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A STRONG INVARIANCE PRINCIPLE FOR
ASSOCIATED RANDOM FIELDS!

By RALuUCA M. BALAN
University of Ottawa

In this paper we generalize Yu's\fin. Probab. 24 (1996) 2079-2097]
strong invariance principle for associated sequences to the multi-parameter
case, under the assumption that the covariance coefficiént decays
exponentially as — oco. The main tools that we use are the following: the
Berkes and Morrow 4. Wahrsch. Verw. Gebiete 57 (1981) 15-37] multi-
parameter blocking technique, the Csbrand RévészZ. Wahrsch. Verw.
Gebiete 31 (1975) 255-260] quantile transform method and the Bulinski
[Theory Probab. Appl. 40 (1995) 136—144] rate of convergence in the CLT.

1. Introduction. Among various concepts introduced to measure the depen-
dence between random variables, association deserves a special place because of
its numerous applications and its relatively easy mathematical manipulation. A fi-
nite collection(X1, ..., X,,,) of random variables is said to lassociated (or satis-
fies theFKG inequalities) if for any coordinatewise nondecreasing functighg
onR™, cou(f(X1,..., Xm), g(X1,..., X)) > 0, whenever the covariance is de-
fined. An infinite collection of random variables is associated if every finite sub-
collection is associated. This concept was formally introduced by Esary, Proschan
and Walkup (1967), who also deduced some of its most important properties.

In the past few decades, a lot of effort has been dedicated to prove limit theorems
for random fields(X.,-)jezi of associated random variables. In the cédse 1,
this culminated with the strong invariance principle of Yu (1996), from which
one can easily deduce all the other major limit theorems, like the weak invariance
principle and the functional law of the iterated logarithm (FLIL). The present paper
was motivated by the need for a similar result in the case2, which arises in
the context of higher-dimensional models, like the percolation model of Cox and
Grimmett (1984).

The first asymptotic result for zero-mean associated random fields was the
central limit theorem (CLT) proved by Newman (1980) for the (strongly) stationary
case. This result says that if thimite susceptibility assumption holds, that is,
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02:=Y;cz4 p(i) < 00, wherep(j — k) := cov(X ;, X), then

@) n=425, 4 N0, 5?),

where S, := 3>, -, -- > j,<n X, This was generalized by Cox and Grimmeit
(1984) to the nonstationary case, under the assumptiom that> 0 asn — oo,
where

(2) u(n):=sup Y cov(X;, Xi)
J€Zé k| j—k|=n

and|li|| := max=1,....q lis|.

The weak invariance principle for (strongly) stationary associated random fields
was proved by Newman and Wright (1981, 1982) in the ehsel andd = 2,
under the same finite susceptibility assumption. They also conjectured that the
same principle holds fotrl > 2. A partial solution to this problem was given
by Burton and Kim (1988) in the stationary case, and by Kim (1996) in the
nonstationary case, under tfigite r-susceptibility assumption:

E|SN|2+r E C[N]l+r/2’

where Sy = Y ;.y X; and [N] = [[/_; N, for N = (N1,...,Ng) € Z4.
(If i, j € Z4, we use the notation< j if iy < j;, Vs=1,...,d andi < j if
iy <js, Vs=1,...,d.)

The conjecture was fully solved by Bulinski and Keane (1996), who proved
that for a zero-mean (weakly) stationary associated random (&g, ezt with
uniformly bounded moments of order> 2 and a power decay rate for the
covariance coefficient(n), we have

€) W) W)  inD(0,119),

whereW,, (1) :==n"Y2Y; -+ Y ji<niy Xj @ANAW = (W (1)), (0.1 IS ad-para-

meter Wiener process with variane€. We note, in passing, that faf = 1,
generalizations to the nonstationary case and to the vector-valued case were given
by Birkel (1988a) and by Burton, Dabrowski and Dehling (1988), respectively.

The FLIL for associated sequences was obtained by Dabrowski (1985), under
the finite r-susceptibility assumption with= 1 and a condition which requires
that £(S2)/n converges te? with a power decay rate.

The strong invariance principle proved by Yu (1996) strengthened and unified
all of these results in the cage= 1 and implied other asymptotic fluctuation
results, like the Chung’s type of FLIL for the maxima of partial sums; see
Theorems A-E of Philipp and Stout (1975). More precisely, Yu showed that if
(Xj)jez, is a sequence of associated random variables such that the moments of
orders > 2 are uniformly bounded, the variances are bounded below away from O
and the covariance coefficient(n) decays exponentially as — oo, then it is
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possible to redefine the original sequence on a richer probability space together
with a standard Wiener proce¥s= (W (¢));<[0,00) such that, for some > 0

Sy —WedH)=0nY??%) as,

where o2 := E(S2). As far as we know, there are no generalizations of this
principle to the casé > 2. The purpose of the present paper is to fill this gap and
to provide a powerful approximation tool that can be used in higher dimensions.

Unlike the casal = 1, the strong invariance principle for associated random
fields in higher dimensions holds only for poiri¥se Zi which are not “too close”
to the coordinate axes. This is not at all surprising and a similar fact happens for
mixing random fields; see Theorem 1 of Berkes and Morrow (1981). The reason
for this phenomenon is the irregular behaviorE;GS,z\,) close to the coordinate
planes.

We proceed now to introduce the notation that will be used throughout this
paper.

Let (X)) ez« be a weakly stationary associated random field with zero mean
andp(j —k):=E(X;Xy), Vj ke Zi. Let u(n) be the covariance coefficient
defined by (2). Because of stationarity, we have) = >_;cza.;; >, 0 (i) for every
n > 0. We will suppose thgs (0) > 0 ando? := u(0) = 3", .74 p(i) < 00.

For any finite subseV € 74, we let|V| be the cardinality ofV, S(V) :=
Y jev Xj.0%(V) := E[S%(V)] and Fy (x) := P(S(V)/o (V) < x),x € R. Note
that for any finite subset < 74,

(V) _

<o
4
Most of the time we will work with “rectanglesV < Zi of the formV :=
(a, b] =T1%_,(as, bs] with ag, by € Z U {0}, a; < by; note thaV | = [b — a]. We
denote withA the class of all the subse¥sof this form.
We will use the following conditions:

(4) p(0) <

(C1) sup z¢ E|X;|>*"*% < oo for somer, § > 0.
(C2) u(n) = O(e~*") for somex > 0.
(C2) u(n)=0(®n"") for somev > 0.
We recall that ad-parameter Wiener process W = {W;;t € [0, 00)¢} with
varianceo? is a Gaussian process with independent increments suchvttiy

has aN (0, 02| R|)-distribution for any rectangl® (|R| denotes the volume ).
Using the same notation as Berkes and Morrow (1981), we put

d

G.=(\1jiez%l:js =[] Jrt te(0,1).
s=1 s'#s

Here is the main result of this paper.
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THEOREM 1.1. Letd >2,7€(0,1) and (Xj)jezi be a weakly stationary

associated random field with zero mean and p(j — k) := E(X;Xy) for any
j ke Zi. Suppose that p(0) > 0 and o2 := Y iezad p(i) <00,

If (C1)and (C2) hold, then without changing its distribution, we can redefine
the random field (Xj)/.ezi on a richer probability space together with a

d-parameter Wener process {W;; 1 € [0, oc0)¢} with variance o2 such that
Sy — Wy =0(NIY?%)  as
for N € G.. Here ¢ isa positive constant depending on the field (Xj)/.ezi.

From the previous theorem one can easily deduce the following CLT:

INT Y25y % N (0,02

when[N] — oo and N € G, for somert € (0, 1); this is more general than (1)
which was obtained only foN = (n, ..., n) € Z%. The nonfunctional version of
LIL obtained by Wichura (1973) for any multi-parameter process with independent
increments (in particular, for the Wiener process) allows us to conclude that
limsup (2[N]loglogiN]) ¥?Sy =0  as.
[N]—o00,NeG

We proceed now to the proof of Theorem 1.1. This is divided into several steps
which are explained in Section 2. The remaining sections contain the developments
that are needed to perform each step. To ease the exposition, we placed in the
Appendix the proofs of some preliminary lemmas.

2. Description of the method. In this section we will indicate what are the
main ingredients that are needed for the proof of Theorem 1.1. More precisely, by
blending the multi-parameter blocking technique of Berkes and Morrow (1981)
with the quantile transform technique of Csérgnd Révész (1975), we will be
able to generalize to the multi-parameter case the method introduced by Yu (1996).

Throughout our work we will use the letter to denote a generic positive
constant, independent bf

Leta > 8 > 1 be integers to be chosen later aigd= 0. Fori e Z,, let

!
1
— o B~ _loz-i-l‘
ny: i;(z +1i7) ]
For eachk := (k1, ..., kq) € Z4, we putNy := (ng,, ...,nx,). Forallk e 24,
we have[ N ~ (a + 1)~94[k]* 1.
Let By := (Ny_1. Ni] = [1%_; (nx, 1. n, 1. Note that| By| = [T%_, (k* + kP <
24[k]*. We define the “big” blocksH; and the “small” blockd by
d
H, = l_[(nks—l’ ”k;—l"‘kg], I, .= B;\ Hy.
s=1
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Note that|Hy| = [k]* and (2¢ — 1)[k]? < |Ix] < (2¢ — 1)[k]*. We denoteyy :=
S(Hy), A2 := o2(Hy) andvg := S(Iy), 12 := o ?(I). By (4),

(5) CIK* <A2<CIk*,  CIkIP <t <ClkI“.

The sums over the big blocks will be used to generate a Gaussian approximating
sequencén; ), which will in turn be approximated by a Wiener process. In order
to do this, we will need an upper bound for the covariance of the sums over two
big blocks in terms of the distance between these blocks. The small blocks are
introduced simply to give some space between the big blocks, that is, to ensure
that the distance between any two big blocks is nonzero.

If the distribution function F; of wu;/A; is continuous, then one could
use directly the quantile transform method of C&bmnd Révész (1975) to
approximate the variabley /A, by a N(0O,1)-random variable. In general,
this assumption may not be satisfied, and, therefore one, needs to employ a
“smoothing” technique [see Yu (1996)]. Without changing its distribution, we
redefine the random ﬁeld”tk)kezi on a rich enough probability space together

with a random field(w); .« of independent random variables such thatis
N (O, tkz)-distributed anduy); and(wy )i are independent. Let

& = (uk-l-wk)/()»]%-i-‘sz)l/z, kGZi,

and F; be the distribution function of;. By the CLT for associated random
fields, Fy(x) — ®(x) ask — oo and, consequentlyy (x) — ®(x) ask — 0o,
where® (x) denotes theV (0, 1) distribution function. Therefore, it is reasonable
to consider the followingV (0, 1)-random variable

= © N (Fy (&)

as an approximation fag. Letey := /A2 + t2(& — ).

In what follows we will adapt the method introduced by Berkes and Morrow
(1981) for mixing random fields to suit the special needs of an associated random
field.

o, BEpYS 33
H, Hys 3
H1 H’)] H‘)-'l

FiG. 1.
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(1)
A% A@

My,

FiG. 2.

Following page 25 of Berkes and Morrow (1981), wedet (0, 1) be arbitrary,

p = 1/8, L be the set of all indicescorresponding to the “good” block® < G,
and H be the set of all points iZ¢ which fall in one of the good blocks. The
good blocks collect those pointse Zi which are not too close to the coordinate
axes. From the technical point of view, their indicesatisfy the relationship
is > C[i1°/?, which is crucial in the proof of Lemma 3.9.

To each pointN € H, we associate the point§ @, ..., N which can be
thought as the intersections of the hyperplangs= Ny, s = 1,...,d with the
“boundary” of the domairf{; their precise definition |$J(s) = Ny, Vs’ # s and

N® = min ng.
neH :ng=Ny,s'#s

Unlike the above-mentioned authors, we raise a small technical point by noting
that H may not be a nice “L-shaped” region. This is why we consider the
rectanglesRy := (My, N;] C H, where M}, := ((N,fl))l, e, (N,fd))d). We note
thatLy:={i:Bi C Ry} S LN{i <k}.

If V is a rectangle inz¢ and V is the rectangle irR% which corresponds
to V, then we make an abuse of notation by writifig V) instead ofW (V). This
convention will be used throughout this work and will occasionally apply to finite
unions of rectangles as well. We write

Sy = (SN — SNk) + S(Ry) + S((O, N\ Rk),
Wy = (Wy — W) + W(Rr) + W((O, Ni]\ R)

and we use the following decomposition $fRy), based on the definitions &f
ande; and the fact tha§(B;) = u; + v;:

X2+ 2
SR =Y ei+ Y IBil ( “B a)m
iely iely

+Zamm—2wi+2vi.

ieLy ieLy ieLy

(6)
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In Section 3 we will show that all the sums in the above decomposition, except
the third one, can be made sufficiently small. The third sum will be treated
separately in Section 4 and will be approximated®yRy) = > ;c,, W(B;), viaa
very powerful approximation result [Theorem 5 of Berkes and Philipp (1979)] and
a carefully chosen procedure for counting the indices.iRinally, in Section 5 we
will show that the terms((0, N¢]\ Ry), W((0, Ny]\ Ri) can be made sufficiently
small if Ny € G, and the differenceSy — Sn,, Wy — Wy, are small ifN € G,,.

This will conclude the proof of Theorem 1.1.

3. The“good” blocks. In this section we will show that all the sums in the
decomposition (6) o8, , except the third one, can be made sufficiently small.

In order to treat the first sum of this decomposition, we need to evaluate the
precision of the approximation &, by n;. This will be given by the speed of
convergence in the CLT. In this paper we decided to use the result obtained by
Bulinski (1995), under the assumption that the covariance coeffigi@ntdecays
exponentially as: — oo. Under this assumption, this is the sharpest speed of
convergence in the CLT whetht = 1,5 = 3 [see Birkel (1988b)]. We note in
passing that in the casé= 1, a different speed of convergence in the CLT was
developed and used by Yu (1996) for associated sequences with a power decay
rate of the covariance coefficient; however, the exponential decay rateofvas
eventually needed for the strong invariance principle. The problem of whether or
not the strong invariance principle continues to hold for associated random fields
with a power decay rate of covariances is still open even in thecasg, and we
do not attempt to tackle it here.

LEMmMA 3.1 [Theorems 1 and 2 of Bulinski (1995)]Suppose that
(Cl)and (C2)hold and let s := 2+ r + §. Then for any finite subset V C Zi,
sup|Fy (x) — P (x)]

xeR
_[Cvi-(e2(v) ™% (log(1V| + D) ifs <3,
ey (62v) Y2 (log(IV] + 1), ifs > 3.

d(s—1)

The next result is a generalization of Lemma 3.2 of Yu (1996) to thed£asa,
in the case of an exponential decay rate Of). Its proof is routine and is given in
the Appendix.

LEmMA 3.2. If (Cl)and (C2)holdand 2ror/(2+r) <a/B <2(1+r)/(2+
r) with rg := max{1, (r +8)~1}, then

sup| Fi (x) — @ (x)| < C[k]™P/@*") and  sup| fi(x) — f(x)| < C,

xeR xeR

where f; (x) isthe density function of & and f (x) isthe N (0, 1) density function.
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Using Lemma 3.2 and an argument that was introduced in the proof of Lemma 3
of Csorg and Révész (1975), we get the precision of the approximatiaf of

by n.
LEMMA 3.3. Under (C1)and (C2),we have
|® Y (Fe(x)) — x| < C[k)~VP/@H0=K?/2)
provided that |x| < K \/log[k], where 0 < K < \/2rB/(2+r).

Next we give the precision of the approximation&fby n; in terms of the
L2-distance. For this we will need the following lemma which gives an upper
bound for the moments of order2 r, generalizing an older result of Birkel
(1988c) in the casé = 1. In particular, this lemma shows t}“(atj)jezi has finite
r-susceptibility (as defined in the Introduction).

LEMMA 3.4 [Corollary 1 of Bulinski (1993)]. Suppose that (C1) and (C2)
hold with v > dvg, where vg :=r(2+r +8)/(28) < (d — 2)~ 1 if d > 3. Then for
any V € A,

Using (5), Lemmas 3.3 and 3.4, and employing the same technique that was
used in the proof of Lemma 3.10 of Yu (1996), we get the following result.

LEMMA 3.5. Under (C1)and (C2),we have
E[e2] < C[k]*™®  Vkez4,

where e := 2r28/{(2+ r)(4+ 3r)}.

The next result will show us that the first sum in the decomposition (6) Bf)
is small.

LEMMA 3.6. Suppose that (C1)and (C2) holdand 8 > (14 2/r)(3+ 4/r).
Then there exists &1 > 0 such that for every k € Z4 with Ly # o,

Y leil <CINGY#™ as

ieLy

PROOF Letg > 0be suchthak —eg+1 < 2g < o — 1 (this is possible since
g0 > 2 by our choice o). By Chebyshev’s inequality and Lemma 3.5, we have

P(lef] > [117) < [i]" 2~ v ez,
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By the Borel-Cantellilemma, it follows th@d; | < C[i]?, Vi € Zi a.s. and, hence,
Yicr, leil < C Yier, [i1 < Clk1IFL < Clk1@D/2-¢1 < C[Ni Y241 as., where
O<egj<(@—-1/2—qgander:=¢}/(e+1). O

The proof of the following lemma is given in the Appendix.

LEMMA 3.7. If (C2) holdswithd < v < 2d, then
a?(V)
VI
where V isafinite union of rectanglesin 4 and 8o := v/d — 1.

) 02— =0(|V|™%),

REMARK. Relationship (7) is exactly Dabrowski’s (1985) condition for the
FLIL for associated sequences.

LEMMA 3.8. Suppose that (C2) hold withd < v < 24 and 8 > 3/8p, where
80:=v/d — 1. Thenfor every k € Z4 with L, # 2,

A2+ 1?2 _
> ¢|Bl~|<a—,/—l|3,|' >|m|scwk]1/2 “©  as,
l

i€eLy

where g := 1/{2(a + 1)}.

PROOF  Note thats; := o — /(A + t?)/|B;| > 0, by (4) and the association
property. Using (7), we have
2., .2 , 2 , 2
aizfaz_mz Il‘lll(gz_k_,')Jr g (Gz_i’)
|Bi| |Bi |Hi| |Bi| | i
< C(|Hi| ™% + |1;] %) < C[i]7%
and, hence, by Chebyshev’s inequality,
P(VIBilaini = [i11"/%7Y) < [i17“7?|Bilaf < C[i]~F02,

By the Borel-Cantelli lemma, it follows thay/B;la;n; < C[i]1*/?>71, Vi € 4
a.s. and, hencel;c,, vIBilaini < C Y ier, [i1Y/*F < Clk]*/? < C[N] Y240

a.s. sincdk] ~ (a« + D/ @th NV et+D O

The final result of this section shows that the last two sums in the decomposi-
tion (6) of S(Ry) are small.

LEMMA 3.9. Ifa—pB>2+4/p, thenfor every k € Z< with L, # @, we have
Y il <CINgY?# e as. and Y |wi| <CINIYE* as,

ieLy ieLy
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PrROOE For the first inequality, we follow the proof of Lemma 8 of Berkes
and Morrow (1981). Note that = Ule I;(s), wherel; (s) are disjoint rectangles
with |I; (s)| < Cif Hs/;és ?, Hence; = Zg:]_ v; () with v; (s) := Zjel,-(s) Xj.

By Chebyshev’s inequality and (4),

P(lvi(9)] = [[1°77Y) < CLiT @2 L) < Cig @ P2 ] i2
s'#s
< is—(a—ﬂ—Z—z/p) < C[i]—(a—ﬁ—Z—Z/P)P/Z

for everyi € L. (As in the proof of the above-mentioned lemma, we used the
fact thati € Ly implies thati; > Cllys i:i and, consequently, > C[i]f’/z.)
Since(e — 8 —2—2/p)p/2 > 1, the result follows by the Borel-Cantelli lemma.
A similar argument applies tay;, since E(w?) = t? < C|I;| = C X9, |1 (s)|.

O

4. The approximation theorem. In this section we will verify that the third
sum in the decomposition (6) 6f(R;) can be approximated by (Ry), whereW
is ad-parameter Wiener process with variance Some preliminary lemmas are
needed.

The next result follows exactly as Theorem 2.1 of Yu (1996), using Lemma 3.2.

LEMMA 4.1. If (Cl)and (C2)holdand 2ror/(2+r) <a/B <2(1+r)/(2+
r) with ro := max(1, (r + 8)~1}, thenfor any 0 < 6§ < 1/2 and all i + j,

E(nln]) < C{([l][]])*a/zE(ulM])}@/(l+0)

The next lemma gives a generalization of relationship (3.11) of Yu (1996) to the
multi-parameter case.

LEMMA 4.2. If (C2)holds, then
p
E(ujuj) SCE_)LMi’j,
where M; ;j :=max:; +; (M(i, j)—1) and My (i, j) := max(iy, js),s =1,...,d.

PROOF Letd :=mincy, d(k, H;) be the distance betweét) andH;, where
dk, Hj) = mink/eH_/. Ik — k/|| Thend; :=d(k, Hj) —d>0VkeH,,

Eiuj)=Y Y EXXp)< Y u(d+dy)<Ce™ Y e < ce™
keH; k'eH; keH; ke H;

.....

1F)) = MP;, wherem, = my(i, j) := minGis. j) and My = My (i, j). O
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In order to prove our approximation theorem, we need to be able to “count”
properly the indices il that is, to define a bijectio# : Z, — L satisfying certain
properties. This will be given by the following lemma, whose proof can be found
in the Appendix.

LEMMA 4.3. Thereexistsa bijection v : Z, — L such that
(8) l<m = 3Fs*=s"(,m)suchthat () < (m)s*
(9) Amg e Z, suchthat m < C[yr(m)]"° Ym > mg
forany yo > (1+1/p)(1—1/d).

We are now able to prove the desired approximation theorem.

THEOREM4.4. Supposethat (C1)and (C2)hold, « > 3(1+ 1/p)(1 —1/d),
B> 2/p)A+1/p)L—1/d) and 2ror/ 2+ 1) < /B < 2(1+r)/(2+ r) with
ro := maxX1, (r + &)~1}. Then without changing its distribution, we can redefine
the random field (X ) jezd Ona rich enough probability space together with a
d-parameter Wiener process W = (W;; t € [0, oo)¢) with variance o2, such that
for every k € 4 with L, # &,

> oVIBil

ieLy

where ag := 1/{2(1+ a)}.

W(B;)

< C[Ny]YV%*  as,
o+/|Bi]

ni —

PROOF Let 0< 6 < 1/2 be such thate{(1+ 1/p)(1 —1/d)} 1 > 1+ 1/6
and chooseyq such that(l+ 1/p)(1— 1/d) < yo < min{a6/(1+ 6), Bp/2}. Let
¥ :Z, — L be the bijection given by Lemma 4.3.
We will apply Theorem 5 of Berkes and Philipp (1979) to the sequence
Yy :=nym), m € Zy of random variables and the probability distributiahsg :=
N(, 1), m € Z, and we will prove that for eacth € Z, m > 2 there exists some
om > 0 such that

m—1

m
Eexp{i ZQY;} - Eexp{i > tlYl}Eexp{ithm}
=1

=1

(10)

= Pm

forallt1, ..., t,, € Rwith 7, 12 < U2, whereU,, > 10°m?.

Then, by the above-mentioned theorem, without changing its distribution, we
can redefine the sequenc®, )<z, on a rich enough probability space together
with a sequenceéZ,,),cz, of independentv (0, 1)-random variables such that

P(|Yim — Zp| = o) < oy VmelZy,
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wherea,, < C{Un*logU,, + exp(—3UY?/16ymY2UY* + pt2um Y%, we
will prove next that

(11) am <Cm~%  form large

Then, by the Borel-Cantelli lemmé&y,, — Z,,| < Cay,, Ym € Z4 a.s. Using a
straightforwardd-parameter generalization of Lemma 4 of C€band Révész
(1975), without changing its distribution, we can redefine the sequehgg,cz.,

on a richer probability space together withdgparameter Wiener process with
varianceo? such thatzZ,, = W(By.m))/(0/IBywm)]), Ym € Z . Hence,

"—M<Co¢ 1 VielLa.s

" e BT e s

and becausgB; | < |By| < C[k], Vi € Ly andY_ 7, o) < 00, we have
> oVTBilni — O < CU? Y g sy < CIRIT2 < CLNG T,
ieLy oVIBil ieLy

We proceed next to the verification of (10) and (11). By Lemmas 4.1 and 4.2,
we have

E(YY,) < C{(w’(l)]W(m)])_a/zE(uw(z)uw(m))}MHQ)
< C([ DI (m)]) ™ BF2 40 g/ A50)
<C ([W(l)][W(m)])_“g/ (2420) ,=26019 (m)1P/2/(1+6)

[For the last inequality above we used (8) to obtains&n= s*(I, m), for which
Mg<(Yr (1), Y (m)) = Y (m)s+; Sinceyr(m) € L, we haveMy, gy ym) = ¥ (m)s —

1> C[y(m)]?/?.] By Lemma 2.2 of Dabrowski and Dehling (1988), the left-hand
side of (10) is smaller thanZ}":‘l1 |tit | E(Y1Y,,), which is, in turn, smaller than

m—1
C oMl m)P2/(146) S 20t ([ DI (m)]) 0/ @ 2)

=1
m—1
< Ce~ Mm%/ (116) DIRANA0) A
=1

+ (m = Dt [ (m)] 4/ )

m
< Ce~ MW mIPP/2/1+6) Y2 < Ce= ML mIP/2/(146) 12
=1

for m large enough. (In the second inequality above, we used the fact:itkat
C[y (m)]*?/A+9) which follows from Lemma 4.3 by our choice o§.)

= Pm
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Finally, relationship (11) follows if we také/,, := m9 with ¢ > 8. Cleatrly,
U Y *logU,, < m=2 and exg—3U.?/16ymY2Ux* < exp(—2U,/%/16) < m~2
for m large enough. We have

2
pY2ym 1[4 o= hOW VP (2420) 1, q(m+5/4) < 2

since{2+ q(m +5/4)}logm < Cm**e < C[y (m)| 390 < C[y (m)]PP/2, for m
large enough. This concludes the proof of the theorem.

REMARK. A similar argument can be used to give a simplified proof for
Theorem 2.5 of Yu (1996) (in the cage= 1). More precisely, one can check
directly the condition of Theorem 5 of Berkes and Philipp (1979) for the sequence
(nk)k>1 of random variables and the probability distributialis= N (0, 1),k > 1
(as we did above). We obtain in this manner a sequédg®.~1 of independent
N (0, 1)-random variables wittP (|nx — Zx| > ax) < o andey < Ck—2. Without
changing its distribution, we can redefine the sequefi@i>1 on a richer
probability space together with a standard Brownian moWbos: {W;; ¢t € [0, co)}

such thatzy = W (Hy)/\/A2 + 12, whereHy := (Vi—1, Vil and Vi := YK 32 +
t?). Since A? + t? < Ci% < Ck* for i <k and Y ;- 0; < oo, this gives
immediately the desired approximation

W(H)

ZWJ—

5. The remaining terms. In this section we show that the terms
SO, NI\ Ri), W((O, Nk I\ Ri), Sy — Sn,, Wy — Wy, can be made sufficiently
smallif N € G;.

Note that(0, N¢ ]\ Ry = U%_,(0, N\V1. If we let Dy(N) := max, _ v |S,| and

DS(N) = max,_ e |W,|, for eachs = 1, ...,dandN € H, then

‘ < Ck“/ZZa, <CN/#™  as.

d
S(O, N\ Re) < Y27 Dy(Nk),  W((O, N\ Ry) < Z 2775 Dy (Ny).
s=1 s=1

On the other hand0, N\ (0, N¢]1 = U, Ik”) Wherel(]) = [Tsey (i, , Ng] x
[Iyese (0, nx, ] and the union is taken over all nonempty subsetsf {1,...,d}.
Let M,EJ) = max|S(IkJ))| and M,EJ) = sup|W(I,£J))| where the maximum and
the supremum are taken over allwith ny, < Ny <ny 41, Vs € J. We have

) )
max |Sy =Sy | <) M., su Wy — W, 52 M.
Nk<N5Nk+1| N Nk| B ZJ: ¢ Nk<N§F1Jvk+1| N Nk| J ¢

We note in passing that the arguments that are valid for the terms depending
on the original random fielchj)jezi can be applied to the terms depending
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on the Wiener proces®, since W(V) = Y ey X;, YV € 4, where X; :=
W((j — 1, j]) are independeni (0, o%)-random variables. Clearl;gf(j)jezfzF

is a weakly stationary associated random field with zero mean and covariance
coefficientiz(n) =0, Vn > 1.

LEMMA 5.1. (a) Suppose that (C1) and (C2) hold with v > dvy and
vo :=r2+r+8)/(28) < (d—2)"1if d > 3. Then there exists xg such that
VV e, Yx>xo,

P(M(V) = x|V|"?) < Cx™ @,

where M (V) :=max{|S(Q); Q SV, Q € A}.
(b) If (C1)and (C2)hold, then thereexistsy > Osuchthat VV € #,

P(MV)=>|VI*¥%(log|v)h <clv|?,

Where]l;l((a,b]) =maX|S(Q)|; QO =(a,cl,a <c<b}.

ProOOF (a) Using Lemma 1 of Bulinski and Keane (1996), the Markov in-
equality and Lemma 3.4, we hav® (M (V) > x|V|¥?) < 2P(S(V)| >
x|VIY2/2) < Cx= @Dy |m A EIS(V)|PH < Cx~ @),

(b) This follows exactly as the second inequality of Lemma 7 of Berkes and
Morrow (1981), using the moment inequality given by Lemma 3.4 and the rate of
convergence in the CLT given by Lemma 3.1. This rate is sharper than the rate of
Lemma 5 of Berkes and Morrow (1981). To see this, we use (4) and we note that
sup,g | Fv (x) — ®(x)| is either smaller thar€|V |~{s/2-1=¢d6=D} jf 5 < 3, or
smaller tharC|V|~1/2=¢4) if ¢ > 3; in both cases a suitable choicesof 0 gives
us the rate”| V|~ for somer € (0, 1). We also note that the requirement] € G,
is not needed. OJ

The next result follows exactly as Lemma 6 of Berkes and Morrow (1981), using
Lemma 5.1(a).

LEMMA 5.2. Ifa > 16/(37) — 1, then

max. Dy(Ny) < C[NgJY% ¢ as,
S=

.....

max Dy(Ny) < C[NyY% % as.
S=

,,,,,

for every Ny e Gy and 0 < ¢ < 7/32.

The following result follows exactly as Lemma 9 of Berkes and Morrow (1981),
using Lemma 5.1(b).
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LEMMA 5.3. Let y bethe constant given by Lemma5.1(b).If « > 2/y, then

mjaxM,Ej V< CINGYZ® as,
mjaxM,E” <C[NJY%*  as
for every Ny e G, and 0 < ¢ < p/(8a).
APPENDIX

PROOF OFLEMMA 3.2. Using Lemma 3.1 fov = H; and relationship (5),
we obtain that sup.g | F (x) — ®(x)| is either smaller thad [k]~{@s/2-a—ed(s=D)}
if s <3, or smaller thanC[k]~ /22D if s > 3. If a/B > 2ror/(2 + 1),
then a suitable choice of > 0 allows us to conclude thdiy(x) — ®(x)| <
Clk]™"P/2t1) v x e R. The first inequality follows by a change of variables.

For the second inequality we use a technique similar to that used to prove rela-
tionship (3.3) of Yu (1996). Lepi (¢) := E[exp(it&r)], @i (t) := E[exp(itur/ )]
andg(r) = exp(—t2/2). Since(A? + t2) /A% < C, we have, for any" > 0,

1 o0
) = FOl <5 /_oo (1) — (1)) dt

o0 rkztz
o1 (1) —e(t)| expy ————=td
130~ ol expl L5 s

S J—
2 J— ¢
2.2
< C orpgrpiem € / exp{_ﬁ}d,
2 T Jit|=T 2)»,%
2 272
<c Ty 4 & Mgy T }
- T <? 22

Since 2/t? < C[k]*~#, the conclusion follows by choosing = C[k]¢ with
a— B <q <rB/(2+r). Such a choice is possibledf/8 < 2(1+r)/(2+r).
U

PROOF OFLEMMA 3.7. First we claim that it is enough to prove (7) for
“squares,” that is, for rectangléd = (m, n] € 4 for whichny, —mg =1, Vs =
1,...,d. To see this, we note that each rectanglecan be written as a finite
union of disjoint squaresvV = |J!_, V;. By the association property?(V) >

P o%(V;) and

2 p 2 14

\% 1 Vi 1

2_ o )s—Z|Vi|<oz—"( )>S—ZC|Vill_5°§C|V|_8°
VI Sk Vil )i &
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because (< §g < 1. Let us now prove relationship (7) for a squafe= (m, n]
with ny —mg =1, Vs =1,...,d. Note that| V| = [¢. By stationarity,

d
o2(V) = V] -r(0) + > [T¢—=1lish-r@)

—(n—m—1)<i<n—-m—1i#0s=1

A EEDIRI0 D S G L L W ¢ SF) R ()

lill<i—1 oF#KCA{L,....d} lill</—1,i50

wherec(K, i) := 1K1 . [T ok lis|. Sinceo? — ¥ ii<—17 () = Xz 7 () = u(l)
andc(K,i) <|V]if |Ji|| <1 -1, we have

2

14

az—g‘g)gu(lH— > v Y (K, i) )
Vi @;AKg{l,...,d},uqodd' |||l'||§l—l,i7é0

<C|v|™4 > ook

o#K (1, ...d},| K odd|li [ </-1,i#0

< C|V|—v/d + ClVl_U/d_HL.

1

We used the fact that(/) < CI7V = C|V|™/4 andr (i) < u(|li]}) <u([i]¥?) <
Cli]™v/4 for anyi € Z4, where[i] =TT, o lis|. O

ProOOF OF LEMMA 4.3. The idea of the proof is based on the following
simple observation in the cage= 2. For eachm € Z,,m > 2 with (m,m) € L,
there exists aj(m) > m such that(ki,m), (m,k1) € L for everym < k1 <
ki(m). Therefore, to each vertefw:, m) € L, one can associate an “L-shaped”
region L(m) consisting of 2kj(m) —m} + 1 points inL. In view of the desired
property (8), we will count consecutively the indiceslii2), L(3), and so on. To
verify property (9), we note thate L(m) implies[k] > m?2.

We begin now the proof for arbitrary > 2. Letm € Z, m > 2 be such that
(m,...,m)e L andk = (k1,...,k;_1,m) € L be such that; > m, Vs <d. This
|mpI|es that all the vertices a8y are inG,, and, in particular,, > nk , Vs <d.
Sincem is fixed, thls cannot happen for infinitely marty’s. It follows that
for eachs =1, . — 1, there exists & (m) > m such thatk, < k}(m). We
note thatk*(m) < le/P if m is large enough. This argument shows us that
we have a maximum number &f (m) := ]‘[d 11{k*(m) — m} points of the form
(k1, ..., kg_1,m)in L,withk; >m, Vs <d.

By symmetry, we can repeat this argument for each of the axes. We let
Ly(m) :={k = (ka,....ks_1,m, kg, ....kq_1)im < kg < k},(m), Vs' < d} for
everys =1,...,d. The “L-shaped” region corresponding to the indexs

d
L(m):=J Ls(m)U{(m,...,m)}.

s=1
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Note that|L(m)| = dk*(m) + 1 and thatk € L(m) implies [k] > m?. Clearly,
L € J,, L(m) [note that in the casé = 2, we actually have. = J,,, L (m)].

Next we count consecutively the indicesiiri2), L(3), and so on, that is, we
define a bijectionp:Z — |J,, L(m) suchthavz e Z,,

m—1 m
YLD <z <Y LMD = ¢(2) € L(m).
1=2 =2

The bijectiong clearly satisfies condition (8). To verify (9), we note that

m d-—1 d-1 m
z<dY JJkiO =D +m=<d[][D (ki) —1)+m
[=2s5=1 s=11=2

d=1/ m m \d-1 d=1/ m

gdr[(ij(Z))—d(Zl) +m5d]‘[(2kj(l)>
s=1\[=2 =2 s=1\[=2

< Cm(1+1/'0)(d_1) < Cméro < Cle(2)]°

for m large enough angp > (1 + 1/p)(1 — 1/d) arbitrary. Finally, define the
bijection ¥ :Z, — L such thaty ~1(k) < ¢~1(k), Yk € L. The result follows
since ifz1, z2 € Z4 are such that/ (z1) = ¢(z2), thenzy < zp. O
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