maxima may be more accurate on
an exponential scale.

The critical variancer?(f) is closely related to the critical radius appearing
in (3). Specifically, whenf is a centered, unit variance, finite Karhunen-Loéve
expansion process, antl is a manifold without boundary, it is proven in
Lemma 5.1 that

>1-|-
-2

oZ(f) = cot 6.(M)
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wheref,. (M) is the critical radius oM, mentioned above and used in [21].

We note that, while (3)is an explicit bound for finite Karhunen—Loéve
expansion Gaussian processes, it is not sharp, nor generally applicable. In
particular it depends on the (generally unknown) dimension of the sphere into
which M is embedded, that is, the dimension of the sphere in whichits. In
a companion paper [14], whefi is a centered, unit variance, finite Karhunen—
Loéve expansion Gaussian process, the asymptotic ermoraso is evaluated
using a Laplace approximation, rather than just the exponential behavior, which
is the topic of this paper. In some one-dimensional stationary cases, the exact
asymptotics of the error were found by Piterbarg in [16]. The results were
generalized in [5], enlarging the class of processes covered by Piterbarg’s result.
Roughly speaking, the results of [5, 16] hold when the critical variarﬁ(a‘)
of the stationary procesg is achieved locally. In this case, the critical variance
is explicitly computable in terms of the spectral momentsfofsee Lemma 5.3
below).

Our main result, Theorem 4.3, is formally an application of Theorem 3.3 to
the case wherf is Gaussian with constant variance. Theorem 3.3 gives a bound
for the error of the expected Euler characteristic approximation for the restriction
of an arbitrary suitably regular (cf. [1, 22]) procesﬁA on a C3 manifold M
to any embedded piecewisg? submanifoldM c M. Theorem 3.3 is, to the
authors’ knowledge, the only available bound for the error in the expected Euler
characteristic approximation for arbitrary, suitably regular, smooth random fields
and should prove useful in studying the accuracy of the Euler characteristic
approximation to non-Gaussian fields [8, 9, 24]. The analogy to (3) for nonconstant
variance Gaussian fields using a variant of the volume of tubes approach is
presented in [15].

Another noteworthy feature to our approach is that it direct approach to
determining the error in using the Euler characteristic approximation. This should
be contrasted with the bounds (3) and (4) which were both arrived at indirectly in
the sense that the bounds were derived for the “volume of tubes” approach and the
“double-sum” approach and subsequently shown to hold for the expected Euler
characteristic approximation.

The proof of Theorem 3.3 depends on a point set representation for the global
maximizers ofh = k|, the restriction taM of a smooth deterministic function
WM — R, above the level. Of course, there is a trivial, and not very useful,
point set representation of the set of maximizers above the levei:

{x €M :h(x)=maxh(y),h(x)>ut.
yeM
Lemma 2.2 gives an alternative point set representation of the maximizers using

an auxiliary family of functiongs”),<y. Once we have a point set representation
of the maximizers of a smooth function, we apply a “meta-theorem” for the density
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of point processes arising from smooth processes of [1, 3, 4, 7, 22]. If the global
maximizer of the procesg is almost surely unique, the total mass of the density
of the point process of maximizers above the lewak therefore just (1). The
auxiliary family of processes$f*),cy mentioned above is, in some sense, the
stochastic analogue 0£*), <,/ in the deterministic setting.

After defining the processes* and describing their properties, we derive the
following almost sure bound:

|Tisup,cyy f)2u) — X (M 0 fHu, 400))]

< #{x € M :x is an extended outward critical point ¢f

e zu sup i) > £
yeM\{x}

where extended outward critical points are defined in a suitable fashion (cf.

Section 2) and, for eaclkh € M, the processf* is uncorrelated withf (x).

Therefore, the points that contribute to the error are points where a Gaussian

random variablef (x) and the supremum of a procegs(y), independent of (x),

are above the levek. The variance of the processgs is what establishes

the exponentially small relative error in (6). The only point where the Gaussian

assumption is used is in bounding the expected number of points above, and

the argument used here can be expected to extend to hon-Gaussian processes as

well.

The organization of the paper follows. Sections 2 lays out the regularity
conditions needed for Theorem 3.3, and reviews some notions of piecewise smooth
manifolds. Theorem 3.3 is proved in Section 3, and Section 4 deals with the unit
variance Gaussian case, where Theorem 4.3 is proven. We conclude in Section 5
with some examples; specifically we compuaf f) for stationary processes @
and isotropic processes ®&f restricted to compact convex subsets.

2. Suitably regular processes on piecewise C2 manifolds. In this section
we describe the class of processes to which Theorem 3.3 will apply. Before
setting out our assumptions, we recall some basic facts about pieagise 2)
submanifolds of an ambier@’ (j > /) manifold M. For a more detailed self-
contained treatment of the material in this section, specifically as it relates to
smooth processes, the reader is referred to [4].

A k-dimensional piecewiseC? manifold has a (not necessarily unique)
decomposition intoC? i-dimensional manifolds without boundary,<0i < k;
namely,
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Associated to every point € M is its support cone itT, M, the tangent space
to M atx

8M={X,eT,M:38>0,ceC(=5,8),M),
c(t) e M V1 €[0,8),c(0) =x,(0) = X, ).

In words, the support cone @f atx is the set of all directions in which a smooth
curve can leave into M, but, in an infinitesimally small time period, still remain
in M.

When M is endowed with a Riemannian metric it is possible to define the dual
cone of$, M. The following Riemannian metric will be essential to our analysis:
an L? differentiable process induces a natural Riemannian metriZ agiven by
(cf. [22])

2 (X, Yo) 2 Cov(X, f. Y ).

forall X,,Y, € T, M. N
The dual cone of§, M, 8, M*, in this case called theormal cone in M at
x € M, is defined by

NeM=38.M"={X, € TXM\:?g\x(Xx, Y,) <0, VY, € 8§, M}.

Forx € dMy = M°, N.M = (T,M°)*, the orthogonal complement &f, d My

in 7, M. The normal cone figures prominently in the approximation, and in the
main result of this paper, as both the Euler characteristic and the global maximizer
point processes are defined in termsextended outward critical points, that is,
critical points at which the gradient (viewed as a tangent vector in the ambient
space) is in the normal cone of the set at the critical point. Roughly speaking, this
means that the function is increasing along curves leaving the set along certain
“normal directions.”

To avoid trivialities, we further assume our decompositiodois such that for
every 0<i <k and eachx € d M;, the tangent spacg d M; is the largest subspace
contained in8, M. This condition rules out trivial decompositions of a nice open
setO c R? into {0 \ F, F} for a finite point set or some smooth closed curve
F C 0. This condition is not strictly necessary for the Morse theorem of [20].
In its place, we could impose a condition on the Morse functions to not have any
extended outward critical points on sukls. As this will almost surely be the case
for the paths of suitably regular processes this point is somewhat moot.

For our purposes here, piecewise smooth manifolds are required to have the
additional property that they are locally approximated$yy/ in the sense that,
for everyx € M, there exists a diffeomorphism

(7) ‘Px:UxC]T/I\—> (Px(Ux)CTxM\

of some neighborhootl, of x € 1T/T, whose inverse, when restricted4pM , maps
any sufficiently small neighborhood of the origin to a neighborhood®ef\ . This
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condition, for instance, rules out cuspsM as can occur when two manifolds
intersect nontransversally. The importance of this condition, besides the fact that
it is necessary in order to use the Morse theorem of [20], is that it implies that the
set

(8) {Xx e NOM;): X, E(P%;GM,»NXM)O}

is open inN (3 M;) Where(PTanMi N,M)° is the (relative) interior OP%;BM,« N.M
in TxaMiL andN (0 M;) is the normal bundle af M; in M.

Having defined piecewise smooth manifolds, we now set out the assumptions
on the processeg defined on our piecewise smooth manifolds.

ASSUMPTION2.1. We assume that is the restriction off to M, where f
is a square-integrabl€? process o/, aC? g-dimensional manifold, and is a
compact, embedded piecewisé k-dimensional submanifold d such thais, M
is a convex cone for eache M. We further assume that, for eachthe gradient
of flam, read off in some nonrandom orthonormal frame figld= (X3, ..., X;)
on 9 M; satisfies the conditions of Lemma 2.5 of [22]. We denote Riizvalued
process by fiaum; ;. These conditions are satisfiedfify;, is suitably regular in
the sense of [22]. Finally, we assume that

p(x,y) ECor(f(x), f(»)=1 < x=y.

At this point, it is probably worth describing the significance of the above
assumptions. In point form, the significance of these assumptions are:

1. The requirements that = fj); for a C2 process onM and that the support
cone 8, M is convex for eachx € M are necessary for the point process
representation of the Euler characteristic and to apply the Morse theorem
of [20].

2. The conditions on the proceSsf|;u; g, ensure that the expected number of
critical points of fj5 ;, is finite and the density of point processes based on the
critical points has an explicit integral representation in terms of a point process
“meta-theorem” [3, 22].

3. The condition o (x, y) ensures that the map— f(x) is an embedding off
into L2(2, #, P) which rules out “global” singularities in the process.

2.1. A point set representation for the global maximizers of deterministic
functions. Although our primary interest is with stochastic processes, we begin
here with the deterministic case, stating and proving Lemma 2.2 which describes a
point process representation of the global maximizers of a deterministic fuction
However, along each stratufV; the point process depends orCa function
defined on

IM; x M~ 2 9M; x M\ {(x,y) € 9M; x M :x =y}
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which is singular near the “diagonallx, y) € 9M; x M :x = y}. We resolve this
singularity in Corollary 2.6, and arrive at the point process representation for the
global maximizers in Corollary 2.7.

LEMMA 2.2. Suppose h = hjy, the restriction of & € C2(M). Fix x € dM;,
and choose o* € C%(M, (—o0, 1]) such that

(=1 = h&x)=h(), ot (x) =1

Then, x is a maximizer of 4 above the level u if, and only if, the following three
conditions hold:

(i) hx)>u.
(i) Vh(x) e NyM.Thatis, x isan extended outward critical point of .
(iil) h(x) = supepn oy 1 (), where, for all y e M

M)~ Whe)
fa® 1
THOES e R

h(y), ifa*(y)=1.

Further, if V2* (x) is nondegenerate, and x is a critical point of hiam; , then,
for any C2 curvec: (=38, 8) — dM; with ¢(0) = x, ¢(0) = X € T, d M;,

V2higa, () (X, X2) = V2 (00 (X, X)h(x)
_v2a|x3Mi () (Xx, Xx) '

Q)  limh*(c(t)) =
t—0

REMARK. The condition thate* (x) = 1 ensures that for eache M, x is a
critical point ofo*.

PROOF OFLEMMA 2.2. The conditiomi(x) > u is self-evident. Suppose,
then, thate € 9M;, 0 <i < k, is a maximizer of:. ThenVh(x) € N, M; otherwise
there exists a directioX, € 8, M such thafg, (X, Vh(x)) > 0 andx cannot be a
maximizer.

Becauser is a maximizer, for ally such thatx* (y) < 1 it follows that

h(y) —a*(y)h(x)
= o (y) < h(x).

On the other hand, i#* (y) = 1, then, by choice a&*, h(y) = h(x) which proves
that

h(x) > sup h*(y).
yeM\{x}

To prove the reverse implication, assume thé an extended outward critical
point of i3, and

h(x) > sup h*(y).
yeM\{x}
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Now suppose that is not a maximizer ofi; then there exists € M \ {x} such
that

h(x) <h(y).
In particular, for such a, our choice otx* implies thate” (y) < 1. It follows that

h(y) —o*(y)h(x)

hx) < 1= o (y)

which is a contradiction.

The limit (9) follows from two applications of I'Hdpital’s rule. Specifically, we
note thatx is a critical point ofi|5 5, by assumption and the propertiesidfimply
that it must also be a nondegenerate critical point’ofTherefore,

im h(c(t)) — o (c()h(x) im (d/dt)(h(c(t)) —a*(c(1))h(x))
1—0 1—a*(c(1)) AN d/dt (1 —a*(c(t)))

—lim (d?/d1?)(h(c(t)) — o (c(1))h(x))

T 150 (d?/dt?)(1 — a*(c(1))) '
Sincex is also a nondegenerate critical point of x*(-) the conclusion now

follows from the fact that, for any < C2(dM;) and anyC2 curvec:(—46,68) —
dM; with x = ¢(0) a critical point of8 € C%(dM;) and¢(0) = X,

. d?
im —B(c(1) = VZB()(Xx, X.). 0

Condition (iii) above will be crucial to our later results as it is the condition
which determines whether a given critical point is indeed a maximizér dhe
condition is not quite “ready to use,” as we will need to consider an analogy to the
guantity

(10) Wx)2 sup h*(y)
yeM\{x}

as a function ofc. However, it is not hard to show, again by two applications of
I'Hépital’s rule, that

(11) Vh(x)e NeM <  sup h*(y) <oo,
yeM\{x)

(12) Vh(x) e NeM = inf  h*(y) = —oo.
yeM\{x)

In other words, the above quantity is only finite at extended outward critical points
of h and the process is singular evewik (x) e Ny M.

Although neither Lemma 2.2 nor (11) is exactly what we will need later, they
contain a somewhat simplified version of our later arguments.
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2.2. Continuity of W(x): the “blow-up” of h. As previously noted, the
function

(13) (x, y) > h*(y)
is singular whery is nearx even though it isC2 on dM; x M. In particular

H X
)!I_rpxh )
is undefined. Ultimately, for the point process representation, we are interested in
the continuity ofW (x) ondM;, and this singularity can make the arguments a little
delicate.
In this section our main result shows tH&t(x) is continuous. Our strategy is
to “blow up” M around a neighborhood of € dM;, and to relaté:* (y), for x
in this neighborhood, to a continuous function on the “blow-up.” We use the term
“blow-up” as we relate the functioh*(y) to a “desingularized” version df on
the blow-up ofM nearx.
By assumption, the parameter sdt is locally approximated by its support
cone and we can, without loss of generality, describe the blow-ul afnder
the assumption thal c M = R? and for some neighborhodd,

U NM = {x}® 8, M NU,.

We can assume this because we have assumed in (7) thatxegely has such
a neighborhood, and to establish continuityVbfx) only local properties (in)
of h*(y) are needed.

For x € dM;, the support cone$, M contains thei-dimensional tangent
spaceT, dM;. By our assumptions on the decompositionMf this subspace is
maximal in48, M. Therefore, we can decompo$eM as

T dM; x K,

wherek, is a convex cone that contains no subspace.
For ease of exposition, for the moment we move to a simple Euclidean setting
and replaces, M by

K=LxKCR?

with L a subspace, ankl a convex cone containing no subspaces. We will describe
the “blow-up” construction first in this scenario, and then move back to piecewise
smooth spaces. In what follows, = Elg will be the restriction of a generic
function onR? to R7. We first define the “blow-up’B(K) of K alongL as the
disjoint union of the spaces

X =L x (K \ {0},
X =L x (K NSRY)).
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Above, X should be thought of as the image of
LxI?\{(x,y)eLxI?:x:y},

under the map

(14) (. y) > (x.y —x)

and the second spa@éX as the “boundary” ofX;. The boundary is attached as
follows: a sequence of points:,, y,) € X converges taxg, yo) € X if, and
only if,

Yn
lynll

Xn - X0, ”)’n” - 07 - yO

This notion of convergence corresponds to a SequéNcéx,,, y,) = (Xu, Xn + Yn)
converging to the diagonal

{(x,y)eLxI?:x:y}

along a well-defined direction.

REMARK. Identifying the tangent bundlg (R?) with R? x R, we can
think of B(K) as a subset of (R%), in which they’s above are replaced with
X, € 8, M C T,R4. When convenient, we will consideB(I?) as either a subset
of R% or a subset of (RY).

In Lemma 2.2,(a*) e Was a family of functions which did not necessarily
arise as the partial map of a functien M x M — (—o0, 1]. In some cases,
particularly in the stochastic setting below, this is a natural assumption to make.

LEMMA 2.3. Supposea € C2(RY x RY) is such that the partial map

ot (y) =alx,y)
satisfies the conditions of Lemma 2.2 at every x € L and such that the Hessian of
the partial map o is nondegenerate at every x € L. Then, any 4 € C2(RY) maps
to a continuous function 7% X on B(K) as follows:

_ hGty) — e x + y)h() = (Vi y)rs

il‘a,l’(\ )
(x.7) 1—atr,x+)

andfor (x,y) €9X

. ~ K - Vzil\ 9
lim 2% X(t,5) =h(x) + M
(t.5)—>(x,y) —Vea(x)(y,y)



EXPECTED EULER CHARACTERISTIC 1373
ProOF Two applications of 'Hépital’s rule. [

The term
(Vhy, y)Ra
1—a(x,x+y)
above “resolves” the singularity along the diagonal in some sense. In effect, it
forces every € L to be a critical point of the map
L ety —an x4+ 9) b0 = (VAG), y)ge

RY 5
Y l—a(x,x+y)

Our motivation for introducingfz"‘v’? is to describe the singularities in the
function/*(y) at critical pointsx of 4., (recall from above thak takes the place
of T, 9M; in our general con&’). We are therefore interested in points wherie
a critical point ofh;, = hjr . Note that ifx is a critical point ofhz, then, for all
yeRY
h(x+y) —a(x,x +y)-h(x) — (Vh(x), y)re

l-—a(x,x+y)

(Pi-Vh(x), y)re

l-a(x,x+y)
(Pi-Vh(x), y)R
l—alx,x+y)
wherePLL represents orthogonal projection oritd, the orthogonal complement
of L in R?. The expression (15) indicates that at critical pointsf 4z, h*(y) is

the sum of a well-behaved terrﬁ‘,”K and a singular term. The above relation
holds for all critical points o, . However, for our later arguments we would like
to have this relation hold for alt € L to avoid having to condition on a set of
measure zero. We therefore redefirieas follows:

h(y) —a* (y)h(x) — (PLVh(x), y)Ra :
f o 1,
(16) h*(y =2 1—a*(y) . MM #
h(y), if o*(y)=1.
With this redefinition ofi, relation (15) holds for alk € L and, for each critical

pointx of i the two definitions oh* coincide. For the remainder of this section,
we will use the definition (16).

h*(x+y) =

(15)

— fla’i{\(x, y) +

LEMMA 2.4. If P{-Vh(x) € K*, thedual of K C L, then for any bounded
neighborhood O, > x

sup h*(y) < +oo.
y€O0x\{x}
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PROOF If PVh(x) € K*, then (15) implies that for aly

R () <K (x, x +y)

and7*X is continuous iny, and therefore bounded on bounded sets. If, on the
other hand,PLLVh(x) ¢ K*, then there exists a unit vectare K such that
(PLLVh(x),v)Rq > 0 andx + tv € O, for sufficiently smalls. Relation (15)
implies that

lim A% (x + tv) = +o0.
tl0
This follows from the fact that the numerator in the expression on the right-hand

side of (15) is strictly positive of orded (¢) for + small, while the denominator is
of orderO(s3). O

LEMMA 2.5, If PLJ‘Vh(x) € (K™)°, then for any bounded neighborhood O of
theoriginin RY

(PVh(x), v)Rq>

~ B x . o, K
Wo(x) = sup h*(y)=  sup <h v+ 1—oa(x,x+v)

yeKN({x}B0)\{x} veKN(0O\{0})
is continuous at x.

PROOF We first note that by (15) the two suprema above are equal, and it
suffices to consider the supremum on the right.
Consider a convergent sequence

(%, vn (%)) 120 = (¥, V7 (X))

in B(K) along which the supremuni¥,(x) is approached. Then either
v, (x)|lre > O for all n sufficiently large, ofjv,(x)|lrs — O. In the first case it
is immediate thafx, v*(x)) is in X and, as we will show in a moment, in the sec-
ond caséx, v*(x)) € aX NL x S(L), whereS(L) is the unit sphere if.. In other
words, the limiting direction*(x) is in S(L). Further, if||v,(x)[|lrs — O, then it
is easy to see that the sequelicePr v, (x)) also achieves the supremuiyp (x).
To see whyv*(x) must be inS(L)Ain the second case, suppose thatv, (x))
converges tax, v*(x)) with v*(x) e K \ L. As PLLVh(x) € (K*)° it follows that
(PEVh(x), v*(x))rs <O.

Therefore, applying the same argument as in (15),

i (PLVRC), v (e _

n=o0 1 —a(x, x + v,(x)) ’

which contradicts the assumption that

nILmoo I (x + vy (x)) = Wo (x).
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The above implies that for any e L, and any convergent sequenae v, (x))
achievingWo (x), we can either assume that, (x)|| is bounded uniformly below,
or that v,(x) € L for all n. Continuity of Wo(x) now follows, as, for such
sequences and> 0 sufficiently small

sup  [A%K (x, va(0)) = B ot K) (3. va(@))| <.

YEB(x,8(8))
sup (P Vh(X), vn (s (PLVAG), va())re | _
veB.oe) | L—alx,x+v,(x))  L1—a(y,y+v.(x)) U

Returning to piecewise smooth spaces, the above arguments will need slight
modifications. Specifically, the map, defined in (14), has no natural replacement
candidate for a piecewise smooth space. However, as noted in a remark above,
we can think ofB(K) as a subset of the tangent bundl€R?) in which case
v :RY x R? — T(RY). In the piecewise smooth setting, we must therefore replace
the map¥ with a mapH : M x M — T (M) such that for each € M,

(17) H({x} x M) C T M.

One of the key properties @f was that the sequende(x,,, y,) converges to a
point in X asn — 0 as long as, — x and the unit vector
Yn — Xn
lyn — Xn llre

converges inS(R?). We can replace this property @ by asking the following
of H. For anyC! curve c:(=68,8) —> M x M with ¢(0) = (c1(0), c2(0)) =
(x, x), ¢2(0) = X, we require that

. H(x,ca2(t)) — H(x,
(18) “mo (x, c2( ))t (o, x)

t—

Xx.
Given such anH, we can, as in (16), redefing® for a C2 function on a
piecewise smooth spadé. Forx € d M;, we redefing:* as follows:

h(y) —a*(y)h(x) —g(Vhjgm, (x), H(x,y) —a*(y)H(x, x))
1—a*(y) ’

xo) A
(19) r*(y)= if o (y) # 1,

h(y), if a*(y)=1.

With #* redefined, by working in suitably chosen charts, it is not difficult to prove
the following.

COROLLARY 2.6. Supposethat o € C2(M x M) issuch that the partial map

ot (y) =alx,y)
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satisfies the conditions of Lemma 2.2 at every x € M and such that the Hessian
of the partial map o is nondegenerate at every x € M. Further, suppose H : M x
M — T (M) satisfies (17), (18)and let 1* be defined as in (19). Then, the first
conclusion of Lemma 2.2 holds if we replace (i) with:

(i") h(x) — 8(H (x, x), Vhjgp, (x)) = u.

The second conclusion of Lemma 2.2 reads: for every x € 9 M; and any C? curve
c:(=6,8) = IM; with ¢(0) = x, ¢(0) = X,

2 D) — o X(.
i ey = T B, Vi () Xo)
(20) 1—0 -V a|aMi(x)(Xx’ Xy)
— (h(x) = 8(H*(x), Vhjap; (x))),

where H* (-) isthe partial map H*(y) = H(x, y).
Furthermore, the function

Wx)2 sup h*(y)
yeM\{x}

is, for each 0 <i < k, continuous on the set
{x €M Pyyy VR(x) € (Pryy, Ne M)},

where P;; au; Tepresents projection onto the orthogonal complement of 7..0M;
in7,M.

2.3. A point process for the global maximizers of stochastic processes. For
the remainder of this work, we choose a fixed piecewise smooth s@aaed a
processf on M D M satisfying Assumption 2.1.

In this section, we describe process analogies*ofe and H in the case for
which 7 is replaced with the smooth procegsSpecifically, we take

a(x,y) =p(x,y),

(21) AL ~
H(x,y)=F(x,y) =) Cov(f(y). X, f(x)) X,
j=1
for some orthonormal frame field(y «, ..., X, x) on T, M.

The following is the stochastic analogy of Lemma 2.6, that is, the point process
representation of the maximizers 6f

COROLLARY 2.7. Under Assumption 2.1, almost surely, the maximizers
of f are isolated and the maximizers of f are the points x € dM;,0<i <k,
such that:

() V fiam, (x) =0;
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(i) fO) —g(F* (), V fiam; () = u;
(ii)) P7 oy, V() € (PF g0y NeM)®;
(V) f(x) = Supepn x) FH(y), where

FO) = pC, ) fx) —gF*(y) — p(x, ) F*(x),V flam, (X))
1-p(x,y)
if p(x,y) #1,
FO), if p(x,y) =1

22) ff(y 2

NoOTE. If the joint density ofV f(x), read off in some orthonormal basis of
T, M, is bounded by some constakit uniformly in x € M, then, almost surely,
there will be no critical points offj5; such thatPTanMin(x) e ON. M C
T, 8Ml Therefore, almost surely, all global maximizers will be such that
P om V 7(x) is in the relative interior ofV, M in T,dM;-. As for the proof of
Lemma 2.10 below, the proof of this is reasonably standard and follows along the
lines of similar results in, for example, Chapters 11 and 12 of [4]. We therefore
omit the details.

PROOF OFCOROLLARY 2.7. The only part of the argument in Lemma 2.2
that needs to be modified is what happens whéfy) = p(x,y) = 1. In the
deterministic case, we assumed thét(y) = 1 implied h(x) = A(y). In the
random case, we know that*(y) = 1 implies f(x) — E(f(x)) = (f(y) —
E(f(y)))o (x)/o(y) almost surely, where

o?(x) = Var(f (x)).

Almost surely, then, it is still true that if is a maximizer off, then £ (x) > f*(y)
for all y such thap*(y) = 1, since otherwise cannot be a maximizer. The reverse
implication follows similarly. [

With f defined as above, it is easy to see that Corollary 2.6 holds almost surely
with #* replaced byf*, « by p andH by F.

2.4. Point process representation for the difference between the expected EC
and the true probability. Our assumptions allow us to use the Morse theorem
of [20] to express the expected Euler characteristic of the excursiéns
FYu, +00) as integrals oved. The formula is not new, though we repeat it here
for use in deriving bounds on the error in the Euler characteristic approximation.
What is new, and is crucial to the entire paper, is the exact expression in
Proposition 2.9 for the supremum distribution (1).
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PROPOSITION2.8. Under Assumption 2.1, and with the notation there,

P sup )= )

xeM

E(x(M N Fu, +00)))

(23)

k
Z/ E(det(_vzf\aMi,Ei (x)):H‘AEC|Vf|3M,',E,’(X) =O)
i=0

oM;
X OV fiom; £; () (0)dHt; (x)

where J¢; isan i-dimensional Hausdorff measureinduced by g, ¢v f,,,. z.(r) isthe
density of V fisum;, £, (x) and

AEC = (f(x) > u, Vf(x) e Ny M}.

Suitable regularity of the process f|yuy; g, (x) implies that the maximizers
of f are almost surely isolated, though it does not guarantee uniqueness. If
W(x) were continuous when restricted dd4;, Assumption 2.1 would allow us
to apply the general point process Lemmas 2.4 and 2.5 of [22] to the point process
representation of the maximizers in Corollary 2.7. The almost sure analogy of
Corollary 2.6 shows that¥ (x) is not continuous, but it is continuous on the
open set

{x € 0M;: Pf gy V F(x) € (NeM)°}.

Further, we are only interested in its behavior on this set. Straightforward
modifications of the above cited lemmas, which we omit, lead to the following
representation for the supremum distribution.

PROPOSITION2.9. Supposethat, almost surely, f hasa unique maximumand
that Assumption 2.1 holds. Furthermore suppose that, for every x € M,

P(W(x) = f(x)) =P(W(x)=u)=0.

Then,
P( sup f(x) > u)
xeM

k
(24) = Z/ E(def{—V2 fiom;.; () Ls20p |V flam,, ; (x) =0)

i=0" IMi

X QY fiaum;. 5, () (0) dH; (x),

where

AP =(fx)=uv W), VFix)eN.M}.
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The discrepancy between the expected Euler characteristic approximation and
the true supremum distribution is

Diff 7. 41 (1) 2 I3( sup f (x) > u) — P( sup f(x) > u)

xeM xeM
k
(25) = Zf E(det(—VzﬁaMi,Ei (x))]lAERR|Vf|3Mi,E,~ x)= O)
i=070Mi

X QY fou;. 5, () (0) d Hi (x)
where
ABRR— (i < f(x) < W(x), VF(x) € NeM).

Before concluding this section, we provide a lemma giving sufficient conditions
for the uniqueness of the global maximum pf As mentioned above, the proof
is reasonably standard fare and so omitted. Detailed arguments for very similar
cases can be found in Chapters 11 and 12 of [4]. In the nonmanifold setting,
these arguments are classical. (E.g., see Theorem 3.2.1 of [1] or [6] and references
therein.)

LEMMA 2.10. Supposethat for all pairs1 <i, j <k andall pairs{(x,y):x €
dM;, y € 9M ;} the random vector

Ve, y) = () = fO) V fiom; £ (), V fiam; £;(3)
has a density, bounded by some constant K (x, y). Then,
P({3(x,y):x € dM;,y € M, V(x,y) =0 R/} =0,

3. Bounding the error. Expression (25) is an explicit formula for the error
in the expected Euler characteristic approximation. A similar explicit formula can
be derived for the error of the approximation based on the expected number of
local maxima above the level, though we do not pursue this here. However, as
described in Section 2, the procegsis singular neax, and actually has infinite
variance near, which means that standard tools such as the Borell-Tsirelson
inequality cannot be used to bound its supremum distribution.

To see that the proces§® can have infinite variance, assume thais the
restriction of an isotropic field t¢0, 1]2. Fix a point(x, 0). We will compute the
variance off* along the curve

c(t)y=(x,0)—1-(1,0).
Straightforward calculations show that

F*(c(t) =0, F'(x) =0,
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so that

SO =pr. ) f&)

) = =00 )

In this case, the variance ¢f (y) is easily seen to be

> 1+ p(x,y)
Var(f*(y)) = =———=~
ar(f~ () 1 p(x.y)
and
. Feoony i LT PG Y)
yll_r)nxVar(f (y))_ylinx 1= p(x.y) = +00.

In general, ifx € dM;, then, along a curve:(—§,0] — M with ¢(0) = —X, €
8 M\ T, IM;,

Itim Var(f*(c(t))) = +oo.

Although this is somewhat worrying, in (25) we only care about lgugtive
values of f*, and, further, we only care about the behaviorféfon the set

(26) {6, @)1 P ypp VF(X)(@) € (PF g0, Nx M)}

We exploit these facts and introduce a procg¢s$sin this section which has,
under some conditions, finite variance and domingtéson the set (26). It is
this process whose variance appears in the exponential bound for the behavior
of Diff £,y (u) in the Gaussian case.

Obviously, the procesg™, which we define below, does not dominate the
absolute value of /*. Indeed, if this were true, the procegs would have infinite
variance as well.

The procesg™ is defined as follows:

FO) = p ) f(x) —8F*(y) — Pyym F* (), VF(x))
1—p*(y) ’

Xy A
(27) = if px(y) +£1,

fO) =8(F* ) = PhuF*(»), Vi),  if p*(») =1,
where Py : T.M — N.M represents orthogonal projection ondg.M and
F:M x M — T(M) is given by
F(x’y)_P(x,Y)F(x,x)7 If P(x,)’)#]-,
F(x,y), if plx,y)=1,
whereF is defined in (21).

28)  F(uy) ={
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LEMMA 3.1. On the set (26) of extended outward normal points, for every
yeM,

o) = o).
If x € aM; = M°, then equality holds above.

PROOF  First, we note that
(L= 0" ) () = £ ) =8(F () = Py,mF* (), Progy,V F ().
As N, M is a convex cone, it follows that for ark; T.M
Yy — Py uYy € N, M*

where N, M* is the dual cone oN, M, which is just the convex hull of, M. By
duality,

g(Yx - PNXMYx, Vx) =< 0
for everyV, € N, M. Consequently, on the set (26)
8(Yx — Py,m Y, Pgp V(X)) <0

for everyY, € Ty M. As F*(y) € T, M for eachy, the first claim holds.
As for the second, it € dMy, thenN,M = T, dM;- and Py, V, = O for all
V, € T, 0 M. Similarly,

8(Ve, PEyp V(X)) =0.
Therefore, on this set
g(F*(») — Pn,u F* (), V(%)) = 0. m
As far as the continuity (ir) of

(29) Wx)2 sup f°
yeM\{x}

i§ concerned, itis not difficult to show that, almost surely, Corollary 2.6 holds with
f* replaced byf*, that is, thatW (x) is continuous on the set
{x € 0M;: Pf gy V F(x) € (PF g0y NxM)°}.

As we will see in the proof of Theorem 3.3, Lemma 3.1 provides the basic
bounds for Difff, 5 (). The following corollary to Lemma 2.2 will also be of use
to us.
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COROLLARY 3.2. If f has unit variance, then, for any C* unit speed curve
c:(=8,8) — My with ¢(0) = x, ¢(0) = X,

V2 flam, () (X, Xx) — V205 (x) (X, X)) f (x)

My e == V29" (0 (X, Xo)
= =V flam, (V) (X, X) + f(2).
Further,
(30) colu | = V2 floa, () (X, Xx) + f(0)] < \Sup | X1

ProOOF The proof is essentially just the second conclusion of Lemma 2.2,
recast in the stochastic process framework. The only thing that needs to be verified
is that

V20" (1) (X, X) = =1,
but this follows from the fact that
V20 (1)(Xy, ¥y) = CoV(V? flam, () (X, Yy), f ()
and the fact that, as a double form
CoV(V? flam () (X, Vo), f () = =8 (X, V),
(cf.[22]). O

Using the results of Lemma 3.1 we have the following theorem.

THEOREM 3.3. Suppose that f has a unique maximum, almost surely, and
Assumption 2.1 holds. Further suppose that, for every x € M,

P(W(x) = f(x)) =P(W(x)=u)=0.

Then,
| Diff 7,07 (u)]
k
(31) = Z/azw E(|det(—V? fiam, £, () |1 gerr|V fiom;, £, (x) = O)
i=0" 9Mi
X QY fiou;. 5, () (0) d Hi (x)
where

BERR—(u < f(x) < W(x)).
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4. Gaussian fields with constant variance. In this section, using Theo-
rem 3.3, we derive an explicit bound for the exponential behavior ofiffu)
when f is a Gaussian field with constant variance, satisfying Assumption 2.1. The
assumption of constant variance implies certain random variables are uncorrelated,
hence independent in the Gaussian case. In particular, the assumption of constant
variance implies that fox € 9M;,0 <i <k, the entire processf™ (y))yem\ (x}
is independent off (x) as well asV fj;u;, (x). This allows us to remove the con-
ditioning on'V fj3u, (x) below. Once this conditioning is removed, the rest of the
argument relies only on the Borell-Tsirelson inequality [2].

Our first observation is that, whethgrhas constant variance or not, for each
x € M, the processf*(y) is uncorrelated with the random vect®tfis, (x).
Hence, in the Gaussian cagé,(y) is independent oV fj;a, (x).

LEMMA 4.1. Foreveryx e dM;,0<i<kandeveryye M \ {x}

Cov(f*(y), Xx f) =0

for every X, € T, 0 M;.

PROOF We first note that, ifp* (y) # 1, then

(L—p" () Cov(f* (), Xx f)
=Cov(f(y) —p* (M) f(x), X+ f)
— CoV(@(F* (») — Pnu F* (), VF(x)), X, f)
= CoV(f (") = P f (). Xi f) = 8(F* () = Pn,m F* (), Xo).
If, on the other handy*(y) = 1, then
Cov(f*(»), Xx f) = Cov(f (), X« f)
— COV(F* (y) — Pn,u F* (), V(). X f)
=Cov(f(y), Xz f) = &(F* () = PN.M F* (), Xx).
The conclusion will therefore follow once we prove, for everg M,
COMS (), X f) =B(F* () = Pre P (1), Xo),
Cov(f (y) = p* N f (), Xi ) = G(F* () = Pn,m F¥ (), Xx)-

As the two arguments are similar, we just prove the first equality. The Fiap
can be decomposed as follows:

F*(y) = Prom, F* () + Pryp F* (),
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where
i
Proam; F*(y) =) Cov(f(»), X (X)X x,
j=1
L q
Praw, FX) = Y Cov(f(3), X, f(x)Xx,
j=i+1
and the orthonormal basi1 , ..., X, x) is chosen so that the sk ,, ...,
X; ) forms an orthonormal baS|s fdf oM; and (Xiy1,x,..., Xq.x) forms an

orthonormal basis fof, dM;", the orthogonal complement @t 8 M; in T M.
Further, becausg(X,, V) =0 for every X, € T,0M; and V, € N, M, it
follows that

Py mF*(y) = Py, Prgy, F* ()
and for everyX, € T, dM;
S(F*(y) — Pnom F* (y), Xx) = 8(Proom, F* (), Xx)
+2(Pihap, FX ) = Prym Pigp, FX (), Xx)
2(Pr.om;, F* (), Xx)

i

OV(f(y), Xjf(x))g(Xj,x’ Xx)

j=1
= Cov(f (), Xx f)- O

As noted above, the independence betw&ef)y;, (x) and the procesg™
allows us to remove the conditioning OW fi5a;(x) in the expression for
Diff ¢ (1), whetherf has constant variance or not.

COROLLARY 4.2. Suppose f isa Gaussian process satisfying the conditions
of Theorem 3.3. Then,

|DIfffM(u)|<Z/ E(| detf—V? flam; £, () [1cen)
(32)
X QY foum;. 5, () (0) d Hi (x)
where
CERR={u < f(x) = 8(Proam; F* (x), V() < W(x)}.
If f hasconstant variance, then F*(x) =0¢e T, M and
CER={u < fx) = W)},
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PROOF  The only thing that needs to be proven is that, in the e@&ht the
condition{u < f(x) < W(x)} can be replaced with

{u< f(x) = &(Proom F* (x), VF(x)) < W(x))

and the conditioning can be removed.
The reason that the above replacement is justified is that, on the set

{V fiam; (x) =0}
fO0) = f0) = 8(Proom F*(x), V f(x)).
Further, f(x) — g(Pr.am F*(x), Vf(x)) is independent ofV fjyu, (x), and
Lemma 4.1 implies tha¥ (x) is also independent d¥ fj, (x). Therefore, the
conditioning onV f3, (x) can be removed. ]
We are now ready to prove the following theorem.

THEOREM 4.3. Let f be a Gaussian process with constant, unit variance,
on M andlet f = fju besuchthat f satisfies Assumption 2.1. Then,

1 1
liminf —u~2log| Dif /4 ()] = 5 <1 + —Gcz(f)>

where
(33) o2(f,x) 2 sup Var(f*(y))
yeM\{x}
and
(34) o2(f) 2 supo(f, x).
xXeEM

PrROOF We must find an upper bound for (32). Writing
V2 flam; £, (x)
= V2 fiomty, £, (¥) — E(V2 fiam, 5, (0| £ () + E(V? fiam 5, (0] £ ()
= V2 fiomt 5, (¥) + fOT = fOI
(cf. [22]), and applying Holder's inequality to (32) yields, for any conjugate
exponenty, g,
| Diff £ pr ()| < i/ i E(f ) 15 (02u)
i=0"Mi j—o
x E(|dets (=Y fiam,. £, (x) — F ) 1)|P)MP
x P(W(x) > u)"* d 3 (x)
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where detf(A) is thekth “det-trace” of the square matrix which is defined to be
the sum of the determinants of &lix & principal minors ofA.
Define

pslpe( sup 1),

xeM yEM\x

For

u > pE(f*(y) +ut
the Borell-Tsirelson inequality implies that
P(W (x) > u) < 2~ W=r"?/208(F)
Recalling thatf*(x) = f(x), for suchu, it also follows that
E(f (0L wyzuy) < Cjul"tem D2,
Putting these facts together, for any conjugate exponenis
| Diff £ 0 (u)]

< Cpuf Lo~ =12/ A+1/q02 ()

k i
x [ E( detioy (< fiaw 5 () = FODI)P A ().
i—0”9Mi j—o

The result now follows after noting that we can chogselose to 1, and:(q)
so that, foru > u(q), the remaining terms are arbitrarily small logarithmically,
compared ta:2. O

Theorem 4.3 provides a lower bound on the exponential decay of [iff).
We believe that the lower bound is generally tight when a maximizer2of)
occurs ind My, in the sense that the term correspondingM, in the sum defining
Diff £ p (1) in (25) is exponentially of the same order as the upper bound; however,
we were unable to prove this conjecture as it seems difficult to establish the sign of
the error of the lower-order terms. In the piecewise smooth setting, it is therefore
still open as to whether the limipf,, in Theorem 4.3 can be replaced with
lim,_~ as we cannot rule out the possibility that some terms in the sum (25)
cancel each other out, leading to a faster rate of exponential decay. Although we
have not settled the issue completely, these situations seem somewhat pathological.

5. Examples. In this section, we computecz(f) for some simple examples,
strengthening earlier results of [13, 16, 17]. Before turning to the examples,
however, we discuss the relation betweei{ f) and the critical radius of a tube
aroundM when f is assumed to be centered with unit variance. Specifically, we
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describe the geometry of the situation in the case of “global overlap,” that is, when
the supremum

o2(f)=sup sup Var(f*(y))

xeM yeM\{x}

is achieved at a pairc™*, y*), x* # y*.

5.1. Geometric picture in the case of global overlap. Here, we describe the
notion of “global overlap” and describe the geometry of the progessgar pairs
(x*, y*) achieving the critical variance?(f). Roughly speaking, this situation
occurs whenM, the parameter space ¢f, “wraps around itself” and, for some
x € M there is a poiny € M that is close tor in the L2-metric but far in terms of
geodesic distance from. To describe the geometry involved in this situation we
turn to spherical geometry iﬁf, the RKHS off. Recall thatﬁf is defined by the
reproducing kernel condition

<R(S, ')7 R(ta ))ﬁf = R(Z,S)

and there exists an isometry that ma‘Bjs onto the linear spaif s of { f(x),x €
M}in LZ(Q, F, P). Without loss of generality, then, we can describe the geometry
interms ofHy. LetW: M — Hy C LZ(Q, F, P) denote the map

x = f(x).

If S(Hy) is the unit sphere inHy, and f is centered with unit variance,
then W (M) C S(Hy), and our standing assumptions, namely tliais Cc? and
p(x,y) #1if x #y, imply thatW is a piecewis&®? embedding. Further, it is not
hard to see that

"IJ*(Xx) = Xva

so that the tangent spaée )V (M) is spanned byXi . f, ..., Xi . f) for some
basis{X1,..., Xk} Of TxM.

We denote the orthogonal complement @)W (M) in TrHy by
Tfi(x)lI!(M), and the orthogonal complement &f )W (M) in Ty S(Hy) by
NryW(M).

Given a pointf (x) and a unit normal vectars ) € Ny ) ¥ (M) we denote the
geodesic, inS(Hy), originating atf (x) in the directionv(x) by ¢ (x).vs,- That
is, '

Cfx).vpq (1) =COSE - f(x) + Sint - vy, 0<t<m.

As discussed in [21], up to a certain point aloogy).v,,,» the points on
Cfx)vs. Metrically project uniquely tar. That is, forz small enough, the
unigue point on¥ (M) closest toc £ (x),v ) (1) is f(x). We denote the largest
for which this is true byd(f(x),v()) and we call it thelocal critical radius
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(angle) at f(x) in the direction vz(,). Taking the supremum over all directions
Vi) € S(NrxyW(M)) we obtaind (f(x)), thelocal critical radiusat f(x),

(39) Oc(f (X)) = inf O(f(0), vre)

Vi) €SN )W (M)
and the global critical radius
(36) Oc = O0c(W(M)) = inf O.(f(x)).
xeM

The relation between these critical angles arjdf,x) in (33) is given in the
following lemma.

LEMMA 5.1. SUpposef f|M is the restriction of a centered, unit variance
Gaussian process on M, to M, a piecewise C2 k-dimensional submanifold of M.
Suppose that W : M — Hyisa C? embedding. Then, for all x € 9 My,

ol(f. x) = CoP(f.(x)).

PROOF Forx € dMy, NcM = T, M~ is a linear space, therefore
F*(y) = Pn,u F*(y) = Pr,om, F* ().

Furthermore, becausg has constant varianc€*(x) = 0. Putting these facts
together shows that

FO) =) f(x) = 8(F*(y), VF(x))

ffy= 1)
_ SO = Wf) Sk COV(f (), Xi f )X f (x)
1-p%(y)

for some orthonormal frame field4, ..., Xx) on M.
Turning to the picture in terms of geodesics, figr) andv ¢(,). Suppose that for
a certairy the pointcy () v, (r) does not metrically project tg(x). This implies

there is a pointf (y) € ¥ (M) such that
d(Cf 050 O F3)) = €08 (e pio),00 0 fD)y,)
<d(cre,ogm @, F(X))
=08 (e (). (O F @) g, )-
Alternatively,
(€0 (O f(Y)>Hf = cost - (f(x), f(V))u, +Sint - (v, f()’)>Hf
=COSt - p(x,y) + SNt - (V). f (),
> {Crvpen O [ @)y,

= COst.
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After a little rearranging, we see that this is true if and only if

(Uf(x)v f(y)>Hf

cotr <
1-p(x,y)

Therefore,

(Vre SO iy
Cothe(f(x), vf)) = sup ——————L,
o o) vem\ix)  1—=p(x,y)
Taking the supremum over all(,) € N r) ¥ (M) we see that
v 9
cotd.(f (x)) = sup sup M
Vi ES(N oW (M)) yeM\[x} 1 — p(x,y)

_ o« PNy w vy D I Hy
vem\pry 1= p(x,y)

wherePy, ., wm) represents orthogonal projection omg ., ¥ (M). Therefore,

I Py, wny fO) 1%
tzec _ ) £
COPS N = S 1= p(x, )2

and it remains to show that

2
| PNy waany f O 3,

k
= Var(f(y) — p(x, ) f(x) =Y _Cov(f(y), Xif(x))Xif(x))-
i=1
This, however, follows from the fact tha s, W (M) is the orthogonal comple-
ment (inTy)Hy) of the subspacé, = spari f(x), X1f(x), ..., Xxf(x)}, and
the fact that

k
PO, V) fx) + Y- Cov(f (), Xi f (X)) X; f(x)

i=1

k
= (f @), FON#, fO) + S F O Xi f ), Xi f (x)

i=1
=P f(y). O

We now consider the case whéii is a manifold without boundary and the
supremum in

1PN s oywiany f ()12
(37) cof(6.) = sup sup okl . Hy
xeM yeM\{x} 1—-px,y)
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is achieved at soméx™, y*). Thinking of the critical variance as the cotangent
of some critical distance oM, then, geometrically, the tube of radias should
self-intersect along a geodesic frorfi to y* in such a way that the tube viewed
locally from the pointx* shares a hyperplane with the tube viewed locally from
the pointy*. Alternatively, at the point of self-intersection the outward pointing
unit normal vectors should be pointing in opposite directions.

The simplest way of seeing this is to think af as just two pointg p1, p2}
in R2. In this case the tube of radiusaroundM consists of the union of two discs
of radiusr. Whenr = d(p1, p2)/2 the two discs self-intersect at exactly one point,
and the unit normal vectors are pointing in opposite directions.

We can make this statement precise in the following lemma.

LEMMA 5.2. Suppose (x*, y*) achieve the supremumin (37). Then,
F(™) =co920;) - f(x*) +SiN20c) - v (ry,
where
PNy winn) | (")
| PN oy w ) f ) N 1y

* _
Vi = |

is the direction of the geodesic between f(x*) and f(y*). For any X« € T+ M
andany X« € Ty« M,

COV(Xr f. £ (V) = (Wi(Xxn), N h, =0,
Cov(X y« f, f(x*)) = (Wu(Xye), f(x*)) i, =0.
Further, the partial map

P () = p(*,y)
has a local maximum at y*, and the partial map

* A
pY (x)=px,y")
has a local maximum at x*.

PrOOF If (x*, y*) achieve the supremum in (37), then there exists a point
z equidistant fromf (x*) and f(y*) and unit vector ¢ (+) € Ny ¥ (M) and
Wf(y*) € Nfy) W (M) such that

7 =C0SY, - f(x*) + sing, - V@) = cosb, - f(y*) + Sin@cw]f(y*).

It is not a priori obvious thatv ¢y« € Ny« W (M). However, if this were not
the case, there existse M, t # y, such thatd(z, z) < 6.. This contradicts the
assumption thatx*, y*) achieve the supremum in (37) and the critical radius is
The proof that this is a contradiction is left to the reader, though it follows similar
lines to the argument at the end of this proof.
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To prove the first claim, therefore, it is enough to show that the unit tangent
vectorséf(x*),vf(x*) ©.) andc'f(y*),wf(y*)(ec) atz satisfy
u= éf(x*),wf(x*) (00) + éf(y*),wf(y*) (06‘) =0¢ TZHf-
Suppose then that#£ 0. A simple calculation shows that

_ CoSe) — (f (), FOO)n
siné,

(w, fOH, =, O H

If u#0, thenf(x*), f(y*) andz are not on the same geodesic and the triangle
inequality implies that

cos(20c) < (f (x™), fF(Nm
which implies

(, f))u, = (u, fF(y))u, <O.
Consider the geodesic originatingzain the directionu™ = u/||u| u,

coyu+(t) =cost -z +sint - u™.

Assumingu™ # 0,

(2 (0), fFONH, = (Cur(0), fF(X)N) = (", f(x¥)) <O
This implies that for sufficiently smalk|, s <O,

f(x ), Cz, w (8)) Hf f(y ), Cz, u*(s)> > COSO,.
For such an, there exist distinct pointg(s) andy(s) such that

d(szu*(S),)e(S)) < b, d(CZ,M*(S),)A)(S)) <0

such that the geodesic connectifig) andc; ,+(s) is normal toM at x(s), and
the geodesic connectings) andc; ,+(s) is normal toM at y(s).
Without loss of generality, we assume that

d(cz,u*(s)a )2(.5‘)) = d(CZ,u*(S), }A’(S))

In this case, the geodesic connectifido c; ,+(s) is no longer a minimizer of
distance once it passes the paint,«(s), which is of distance strictly less thap
from y(s). That is, for some poinf(s) along the geodesic connectiggs) and
c;.ux(s), beyonde, ,+(s) but of distance strictly less thah from y(s), there exist
points inM strictly closer toz(s) thany(s). We therefore have a contradiction, as
the critical radius of¥ (M) is O...

To prove the second claim, we note thfdty™) is a linear combination of (x*)
and v+ which are perpendicular to every vector Ty« W (M). Similarly,
f(x*) is a linear combination off (y*) and w,+ which are perpendicular to
every vector inT+ ¥ (M). The fact that the partial mags® (y) and p¥" (x)
have local maxima follows from the same contradiction argument used abve.
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5.2. Centered stationary processeson [0, T']. In this sectionf (x), x € [0, T'],
is assumed to be a center@d stationary process with unit variance and covariance
function R. As in [13] we change the time scale so that(at)) = —R(0) = 1.

Fix a pointx € (O, T'), in which case the proceg¥' is given by

fO)—Rx—y)fx)—Rx—y) f(x)
1-R(x—y)
and the critical variance atis given by
2 B Var(f(y) | f£(x), f(x))
= D T - RG— )2

_ 2 _ pen2
— sup 1—R(@®)“—R()

—x<t<T—x (1 - R(t))z
t#0

ffoy)=

The critical variance in the interior is

, - o 1— R(1)? — R(1)?
(8 o(f0T)= Sup o (fx)= SUp —q—piy

A local version of critical variancefloc(x, (0, T)) is obtained by letting — 0
in (38), that is,
. 1-R(®)?—R(1)?
2 _ — p@®
7)) = =R -1
Oetocl¥: (0.7)) = im =503 ©

where the last conclusion follows from some simple calculus. An alternative
interpretation of the quantitiyfloc(x, (0, 7)), is the following:

02 10c(x, (0, T)) = Var( f (x)| f (x)).

The local critical variance at the end poifs T} needs slightly more attention.
We consider the point = 0 without loss of generality. The normal conecat 0 is

d
NolO, T] = — C ToR.
ol0, T'] UcdxCo

c<0

For ease of notation, we just writéy for No[O, T'].
The projection ontavy is just

(e ) =tean (o)
No adx = La=0) adx .

Cov(f(0), f(»)) = —R(»)

As
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the process’0(y) is given by

) — F) = RGO — 100 RN SO
Y (1—R()? '
The local critical variance at = 0 is given by

2 o 1— R()?— R(1)?+ max(R(t), 0)
=28 (L— R(1)?

. 2 pen2
> sup 1-R(®)“—R(®)
0<t<T (1—R(1))?

The inequality above implies tha{(f, 0) > o(f, y),0 <y < T. Therefore the
critical varianceycz(f) is attained at the end points=0, T'.

Note that this does not exclude the case that the critical radius is also attained in
the interior O< ¢t < T'. Under some circumstances, the critical variance is attained
everywhere, as demonstrated in the following lemma.

(39)

LEMMA 5.3. Suppose f isa centered, unit variance C? stationary process on
R suchthat —R(0) =1 and R(z) <Ofor all r > 0. Then

a2 (f) = 0L10c(f2 %) = Var(f ()| f (x)).
PROOF As noted above, we just have to compufe{f, 0). BecauseR(r) <0
we see that

) B 1— R(1)2— R(1)?
0= S T A RO

Now suppose that this supremum is achieved. Lemma 5.2 implies that for any
that achieves this supremumR(z) = 0, andr is a local maximum ofR(z). Let

T* ={t > O|R(r) =0, R(t) = c0S26,)}.
As T* is a closed set there exists a minimum valug 6f

t*=minT* > 0.
Because™ is a local maximum oR, there existg > 0 such that
R() < R(t") Ve (™ —e ).
But R(¢) is assumed to be nonincreasing and we have
R() > R(t7) Vvt <t
Therefore
R() = R(™) Vie(* —e, t").
This, however, contradicts the minimality of. [
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REMARK. Presumably, the same ideas as in [5] could be used to generalize
Lemma 5.3 to a larger class of covariance functions, though we will leave that as
an exercise for the reader.

5.3. Isotropic fields on R™ with monotone covariance functions. In this
section, we compute the critical variance for centered, unit variance isotropic
processes restricted to a compact, convex Metln particular, we prove the
following proposition, which shows that the exponential behavior of Diffu)
for such processes is determined solely by the conditional variance of the second
derivative, given the field.

PROPOSITION5.4. Let f be an isotropic process on R” that induces the
standard metric on R™ satisfying Assumption 2.1 and let f = fTM be the
restriction of f to a compact, convex set M with piecewise smooth boundary. If
the covariance function

R(llxIl) = Cov(f (x +1), f(1))
is monotone nonincreasing, then the critical variance is attained locally and is
given by
82
o2 =Vvar( 250[50)
1

PROOF Fixt € M°. Similar computations to those in Section 5.2 show that
1— R*(lls — 11D — R*(lls — 1))
(L= R(lIs = 111))?

Becauser is assumed monotone nonincreasing, the arguments used in Lemma 5.3
imply that

Var(f'(s)) =

82
sup Var(f'(s)) = Var(a—thC(O)‘f(O)).
1

seM\{r}

We therefore turn to the bounda#y/, assumed to be piecewise smooth.
Fix t € 9M ands #¢. Let X] be the unit vector if;R™ in the directions — ¢.
SinceM is convex,X; € 8, M and

XS || F'(s) € 8, M,
that is, X? is parallel toF!, so thatPy, y F'(s) = 0. Therefore,

1— R%(|s —tl) — R%(lls — 1))
(L—R(lls —1))?

Var(f'(s)) =
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We see that we do not incur any additional penalty for the local critical radius at
the boundary points i/ is convex. Again, the arguments of Lemma 5.3 imply
that

o2(fir) = Var(%f(m\f(m).
1

The conclusion now follows. [
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