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A STRONG INVARIANCE PRINCIPLE FOR
ASSOCIATED RANDOM FIELDS1

BY RALUCA M. BALAN

University of Ottawa

In this paper we generalize Yu’s [Ann. Probab. 24 (1996) 2079–2097]
strong invariance principle for associated sequences to the multi-parameter
case, under the assumption that the covariance coefficientu(n) decays
exponentially asn → ∞. The main tools that we use are the following: the
Berkes and Morrow [Z. Wahrsch. Verw. Gebiete 57 (1981) 15–37] multi-
parameter blocking technique, the Csörgő and Révész [Z. Wahrsch. Verw.
Gebiete 31 (1975) 255–260] quantile transform method and the Bulinski
[Theory Probab. Appl. 40 (1995) 136–144] rate of convergence in the CLT.

1. Introduction. Among various concepts introduced to measure the depen-
dence between random variables, association deserves a special place because of
its numerous applications and its relatively easy mathematical manipulation. A fi-
nite collection(X1, . . . ,Xm) of random variables is said to beassociated (or satis-
fies theFKG inequalities) if for any coordinatewise nondecreasing functionsf,g

on Rm, cov(f (X1, . . . ,Xm), g(X1, . . . ,Xm)) ≥ 0, whenever the covariance is de-
fined. An infinite collection of random variables is associated if every finite sub-
collection is associated. This concept was formally introduced by Esary, Proschan
and Walkup (1967), who also deduced some of its most important properties.

In the past few decades, a lot of effort has been dedicated to prove limit theorems
for random fields(Xj )j∈Zd+ of associated random variables. In the cased = 1,
this culminated with the strong invariance principle of Yu (1996), from which
one can easily deduce all the other major limit theorems, like the weak invariance
principle and the functional law of the iterated logarithm (FLIL). The present paper
was motivated by the need for a similar result in the cased ≥ 2, which arises in
the context of higher-dimensional models, like the percolation model of Cox and
Grimmett (1984).

The first asymptotic result for zero-mean associated random fields was the
central limit theorem (CLT) proved by Newman (1980) for the (strongly) stationary
case. This result says that if thefinite susceptibility assumption holds, that is,
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σ 2 := ∑
i∈Zd ρ(i) < ∞, whereρ(j − k) := cov(Xj ,Xk), then

n−d/2Sn
d→ N(0, σ 2),(1)

whereSn := ∑
j1≤n · · ·∑jd≤n Xj . This was generalized by Cox and Grimmett

(1984) to the nonstationary case, under the assumption thatu(n) → 0 asn → ∞,
where

u(n) := sup
j∈Zd+

∑
k : ‖j−k‖≥n

cov(Xj ,Xk)(2)

and‖i‖ := maxs=1,...,d |is |.
The weak invariance principle for (strongly) stationary associated random fields

was proved by Newman and Wright (1981, 1982) in the cased = 1 andd = 2,
under the same finite susceptibility assumption. They also conjectured that the
same principle holds ford > 2. A partial solution to this problem was given
by Burton and Kim (1988) in the stationary case, and by Kim (1996) in the
nonstationary case, under thefinite r-susceptibility assumption:

E|SN |2+r ≤ C[N]1+r/2,

where SN := ∑
j≤N Xj and [N] := ∏d

s=1 Ns for N = (N1, . . . ,Nd) ∈ Zd+.
(If i, j ∈ Zd+, we use the notationi ≤ j if is ≤ js, ∀ s = 1, . . . , d and i < j if
is < js, ∀ s = 1, . . . , d.)

The conjecture was fully solved by Bulinski and Keane (1996), who proved
that for a zero-mean (weakly) stationary associated random field(Xj )j∈Zd+ with
uniformly bounded moments of orders > 2 and a power decay rate for the
covariance coefficientu(n), we have

Wn(·) d→ W(·) in D([0,1]d),(3)

whereWn(t) := n−d/2 ∑
j1≤nt1

· · ·∑jd≤ntd
Xj andW = (W(t))t∈[0,1]d is ad-para-

meter Wiener process with varianceσ 2. We note, in passing, that ford = 1,
generalizations to the nonstationary case and to the vector-valued case were given
by Birkel (1988a) and by Burton, Dabrowski and Dehling (1988), respectively.

The FLIL for associated sequences was obtained by Dabrowski (1985), under
the finite r-susceptibility assumption withr = 1 and a condition which requires
thatE(S2

n)/n converges toσ 2 with a power decay rate.
The strong invariance principle proved by Yu (1996) strengthened and unified

all of these results in the cased = 1 and implied other asymptotic fluctuation
results, like the Chung’s type of FLIL for the maxima of partial sums; see
Theorems A–E of Philipp and Stout (1975). More precisely, Yu showed that if
(Xj )j∈Z+ is a sequence of associated random variables such that the moments of
orders > 2 are uniformly bounded, the variances are bounded below away from 0
and the covariance coefficientu(n) decays exponentially asn → ∞, then it is
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possible to redefine the original sequence on a richer probability space together
with a standard Wiener processW = (W(t))t∈[0,∞) such that, for someε > 0

Sn − W(σ 2
n ) = O(n1/2−ε) a.s.,

where σ 2
n := E(S2

n). As far as we know, there are no generalizations of this
principle to the cased ≥ 2. The purpose of the present paper is to fill this gap and
to provide a powerful approximation tool that can be used in higher dimensions.

Unlike the cased = 1, the strong invariance principle for associated random
fields in higher dimensions holds only for pointsN ∈ Zd+ which are not “too close”
to the coordinate axes. This is not at all surprising and a similar fact happens for
mixing random fields; see Theorem 1 of Berkes and Morrow (1981). The reason
for this phenomenon is the irregular behavior ofE(S2

N) close to the coordinate
planes.

We proceed now to introduce the notation that will be used throughout this
paper.

Let (Xj )j∈Zd+ be a weakly stationary associated random field with zero mean

andρ(j − k) := E(XjXk), ∀ j, k ∈ Zd+. Let u(n) be the covariance coefficient
defined by (2). Because of stationarity, we haveu(n) = ∑

i∈Zd :‖i‖≥n ρ(i) for every
n ≥ 0. We will suppose thatρ(0) > 0 andσ 2 := u(0) = ∑

i∈Zd ρ(i) < ∞.
For any finite subsetV ⊆ Zd+, we let |V | be the cardinality ofV , S(V ) :=∑
j∈V Xj , σ

2(V ) := E[S2(V )] and FV (x) := P(S(V )/σ(V ) ≤ x), x ∈ R. Note
that for any finite subsetV ⊆ Zd+,

ρ(0) ≤ σ 2(V )

|V | ≤ σ 2.(4)

Most of the time we will work with “rectangles”V ⊆ Zd+ of the formV :=
(a, b] = ∏d

s=1(as, bs] with as, bs ∈ Z+ ∪ {0}, as ≤ bs ; note that|V | = [b − a]. We
denote withA the class of all the subsetsV of this form.

We will use the following conditions:

(C1) supj∈Zd+ E|Xj |2+r+δ < ∞ for somer, δ > 0.

(C2) u(n) = O(e−λn) for someλ > 0.
(C2′) u(n) = O(n−ν) for someν > 0.

We recall that ad-parameter Wiener process W = {Wt ; t ∈ [0,∞)d} with
varianceσ 2 is a Gaussian process with independent increments such thatW(R)

has aN(0, σ 2|R|)-distribution for any rectangleR (|R| denotes the volume ofR).
Using the same notation as Berkes and Morrow (1981), we put

Gτ :=
d⋂

s=1

{
j ∈ Zd+ : js ≥ ∏

s′ �=s

j τ
s′

}
, τ ∈ (0,1).

Here is the main result of this paper.
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THEOREM 1.1. Let d ≥ 2, τ ∈ (0,1) and (Xj )j∈Zd+ be a weakly stationary
associated random field with zero mean and ρ(j − k) := E(XjXk) for any
j, k ∈ Zd+. Suppose that ρ(0) > 0 and σ 2 := ∑

i∈Zd ρ(i) < ∞.
If (C1) and (C2) hold, then without changing its distribution, we can redefine

the random field (Xj )j∈Zd+ on a richer probability space together with a

d-parameter Wiener process {Wt ; t ∈ [0,∞)d} with variance σ 2 such that

SN − WN = O([N]1/2−ε) a.s.

for N ∈ Gτ . Here ε is a positive constant depending on the field (Xj )j∈Zd+ .

From the previous theorem one can easily deduce the following CLT:

[N]−1/2SN
d→ N(0, σ 2)

when [N] → ∞ andN ∈ Gτ for someτ ∈ (0,1); this is more general than (1)
which was obtained only forN = (n, . . . , n) ∈ Zd+. The nonfunctional version of
LIL obtained by Wichura (1973) for any multi-parameter process with independent
increments (in particular, for the Wiener process) allows us to conclude that

lim sup
[N]→∞,N∈Gτ

(2[N] log log[N])−1/2SN = σ a.s.

We proceed now to the proof of Theorem 1.1. This is divided into several steps
which are explained in Section 2. The remaining sections contain the developments
that are needed to perform each step. To ease the exposition, we placed in the
Appendix the proofs of some preliminary lemmas.

2. Description of the method. In this section we will indicate what are the
main ingredients that are needed for the proof of Theorem 1.1. More precisely, by
blending the multi-parameter blocking technique of Berkes and Morrow (1981)
with the quantile transform technique of Csörgő and Révész (1975), we will be
able to generalize to the multi-parameter case the method introduced by Yu (1996).

Throughout our work we will use the letterC to denote a generic positive
constant, independent ofk.

Let α > β > 1 be integers to be chosen later andn0 := 0. Forl ∈ Z+, let

nl :=
l∑

i=1

(iα + iβ) ∼ 1

α + 1
lα+1.

For eachk := (k1, . . . , kd) ∈ Zd+, we putNk := (nk1, . . . , nkd
). For all k ∈ Zd+,

we have[Nk] ∼ (α + 1)−d [k]α+1.
Let Bk := (Nk−1,Nk] = ∏d

s=1(nks−1, nks ]. Note that|Bk| = ∏d
s=1(k

α
s + k

β
s ) ≤

2d [k]α . We define the “big” blocksHk and the “small” blocksIk by

Hk :=
d∏

s=1

(
nks−1, nks−1 + kα

s

]
, Ik := Bk\Hk.
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Note that|Hk| = [k]α and(2d − 1)[k]β ≤ |Ik| ≤ (2d − 1)[k]α . We denoteuk :=
S(Hk), λ

2
k := σ 2(Hk) andvk := S(Ik), τ

2
k := σ 2(Ik). By (4),

C[k]α ≤ λ2
k ≤ C[k]α, C[k]β ≤ τ2

k ≤ C[k]α.(5)

The sums over the big blocks will be used to generate a Gaussian approximating
sequence(ηk)k which will in turn be approximated by a Wiener process. In order
to do this, we will need an upper bound for the covariance of the sums over two
big blocks in terms of the distance between these blocks. The small blocks are
introduced simply to give some space between the big blocks, that is, to ensure
that the distance between any two big blocks is nonzero.

If the distribution function F̃k of uk/λk is continuous, then one could
use directly the quantile transform method of Csörgő and Révész (1975) to
approximate the variableuk/λk by a N(0,1)-random variable. In general,
this assumption may not be satisfied, and, therefore one, needs to employ a
“smoothing” technique [see Yu (1996)]. Without changing its distribution, we
redefine the random field(uk)k∈Zd+ on a rich enough probability space together

with a random field(wk)k∈Zd+ of independent random variables such thatwk is

N(0, τ2
k )-distributed and(uk)k and(wk)k are independent. Let

ξk := (uk + wk)/(λ
2
k + τ2

k )1/2, k ∈ Zd+,

and Fk be the distribution function ofξk . By the CLT for associated random
fields, F̃k(x) → �(x) ask → ∞ and, consequently,Fk(x) → �(x) ask → ∞,
where�(x) denotes theN(0,1) distribution function. Therefore, it is reasonable
to consider the followingN(0,1)-random variable

ηk := �−1(Fk(ξk)
)

as an approximation forξk . Let ek :=
√

λ2
k + τ2

k (ξk − ηk).
In what follows we will adapt the method introduced by Berkes and Morrow

(1981) for mixing random fields to suit the special needs of an associated random
field.

FIG. 1.
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FIG. 2.

Following page 25 of Berkes and Morrow (1981), we letτ ∈ (0,1) be arbitrary,
ρ := τ/8,L be the set of all indicesi corresponding to the “good” blocksBi ⊆ Gρ ,
andH be the set of all points inZd+ which fall in one of the good blocks. The
good blocks collect those pointsn ∈ Zd+ which are not too close to the coordinate
axes. From the technical point of view, their indicesi satisfy the relationship
is ≥ C[i]ρ/2, which is crucial in the proof of Lemma 3.9.

To each pointN ∈ H , we associate the pointsN(1), . . . ,N(d) which can be
thought as the intersections of the hyperplanesns = Ns, s = 1, . . . , d with the
“boundary” of the domainH ; their precise definition isN(s)

s′ = Ns′, ∀ s′ �= s and

N(s)
s := min

n∈H : ns′=Ns′ ,s′ �=s
ns.

Unlike the above-mentioned authors, we raise a small technical point by noting
that H may not be a nice “L-shaped” region. This is why we consider the
rectanglesRk := (Mk,Nk] ⊆ H , whereMk := ((N

(1)
k )1, . . . , (N

(d)
k )d). We note

thatLk := {i :Bi ⊆ Rk} ⊆ L ∩ {i ≤ k}.
If V is a rectangle inZd+ and Ṽ is the rectangle inRd+ which corresponds

to V , then we make an abuse of notation by writingW(V ) instead ofW(Ṽ ). This
convention will be used throughout this work and will occasionally apply to finite
unions of rectangles as well. We write

SN = (
SN − SNk

) + S(Rk) + S
(
(0,Nk]\Rk

)
,

WN = (
WN − WNk

) + W(Rk) + W
(
(0,Nk]\Rk

)
and we use the following decomposition ofS(Rk), based on the definitions ofξi

andei and the fact thatS(Bi) = ui + vi :

S(Rk) = ∑
i∈Lk

ei + ∑
i∈Lk

√|Bi |
(√

λ2
i + τ2

i

|Bi | − σ

)
ηi

(6)
+ ∑

i∈Lk

σ
√|Bi | ηi − ∑

i∈Lk

wi + ∑
i∈Lk

vi .
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In Section 3 we will show that all the sums in the above decomposition, except
the third one, can be made sufficiently small. The third sum will be treated
separately in Section 4 and will be approximated byW(Rk) = ∑

i∈Lk
W(Bi), via a

very powerful approximation result [Theorem 5 of Berkes and Philipp (1979)] and
a carefully chosen procedure for counting the indices inL. Finally, in Section 5 we
will show that the termsS((0,Nk]\Rk),W((0,Nk]\Rk) can be made sufficiently
small if Nk ∈ Gτ , and the differencesSN − SNk

,WN − WNk
are small ifN ∈ Gρ .

This will conclude the proof of Theorem 1.1.

3. The “good” blocks. In this section we will show that all the sums in the
decomposition (6) ofSRk

, except the third one, can be made sufficiently small.
In order to treat the first sum of this decomposition, we need to evaluate the

precision of the approximation ofξk by ηk . This will be given by the speed of
convergence in the CLT. In this paper we decided to use the result obtained by
Bulinski (1995), under the assumption that the covariance coefficientu(n) decays
exponentially asn → ∞. Under this assumption, this is the sharpest speed of
convergence in the CLT whend = 1, s = 3 [see Birkel (1988b)]. We note in
passing that in the cased = 1, a different speed of convergence in the CLT was
developed and used by Yu (1996) for associated sequences with a power decay
rate of the covariance coefficient; however, the exponential decay rate ofu(n) was
eventually needed for the strong invariance principle. The problem of whether or
not the strong invariance principle continues to hold for associated random fields
with a power decay rate of covariances is still open even in the cased = 1, and we
do not attempt to tackle it here.

LEMMA 3.1 [Theorems 1 and 2 of Bulinski (1995)].Suppose that
(C1) and (C2) hold and let s := 2+ r + δ. Then for any finite subset V ⊆ Zd+,

sup
x∈R

|FV (x) − �(x)|

≤
{

C|V | · (
σ 2(V )

)−s/2 · (
log(|V | + 1)

)d(s−1)
, if s ≤ 3,

C|V | · (
σ 2(V )

)−3/2 · (
log(|V | + 1)

)d
, if s > 3.

The next result is a generalization of Lemma 3.2 of Yu (1996) to the cased ≥ 2,
in the case of an exponential decay rate ofu(n). Its proof is routine and is given in
the Appendix.

LEMMA 3.2. If (C1)and (C2)hold and 2r0r/(2+ r) < α/β < 2(1+ r)/(2+
r) with r0 := max{1, (r + δ)−1}, then

sup
x∈R

|Fk(x) − �(x)| ≤ C[k]−rβ/(2+r) and sup
x∈R

|fk(x) − f (x)| ≤ C,

where fk(x) is the density function of ξk and f (x) is the N(0,1) density function.
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Using Lemma 3.2 and an argument that was introduced in the proof of Lemma 3
of Csörg̋o and Révész (1975), we get the precision of the approximation ofξk

by ηk .

LEMMA 3.3. Under (C1) and (C2),we have∣∣�−1(Fk(x)
) − x

∣∣ ≤ C[k]−{rβ/(2+r)−K2/2},

provided that |x| ≤ K
√

log[k], where 0< K <
√

2rβ/(2+ r).

Next we give the precision of the approximation ofξk by ηk in terms of the
L2-distance. For this we will need the following lemma which gives an upper
bound for the moments of order 2+ r , generalizing an older result of Birkel
(1988c) in the cased = 1. In particular, this lemma shows that(Xj )j∈Zd+ has finite
r-susceptibility (as defined in the Introduction).

LEMMA 3.4 [Corollary 1 of Bulinski (1993)]. Suppose that (C1) and (C2′)
hold with ν ≥ dν0, where ν0 := r(2+ r + δ)/(2δ) < (d − 2)−1 if d ≥ 3. Then for
any V ∈ A,

E|S(V )|2+r ≤ C|V |1+r/2.

Using (5), Lemmas 3.3 and 3.4, and employing the same technique that was
used in the proof of Lemma 3.10 of Yu (1996), we get the following result.

LEMMA 3.5. Under (C1) and (C2),we have

E[e2
k] ≤ C[k]α−ε0 ∀ k ∈ Zd+,

where ε0 := 2r2β/{(2+ r)(4+ 3r)}.

The next result will show us that the first sum in the decomposition (6) ofS(Rk)

is small.

LEMMA 3.6. Suppose that (C1) and (C2) hold and β > (1+ 2/r)(3 + 4/r).
Then there exists ε1 > 0 such that for every k ∈ Zd+ with Lk �= ∅,∑

i∈Lk

|ei | ≤ C[Nk]1/2−ε1 a.s.

PROOF. Letq > 0 be such thatα − ε0 +1< 2q < α −1 (this is possible since
ε0 > 2 by our choice ofβ). By Chebyshev’s inequality and Lemma 3.5, we have

P(|ei | ≥ [i]q) ≤ [i]−{2q−(α−ε0)} ∀ i ∈ Zd+.
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By the Borel–Cantelli lemma, it follows that|ei | ≤ C[i]q, ∀ i ∈ Zd+ a.s. and, hence,∑
i∈Lk

|ei | ≤ C
∑

i∈Lk
[i]q ≤ C[k]q+1 ≤ C[k](α+1)/2−ε′

1 ≤ C[Nk]1/2−ε1 a.s., where
0< ε′

1 < (α − 1)/2− q andε1 := ε′
1/(α + 1). �

The proof of the following lemma is given in the Appendix.

LEMMA 3.7. If (C2′) holds with d < ν < 2d, then

σ 2 − σ 2(V )

|V | = O(|V |−δ0),(7)

where V is a finite union of rectangles in A and δ0 := ν/d − 1.

REMARK. Relationship (7) is exactly Dabrowski’s (1985) condition for the
FLIL for associated sequences.

LEMMA 3.8. Suppose that (C2′) hold with d < ν < 2d and β > 3/δ0, where
δ0 := ν/d − 1. Then for every k ∈ Zd+ with Lk �= ∅,

∑
i∈Lk

√|Bi |
(
σ −

√
λ2

i + τ2
i

|Bi |
)
|ηi | ≤ C[Nk]1/2−α0 a.s.,

where α0 := 1/{2(α + 1)}.

PROOF. Note thatai := σ −
√

(λ2
i + τ2

i )/|Bi | > 0, by (4) and the association
property. Using (7), we have

a2
i ≤ σ 2 − λ2

i + τ2
i

|Bi | = |Hi |
|Bi |

(
σ 2 − λ2

i

|Hi |
)

+ |Ii |
|Bi |

(
σ 2 − τ2

i

|Ii |
)

≤ C(|Hi |−δ0 + |Ii |−δ0) ≤ C[i]−βδ0

and, hence, by Chebyshev’s inequality,

P
(√|Bi |aiηi ≥ [i]α/2−1) ≤ [i]−(α−2)|Bi |a2

i ≤ C[i]−(βδ0−2).

By the Borel–Cantelli lemma, it follows that
√|Bi |aiηi ≤ C[i]α/2−1, ∀ i ∈ Zd+

a.s. and, hence,
∑

i∈Lk

√|Bi |aiηi ≤ C
∑

i∈Lk
[i]α/2−1 ≤ C[k]α/2 ≤ C[Nk]1/2−α0

a.s. since[k] ∼ (α + 1)d/(α+1)[Nk]1/(α+1). �

The final result of this section shows that the last two sums in the decomposi-
tion (6) ofS(Rk) are small.

LEMMA 3.9. If α −β > 2+4/ρ, then for every k ∈ Zd+ with Lk �= ∅, we have∑
i∈Lk

|vi | ≤ C[Nk]1/2−α0 a.s. and
∑
i∈Lk

|wi | ≤ C[Nk]1/2−α0 a.s.
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PROOF. For the first inequality, we follow the proof of Lemma 8 of Berkes
and Morrow (1981). Note thatIi = ⋃d

s=1 Ii(s), whereIi(s) are disjoint rectangles

with |Ii(s)| ≤ Ci
β
s

∏
s′ �=s iαs′ . Hence,vi = ∑d

s=1 vi(s) with vi(s) := ∑
j∈Ii (s)

Xj .
By Chebyshev’s inequality and (4),

P
(|vi(s)| ≥ [i]α/2−1) ≤ C[i]−(α−2)|Ii(s)| ≤ Ci−(α−β−2)

s

∏
s′ �=s

i2
s′

≤ i−(α−β−2−2/ρ)
s ≤ C[i]−(α−β−2−2/ρ)ρ/2

for every i ∈ Lk . (As in the proof of the above-mentioned lemma, we used the
fact that i ∈ Lk implies that is ≥ C

∏
s′ �=s i

ρ

s′ and, consequently,is ≥ C[i]ρ/2.)
Since(α − β − 2− 2/ρ)ρ/2> 1, the result follows by the Borel–Cantelli lemma.
A similar argument applies towi , sinceE(w2

i ) = τ2
i ≤ C|Ii | = C

∑d
s=1 |Ii(s)|.

�

4. The approximation theorem. In this section we will verify that the third
sum in the decomposition (6) ofS(Rk) can be approximated byW(Rk), whereW

is ad-parameter Wiener process with varianceσ 2. Some preliminary lemmas are
needed.

The next result follows exactly as Theorem 2.1 of Yu (1996), using Lemma 3.2.

LEMMA 4.1. If (C1)and (C2)hold and 2r0r/(2+ r) < α/β < 2(1+ r)/(2+
r) with r0 := max{1, (r + δ)−1}, then for any 0< θ < 1/2 and all i �= j ,

E(ηiηj ) ≤ C{([i][j ])−α/2E(uiuj )}θ/(1+θ).

The next lemma gives a generalization of relationship (3.11) of Yu (1996) to the
multi-parameter case.

LEMMA 4.2. If (C2) holds, then

E(uiuj ) ≤ Ce
−λM

β
i,j ,

where Mi,j := maxs : is �=js (Ms(i, j)−1) and Ms(i, j) := max(is, js), s = 1, . . . , d.

PROOF. Letd := mink∈Hi
d(k,Hj ) be the distance betweenHi andHj , where

d(k,Hj ) := mink′∈Hj
‖k − k′‖. Thendk := d(k,Hj ) − d ≥ 0 ∀ k ∈ Hi ,

E(uiuj ) = ∑
k∈Hi

∑
k′∈Hj

E(XkXk′) ≤ ∑
k∈Hi

u(d + dk) ≤ Ce−λd
∑
k∈Hi

e−λdk ≤ Ce−λd

and d = maxs=1,...,d mink∈Hi,k
′∈Hj

|ks − k′
s | = maxs : is �=js {mβ

s + ∑Ms−1
l=ms+1(l

α +
lβ)} ≥ M

β
i,j , wherems = ms(i, j) := min(is, js) andMs = Ms(i, j). �
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In order to prove our approximation theorem, we need to be able to “count”
properly the indices inL, that is, to define a bijectionψ : Z+ → L satisfying certain
properties. This will be given by the following lemma, whose proof can be found
in the Appendix.

LEMMA 4.3. There exists a bijection ψ : Z+ → L such that

l < m �⇒ ∃ s∗ = s∗(l,m) such that ψ(l)s∗ ≤ ψ(m)s∗(8)

∃m0 ∈ Z+ such that m ≤ C[ψ(m)]γ0 ∀m ≥ m0(9)

for any γ0 > (1+ 1/ρ)(1− 1/d).

We are now able to prove the desired approximation theorem.

THEOREM 4.4. Suppose that (C1) and (C2) hold, α > 3(1+ 1/ρ)(1− 1/d),
β > (2/ρ)(1 + 1/ρ)(1 − 1/d) and 2r0r/(2 + r) < α/β < 2(1 + r)/(2 + r) with
r0 := max{1, (r + δ)−1}. Then without changing its distribution, we can redefine
the random field (Xj )j∈Zd+ on a rich enough probability space together with a

d-parameter Wiener process W = (Wt ; t ∈ [0,∞)d) with variance σ 2, such that
for every k ∈ Zd+ with Lk �= ∅,

∑
i∈Lk

σ
√|Bi |

∣∣∣∣ηi − W(Bi)

σ
√|Bi |

∣∣∣∣ ≤ C[Nk]1/2−α0 a.s.,

where α0 := 1/{2(1+ α)}.

PROOF. Let 0< θ < 1/2 be such thatα{(1 + 1/ρ)(1 − 1/d)}−1 > 1 + 1/θ

and chooseγ0 such that(1 + 1/ρ)(1 − 1/d) < γ0 < min{αθ/(1 + θ), βρ/2}. Let
ψ : Z+ → L be the bijection given by Lemma 4.3.

We will apply Theorem 5 of Berkes and Philipp (1979) to the sequence
Ym := ηψ(m),m ∈ Z+ of random variables and the probability distributionsGm :=
N(0,1),m ∈ Z+ and we will prove that for eachm ∈ Z+,m ≥ 2 there exists some
ρm > 0 such that∣∣∣∣∣E exp

{
i

m∑
l=1

tlYl

}
− E exp

{
i

m−1∑
l=1

tlYl

}
E exp{itmYm}

∣∣∣∣∣ ≤ ρm(10)

for all t1, . . . , tm ∈ R with
∑m

l=1 t2
l ≤ U2

m, whereUm > 104m2.
Then, by the above-mentioned theorem, without changing its distribution, we

can redefine the sequence(Ym)m∈Z+ on a rich enough probability space together
with a sequence(Zm)m∈Z+ of independentN(0,1)-random variables such that

P(|Ym − Zm| ≥ αm) ≤ αm ∀m ∈ Z+,
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whereαm ≤ C{U−1/4
m logUm + exp(−3U

1/2
m /16)m1/2U

1/4
m + ρ

1/2
m U

m+1/4
m }. We

will prove next that

αm ≤ Cm−2 for m large.(11)

Then, by the Borel–Cantelli lemma,|Ym − Zm| ≤ Cαm, ∀m ∈ Z+ a.s. Using a
straightforwardd-parameter generalization of Lemma 4 of Csörgő and Révész
(1975), without changing its distribution, we can redefine the sequence(Zm)m∈Z+
on a richer probability space together with ad-parameter Wiener process with
varianceσ 2 such thatZm = W(Bψ(m))/(σ

√|Bψ(m)| ), ∀m ∈ Z+. Hence,∣∣∣∣ηi − W(Bi)

σ
√|Bi |

∣∣∣∣ ≤ Cαψ−1(i) ∀ i ∈ L a.s.

and because|Bi | ≤ |Bk| ≤ C[k]α, ∀ i ∈ Lk and
∑

l∈Z+ αl < ∞, we have

∑
i∈Lk

σ
√|Bi |

∣∣∣∣ηi − W(Bi)

σ
√|Bi |

∣∣∣∣ ≤ C[k]α/2
∑
i∈Lk

αψ−1(i) ≤ C[k]α/2 ≤ C[Nk]1/2−α0.

We proceed next to the verification of (10) and (11). By Lemmas 4.1 and 4.2,
we have

E(YlYm) ≤ C
{([ψ(l)][ψ(m)])−α/2

E
(
uψ(l)uψ(m)

)}θ/(1+θ)

≤ C
([ψ(l)][ψ(m)])−αθ/(2+2θ)

e
−λθM

β
ψ(l),ψ(m)/(1+θ)

≤ C
([ψ(l)][ψ(m)])−αθ/(2+2θ)

e−λθ [ψ(m)]βρ/2/(1+θ).

[For the last inequality above we used (8) to obtain ans∗ = s∗(l,m), for which
Ms∗(ψ(l),ψ(m)) = ψ(m)s∗ ; sinceψ(m) ∈ L, we haveMψ(l),ψ(m) ≥ ψ(m)s∗ −
1≥ C[ψ(m)]ρ/2.] By Lemma 2.2 of Dabrowski and Dehling (1988), the left-hand
side of (10) is smaller than 2

∑m−1
l=1 |tl tm|E(YlYm), which is, in turn, smaller than

Ce−λθ [ψ(m)]βρ/2/(1+θ)
m−1∑
l=1

2|tl tm|([ψ(l)][ψ(m)])−αθ/(2+2θ)

≤ Ce−λθ [ψ(m)]βρ/2/(1+θ)

{
m−1∑
l=1

t2
l [ψ(l)]−αθ/(1+θ)

+ (m − 1)t2
m[ψ(m)]−αθ/(1+θ)

}

≤ Ce−λθ [ψ(m)]βρ/2/(1+θ)
m∑

l=1

t2
l ≤ Ce−λθ [ψ(m)]βρ/2/(1+θ)U2

m := ρm

for m large enough. (In the second inequality above, we used the fact thatm ≤
C[ψ(m)]αθ/(1+θ), which follows from Lemma 4.3 by our choice ofγ0.)



INVARIANCE PRINCIPLE FOR RANDOM FIELDS 835

Finally, relationship (11) follows if we takeUm := mq with q > 8. Clearly,
U

−1/4
m logUm ≤ m−2 and exp(−3U

1/2
m /16)m1/2U

1/4
m ≤ exp(−2U

1/2
m /16) ≤ m−2

for m large enough. We have

ρ1/2
m Um+1/4

m = e−λθ [ψ(m)]βρ/2/(2+2θ)mq(m+5/4) ≤ m−2

since{2+ q(m + 5/4)} logm ≤ Cm1+ε ≤ C[ψ(m)](1+ε)γ0 ≤ C[ψ(m)]βρ/2, for m

large enough. This concludes the proof of the theorem.�

REMARK. A similar argument can be used to give a simplified proof for
Theorem 2.5 of Yu (1996) (in the cased = 1). More precisely, one can check
directly the condition of Theorem 5 of Berkes and Philipp (1979) for the sequence
(ηk)k≥1 of random variables and the probability distributionsGk = N(0,1), k ≥ 1
(as we did above). We obtain in this manner a sequence(Zk)k≥1 of independent
N(0,1)-random variables withP(|ηk − Zk| ≥ αk) ≤ αk andαk ≤ Ck−2. Without
changing its distribution, we can redefine the sequence(Zk)k≥1 on a richer
probability space together with a standard Brownian motionW = {Wt ; t ∈ [0,∞)}
such thatZk = W(Ĥk)/

√
λ2

k + τ2
k , whereĤk := (Vk−1,Vk] andVk := ∑k

i=1(λ
2
i +

τ2
i ). Since λ2

i + τ2
i ≤ Ciα ≤ Ckα for i ≤ k and

∑
i≥1 αi < ∞, this gives

immediately the desired approximation

k∑
i=1

√
λ2

i + τ2
i

∣∣∣∣ηi − W(Ĥi)√
λ2

i + τ2
i

∣∣∣∣ ≤ Ckα/2
k∑

i=1

αi ≤ CN
1/2−α0
k a.s.

5. The remaining terms. In this section we show that the terms
S((0,Nk]\Rk),W((0,Nk]\Rk), SN − SNk

,WN − WNk
can be made sufficiently

small if N ∈ Gτ .
Note that(0,Nk]\Rk = ⋃d

s=1(0,N
(s)
k ]. If we let Ds(N) := maxn≤N(s) |Sn| and

D̂s(N) := maxn≤N(s) |Wn|, for eachs = 1, . . . , d andN ∈ H , then

S
(
(0,Nk]\Rk

) ≤
d∑

s=1

2d−sDs(Nk), W
(
(0,Nk]\Rk

) ≤
d∑

s=1

2d−sD̂s(Nk).

On the other hand,(0,N]\(0,Nk] = ⋃
J I

(J )
k , whereI

(J )
k := ∏

s∈J (nks ,Ns] ×∏
s∈J c(0, nks ] and the union is taken over all nonempty subsetsJ of {1, . . . , d}.

Let M
(J)
k := max|S(I

(J )
k )| andM̂

(J )
k := sup|W(I

(J )
k )|, where the maximum and

the supremum are taken over allN with nks < Ns ≤ nks+1, ∀ s ∈ J . We have

max
Nk<N≤Nk+1

∣∣SN − SNk

∣∣ ≤ ∑
J

M
(J )
k , sup

Nk<N≤Nk+1

∣∣WN − WNk

∣∣ ≤ ∑
J

M̂
(J )
k .

We note in passing that the arguments that are valid for the terms depending
on the original random field(Xj )j∈Zd+ can be applied to the terms depending
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on the Wiener processW , since W(V ) = ∑
j∈V X̂j , ∀V ∈ A, where X̂j :=

W((j − 1, j ]) are independentN(0, σ 2)-random variables. Clearly,(X̂j )j∈Zd+
is a weakly stationary associated random field with zero mean and covariance
coefficientû(n) = 0, ∀n ≥ 1.

LEMMA 5.1. (a) Suppose that (C1) and (C2′) hold with ν ≥ dν0 and
ν0 := r(2 + r + δ)/(2δ) < (d − 2)−1 if d ≥ 3. Then there exists x0 such that
∀V ∈ A, ∀x ≥ x0,

P
(
M(V ) ≥ x|V |1/2) ≤ Cx−(2+r),

where M(V ) := max{|S(Q)|;Q ⊆ V,Q ∈ A}.
(b) If (C1) and (C2) hold, then there exists γ > 0 such that ∀V ∈ A,

P
(
M̃(V ) ≥ |V |1/2(log|V |)d+1) ≤ C|V |−γ ,

where M̃((a, b]) := max{|S(Q)|;Q = (a, c], a < c ≤ b}.

PROOF. (a) Using Lemma 1 of Bulinski and Keane (1996), the Markov in-
equality and Lemma 3.4, we haveP(M(V ) ≥ x|V |1/2) ≤ 2P(|S(V )| ≥
x|V |1/2/2) ≤ Cx−(2+r)|V |−(1+r/2)E|S(V )|2+r ≤ Cx−(2+r).

(b) This follows exactly as the second inequality of Lemma 7 of Berkes and
Morrow (1981), using the moment inequality given by Lemma 3.4 and the rate of
convergence in the CLT given by Lemma 3.1. This rate is sharper than the rate of
Lemma 5 of Berkes and Morrow (1981). To see this, we use (4) and we note that
supx∈R |FV (x) − �(x)| is either smaller thanC|V |−{s/2−1−εd(s−1)} if s ≤ 3, or
smaller thanC|V |−(1/2−εd) if s > 3; in both cases a suitable choice ofε > 0 gives
us the rateC|V |−t for somet ∈ (0,1). We also note that the requirement|V | ∈ Gτ

is not needed. �

The next result follows exactly as Lemma 6 of Berkes and Morrow (1981), using
Lemma 5.1(a).

LEMMA 5.2. If α > 16/(3τ) − 1, then

max
s=1,...,d

Ds(Nk) ≤ C[Nk]1/2−ε a.s.,

max
s=1,...,d

D̂s(Nk) ≤ C[Nk]1/2−ε a.s.

for every Nk ∈ Gτ and 0< ε < τ/32.

The following result follows exactly as Lemma 9 of Berkes and Morrow (1981),
using Lemma 5.1(b).
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LEMMA 5.3. Let γ be the constant given by Lemma 5.1(b).If α > 2/γ , then

max
J

M
(J )
k ≤ C[Nk]1/2−ε a.s.,

max
J

M̂
(J )
k ≤ C[Nk]1/2−ε a.s.

for every Nk ∈ Gρ and 0< ε < ρ/(8α).

APPENDIX

PROOF OFLEMMA 3.2. Using Lemma 3.1 forV = Hk and relationship (5),
we obtain that supx∈R |F̃k(x)−�(x)| is either smaller thanC[k]−{αs/2−α−εd(s−1)}
if s ≤ 3, or smaller thanC[k]−(α/2−εd) if s > 3. If α/β > 2r0r/(2 + r),
then a suitable choice ofε > 0 allows us to conclude that|F̃k(x) − �(x)| ≤
C[k]−rβ/(2+r), ∀x ∈ R. The first inequality follows by a change of variables.

For the second inequality we use a technique similar to that used to prove rela-
tionship (3.3) of Yu (1996). Letϕk(t) := E[exp(itξk)], ϕ̃k(t) := E[exp(ituk/λk)]
andϕ(t) = exp(−t2/2). Since(λ2

k + τ2
k )/λ2

k ≤ C, we have, for anyT > 0,

|fk(x) − f (x)| ≤ 1

2π

∫ ∞
−∞

|ϕk(t) − ϕ(t)|dt

≤ C

2π

∫ ∞
−∞

|ϕ̃k(t) − ϕ(t)|exp
{
−τ2

k t2

2λ2
k

}
ds

≤ C

2π
· 2T [k]−rβ/(2+r) + C

π

∫
|t |≥T

exp
{
− t2τ2

k

2λ2
k

}
dt

≤ C · T [k]−rβ/(2+r) + C

T
· λ2

k

τ2
k

exp
{
−τ2

k T 2

2λ2
k

}
.

Since λ2
k/τ

2
k ≤ C[k]α−β , the conclusion follows by choosingT = C[k]q with

α − β < q < rβ/(2 + r). Such a choice is possible ifα/β < 2(1 + r)/(2 + r).
�

PROOF OF LEMMA 3.7. First we claim that it is enough to prove (7) for
“squares,” that is, for rectanglesV = (m,n] ∈ A for which ns − ms = l, ∀ s =
1, . . . , d. To see this, we note that each rectangleV can be written as a finite
union of disjoint squares:V = ⋃p

i=1 Vi . By the association propertyσ 2(V ) ≥∑p
i=1 σ 2(Vi) and

σ 2 − σ 2(V )

|V | ≤ 1

|V |
p∑

i=1

|Vi |
(
σ 2 − σ 2(Vi)

|Vi |
)

≤ 1

|V |
p∑

i=1

C|Vi |1−δ0 ≤ C|V |−δ0
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because 0< δ0 < 1. Let us now prove relationship (7) for a squareV = (m,n]
with ns − ms = l, ∀ s = 1, . . . , d. Note that|V | = ld . By stationarity,

σ 2(V ) = |V | · r(0) + ∑
−(n−m−1)≤i≤n−m−1,i �=0

d∏
s=1

(l − |is |) · r(i)

= |V | · ∑
‖i‖≤l−1

r(i) − ∑
∅ �=K⊆{1,...,d}

(−1)|K|−1
∑

‖i‖≤l−1,i �=0

c(K, i) · r(i),

wherec(K, i) := l|Kc| · ∏
s∈K |is |. Sinceσ 2 − ∑

‖i‖≤l−1 r(i) = ∑
‖i‖≥l r(i) = u(l)

andc(K, i) ≤ |V | if ‖i‖ ≤ l − 1, we have

σ 2 − σ 2(V )

|V | ≤ u(l) + ∑
∅ �=K⊆{1,...,d},|K|odd

1

|V |
∑

‖i‖≤l−1,i �=0

c(K, i) · r(i)

≤ C|V |−ν/d + ∑
∅ �=K⊆{1,...,d},|K|odd

∑
‖i‖≤l−1,i �=0

r(i)

≤ C|V |−ν/d + C|V |−ν/d+1.

We used the fact thatu(l) ≤ Cl−ν = C|V |−ν/d andr(i) ≤ u(‖i‖) ≤ u([i]1/d) ≤
C[i]−ν/d for anyi ∈ Zd , where[i] = ∏

s : is �=0 |is |. �

PROOF OF LEMMA 4.3. The idea of the proof is based on the following
simple observation in the cased = 2. For eachm ∈ Z+,m ≥ 2 with (m,m) ∈ L,
there exists ak∗

1(m) ≥ m such that(k1,m), (m, k1) ∈ L for every m ≤ k1 ≤
k∗

1(m). Therefore, to each vertex(m,m) ∈ L, one can associate an “L-shaped”
regionL(m) consisting of 2{k∗

1(m) − m} + 1 points inL. In view of the desired
property (8), we will count consecutively the indices inL(2),L(3), and so on. To
verify property (9), we note thatk ∈ L(m) implies[k] ≥ m2.

We begin now the proof for arbitraryd ≥ 2. Let m ∈ Z+,m ≥ 2 be such that
(m, . . . ,m) ∈ L andk = (k1, . . . , kd−1,m) ∈ L be such thatks > m, ∀ s < d. This
implies that all the vertices ofBk are inGρ , and, in particular,nm ≥ n

ρ
ks

, ∀ s < d.
Since m is fixed, this cannot happen for infinitely manyks ’s. It follows that
for eachs = 1, . . . , d − 1, there exists ak∗

s (m) ≥ m such thatks ≤ k∗
s (m). We

note thatk∗
s (m) ≤ Cm1/ρ , if m is large enough. This argument shows us that

we have a maximum number ofk∗(m) := ∏d−1
s=1{k∗

s (m) − m} points of the form
(k1, . . . , kd−1,m) in L, with ks > m, ∀ s < d.

By symmetry, we can repeat this argument for each of the axes. We let
Ls(m) := {k = (k1, . . . , ks−1,m, ks, . . . , kd−1);m < ks′ ≤ k∗

s′(m), ∀ s′ < d} for
everys = 1, . . . , d. The “L-shaped” region corresponding to the indexm is

L(m) :=
d⋃

s=1

Ls(m) ∪ {(m, . . . ,m)}.
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Note that|L(m)| = dk∗(m) + 1 and thatk ∈ L(m) implies [k] ≥ md . Clearly,
L ⊆ ⋃

m L(m) [note that in the cased = 2, we actually haveL = ⋃
m L(m)].

Next we count consecutively the indices inL(2),L(3), and so on, that is, we
define a bijectionϕ : Z+ → ⋃

m L(m) such that∀ z ∈ Z+,

m−1∑
l=2

|L(l)| < z ≤
m∑

l=2

|L(l)| �⇒ ϕ(z) ∈ L(m).

The bijectionϕ clearly satisfies condition (8). To verify (9), we note that

z ≤ d

m∑
l=2

d−1∏
s=1

(
k∗
s (l) − l

) + m ≤ d

d−1∏
s=1

m∑
l=2

(
k∗
s (l) − l

) + m

≤ d

d−1∏
s=1

(
m∑

l=2

k∗
s (l)

)
− d

(
m∑

l=2

l

)d−1

+ m ≤ d

d−1∏
s=1

(
m∑

l=2

k∗
s (l)

)

≤ Cm(1+1/ρ)(d−1) ≤ Cmdγ0 ≤ C[ϕ(z)]γ0

for m large enough andγ0 > (1 + 1/ρ)(1 − 1/d) arbitrary. Finally, define the
bijection ψ : Z+ → L such thatψ−1(k) ≤ ϕ−1(k), ∀ k ∈ L. The result follows
since ifz1, z2 ∈ Z+ are such thatψ(z1) = ϕ(z2), thenz1 ≤ z2. �

REFERENCES

BERKES, I. and MORROW, G. J. (1981). Strong invariance principles for mixing random fields.
Z. Wahrsch. Verw. Gebiete 57 15–37.

BERKES, I. and PHILIPP, W. (1979). Approximation theorems for independent and weakly
dependent random vectors.Ann. Probab. 7 29–54.

BIRKEL, T. (1988a). The invariance principle for associated sequences.Stochastic Process. Appl. 27
57–71.

BIRKEL, T. (1988b). On the convergence rate in the central limit theorems for associated processes.
Ann. Probab. 16 1685–1698.

BIRKEL, T. (1988c). Moment bounds for associated sequences.Ann. Probab. 16 1184–1193.
BULINSKI , A. V. (1993). Inequalities for the moments of sums of associated multi-indexed variables.

Theory Probab. Appl. 38 342–349.
BULINSKI , A. V. (1995). Rate of convergence in the central limit theorem for fields of associated

random variables.Theory Probab. Appl. 40 136–144.
BULINSKI , A. V. and KEANE, M. S. (1996). Invariance principle for associated random fields.

J. Math. Sci. 81 2905–2911.
BURTON, R. M., DABROWSKI, A. R. and DEHLING, H. (1986). An invariance principle for weakly

associated random vectors.Stochastic Process. Appl. 23 301–306.
BURTON, R. M. and KIM , T. S. (1988). An invariance principle for associated random fields.Pacific

J. Math. 132 11–19.
COX, T. J. and GRIMMETT, G. (1984). Central limit theorems for associated random variables and

the percolation model.Ann. Probab. 12 514–528.
CSÖRGŐ, M. and RÉVÉSZ, P. (1975). A new method to prove Strassen type laws of invariance

principle I.Z. Wahrsch. Verw. Gebiete 31 255–260.



840 R. M. BALAN

DABROWSKI, A. R. (1985). A functional law of the iterated logarithm for associated sequences.
Statist. Probab. Lett. 3 209–212.

DABROWSKI, A. R. and DEHLING, H. (1988). A Berry–Essen theorem and a functional law of the
iterated logarithm for weakly associated random variables.Stochastic Process. Appl. 30
277–289.

ESARY, J. D., PROSCAHN, F. and WALKUP, D. W. (1967). Association of random variables, with
applications.Ann. Math. Statist. 38 1466–1474.

KIM , T. S. (1996). The invariance principle for associated random fields.Rocky Mountain J. Math.
26 1443–1454.

NEWMAN, C. M. (1980). Normal fluctuations and the FKG inequalities.Comm. Math. Phys. 74
119–128.

NEWMAN, C. M. and WRIGHT, L. A. (1981). An invariance principle for certain dependent
sequences.Ann. Probab. 9 671–675.

NEWMAN, C. M. and WRIGHT, L. A. (1982). Associated random variables and martingale
inequalities.Z. Wahrsch. Verw. Gebiete 59 361–371.

PHILIPP, W. and STOUT, W. F. (1975). Almost sure invariance principles for partial sums of weakly
dependent random variables.Mem. Amer. Math. Soc. 161.

WICHURA, M. J. (1973). Some Strassen-type laws of the iterated logarithm for multiparameter
stochastic processes with independent increments.Ann. Probab. 1 272–296.

YU, H. (1996). A strong invariance principles for associated random variables.Ann. Probab. 24
2079–2097.

DEPARTMENT OFMATHEMATICS AND STATISTICS

UNIVERSITY OF OTTAWA

585 KING EDWARD AVENUE

OTTAWA , ONTARIO

CANADA K1N 6N5
E-MAIL : rbala348@science.uottawa.ca
URL: http://aix1.uottawa.ca/˜rbalan


