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RESCALED LOTKA–VOLTERRA MODELS CONVERGE TO
SUPER-BROWNIAN MOTION

BY J. THEODORECOX1 AND EDWIN A. PERKINS2

Syracuse University and The University of British Columbia

We show that a sequence of stochastic spatial Lotka–Volterra models,
suitably rescaled in space and time, converges weakly to super-Brownian
motion with drift. The result includes both long range and nearest neighbor
models, the latter for dimensions three and above. These theorems are special
cases of a general convergence theorem for perturbations of the voter model.

1. Introduction. In [13], Neuhauser and Pacala introduced a stochastic
spatial version of the Lotka–Volterra model for competition between species.
We show here that a sequence of these Lotka–Volterra processes, suitably
renormalized, converges to super-Brownian motion with a nontrivial drift. We do
this by proving a more general convergence theorem, extending the main results
of [3] on the voter model. In future work we will show that the above drifts
are connected to the questions of co-existence and survival of a rare type in the
original Lotka–Volterra model. At present our main results hold for three or more
dimensions. Our introduction is structured as follows. In Section 1.1 we describe
a special case of the model introduced in [13], and then formulate and state our
convergence result. In Section 1.2 we define a class of processes we callvoter
model perturbations, and present a convergence theorem for this class. Our result
on Lotka–Volterra models is a special case of this theorem. In Section 1.3 we state
and prove a number of corollaries of the main theorem.

1.1. Lotka–Volterra models. We suppose that at each site ofZ
d (thed-dimen-

sional integer lattice) there is a plant of one of two types. At random times
plants die and are replaced by new plants, the times and types depending on
the configuration of surrounding plants. The state of the system at timet will be
denoted byξt , an element of{0,1}Z

d
, whereξt (x) gives the type of the plant atx

at time t . We have chosen to label the two types 0 and 1; in [13], the types were
1 and 2. To describe the system’s evolution, we letN ⊂ Z

d be a finite set not
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containing the origin, such thaty ∈ N implies−y ∈ N . Let fi = fi(ξ) = fi(x, ξ)

be the frequency of typei in the neighborhoodx + N in configurationξ ,

fi(x, ξ) = 1

|N |
∑
e∈N

1{ξ(x + e) = i}, i = 0,1.(1.1)

Finally, let α0, α1 be nonnegative parameters. The dynamics ofξt can now be
described as follows: at sitex in configurationξ , the coordinateξ(x) makes
transitions

0 → 1 at ratef1(f0 + α0f1),
(1.2)

1 → 0 at ratef0(f1 + α1f0).

These rates are interpreted in [13] as follows. A plant of typei dies at rate
fi + αif1−i , and is replaced by a plant whose type is chosen at random from its
neighborhood. In the “death rate”fi + αif1−i , αi measures the strength of inter-
specific competition of typei, and we have taken the strength of competition due
to individuals of the same type to be one. Note that the two configurations, all 0’s
and all 1’s, are both traps. Sincef0 + f1 = 1, the caseα0 = α1 = 1 gives the well-
known voter model (see [11] and [3]). In [13], an additional fecundity parameterλ

allows them to consider populations in which one type has an advantage in
replacement. We have chosen to treat only theλ = 1 case.

Unlike the voter model, the Lotka–Volterra modelξt does not have a simple
dual process. However, it was shown in [13] that ifα0 = α1 = α < 1, thenξt has
anannihilating dual process, a “double branching annihilating process” in which
particles move as random walks, branch, and annihilate each other. Although this
process is difficult to analyze, it was instrumental in the proof of Theorem 1
of [13], which states that forα sufficiently small (depending onN , and excluding
N = {−1,1} in one dimension), coexistence of types is possible. Here, coexistence
means that there is an invariant measure which a.s. concentrates on configurations
with infinitely many 0’s and infinitely many 1’s. On the other hand, comparisons
with biased voter models(see Section 4) show that for certain values of(α0, α1),
survival of a given type occurs. More precisely, letξ∗

t denote the process started
from a single 1 at the origin, and 0’s everywhere else, and define

S =
{
(α0, α1) :P

( ∑
x∈Zd

ξ∗
t (x) > 0 for all t > 0

)
> 0

}
.

Theorem 4 of [13] shows that̃S ⊂ S, whereS̃ is the set of(α0, α1) such that

0≤ α1 ≤
{

1− κ(1− α0), if 1 − κ−1 < α0 < 1,

1+ κ−1(α0 − 1), if α0 > 1,
(1.3)

andκ = |N |.
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We treat here asymptotics for the “low density regime” where there are
relatively few plants of one type, which we take to be type 1. It is useful in this
context to change our original interpretation, and think now of 0’s as representing
vacant sites and 1’s as representing “particles” which may die or give birth to
particles at other sites. We may consider a “measure-valued” version ofξt by
placing an atom of a given size at each site with a particle. For the voter model
caseα0 = α1 = 1, it was shown in [3] (see also [2]) that appropriate low density
limits of renormalized voter model processes lead to super-Brownian motion (see
Theorem A below). Here we will consider asymptotics for Lotka–Volterra models
with theαi → 1, and will obtain super-Brownian motion with drift in the limit.

Let Mf (Rd) denote the space of finite Borel measures onR
d , endowed with

the topology of weak convergence of measures. Let�X,D = D([0,∞),Mf (Rd))

be the Skorohod space of cadlagMf (Rd)-valued paths, and let�X,C be the space
of continuousMf (Rd)-valued paths with the topology of uniform convergence on
compacts. In either case,Xt will denote the coordinate function,Xt(ω) = ω(t).
Integration of a functionφ with respect to a measureµ will be denoted byµ(φ).
For 1≤ n ≤ ∞, let Cn

b (Rd) be the space of bounded continuous functions whose
partial derivatives of ordern or less are also bounded and continuous.

An adapted a.s.-continuousMf (Rd)-valued processXt, t ≥ 0 on a complete
filtered probability space(�,F ,Ft , P ) is said to be asuper-Brownian motion
with branching rateb ≥ 0, drift θ ∈ R and diffusion coefficientσ 2 > 0 starting at
X0 ∈ Mf (Rd) if it solves the following martingale problem:

(MP) For allφ ∈ C∞
b (Rd),

Mt(φ) = Xt(φ) − X0(φ) −
∫ t

0
Xs

(
σ 2
φ

2

)
ds − θ

∫ t

0
Xs(φ)ds(1.4)

is a continuous(Ft )-martingale, withM0(φ) = 0 and predictable square
function

〈M(φ)〉t =
∫ t

0
Xs(bφ2) ds.(1.5)

The existence and uniqueness in law of a solution to this martingale problem
is well known (see, e.g., Theorem II.5.1 and Remark II.5.13 of [14]). Let

P
b,θ,σ2

X0
denote the law of the solution on�X,C (and also a probability on the

space of cadlag paths�X,D).
We define our rescaled Lotka–Volterra models following the approach used

in [3]. For N = 1,2, . . . , let MN ∈ N (the set of positive integers), and let
�N = MN

√
N . Let SN = Z

d/�N , and letWN = (W1
N, . . . ,Wd

N) ∈ (Zd/MN \ {0})
be a sequence of random vectors such that

(a) WN and −WN have the same distribution.

(b) There is a finiteσ 2 > 0 such that lim
N→∞E(Wi

NW
j
N) = δijσ

2.

(c) The family{|WN |2, N ∈ N} is uniformly integrable.

(H1)
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Define the kernelspN by

pN(x) = P

(
WN√

N
= x

)
, x ∈ SN.(1.6)

For ξ ∈ {0,1}SN , define the densitiesf N
i = f N

i (ξ) = f N
i (x, ξ) by

f N
i (x, ξ) = ∑

y∈SN

pN(y − x)1{ξ(y) = i}, i = 0,1.(1.7)

We letαi = αN
i depend onN , and letξN

t be the process taking values in{0,1}SN

determined by the rates: at sitex in configurationξ , the coordinateξ(x) makes
transitions

0 → 1 at rateNf N
1 (f N

0 + α0f
N
1 ),

(1.8)
1 → 0 at rateNf N

0 (f N
1 + α1f

N
0 ).

That is,ξN
t is the rate-N Lotka–Volterra process determined by the parametersαN

i

(and kernelpN ), which we will abbreviate asLV(αN
0 , αN

1 ). Note that we recover
the original formulation of our process by settingN = 1 and lettingW1 be
uniformly distributed overN , that is,pN(x) = 1{x∈N }/|N |.

We now consider the measureXN
t determined by assigning mass 1/N ′ to each

site of ξN
t with value 1 and mass 0 to all other sites. Here the scaling for the

particle mass satisfies 1≤ N ′ ≤ N , and will depend on the particular choice of
the WN . Given a sequenceN ′(N), we define the corresponding measure-valued
processXN

t by

XN
t = 1

N ′
∑

x∈SN

ξN
t (x)δx(1.9)

(δx is the unit point mass atx). We make the following assumptions about the
initial statesξN

0 :

(a)
∑

x∈SN

ξN
0 (x) < ∞.

(b) XN
0 → X0 in Mf (Rd) asN → ∞.

(H2)

A consequence of (H2) is that supN XN
0 (1) < ∞, a fact we will frequently use.

The conditions(H1) and (H2) will be in force throughout this paper.
Our basic assumption concerning the ratesαN

i is for i = 0,1,

θN
i = N(αN

i − 1) → θi ∈ R asN → ∞.(H3)

We will for the most part focus on Lotka–Volterra models with two types of
kernelspN .
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(M1) Long range models.Let WN be uniformly distributed on(Zd/MN) ∩ I ,
whereI = [−1,1]d \ {0}, and asN → ∞,

MN/
√

N → ∞ in d = 1,

M2
N/(logN) → ∞ in d = 2,

MN → ∞ in d ≥ 3.

It is simple to check that all the parts of (H1) are satisfied withσ 2 = 1/3.

(M2) Fixed kernel models.LetMN ≡ 1, and letp(x) be an irreducible, symmetric,
random walk kernel onZd , such thatp(0) = 0 and

∑
x∈Zd xixjp(x) =

δij σ
2 < ∞. DefineWN by P(WN = x) = p(x). It is simple to check that

(H1) is satisfied in this case.

As noted before, if we set eachαN
i = 1, so thatθN

0 = θN
1 = 0, then the

LV(1,1) processξN
t is, in fact, the voter model. It was shown in [3] that in this

caseXN
t converges weakly in�X,D to super-Brownian motion. More precisely,

let PN denote the law ofXN· . If (M1) holds andN ′ = N , then

PN ⇒ P
2,0,1/3
X0

asN → ∞.(1.10)

Under (M2) we have the following (Theorem 1.2 of [3]):

THEOREM A. Assume(M2). (a) If d ≥ 3 andN ′ ≡ N , then

PN ⇒ P
2γe,0,σ2

X0
asN → ∞.

Here γe is the “escape probability” of a random walk with step distributionp
[see(1.11)below].

(b) If d = 2 andN ′ = N/ logN , then

PN ⇒ P
4πσ2,0,σ2

X0
asN → ∞.

The two-dimensional case in the above theorem is the most delicate and explains
why we allowed the possibility ofN ′ �= N in our definition ofXN

t . As explained
in [3] (or see Proposition 2.3 below), the voter model may be viewed as a branching
random walk with state dependent branching rate 2f N

0 (x, ξN
t ). Ford = 2, this rate

will approach 0 asN → ∞ due to the recurrence of two-dimensional random
walk. To counteract this, we increase the branching rate by a factor of logN , or
equivalently, reduce the inverse mass per particle by a factor of logN . As we will
only treat either the fixed kernel case withd ≥ 3 or the long range case below, we
will assume that

N ′ = N in the rest of this work.

Let us return now to the Lotka–Volterra modelsξN
t . We let PN denote the

law of XN· = 1
N

∑
x∈SN

ξN· (x)δx on �X,D . Under the assumption (H3) on the
ratesαN

i , we again have convergence to super-Brownian motion, but this time with
a (possibly) nonzero drift. Recall that (H1) and (H2) are always in force.
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THEOREM 1.1. Assume(H3) and (M1). ThenPN ⇒ P
2,−θ1,1/3
X0

asN → ∞.

Next, we consider the fixed kernel case (M2). This time, to specify the
parameters in the limiting super-Brownian motion, we must introduce a coalescing
random walk system{B̂x

t , x ∈ Z
d}. EachB̂x

t is a rate 1 random walk onZd with
kernelp, with B̂x

0 = x. The walks move independently until they collide, and then
move together after that. For finiteA ⊂ Z

d , letτ(A) = inf{s : |{B̂x
s , x ∈ A}| = 1} be

the time at which the particles starting fromA coalesce into a single particle, and
write τ(a, b, . . . ) whenA = {a, b, . . . }. Ford ≥ 3, define the “escape” probability
(used in Theorem A) by

γe = ∑
e∈Zd

p(e)P
(
τ(0, e) = ∞).(1.11)

Note that γe is the probability that a discrete time random walk with step
distributionp, starting at the origin, never returns to the origin. We also define

β = ∑
e,e′∈Zd

p(e)p(e′)P
(
τ(e, e′) < ∞, τ (0, e) = τ(0, e′) = ∞),

(1.12)
δ = ∑

e,e′∈Zd

p(e)p(e′)P
(
τ(0, e) = τ(0, e′) = ∞).

Here we are considering a system of 3 coalescing random walks starting at 0,
e ande′, wheree ande′ are independent with lawp. Thenβ is the probability
the walks starting ate ande′ coalesce, but this coalescing system does not meet
the random walk starting at 0, whileδ is the strictly larger probability that the
coalescing system starting at{e, e′} does not meet the random walk starting at 0.

THEOREM 1.2. Assume(H3), (M2) and d ≥ 3. Then PN ⇒ P
2γe,θ,σ2

X0
as

N → ∞, whereθ = θ0β − θ1δ.

Although Theorem 1.1 is a simpler result than Theorem 1.2, it includes the low-
dimensional cased ≤ 2. Theorem A suggests that it should be possible to extend
Theorem 1.2 to the more delicate two-dimensional setting, withN ′ = N/ logN

and a different drift arising from asymptotic versions ofβ and δ. This is the
objective of parallel work.

In Theorem 1.1 there is noθ0 dependence in the limiting law. This suggests
the possibility of a long range limit theorem without insisting thatαN

0 approach 1.
This is, indeed, the case and in a forthcoming paper we will establish a long range
limit theorem for fixedα0 ∈ [0,1] andαN

1 as above. The argument, based on a
combination of ideas used here and in the corresponding convergence for the long
range contact process [6], suggests that a unification and generalization of these
results should be possible.
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Our motivation for this work is two-fold. First, it has been shown in recent years
that a number of different spatial stochastic systems at or near criticality, and above
a “critical dimension,” converge to super-Brownian motion or a near relative when
suitably rescaled. This includes lattice trees above 8 dimensions [4], long-range
contact processes above 1 dimension [6], oriented percolation above 4 spatial
dimensions [9] and, of course, the voter model (Theorem A above). (See [15] for
a nice survey.) It is natural to ask if the same is true for theLV(α0, α1) models.
The above results are steps in this direction, but, more generally, one could ask
if such a limit theorem will hold [in the context of (M2)] with zero limiting drift
for any “critical” LV(α0, α1) model. (Of course, one must define “critical” here.)
A second motivation for proving any limit theorem is to actually use it to study the
more complicated approximating systems—especially, as is the case here, when
there are few tools available for their study. In a forthcoming paper we will use
Theorem 1.2 to refine the survival and co-existence results of [13] mentioned
earlier for(α0, α1) near(1,1).

1.2. Voter model perturbations.In view of assumption (H3), the Lotka–
Volterra modelsξN

t can be viewed as smallperturbationsof the voter model. To
see this, we first rewrite the rates in (1.8) in the form

0 → 1 at rateNf N
1 + θN

0 (f N
1 )2,

(1.13)
1 → 0 at rateNf N

0 + θN
1 (f N

0 )2.

Adopting the notation of [11], the Lotka–Volterra modelξN
t is thespin-flip system

with rate functioncN(x, ξ) [which gives the rate at which coordinateξ(x) changes
to 1− ξ(x)],

cN(x, ξ) = Ncv
N(x, ξ) + c∗

N(x, ξ),(1.14)

wherecv
N(x, ξ) is the voter model rate function

cv
N(x, ξ) = ∑

e∈SN

pN(e)1{ξ(x + e) �= ξ(x)}(1.15)

andc∗
N(x, ξ) is the “perturbation”

c∗
N(x, ξ) = θN

0
(
f N

1 (x, ξ)
)21{ξ(x) = 0} + θN

1
(
f N

0 (x, ξ)
)21{ξ(x) = 1}.(1.16)

We will generalize the above, defining a wider class of voter model pertur-
bations, and prove convergence to super-Brownian motion for these processes
(hence, including Theorems 1.1 and 1.2 as special cases). First, we need some
additional notation. LetPF denote the set of finite subsets ofZ

d . For A ∈ PF ,
x ∈ SN, ξ ∈ {0,1}SN , define

χN(A,x, ξ) = ∏
e∈A/�N

ξ(x + e).
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We assume now thatcN(x, ξ) is a function of the form given in (1.14), where
cv
N(x, ξ) is as in (1.15), andc∗

N(x, ξ) is given by

c∗
N(x, ξ) = ∑

A∈PF

χN(A,x, ξ)
(
βN(A)1{ξ(x) = 0} + δN(A)1{ξ(x) = 1}).(1.17)

HereβN andδN are real-valued functions onPF (which may take negative values),
but we will assume throughout that

cN(x, ξ) ≥ 0 for all x, ξ.(1.18)

It is easy to check that the Lotka–Volterra rates can be written as in (1.17) [see
(1.25) and (1.26) below].

We now make a number of assumptions on the kernelspN and on the
perturbation ratesβN andδN .

Kernel assumptions.The kernel assumptions (K1)–(K3) below are similar to
the ones in [3]. We assume that thepN are given by (1.6) [recall (H1) is in
force], and we let{B̂N,x

t , x ∈ SN} denote a rate-N continuous time coalescing
random walk system onSN with step distributionpN such thatB̂N,x

0 = x. For
finite A ⊂ SN, let τ̂ N (A) denote the time at which all particles starting fromA
have coalesced into a single particle,

τ̂ N (A) = inf
{
t ≥ 0 :|{B̂N,x

t , x ∈ A}| = 1
}
.

We will also need a collection of independent (noncoalescing) rate-N con-
tinuous time random walks with step distributionpN , which we will denote
{BN,x

t :x ∈ SN}, such thatBN,x
0 = x. We can now state the kernel assumptions.

We assume there is a constantγ ≥ 0 and a positive sequence{ε∗
N } with ε∗

N → 0
andNε∗

N → ∞ asN → ∞, such that the following hold:

lim
N→∞NP

(
B

N,0
ε∗
N

= 0
)= 0.(K1)

lim
N→∞

∑
e∈SN

pN(e)P
(
τ̂ N ({0, e}) ∈ (ε∗

N, t])= 0 for all t > 0,

(K2)
lim

N→∞
∑
e∈SN

pN(e)P
(
τ̂ N ({0, e}) > ε∗

N

)= γ.

For A ∈ PF , let τN(A) = τ̂ N (A/�N), and putσN(A) = P(τN(A) ≤ ε∗
N). [We

make the conventionτN(∅) = 0, soσN(∅) = 1.] The last kernel assumption we
need is

σ(A) = lim
N→∞σN(A) exists for allA ∈ PF .(K3)

We ask the reader to distinguish between the functionσ(·) defined above and the
variance parameterσ 2 in (H1).
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We will see below that the conditions (K1)–(K3) hold if the kernelspN are
either of the long range (M1) or fixed kernel (M2) type.

A key step will be to show that local spatial averages of microscopic quantities
like the local density of 1’s or 0’s near a 1 converge to certain coalescing
probabilities (likeβ or δ) asN → ∞. The spatial averaging will be implemented
by taking a conditional expectation with respect to the process up to timet − ε∗

N ,
wheret is the current time. Soε∗

N must be large enough to allow enough time for
the averaging [hence, (K1) and (K2)], but still approach 0 to ensure locality of the
averaging.

Perturbation assumptions.We may assume without loss of generality that

βN(A) = δN(A) = 0 if 0 ∈ A.

To see why this is the case, note that the value ofβN(A) is irrelevant when 0∈ A

becauseχN(A,x, η)1(η(x) = 0) = 0. If we define

δ′
N(A) =

{0, if 0 ∈ A,

δN(A) + δN(A ∪ {0}), if 0 /∈ A,

then a short calculation shows that replacingδN with δ′
N does not changec∗

N(x, η).
The assumptions we now make appear somewhat technical, but in Section 1.3

we will show that they can be simplified (or hold automatically) in some natural
special cases. Roughly speaking, (P1) says that the “perturbations”βN and δN

are appropriately bounded, (P2) and (P3) say that these rates converge in a well-
behaved way, and we require (P4) and (P5) in order to make comparisons with
the biased voter model in Section 4. As usual,�1(PF ) is the space of functions
f :PF → R such that‖f ‖1 =∑A∈PF

|f (A)| < ∞.

(P1) sup
N

∑
A∈PF

max(|A|,1)
(|βN(A)| + |δN(A)|)< ∞.

(P2) There exist functionsβ, δ onPF such that

βN → β and δN → δ pointwise onPF asN → ∞.

(P3) If σ(·) is in (K3), then asN → ∞,

βN(·)σN(·) → β(·)σ (·) and δN(·)σN(· ∪ {0}) → δ(·)σ (· ∪ {0})
in �1(PF ).

(P4) There is a constantkδ > 0 such that for allξ ∈ {0,1}Z
d

with ξ(0) = 1,∑
A∈PF

δN(A)
∏
a∈A

ξ(a) ≥ −kδ

∑
y∈Zd

pN(y/�N)
(
1− ξ(y)

)
.

(P5) βN(∅) = 0.
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Condition (P1) and (1.18) imply that the ratescN(x, η) above determine a
unique{0,1}SN -valued Feller process. More specifically, consider the associated
Markov pregenerator

�Nf (ξ) = ∑
x∈SN

cN(x, ξ)
(
f (ξx) − f (ξ)

)
,(1.19)

defined for functionsf : SN → R which depend on only finitely many coordinates.
Hereξx is the configurationξ with the coordinate atx flipped to 1− ξ(x). It is
straightforward to check that (P1) and (1.18) imply the hypotheses of Theorem B3
of [12], and so there is a unique Feller processξN· whose generator is the closure
of �N .

For our main result, Theorem 1.3, we assume now that the conditions (1.18),
(H1), (H2), (K1)–(K3) and (P1)–(P5) hold, andξN· is the corresponding voter
model perturbation. As before,XN· is the measure-valued process determined
by ξN· , XN

t = (1/N)
∑

x∈SN
ξN
t (x)δx , andPN is the law ofXN· on�X,D .

THEOREM 1.3. AsN → ∞, PN ⇒ P
2γ,θ,σ2

X0
, whereγ is given in(K2),

θ = ∑
A∈PF

β(A)σ(A) − ∑
A∈PF

(
β(A) + δ(A)

)
σ(A ∪ {0}),(1.20)

andσ(·) is given in(K3).

REMARK 1.4. Our assumption thatβN(A) = δN(A) = 0 if 0 ∈ A implies that
β(A) = δ(A) = 0 if 0 ∈ A. Therefore, lettingP ′

F = {A ∈ PF : 0 /∈ A}, the sums
over PF in (1.20) can be replaced by sums overP ′

F . Similarly, in (P3), we need
only consider convergence in�1(P

′
F ).

1.3. Applications of Theorem1.3. In this section we specialize Theorem 1.3
to kernelspN which satisfy (M1) or (M2). We will see that in each case, the kernel
conditions (K1)–(K3) hold, and that some of the perturbation conditions may be
simplified. We also show that the Lotka–Volterra Theorems 1.1 and 1.2 follow
from Theorem 1.3. We consider first the fixed kernel case.

Assume first that (M2) holds [and, hence, (H1)], andd ≥ 3. Then the conditions
(K1)–(K3) follow for any sequenceε∗

N → 0 such thatε∗
N � N−1/3. To check (K1),

we make use of the local limit theorem bound (see Lemma A.3 of [3], e.g.),
P(B0

t = 0) ≤ Ct−d/2 for some constantC. Sinced ≥ 3,

NP
(
B

N,0
ε∗
N

= 0
)= NP

(
B0

Nε∗
N

= 0
)≤ C(Nε∗3

N )−1/2 → 0 asN → ∞.

Next, ∑
e∈SN

pN(e)P
(
τ̂N (0, e) > ε∗

N

) = ∑
e∈Zd

p(e)P
(
τ(0, e) > Nε∗

N

)

→ ∑
e∈Zd

p(e)P
(
τ(0, e) = ∞)= γe.
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A similar calculation, using transience of the random walks, shows that the first
limit in (K2) holds. ForA ∈ PF ,

σN(A) = P
(
τN(A) ≤ ε∗

N

)= P
(
τ(A) ≤ Nε∗

N

)→ P
(
τ(A) < ∞)= σ(A),

so (K3) holds as well. Furthermore, a little rearrangement shows that we may
rewrite the limiting driftθ given in (1.20) in Theorem 1.3 in the form

θ = ∑
A∈PF

β(A)P
(
τ(A) < ∞, τ (A ∪ {0}) = ∞)

(1.21)
− ∑

A∈PF

δ(A)P
(
τ(A ∪ {0}) < ∞).

We can now present several corollaries of Theorem 1.3. We will assume, of
course, that the ratescN(x, ξ) are nonnegative and are given by (1.14) and (1.17),
and that (H2) and (M2) hold, andd ≥ 3, but all other assumptions will be specified.
We will consider the alternative conditions

βN(A) = δN(A) = 0 if |A| > n0 for some finiten0,(P1)′

and for someβ, δ ∈ �1(PF ),

βN → β and δN → δ in �1(PF ).(P3)′

COROLLARY 1.5. Assume that the perturbation rates{βN }, {δN } satisfy(P1),

(P3)′, (P4) and (P5). ThenPN ⇒ P
2γe,θ,σ2

X0
as N → ∞, whereγe is the escape

probability in (1.11)andθ is the drift specified in(1.21).

PROOF. To apply Theorem 1.3, it suffices to check that (P2) and (P3) hold. It
is clear that (P3)′ implies (P2), and an easy uniform integrability argument using
σN ≤ 1 shows that (P3)′ also implies (P3) [recall (K3)]. Thus, the conclusion of
Theorem 1.3 holds.�

COROLLARY 1.6. Assume that the perturbation rates{βN }, {δN } satisfy(P1)′,
(P3)′, (P4) and (P5). ThenPN ⇒ P

2γe,θ,σ2

X0
as N → ∞, whereγe is the escape

probability in (1.11),andθ is the drift specified in(1.21).

PROOF. It is easy to check that (P1)′ and (P3)′ imply (P1), so we may apply
Corollary 1.5. �

If we consider kernelsp with finite range (as for simple symmetric random
walk), then the technical condition (P4) follows automatically from (a weaker
version of ) (P1).
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LEMMA 1.7. Assume(M2) and thatp has finite range. If

sup
N

∑
A∈PF

δN(A)− < ∞,(1.22)

then(P4)holds.

PROOF. The fact thatcN(x, ξ) ≥ 0 implies that ifξ ∈ {0,1}Z
d

andξ(0) = 1,
then ∑

A⊂Zd

δN(A)
∏
a∈A

ξ(a) ≥ −N
∑

y∈Zd

p(y)
(
1− ξ(y)

)= −Nf0(0, ξ),

wheref0(x, ξ) =∑y p(y − x)(1− ξ(y)). If f0(0, ξ) = 0, then (P4) holds trivially
by the above. Iff0(0, ξ) > 0, then the finite range assumption implies that for
someε > 0, f0(0, ξ) ≥ ε. Then (1.22) implies that for someC > 0,∑

A∈PF

δN(A)
∏
a∈A

ξ(a) ≥ − ∑
A∈PF

δN(A)− ≥ −C.

Sincef0(0, ξ) ≥ ε, −C ≥ −(C/ε)f0(ξ), and (P4) follows in this case as well.�

COROLLARY 1.8. Assume that the perturbation rates{βN }, {δN } satisfy(P1)′,
(P3)′ and (P5),andp has finite range. ThenPN ⇒ P

2γe,θ,σ2

X0
asN → ∞, where

γe is the escape probability in(1.11),andθ is given in(1.21).

PROOF. By Lemma 1.7, (P4) holds, and so the result is immediate from the
previous corollary. �

We consider now the long range case, and will suppose that (M1) [and,
hence, (H1)] hold until further notice. To verify that the kernel conditions
(K1)–(K3) hold for suitableε∗

N andσ(A), we rely on results from [3].
The first fact we need is that

lim
N→∞ sup

A∈PF ,|A|≥2
P
(
τN(A) ≤ t

)= 0 for all t ≥ 0.(1.23)

To prove this, we need only take the sup over|A| = 2 in the above, but this case
is covered in the proof of Theorem 5.1(a) of [3]. Only minor notational changes in
that argument are required. We also need Lemma 5.2 of [3], which states that there
is a finite constantC such that for allt ≥ 0,

P(B
N,0
t = 0) ≤ exp

(−Nt

2

)
+ C

Md
N(Nt + 1)d/2

.

The condition (K1) follows easily from this last estimate for anyε∗
N → 0,

providedε∗
N � N−1/3 for d ≥ 3, ε∗

N � max(M−2
N ,4 logN/N) for d = 2, and



916 J. T. COX AND E. A. PERKINS

ε∗
N � max(NM−2

N ,4 logN/N) for d = 1. If we set γ = 1, then the kernel
condition (K2), for any sequenceε∗

N → 0, is an immediate consequence of (1.23).
Settingσ(A) = 1{|A| ≤ 1}, condition (K3) also follows from (1.23). In view of
the above Remark 1.4, the driftθ in Theorem 1.3 takes the form

θ =
[ ∑

a∈Zd

β({a})
]

− δ(∅).(1.24)

As in the fixed kernel case, we consider two alternative perturbation assump-
tions:

sup
N

∑
A

(|βN(A)| + |δN(A)|)< ∞,(P1)′′

{
βN({a})}a∈Zd → {

β({a})}a∈Zd in �1(Z
d).(P3)′′

Recall that we are assuming (H2) and (M1).

COROLLARY 1.9. Assume that the perturbation rates{βN }, {δN } satisfy(P1)′,
(P1)′′, (P2), (P3)′′, (P4) and (P5). ThenPN ⇒ P

2,θ,1/3
X0

as N → ∞, whereθ is
given in(1.24).

PROOF. To apply Theorem 1.3, we need only check that (P1) and (P3) hold.
Condition (P1) is immediate from (P1)′ and (P1)′′. For (P3), we note by (1.23) that
there is a sequenceηN → 0 asN → ∞ such that∑

A∈PF ,A �=∅

|δN(A)|σN(A ∪ {0}) = ∑
A∈P ′

F ,A �=∅

|δN(A)|σN(A ∪ {0})

≤ ηN

∑
A∈P ′

F ,A �=∅

|δN(A)|

≤ ηNC → 0,

the last inequality by (P1)′′. A similar argument shows that

lim
N→∞

∑
A∈PF ,|A|>1

|βN(A)|σN(A) = 0.

These last two results, (P3)′′ and limN→∞ δN(∅) = δ(∅) [which follows
from (P2)] imply (P3), so we are done.�

We now derive Theorems 1.1 and 1.2 as applications of Corollary 1.9 and
Corollary 1.6, respectively.

PROOF OF THEOREMS 1.1 AND 1.2. As previously noted, the rate func-
tion cN(x, ξ) for the Lotka–Volterra rates (1.8) can be written in the form
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Ncv
N(x, ξ) + c∗

N(x, ξ), wherecv
N(x, ξ) is given in (1.15) andc∗

N(x, ξ) is given
in (1.16). For configurationsξ with ξ(x) = 1, one can rewrite (1.16) in the form

θN
1 − 2θN

1

∑
e∈SN

pN(e)ξ(x + e) + θN
1

∑
e,e′∈SN

pN(e)pN(e′)ξ(x + e)ξ(x + e′).

It follows easily that if we defineβN andδN by

βN(A) =




θN
0
(
pN(a/�N)

)2
, A = {a},

2θN
0 pN(a/�N)pN(a′/�N), A = {a, a′},

0, otherwise,

(1.25)

and

δN(A) =




θN
1 , A = ∅,

θN
1
[(

pN(a/�N)
)2 − 2pN(a/�N)

]
, A = {a},

2θN
1 pN(a/�N)pN(a′/�N), A = {a, a′},

0, otherwise,

(1.26)

then (1.17) is satisfied.
Before considering the two types of models separately, we note that condi-

tion (P4) is satisfied in both cases. This is because (1.13) shows that forξ ∈ {0,1}SN

with ξ(x) = 1,∑
A⊂Zd

δN(A)χN(A,x, ξ) = θN
1
(
f N

0 (x, ξ)
)2 ≥ −|θN

1 |f N
0 (x, ξ).

This implies that forξ ∈ {0,1}Z
d

with ξ(0) = 1,∑
A⊂Zd

δN(A)
∏
a∈A

ξ(a) ≥ −|θN
1 | ∑

y∈Zd

pN(y/�N)1{ξ(y) = 0},

and, thus, (P4) follows. Conditions (P1)′ (with n0 = 2) and (P5) are also clear for
both models.

Consider the long range model (M1), and let�N = ([−MN,MN ]d ∩ Z
d) \ {0}.

The formulas forβN andδN simplify to

βN(A) =



θN
0 1{a ∈ �N }/|�N |2, A = {a},

2θN
0 1{a, a′ ∈ �N }/|�N |2, A = {a, a′},

0, |A| �= 1 or 2,

and

δN(A) =




θN
1 , A = ∅,

θN
1 1{a ∈ �N }

[
1

|�N |2 − 2

|�N |
]
, A = {a},

2θN
1 1{a, a′ ∈ �N }/|�N |2, A = {a, a′},

0, |A| > 2.
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If we setβ(A) = 0 for all A, δ(∅) = θ1 andδ(A) = 0 for A �= ∅, then clearly (P2)
holds. It is also trivial now to verify (P1)′′ and (P3)′′. Theorem 1.1 is thus a
consequence of Corollary 1.9.

Consider now the fixed kernel model (M2). Due to the assumptionpN(a/

�N) = p(a), βN andδN only depend onN throughθN
i . Therefore, if we define

β(A) andδ(A) asβN(A) andδN(A), but with θi in place ofθN
i , (P3)′ is a simple

consequence of (H3). The hypotheses of Corollary 1.6 are therefore valid.
It remains only to verify the form of the driftθ given in Corollary 1.6. Recall

the definitions ofβ andδ from (1.12). The term involving theβ(A)’s in the driftθ
of (1.21) equals∑

A

β(A)P
(
τ(A) < ∞, τ (A ∪ {0}) = ∞)

= θ0
∑
e

p2(e)P
(
τ(0, e) = ∞)

+ θ0
∑
e �=e′

p(e)p(e′)P
(
τ(e, e′) < ∞, τ (0, e, e′) = ∞)

= θ0
∑
e,e′

p(e)p(e′)P
(
τ(e, e′) < ∞, τ (0, e) = τ(0, e′) = ∞)= θ0β.

The term involving theδ(A)’s is

θ1

[
1+∑

e

(
p(e)2 − 2p(e)

)
P
(
τ(0, e) < ∞)+ ∑

e �=e′
p(e)p(e′)P

(
τ(0, e, e′) < ∞)

]

= θ1

[
1+∑

e,e′
p(e)p(e′)

(
1− P

(
τ(0, e, e′) = ∞))

− 2
∑
e

p(e)P
(
τ(0, e) < ∞)

]

= θ1

[
2
∑
e

p(e)P
(
τ(0, e) = ∞)

−∑
e,e′

p(e)p(e′)
(
P
(
τ(0, e) = ∞)+ P

(
τ(0, e) < ∞, τ (0, e′) = ∞))

]

= θ1

[∑
e

p(e)P
(
τ(0, e) = ∞)

−∑
e,e′

p(e)p(e′)P
(
τ(0, e′) < ∞, τ (0, e) = ∞)

]
= θ1δ.
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In the next to last line we used symmetry to interchangee ande′. This shows the
drift in Corollary 1.6 equals that in Theorem 1.2, and so Theorem 1.2 is proved
as well. �

For our final application of Theorem 1.3, we consider rescaled Lotka–Volterra
models in which thedispersionkernel is stillpN , but thecompetitionkernels for
the two types may be different. We focus on the fixed kernel case (M2) withd ≥ 3,
and fix a pair of competition kernelspb andpd on Z

d . The latter two kernels are
arbitrary laws onZd satisfyingpb(0) = pd(0) = 0, while the dispersal kernelp
still is as in (M2). The rates for the rescaled processξN

t on SN = Z
d/

√
N are now

given by

0 → 1 at rateNf N
1 (f

b,N
0 + αN

0 f
b,N
1 ),

(1.27)
1 → 0 at rateNf N

0 (f
d,N
1 + αN

1 f
d,N
0 ).

Heref
b,N
i is the local density of typei with respect to the rescaled kernelpb

N , and
similarly for f

d,N
i . We continue to assume (H2) and (H3). As before,XN

t is the
empirical measure which assigns mass 1/N to the site of each 1 inξN

t , andPN is
its law. Finally, we define

β ′ = ∑
e,e′∈Zd

p(e)pb(e′)P
(
τ(e, e′) < ∞, τ (0, e) = τ(0, e′) = ∞),

δ′ = ∑
e,e′∈Zd

p(e)pd(e′)P
(
τ(0, e) = τ(0, e′) = ∞).

COROLLARY 1.10. PN ⇒ P
2γe,θ

′,σ2

X0
asN → ∞, whereθ ′ = θ0β

′ − θ1δ
′.

PROOF. This is another application of Corollary 1.5 with

βN(A) =



θN
0 p(a)pb(a), A = {a},

θN
0
(
p(a)pb(a′) + p(a′)pb(a)

)
, A = {a, a′},

0, otherwise,

and

δN(A) =




θN
1 , A = ∅,

θN
1
(
p(a)pd(a) − p(a) − pd(a)

)
, A = {a},

θN
1
(
p(a)pd(a′) + p(a′)pd(a)

)
, A = {a, a′},

0, otherwise.

One proceeds by verifying the conditions of Corollary 1.6 and applying that
result as in the proof of Theorem 1.2—the arguments are similar and left for the
reader. �
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The outline of the rest of the paper is as follows. In Section 2 we derive some
crude bounds on the size ofXN

t (1), and obtain a semimartingale decomposition
of XN

t (φ) for a large class of test functionsφ. In Section 3 the proof of our
main result is reduced to a moment bound (Proposition 3.3) and a key estimate
(Proposition 3.4). Given these results, we establish tightness of our sequenceXN· ,
and show all limit points converge to super-Brownian motion with the given
parameters. A comparison scheme with the biased voter model in Section 4 will
give the above moment bound, and play an important role in the proof of the
key estimate. The latter is proved in Section 6 after some necessary probability
estimates are established in Section 5.

2. Construction and decomposition. Our goal in this section is to de-
rive the martingale problem forXN· and derive some elementary bounds on
|ξN

t | =∑x ξN
t (x). We assume thatξN

t is the spin-flip system with pregenera-
tor �N described in the previous section. In this section we will not need any
of the kernel assumptions, and will only need (P5) and the following weaker form
of (P1) of the perturbation assumptions:∑

A∈PF

(|βN(A)| + |δN(A)|)< ∞ for all N.(P1)′′′

Recall also that (H1) and (H2) hold as always. Throughout this section,N will
be fixed, and we will letFt be the canonical right-continuous filtration associated
with ξN

t . All martingales will be understood to beFt -martingales.

PROPOSITION2.1.

E

(
sup
t≤T

|ξN
t |p
)

< ∞ for all p > 0 andT ∈ [0,∞).(2.1)

PROOF. Let c1 =∑A∈PF
|βN(A)| [finite by (P1)′′′], and letψ be a selection

function on the nonempty subsets inPF , that is,ψ(A) ∈ A/�N for all nonemptyA.
Define

ĉ(x, η) = N
∑
e∈SN

pN(e)η(x + e) + ∑
A∈PF

|βN(A)|η(x + ψ(A)
)
.

Let η̂(·) ∈ Z
SN+ be the pure birth particle system such thatη̂(x) → η̂(x) + 1 with

rate ĉ(x, η). Then|η̂t | =∑x η̂t (x) is a pure birth process with birth rateN + c1
for each particle (this makes the existence and uniqueness of this system starting
from a configuration of finitely many ones obvious). Ifη(x) = 1(η̂(x) ≥ 1), then
η is a spin-flip system with jump ratec′(x, η) = ĉ(x, η)1(η(x) = 0). It is easy to
use (1.14) and (1.17) to see that ifξ(x) = η(x) = 0, thencN(x, ξ) ≤ c′(x, η). If
η(x) = 1, thencN(x, ξ) ≥ 0 = c′(x, η). By Theorem III.1.5 of [11], ifη0 = ξN

0 ,
we may construct versions ofξN· andη· so that with probability one,ξN

t ≤ ηt for
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all t ≥ 0. [Forξ, ξ ′ ∈ {0,1}SN , ξ ≤ ξ ′ means thatξ(x) ≤ ξ ′(x) for all x ∈ SN.] This
implies that

sup
t≤T

|ξN
t | ≤ sup

t≤T

|ηt | = |ηT |.

(Here, it is easy to use (P1)′′′ to check the condition (0.3) on page 122 of [11],
and so Theorem III.1.5 may be applied.) Since the pure birth process|η̂T | has
moments of all orders (see, e.g., Example 6.8.4 in [8]), so does|ηT | and the proof
is complete. �

PROPOSITION2.2. For all x ∈ SN and t ≥ 0,

ξN
t (x) = ξN

0 (x) + M
N,x
t + D

N,x
t ,(2.2)

where {MN,x· , x ∈ SN} are orthogonal square-integrable martingales with pre-
dictable square functions given by

〈MN,x〉t =
∫ t

0

[∑
y∈SN

NpN(y − x)
(
ξN
s (y) − ξN

s (x)
)2

+∑
A

χN(A,x, ξN
s )
(
βN(A)1{ξN

s (x) = 0}(2.3)

+ δN(A)1{ξN
s (x) = 1})

]
ds

and

D
N,x
t =

∫ t

0

[∑
y∈SN

NpN(y − x)
(
ξN
s (y) − ξN

s (x)
)

+ ∑
A∈PF

χN(A,x, ξN
s )
(
βN(A)1{ξN

s (x) = 0}(2.4)

− δN(A)1{ξN
s (x) = 1})

]
ds.

PROOF. We will use the fact (e.g., Theorem I.5.2 of [11]) that forφ in the
domain of�N ,

Mt = φ(ξt ) − φ(ξ0) −
∫ t

0
�Nφ(ξs) ds is a martingale.(2.5)

Lettingφx(ξ) = ξ(x), a calculation shows that

�Nφx(ξ) = ∑
y∈SN

NpN(y − x)
(
ξ(y) − ξ(x)

)

+ ∑
A∈PF

χN(A,x, ξ)[βN(A)1{ξ(x) = 0} − δN(A)1{ξ(x) = 1}].
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An application of (2.5) now gives the decomposition in (2.2). It follows from (2.2)
that M

N,x
t is uniformly bounded on compact time intervals and, hence, square

integrable.
To derive the facts about the square function, we proceed as follows. Defineφx,y

(in the domain of�N ) by φx,y(ξ) = ξ(x)ξ(y), and apply Itô’s formula toφx,x .
Since(ξN

t (x))2 = ξN
t (x), we obtain the (second) decomposition ofξN

t (x),

ξN
t (x) = ξN

0 (x) + 2
∫ t

0
ξN
s−(x) dDN,x

s + 2
∫ t

0
ξN
s−(x) dMN,x

s + [MN,x]t ,

where[MN,x]· is the square variation function ofMN,x· . The stochastic integral
above is a martingale, as is[MN,x]t − 〈MN,x〉t , and, hence,

ξN
t (x) − ξN

0 (x) − 2
∫ t

0
ξN
s−(x) dDN,x

s − 〈MN,x〉t
is a martingale. Thus, we have writtenξN

t (x) as the sum of a martingale and a
continuous process of bounded variation in two ways. Equating the processes of
bounded variation leads to

〈MN,x〉t = D
N,x
t − 2

∫ t

0
ξN
s−(x) dDN,x

s .

A short calculation now gives (2.3).
The proof that the martingalesMN,x

t are orthogonal proceeds in the same way.
We use (2.5) withφ = φx,y to obtain a semimartingale decomposition for the prod-
uct ξN

t (x)ξN
t (y). We then apply Itô’s formula to obtain a second decomposition.

Equating the processes of bounded variation leads to〈MN,x,MN,y〉t = 0, and the
proof is complete. �

With Proposition 2.2 in hand, we can now obtain a decomposition forXN
t (φ).

First we introduce the following notation. For

ψ ∈ Cb(SN), φ = φs(x), φ̇s(x) ≡ ∂

∂s
φ(s, x) ∈ Cb([0, T ] × SN),

ands ≤ T , define

AN(ψ) = ∑
y∈SN

NpN(y − x)
(
ψ(y) − ψ(x)

)
,

D
N,1
t (φ) =

∫ t

0
XN

s (ANφs + φ̇s) ds,

D
N,2
t (φ) = 1

N

∫ t

0

∑
x∈SN

φs(x)
∑

A∈PF

βN(A)χN(A,x, ξN
s ) ds,

D
N,3
t (φ) = 1

N

∫ t

0

∑
x∈SN

φs(x)
∑

A∈PF

(
βN(A) + δN(A)

)
ξN
s (x)χN(A,x, ξN

s ) ds,
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〈MN(φ)〉1,t = 1

N2

∫ t

0

∑
x∈SN

φ2
s (x)

∑
y∈SN

NpN(y − x)
(
ξN
s (y) − ξN

s (x)
)2

ds,

〈MN(φ)〉2,t = 1

N2

∫ t

0

∑
x∈SN

φ2
s (x)

∑
A∈PF

χN(A,x, ξN
s )
(
βN(A)1{ξN

s (x) = 0}

+ δN(A)1{ξN
s (x) = 1})ds.

Note that〈MN(φ)〉2,t may be negative.

PROPOSITION2.3. For φ, φ̇ ∈ Cb([0, T ] × SN) and t ∈ [0, T ],
XN

t (φt ) = XN
0 (φ0) + DN

t (φ) + MN
t (φ),(2.6)

where

DN
t (φ) = D

N,1
t (φ) + D

N,2
t (φ) − D

N,3
t (φ),(2.7)

andMN
t (φ) is a square-integrable martingale with predictable square function

〈MN(φ)〉t = 〈MN(φ)〉1,t + 〈MN(φ)〉2,t .(2.8)

PROOF. Use Proposition 2.2 and integration by parts to see that

φt (x)ξN
t (x) = φ0(x)ξN

0 (x) +
∫ t

0
φs(x) dMN,x

s +
∫ t

0
φs(x) dDN,x

s

(2.9)

+
∫ t

0
φ̇s(x)ξN

s (x) ds.

Using (P5) and the elementary inequality

χN(A,x, ξN
s ) ≤ 1

|A|
∑

a∈A/�N

ξN
s (x + a), A �= ∅,(2.10)

we have∑
x∈SN

∑
A∈PF

χN(A,x, ξN
s )
(|βN(A)|1(ξN

s (x) = 0
)+ |δN(A)|1(ξN

s (x) = 1
))

≤
[ ∑

x∈SN

∑
A∈PF

|A|−1
∑
a∈A

ξN
s (x + a/�N)|βN(A)|

]

(2.11)

+
[
|ξN

s | ∑
A∈PF

|δN(A)|
]

≤ |ξN
s | ∑

A∈PF

(|βN(A)| + |δN(A)|).
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This, together with Proposition 2.1, (H2) and (P1)′′′, shows that each of the terms
in (2.9) is nonzero for only finitely many values ofx for all t ≤ T a.s. Here we first
make this conclusion for each of the terms other than the martingale integral and,
hence, infer it for the martingale integrals. We therefore may sum (2.9) overx, and
after a bit of rearranging, obtain the required decomposition with

MN
t (φ) = 1

N

∑
x∈SN

∫ t

0
φs(x) dMN,x

s .(2.12)

Now use (2.11) and Proposition 2.1 to see that

E

( ∑
x∈SN

〈∫ ·

0
φs(x) dMN,x

s

〉
T

)
< ∞.

This shows that the series in (2.12) converges inL2 uniformly in t ≤ T and
so MN(φ) is a square integrable martingale. It also shows that its predictable
square function is

lim
K→∞

1

N2

∑
x∈SN|x|≤K

〈∫ ·

0
φs(x) dMN,x

s

〉
t

,

where the limit exists inL1 by the above but also for allt ≤ T a.s. by monotonicity.
A simple calculation using (2.3) now gives (2.8) and the proof is complete.�

3. Convergence to super-Brownian motion. Our strategy in proving The-
orem 1.3 is standard. We will prove that the family{XN· ,N ≥ 1} is tight, and
that all weak limit pointsX· satisfy the martingale problem characterizing super-
Brownian motionX· with the specified parameters. Hence,XN· ⇒ X· asN → ∞.
Our task here is less complicated than in [3], because we consider only the high-
dimensional case,d ≥ 3. The appropriate mass normalizer isN ′ = N , which fits
well with Brownian space-time scaling. Many of the complications in [3] arose
considering the delicated = 2 case, for which the appropriate mass normalizer
wasN ′ = N/ logN . On the other hand, our task here is more difficult than in [3]
because the Lotka–Volterra and perturbed voter models do not have tractable dual
processes, as does the basic voter model.

A sequence of probability measures{PN } on D([0,∞),E) (E a Polish space)
is C-tight iff it is tight and every limit point is supported byC([0,∞),E). Recall
that PN is the law ofXN· on D([0,∞),Mf (Rd)), and that the assumptions of
Theorem 1.3 are in force. Our strategy requires proving the following two results.

PROPOSITION3.1. The family of laws{PN,N ∈ N} is C-tight.

PROPOSITION 3.2. If P ∗ is any weak limit point of the sequencePN , then
P ∗ = P 2γ,θ,σ2

.
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Clearly, Theorem 1.3 follows from these propositions.
We now state a pair of key technical results, Propositions 3.3 and 3.4 below,

whose proofs we defer to Sections 4–6. Assuming these two propositions, we give
the proofs of Propositions 3.1 and 3.2 in this section.

PROPOSITION3.3. For K,T > 0, there exists a finite constantC3(K,T ) such
that if supN XN

0 (1) ≤ K , then

sup
N

E

(
sup
t≤T

XN
t (1)2

)
≤ C3(K,T ).(3.1)

This bound allows us to employL2 arguments. Note that it is a consequence
of (H2) that there will exist aK as above.

Our second (and key) technical bound will need the following notation. For
A ∈ PF , φ : [0, T ] × SN → R bounded and measurable,K > 0 and t ∈ [0, T ],
define

EN(A,φ,K, t)

= sup
XN

0 (1)≤K

E

((∫ t

0

[
1

N

∑
x

φs(x)χN(A,x, ξN
s ) − σN(A)XN

s (φs)

]
ds

)2)

[recall thatσN(A) = P(τN(A) ≤ ε∗
N)]. For φ : SN → R, define

‖φ‖Lip = ‖φ‖∞ + sup
x �=y

|φ(x) − φ(y)||x − y|−1.

Also, recall that�N = MN

√
N → ∞. By (P1),cβ = supN

∑
A∈PF

βN(A)+ < ∞
and we may set̄c = cβ + kδ , wherekδ is as in (P4).

PROPOSITION3.4. There is a positive sequenceεN → 0 asN → ∞, and, for
any K,T > 0, a constantC4(K,T ) > 0, such that for anyφ ∈ Cb([0, T ] × SN)

satisfyingsups≤T ‖φs‖Lip ≤ K , nonemptyA ∈ PF , ā ∈ A, J ≥ 1, and0≤ t ≤ T ,

EN(A,φ,K, t) ≤ C4(K,T )
[
ε∗
Nec̄ε∗

N + J−2

(3.2)
+ J 2(εN |A| + (σN(A) ∧ (εN + |ā|/�N)

))]
.

In particular, limN→∞ supt≤T EN(A,φ,K, t) = 0.

This result says that

1

N

∑
x

φs(x)χN(A,x, ξN
s ) ≈ σN(A)XN

s (φs),

in some average sense, and is the key to identifying any weak limit ofXN· .
We proceed now assuming the validity of the above two propositions.
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We begin by obtaining more precise information on the terms in the decom-
position of XN

t (φ) given in Proposition 2.3. Lemma 3.5 below estimates the
terms in the increasing process〈MN(φ)〉t , Lemma 3.6 estimates the terms in the
drift DN

t (φ).

LEMMA 3.5. There is a constantC such that ifφ : [0, T ] × SN → R is a
bounded measurable function, then

(a) 〈MN(φ)〉2,t = ∫ t
0 mN

2,s(φ) ds, where

|mN
2,s(φ)| ≤ C

‖φ‖2∞
N

XN
s (1).(3.3)

(b)

〈MN(φ)〉1,t = 2
∫ t

0
XN

s

(
φ2

s f
N
0 (ξN

s )
)
ds +

∫ t

0
mN

1,s(φs) ds,(3.4)

where

|mN
1,s(φ)| ≤

[
C√
N

‖φs‖2
LipXN

s (1)

]
∧ [2‖φ‖2∞XN

s (1)].(3.5)

(c) For i = 2,3,DN,i
t (φ) = ∫ t

0 dN,i
s (φ) ds for t ≤ T , where for allN ands ≤ T ,

|dN,i
s (φ)| ≤ C‖φ‖∞XN

s (1).

PROOF. (a) The definition of〈MN(φ)〉2,t implies

|mN
2,s(φ)| ≤ 1

N2

∑
x∈SN

|φs(x)|2 ∑
A∈PF \∅

(|βN(A)| + |δN(A)|)χN(A,x, ξN
s )

+ 1

N
XN

s (φ2
s )|δN(∅)|.

By (P1) and (2.10), there is a constantC such that

|mN
2,s(φ)| ≤ ‖φ‖2∞

∑
A∈PF \∅

(|βN(A)| + |δN(A)|)
|A|

∑
a∈A

1

N2

∑
x∈SN

ξN
s

(
x + a

�N

)

+ ‖φ‖2∞
δN(∅)

N
XN

s (1)(3.6)

≤ C
‖φ‖2∞

N
XN

s (1).

(c) This is proved by making minor changes in the derivation of (a).
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(b) A little rearrangement is necessary to handle the term〈MN(φ)〉1,t .
We rewrite it in the form

1

N

∫ t

0

∑
x,y∈SN

pN(y − x)φ2
s (x)

[
ξN
s (x)

(
1− ξN

s (y)
)+ (1− ξN

s (x)
)
ξN
s (y)

]
ds

= 1

N

∫ t

0

∑
x,y∈SN

ξN
s (x)φ2

s (x)pN(y − x)
(
1− ξN

s (y)
)
ds

+ 1

N

∫ t

0

∑
x,y∈SN

ξN
s (y)φ2

s (y)pN(y − x)
(
1− ξN

s (x)
)
ds

+ 1

N

∫ t

0

∑
x,y∈SN

pN(y − x)[φ2
s (x) − φ2

s (y)]ξN
s (y)

(
1− ξN

s (x)
)
ds.

That is, (3.4) holds where

mN
1,s(φ) = 1

N

∑
x,y∈SN

pN(y − x)
(
φ2

s (x) − φ2
s (y)

)
ξN
s (y)

(
1− ξN

s (x)
)
.

Note that |φs(x)2 − φs(y)2| ≤ 2‖φs‖2
Lip |x − y|, and also, by (H1) for some

universal constantC,∑
y

pN(y − x)|x − y| = E(|WN |)/√N ≤ C/
(
2
√

N
)
.

These inequalities establish (3.5).�

Let T > 0 andφ : [0, T ] × SN → R be such thatφ, φ̇ ∈ Cb([0, T ] × SN), and
define

δ1
N(s,φ) = ∑

A∈PF

βN(A)

[
1

N

∑
x∈SN

φs(x)χN(A,x, ξN
s ) − σN(A)XN

s (φs)

]
,

δ2
N(s,φ) =∑

A

(
βN(A) + δN(A)

)[ 1

N

∑
x∈SN

φs(x)χN(A ∪ {0}, x, ξN
s )

− σN(A ∪ {0})XN
s (φs)

]
.

It follows from (2.10), (P1), (P5) and Proposition 3.3 that these series converge.
Also, set

dN
0 = ∑

A∈PF

βN(A)σN(A) − ∑
A∈PF

(
βN(A) + δN(A)

)
σN(A ∪ {0}),

and note by (P1) that

c1 = sup
N

|dN
0 | < ∞.(3.7)
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With this notation, (2.6) of Proposition 2.3 may be written as

XN
t (φt ) = XN

0 (φ0) + MN
t (φ) +

∫ t

0
XN

s (ANφs + φ̇s) ds

+
∫ t

0
dN

0 XN
s (φs) ds +

∫ t

0

(
δ1
N(s,φ) − δ2

N(s,φ)
)
ds(3.8)

for all t ∈ [0, T ].

LEMMA 3.6. There is a sequenceε0
N → 0 asN → ∞ and for eachK,T > 0

a constantC0(K,T ) (increasing in each variable) such that ifφ : [0, T ]×SN → R

satisfiessups≤T ‖φs‖Lip ≤ K andsupN XN
0 (1) ≤ K , then

sup
t≤T

[
E

((∫ t

0
δ1
N(s,φ) ds

)2

+
(∫ t

0
δ2
N(s,φ) ds

)2)]1/2

≤ C0(T ,K)ε0
N(3.9)

for all N .

PROOF. Assumeφ and XN
0 are as above. Ift ∈ [0, T ], then by Cauchy–

Schwarz and (P1),

E

((∫ t

0
δ1
N(s,φ) ds

)2)

= E

(( ∑
A∈PF

βN(A)

∫ t

0

[
1

N

∑
x∈SN

φs(x)χN(A,x, ξN
s )

(3.10)

− σN(A)XN
s (φs)

]
ds

)2)

≤ C
∑

A∈PF

|βN(A)|EN(A,φ,K, t)

for a constantC. Proposition 3.4 and (P1) show that for some positive sequence
ε′
N → 0 and anyJ ≥ 1,

sup
t≤T

E

((∫ t

0
δ1
N(s,φ) ds

)2)
≤ C(T ,K)

(
ε′
N + J−2 + J 2(ε′

N + ηN)
)
,

whereC(T ,K) does not depend on the choice ofφ, and

ηN =∑
A

|βN(A)|(σN(A) ∧ (εN + |ā|/�N)
)
.

(Recall ā denotes some element ofA.) By (P3) and a uniform integrability
argument,ηN → 0 asN → ∞. Optimize the above overJ to see that for some
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positive sequenceε′′
N → 0,

sup
t≤T

E

((∫ t

0
δ1
N(s,φ) ds

)2)
≤ C(T ,K)ε′′

N.

A similar argument goes through forδ2
N(s,φ) [note thatσN(A∪{0}) ≤ σN(A)] and

so the result follows (the monotonicity requirements onC0 are trivial to realize).
�

The proof of Proposition 3.1 (tightness) proceeds as follows. We first establish
tightness forXN· (φ) for an appropriate class of test functionsφ. We then prove
a “compact containment” condition forXN· . We can then appeal to a version
of Jakubowski’s theorem for weak convergence inD([0,∞),Mf (Rd)) (see
Theorem II.4.1 in [14]), completing the proof of Proposition 3.1.

PROPOSITION 3.7. For each φ ∈ C
1,3
b (R+ × R

3), each of the families
{XN· (φ·),N ∈ N}, {DN· (φ),N ∈ N}, {〈MN(φ)〉·,N ∈ N} and {MN· (φ),N ∈ N} is
C-tight in D([0,∞),R).

PROOF. Fix φ as above and recall the decomposition ofXN
t (φt ) in Proposi-

tion 2.3. We start with the drift terms and recall an analytic estimate (Lemma 2.6)
of [3]:

sup
s≤T

∥∥∥∥AN(φs) − σ 2
φs

2

∥∥∥∥∞ → 0 asN → ∞.(3.11)

SinceD
N,1
t (φ) = ∫ t

0 XN
s (ANφs + φ̇) ds, (3.11), Proposition 3.3 and the Arzela–

Ascoli theorem imply that

{DN,1· (φ),N ∈ N} is tight inC
([0,∞),R

)
.

For i = 2,3, DN,i
t (φ) = ∫ t

0 dN,i
s (φ) ds, where by Lemma 3.5(c),

|dN,i
s (φ)| ≤ C‖φ‖∞XN

s (1), i = 2,3.

Again Proposition 3.3 and the Arzela–Ascoli theorem imply that

{DN,i· (φ),N ∈ N} is tight inC
([0,∞),R

)
, i = 2,3.

We turn now to the martingale terms. By (2.8) and Lemma 3.5(a, b), there is a
finite constantC such that for 0≤ s ≤ t ≤ T ,

〈MN(φ)〉t − 〈MN(φ)〉s ≤ C‖φ‖2∞
∫ t

s
XN

u (1) du.(3.12)

Consequently, Proposition 3.3 shows that

{〈MN(φ)〉·,N ∈ N} is tight inC
([0,∞),R

)
.
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Since the maximum jump discontinuity inMN
t (φ) is bounded above by‖φ‖∞/N ,

it follows from Theorem VI.4.13 and Proposition VI.3.26 of [10] that

{MN· (φ),N ∈ N} is C-tight in D
([0,∞),R

)
.

In view of (H2), we see from the above and Proposition 2.3 thatXN
t (φt )

andDN
t (φ) are each a sum ofC-tight processes inD([0,∞),R). Since a sum

of C-tight processes inD([0,∞),R) is alsoC-tight, the proof is complete.�

To derive the appropriate compact containment condition, we will first need an
estimate on the mean measure ofXN

t . Let P N
t denote the semigroup associated

with the generatorAN .

PROPOSITION3.8. There is a constantc1 ≥ 0, a positive sequenceε1
N → 0

asN → ∞, and constants(C1(K, t),K, t ≥ 0), nondecreasing in each variable,
such that ifsupN XN

0 (1) ≤ K , andφ : SN → R+ satisfies‖φ‖Lip ≤ K , then

E
(
XN

t (φ)
)≤ ec1tXN

0 (P N
t φ) + C1(K, t)ε1

N.

PROOF. Assumec1 is as in (3.7) andφ is as in the statement of the proposition.
Fix t > 0 and define

φs(x) = e−c1sP N
t−sφ(x), (s, x) ∈ [0, t] × SN.

Then (3.8) becomes

e−c1tXN
t (φ) = XN

0 (P N
t φ) + MN

t (φ) + (dN
0 − c1)

∫ t

0
XN

s (φs) ds

+
∫ t

0

(
δ1
N(s,φ) − δ2

N(s,φ)
)
ds.

Note that the third term on the right-hand side is nonpositive. It is easy to
verify that sups≤t ‖φs‖Lip ≤ K . Therefore, we may use Lemma 3.6, and take
expectations in the above withT = t , recalling thatMN

t (φ) is a mean zero
martingale (Proposition 2.3), to arrive at

E
(
XN

t (φ)
)≤ ec1tXN

0 (P N
t φ) + ec1t2C0(K, t)ε0

N.

The result is then immediate.�

For the following, letB(x, r) denote the open ball inRd of radiusr centered
atx.

PROPOSITION 3.9 (Compact containment).For all ε > 0, there is a finite
ρ = ρ(ε) such that

sup
N

P

(
sup

t≤ε−1
XN

t

(
B(0, ρ)c

)
> ε

)
< ε.
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PROOF. Let hn :Rd → [0,1] be aC∞ function such that

B(0, n) ⊂ {x :hn(x) = 0} ⊂ {x :hn(x) < 1} ⊂ {B(0, n + 1)}
and

sup
n

∑
i,j,k≤d

‖(hn)i‖∞ + ‖(hn)ij‖∞ + ‖(hn)ijk‖∞ ≡ Ch < ∞.

Let c1 be as in (3.7) and use (3.8) withφn
s (x) = e−c1shn(x) to get

e−c1tXN
t (hn) = XN

0 (hn) + MN
t (φn) +

∫ t

0
e−c1sXN

s (ANhn)

(3.13)

+ (dN
0 − c1)X

N
s (φn

s ) ds +
∫ t

0
δ1
N(s,φn) − δ2

N(s,φn) ds.

Note that

E

(∫ t

0
XN

s (|ANhn|) ds

)
≤
∥∥∥∥ANhn − σ 2
hn

2

∥∥∥∥∞E

(∫ t

0
XN

s (1) ds

)
(3.14)

+ E

(∫ t

0
XN

s

(
σ 2|
hn|

2

)
ds

)
.

The first term in (3.14) approaches zero asN → ∞, uniformly in n by (3.11) and
Proposition 3.3. Choose

K > max
(

1,Ch(σ
2/2+ 1),sup

N

XN
0 (1)

)
.(3.15)

Thenφ = σ 2|
hn|/2 satisfies the hypotheses of Proposition 3.8 and so that result
bounds the second term in (3.14) by

∫ t

0
ec1sXN

0

(
P N

s

(
σ 2|
hn|

2

))
ds + C1(K, t)tε1

N.(3.16)

Since
hn = 0 onB(0, n), we may use (H1) and (H2) to conclude that

XN
0
(
P N

s (|
hn|)) ≤ ChX
N
0
(
P N

s

(
1B(0,n)c

))
≤ Ch

(
XN

0
(
B(0, n/2)c

)+ XN
0 (1)P

(|B0,N
s | > n/2

))
≤ Ch

(
XN

0
(
B(0, n/2)c

)+ XN
0 (1)cn−2s

)
→ 0 asn → ∞ uniformly in N ands ≤ t.

The above proves

lim
(N,n)→∞E

(∫ t

0
XN

s (|ANhn|) ds

)
= 0.(3.17)



932 J. T. COX AND E. A. PERKINS

Use (2.8) and Lemma 3.5 to see that [recallφn
s (x) = e−c1shn(x)]

E
(〈MN(φn)〉t )≤ C(N−1 + N−1/2)E

(∫ t

0
XN

s (1) ds

)
(3.18)

+ 2E

(∫ t

0
XN

s (h2
n) ds

)
.

Now use Proposition 3.8 to bound the second term in (3.18) [just as in (3.16)] and
Proposition 3.3 to bound the first term in (3.18) and conclude

lim
(N,n)→∞E

(〈MN(φn)〉t )= 0 for all t > 0.(3.19)

Let ε > 0. By (H2), (3.17) and (3.19) there is ann0 ∈ N such that forN,n ≥ n0,

P

(
ec1ε

−1
XN

0 (hn) + sup
t≤ε−1

ec1t |MN
t (φn)|

(3.20)

+
∫ ε−1

0
ec1(t−s)XN

s (|ANhn|) ds > ε

)
< ε.

Turning now to the last term in (3.13), note first the trivial bound

|δ1
N(s,φn)| + |δ2

N(s,φn)| ≤∑
A

(|βN(A)| + |δN(A)|)4XN
s (1)

(3.21)
≤ CXN

s (1),

the last inequality by (P1). Our choice ofK in (3.15) shows that eachφn satisfies
sups ‖φn

s ‖Lip ≤ K and so Lemma 3.6 implies that for allT > 0,

sup
t≤T

E

(∣∣∣∣
∫ t

0
δi
N(s,φn) ds

∣∣∣∣
)

→ 0

(3.22)
asN → ∞ uniformly in n for i = 1,2.

Now (3.21) and Proposition 3.3 show that{∫ ·
0 δi

N(s,φn0) ds :N ∈ N}, i = 1,2, are
tight in C(R+,R), while (3.22) shows that each limit point of the above sequences
is identically 0. This shows weak convergence of

∫ ·
0 δi

N(s,φn0) ds to the zero
process and, therefore,

lim
N→∞P

(
sup

t≤ε−1
ec1t

{∣∣∣∣
∫ t

0
δ1
N(s,φn0) ds

∣∣∣∣+
∣∣∣∣
∫ t

0
δ2
N(s,φn0) ds

∣∣∣∣
}

> ε

)
= 0.

Now use the above and (3.20) in (3.13), noting that(dN
0 − c1)X

N
s (φ

n0
s ) ≤ 0, and

conclude that there is anN0 so that ifN ≥ N0,

P

(
sup

t≤ε−1
XN

t

(
hn0

)
> 2ε

)
< 2ε.
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By increasingn0 if necessary to handleN ≤ N0, we get

sup
N

P

(
sup

t≤ε−1
XN

t

(
hn0

)
> 2ε

)
< 2ε,

and the proof is complete becausehn0 ≥ 1B(0,n0+1)c . �

PROOF OF PROPOSITION 3.1. The C-tightness of{PN,N ∈ N} is now
immediate from Propositions 3.7 and 3.9 above, and Theorem II.4.1 in [14].�

PROOF OFPROPOSITION3.2. We assume below thatφ ∈ C
1,3
b ([0, T ] × R

d),
supN XN

0 (1) ≤ K [such aK exists by (H2)] and 0≤ t ≤ T . First, (3.11) and
Proposition 3.3 imply

E

((
D

N,1
t (φ) −

∫ t

0
XN

s

(
σ 2
φs

2
+ φ̇s

)
ds

)2)
→ 0 asN → ∞.(3.23)

We also have

D
N,2
t (φ) − D

N,3
t (φ) =

∫ t

0
δ1
N(s,φ) − δ2

N(s,φ) ds + dN
0

∫ t

0
XN

s (φ)ds.

It follows from (P3),σN(A ∪ {0}) ≤ σN(A), (P2) and (K3) that

βN(·)σN(· ∪ {0}) → β(·)σ (· ∪ {0}) in �1(PF ) asN → ∞.

This and (P3) imply thatdN
0 → θ asN → ∞. We may apply these results with

Proposition 3.3 and Lemma 3.6 to conclude

E

((
D

N,2
t (φ) − D

N,3
t (φ) − θ

∫ t

0
XN

s (φs) ds

)2)
→ 0 asN → ∞.(3.24)

We claim now that

E

((
〈MN(φ)〉t − 2γ

∫ t

0
XN

s (φ2
s ) ds

)2)
→ 0 asN → ∞.(3.25)

Define

γN = ∑
e∈SN

pN(e)P
(
τ̂ N ({0, e}) > ε∗

N

)

[recall τN(A) = τ̂ N (A/�N) for A ⊂ Z
d ]. By (2.8), Lemma 3.5, (K3) and

Proposition 3.3, to prove (3.25), it suffices to prove that

E

((∫ t

0
XN

s

(
φ2

s f
N
1 (ξN

s )
)− (1− γN)XN

s (φ2
s ) ds

)2)
→ 0 asN → ∞.(3.26)
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To do this, we expand the integrand above in the form

XN
s

(
φ2

s f
N
1 (ξN

s )
)− (1− γN)XN

s (φ2
s )

= 1

N

∑
x∈SN

φ2
s (x)ξN

s (x)
∑

y∈SN

pN(y − x)
[
ξN
s (y) − P

(
τN (0, (y − x)�N

)≤ ε∗
N

)]

= ∑
y∈SN

pN(y)
1

N

∑
x∈SN

φ2
s (x)ξN

s (x)
[
ξN
s (x + y) − P

(
τN(0, y�N) ≤ ε∗

N

)]

= ∑
a∈Zd

pN(a/�N)

[
1

N

∑
x∈SN

φ2
s (x)χN({0, a}, x, ξN

s ) − σN({0, a})XN
s (φ2

s )

]
.

Applying Cauchy–Schwarz, the left-hand side of (3.26) is bounded above by

∑
a∈Zd

pN(a/�N)E

((∫ t

0

[
1

N

∑
x∈SN

φ2
s (x)χN({0, a}, x, ξN

s )

− σN({0, a})XN
s (φ2

s )

]
ds

)2)
.

Proposition 3.4 now completes the proof of (3.26) and, hence, of (3.25).
The aboveL2 estimates [i.e., (3.23)–(3.25)] imply that forε > 0,

P

(∣∣∣∣DN
t (φ) −

∫ t

0
XN

s

(
σ 2

2

φ + φ̇s

)
ds − θ

∫ t

0
XN

s (φ)ds

∣∣∣∣> ε

)
→ 0

and

P

(∣∣∣∣〈MN(φ)〉t − 2γ

∫ t

0
XN

s (φ2) ds

∣∣∣∣> ε

)
→ 0

asN → ∞.
Now suppose thatP(XNk· ∈ ·) ⇒ P(X· ∈ ·) in D([0,∞),Mf (Rd)) for some

X· ∈ C([0,∞),Mf (Rd)) ask → ∞. Since(XNk· ,DNk· (φ), 〈MNk(φ)〉·) is C-tight
in D([0,∞),MF (Rd)×C(R)×C(R+)) [by Theorem 3.7 and Proposition 3.1], by
Skorohod’s theorem (taking a further subsequence if necessary), we may assume
that (

XNk· ,DNk· (φ), 〈MNk· (φ)〉)→ (
X·,D·(φ),L·(φ)

)
a.s.,

where (X·,D·(φ),L·(φ)) is continuous. By the probability estimates above,
it follows that

Dt(φ) =
∫ t

0
Xs

(
σ 2

2

φ + φ̇s

)
ds + θ

∫ t

0
Xs(φs) ds ∀ t ≥ 0 a.s.(3.27)

and

Lt(φ) = 2γ

∫ t

0
Xs(φ

2
s ) ds ∀ t ≥ 0 a.s.(3.28)
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By Proposition 2.3,MNk· (φ) → M·(φ) ∈ C(R) a.s., where

Xt(φt ) = X0(φ0)+Mt(φ)+
∫ t

0
Xs

(
σ 2
φs

2
+ φ̇s

)
ds +

∫ t

0
Xs(θφs) ds,(3.29)

andMt(φ) is continuous andF X
t -measurable. By (3.25) and Proposition 3.3,

sup
N

E
(〈MN(φ)〉2

T

)
< ∞.

Using Burkholder’s inequality and the fact that|
MN(φ)(t)| ≤ ‖φ‖∞/N , we
obtain

sup
N

E

(
sup
t≤T

|MN
t (φ)|4

)
< ∞.

Consequently,M·(φ) is a continuous,L2, F X· -measurable martingale, and

〈M(φ)〉t = lim
k→∞〈MNk(φ)〉t = 2γ

∫ t

0
Xs(φ

2
s ) ds a.s.

Consequently,P(X· ∈ ·) satisfies the martingale problem characterizingP 2γ,θ,σ2
,

and soP(XNk· ∈ ·) ⇒ P γ,θ,σ2
asNk → ∞. �

4. Comparison with biased voter models. In this section we show that we
can dominate the processξN

t by a biased voter modelξ̄N
t . That is, we show that

the two processes can be coupled so that with probability one,ξN
t ≤ ξ̄N

t for all
t ≥ 0. Easily obtained bounds onE(|ξ̄N

t |) and E(|ξ̄N
t |2) thus provide bounds

on E(XN
t (1)) and (E(XN

t (1))2). The results in this section will use (P1), (P4)
and (P5), but not any of the kernel assumptions.

Let p andp̄ be two probability kernels onZd , and fix parametersv > 0, b ≥ 0.
For i = 0,1, define

fi(x, η) = ∑
y∈Zd

p(y − x)1{η(y) = i}

and

f̄i(x, η) = ∑
y∈Zd

p̄(y − x)1{η(y) = i}.

The biased voter modelξ̄t is the spin-flip system taking values in{0,1}Z
d

which
in stateξ̄ makes transitions atx,

0 → 1 at ratevf1(x, ξ̄ ) + bf̄1(x, ξ̄ ),
(4.1)

1 → 0 at ratevf0(x, ξ̄ ).

If b = 0, we obtain the voter model, while ifb > 0, there is a bias in favor
of creating 1’s. It is clear from these rates that we may as well assume
p(0) = p̄(0) = 0.

We will need the following estimates on the first two moments of|ξ̄t |.
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LEMMA 4.1. Assume that|ξ̄0| < ∞. Then|ξ̄t | is submartingale such that

E(|ξ̄t |) ≤ ebt |ξ̄0|,(4.2)

and |ξ̄t |2 is a submartingale such that

E(|ξ̄t |2) ≤ e2bt

(
|ξ̄0|2 + b + 2v

b
(1− e−bt )|ξ̄0|

)
.(4.3)

PROOF. First, note that by bounding|ξ̄t | above by a pure birth process just
as in the proof of Proposition 2.1, one may conclude that forT > 0, the first and
second moments of supt≤T |ξ̄t |are finite. Next, ifβ1({a}) = b

v
p̄(a), β1(A) = 0 if

|A| �= 1, andδ1 ≡ 0, then|ξ̄t/v| is preciselyX1
t (1), whereX1· is as in Theorem 1.3

with N = 1. Clearly,β1(A) = 0 if 0 ∈ A, (P5) holds and (P1)′′′ is valid, so from
Proposition 2.3,

|ξ̄t | = |ξ̄0| +
∫ t

0

∑
x,e∈Zd

bp̄(e)ξ̄s(x + e)
(
1− ξ̄s(x)

)
ds + M̄t ,(4.4)

whereM̄t is a square-integrable martingale with predictable square function

〈M̄〉t =
∫ t

0

∑
x,y∈Zd

[
vp(y − x)1

(
ξ̄s(x) �= ξ̄s(y)

)
(4.5)

+ ∑
x,e∈Zd

bp̄(e)ξ̄s(x + e)
(
1− ξ̄s(x)

)]
ds.

By (4.4),

|ξ̄t | ≤ |ξ̄0| +
∫ t

0
b|ξ̄s |ds + M̄t ,

and as we have already noted that|ξ̄t | has a finite mean, (4.2) follows by taking
means in the above and using Gronwall’s lemma.

Using some stochastic calculus in (4.4), we get (with[M]t the square variation
function ofMt )

|ξ̄t |2 = |ξ̄0|2 +
∫ t

0
2|ξ̄s |b

∑
x,e

p̄(e)ξ̄s(x + e)
(
1− ξ̄s(x)

)
ds

(4.6)

+
∫ t

0
2|ξ̄s |dM̄s + [M̄]t .

Proposition 2.1, the fact that|ξ̄t | can be bounded by a pure birth process and (4.5)
imply that the stochastic integral in the above is a martingale, as is[M̄]t − 〈M̄〉t ,
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consequently,

E(|ξ̄t |2) ≤ |ξ̄0|2 + 2b

∫ t

0
E(|ξ̄s |2) ds + E(〈M̄〉t )

(4.7)

≤ |ξ̄0|2 + 2b

∫ t

0
E(|ξ̄s |2) ds +

∫ t

0
(2v + b)E(|ξ̄s |) ds.

From this, (4.2) and the previously noted fact thatE(|ξt |2) is bounded on compact
time intervals, (4.3) is easy to derive. Finally, the fact that|ξ̄t | and |ξ̄t |2 are
submartingales is clear from (4.4) and (4.6).�

Our task now is to define a biased voter modelξ̄N
t taking values in{0,1}SN

which dominates the voter model perturbationξN
t . To do this, we must determine

the appropriate kernels and ratesv = vN andb = bN , which we do by considering
the maximum and minimum values ofcN(x, ξ) given by (1.14), (1.15) and (1.17).
We assume thatN ≥ kδ [recall (P4)] in what follows.

For ξN
t , at sitex in configurationξ with ξ(x) = 1, the flip rate from 1 to 0 is

cN(x, ξ) = N
∑

y∈SN

pN(y − x)
(
1− ξ(y)

)+ ∑
A∈PF

δN(A)χN(A,x, ξ)

(4.8)
≥ (N − kδ)f

N
0 (x, ξ),

where we have made use of assumption (P4).
Similarly, at sitex in configurationξ with ξ(x) = 0, the flip rate from 0 to 1 is

cN(x, ξ) = N
∑

y∈SN

pN(y − x)ξ(y) + ∑
A∈PF

βN(A)χN(A,x, ξ)

≤ Nf N
1 (x, ξ) + ∑

A∈PF

β+
N(A)χN(A,x, ξ)(4.9)

≤ Nf N
1 (x, ξ) + ∑

A∈PF

β+
N(A)

|A|
∑
a∈A

ξ(x + a/�N),

where we have used (2.10). To simplify this last expression, we define a probability
kernelp̂N on SN by settingcN

β =∑A∈PF
β+

N(A) and

p̂N (a) = 1

cN
β

∑
A : a∈A/�N

β+
N(A)

|A| .

(If cN
β = 0, the construction simplifies considerably and the necessary modifica-

tions will be obvious.) Note that̂pN(0) = 0. Now if

f̂ N
i (x, ξ) =∑

y

p̂N(y − x)1{ξ(y) = i},
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inequality (4.9) can be rewritten as

cN(x, ξ) ≤ Nf N
1 (x, ξ) + cN

β f̂ N
1 (x, ξ).(4.10)

Recall by (P1),cβ = supN cN
β < ∞, and we use this constant to define another

probability kernelp̄N on SN by

p̄N(a) = kδpN(a) + cβp̂(a)

kδ + cβ

.

It follows then, with f̄ N
i (x, ξ) = ∑y p̄N(y − x)1{ξ(y) = i}, that (recall c̄ =

kδ + cβ )

Nf N
1 (x, ξ) + cN

β f̂ N
1 (ξ) ≤ (N − kδ)f

N
1 (x, ξ) + c̄f̄ N

1 (ξ).(4.11)

We now letξ̄N
t be the biased voter model with rate function

c̄N (x, ξ) =
{

(N − kδ)f
N
1 (x, ξ) + c̄f̄ N

1 (ξ), if ξ(x) = 0,

(N − kδ)f
N
0 (x, ξ), if ξ(x) = 1.

(4.12)

From (4.8), (4.10) and(4.11), we see that ifξ ≤ ξ̄ ,

cN(x, ξ) ≤ c̄N (x, ξ̄ ) if ξ̄ (x) = 0,
(4.13)

cN(x, ξ) ≥ c̄N (x, ξ̄ ) if ξ(x) = 1.

On account of this (see Theorem III.1.5 of [11]), we may construct versions
of ξN

t and ξ̄N
t on a common probability space such that ifξN

0 = ξ̄N
0 , then with

probability one,

ξN
t ≤ ξ̄N

t for all t ≥ 0.(4.14)

In Section 5 we will also need a voter model dominated byξ̄N
t . Let ξ̂N

t be the
process with the same flip rates specified in (4.12), except withc̄ = 0. Thenξ̂N

t is
a voter model, and if̂ξN

0 (x) ≤ ξ̄N
0 (x) for all x, then, as above, we can defineξ̂N

t

andξ̄N
t on a common probability space so that with probability one,

ξ̂N
t ≤ ξ̄N

t for all t ≥ 0.(4.15)

We also note that|ξ̂N
t | is amartingale[e.g., by (4.4) withb = 0], so

E(|ξ̂N
t |) = |ξ̂N

0 | for all t ≥ 0.(4.16)

We record now some consequences of Lemma 4.1, including the proof of
Proposition 3.3. We assume thatX̄N

t andX̂N
t are as above, with̄ξN

0 = ξ̂N
0 = ξN

0 .
Let X̄N

t (φ) = (1/N)
∑

x φ(x)ξ̄N
t (x) and X̂N

t (φ) = (1/N)
∑

x φ(x)ξ̂N
t (x). By

Lemma 4.1,

E
(
X̄N

t (1)
)≤ ec̄t X̄N

0 (1).(4.17)
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Also by Lemma 4.1,

EX̄N
t (1)2 ≤ e2c̄t

(
X̄N

0 (1)2 + c̄ + 2(N − kδ)

Nc̄
(1− e−c̄t )X̄N

0 (1)

)
.(4.18)

SinceX̄N
t (1)2 is a submartingale by Lemma 4.1, it follows that forT > 0 and

K > 0, there exists a constantC(T ,K) ≥ 1 such that

sup
X̄N

0 (1)≤K

E

(
sup
t≤T

X̄N
t (1)2

)
≤ C(T ,K).(4.19)

PROOF OF PROPOSITION 3.3. This is now immediate from the above
inequality, since the couplingξN

t ≤ ξ̄N
t implies thatXN

t (1) ≤ X̄N
t (1). �

Note that by (4.17) and the fact thatX̄N
t (1) is a submartingale,

0≤ E
(
X̄N

t (1)
)− X̄N

0 (1) ≤ (ec̄t − 1)X̄N
0 (1).(4.20)

To get similar bounds on the differenceXN
t (1) − XN

0 (1), use Proposition 2.3
and Lemma 3.5 to see thatXN

t (1) − XN
0 (1) = ∫ t

0 dN
s (1) ds + MN

t (1), where
E(MN

t (1)) = 0, and there is a constantC such that

|dN
s (1)| ≤ CXN

s (1) ≤ CX̄N
s (1)

for s ≤ T . It follows therefore from (4.17) that

∣∣E(XN
t (1) − XN

0 (1)
)∣∣≤ C

ec̄t − 1

c̄
XN

0 (1).(4.21)

5. The key lemma. For bounded functionsφ on SN and nonemptyA ∈ PF ,
define

ηN(XN
0 ,A,φ, s)

(5.1)

=
∣∣∣∣∣EXN

0

(
1

N

∑
x

φ(x)χN(A,x, ξN
s ) − P

(
τN(A) ≤ s

)
XN

s (φ)

)∣∣∣∣∣
and

ηN,J (A,φ, s) = sup
XN

0 (1)≤J

ηN(XN
0 ,A,φ, s).(5.2)

The proof of Proposition 3.4 is based on the following lemma. We assume the
hypotheses of Theorem 1.3 are in force.

LEMMA 5.1. There is a finite constantC and a positive sequenceεN → 0 as
N → ∞ such that for anyJ,K ≥ 1, φ : SN → R such that‖φ‖Lip ≤ K , nonempty
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finiteA ⊂ Z
d and ā ∈ A, ands > 0,

ηN(XN
0 ,A,φ, s)

≤ CK

[
(ec̄s − 1)|A| +

(
P
(
τN(A) ≤ s

)∧ ( |ā|
�N

+ E|BN,0
s |
))]

XN
0 (1)(5.3)

+ CK|A|NP(BN,0
s = 0)

(
XN

0 (1)
)2

and

ηN,J (A,φ, ε∗
N) ≤ CKJ 2

(
εN |A| + σN(A) ∧

( |ā|
�N

+ εN

))
.(5.4)

PROOF. Let J,K,φ andA be as above. Let̄ξN
t be the biased voter model and

let ξ̂N
t be the voter model from the previous section, withξN

0 = ξ̄N
0 = ξ̂N

0 , coupled
so thatξN

t ≤ ξ̄N
t and ξ̂N

t ≤ ξ̄N
t . By the triangle inequality,ηN(XN

0 ,A,φ, s) is
bounded above by the sum of the following four “error” terms:

ηN
1 (s) =

∣∣∣∣∣E
(

1

N

∑
x

φ(x)[χN(A,x, ξN
s ) − χN(A,x, ξ̄N

s )]
)∣∣∣∣∣,(5.5)

ηN
2 (s) =

∣∣∣∣∣E
(

1

N

∑
x

φ(x)[χN(A,x, ξ̄N
s ) − χN(A,x, ξ̂N

s )]
)∣∣∣∣∣,(5.6)

ηN
3 (s) =

∣∣∣∣∣E
([

1

N

∑
x

φ(x)χN(A,x, ξ̂N
s )

]
− P

(
τN(A) ≤ s

)
X̂N

0 (φ)

)∣∣∣∣∣,(5.7)

ηN
4 (s) = P

(
τN(A) ≤ s

)∣∣E(X̂N
0 (φ) − XN

s (φ)
)∣∣(5.8)

(recallX̂N
0 = XN

0 ).
The strategy behind this decomposition is as follows. We want to argue that for

smalls, the perturbed voter modelξN
s is close in some sense to the voter modelξ̂N

s ,
and then compute witĥξN

s using voter modelduality. However, we cannot directly
compareξN

s with ξ̂N
s , but must instead argue that bothξN

s andξ̂N
s are close tōξN

s .
These two comparisons can be made because of the couplings and the inequality
|∏n

i=1 zi − ∏n
i=1 wi | ≤ ∑n

i=1 |zi − wi | for numberszi,wi bounded in absolute
value by 1.

In preparation for estimating theηN
i (s), by the previous inequality,

|χN(A,x, ξN
s ) − χN(A,x, ξ̄N

s )| ≤ ∑
a∈A

|ξ̄N
s (x + a/�N) − ξN

s (x + a/�N)|

= ∑
a∈A

(
ξ̄N
s (x + a/�N) − ξN

s (x + a/�N)
)
,
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the last step following from the couplingξN
s ≤ ξ̄N

s . Thus,

1

N

∑
x∈SN

|χN(A,x, ξN
s ) − χN(A,x, ξ̄N

s )| ≤ |A|(X̄N
s (1) − XN

s (1)
)
.

A similar argument shows that

1

N

∑
x∈SN

|χN(A,x, ξ̄N
s ) − χN(A,x, ξ̂N

s )| ≤ |A|(X̄N
s (1) − X̂N

s (1)
)
.

Consider the first error termηN
1 (s). By the above,

ηN
1 (s) ≤ 1

N

∑
x∈SN

|φ(x)|E|χN(A,x, ξ̄N
s ) − χN(A,x, ξN

s )|

≤ ‖φ‖∞|A|E(X̄N
s (1) − XN

s (1)
)

≤ K|A|(E(X̄N
s (1) − X̄N

0 (1)
)+ ∣∣E(XN

0 (1) − XN
s (1)

)∣∣)
[recall X̄N

0 (1) = XN
0 (1)]. By (4.20) and (4.21), this implies there is a constantC

such that

ηN
1 (s) ≤ CK(ec̄s − 1)|A|XN

0 (1).(5.9)

For ηN
2 (s), using E(X̂N

s (1)) = X̂N
0 (1) = XN

0 (1) [see (4.16)] and arguing as
above, we get

ηN
2 (s) ≤ ‖φ‖∞|A|E(X̄N

s (1) − X̂N
s (1)

)≤ K|A|E(X̄N
s (1) − XN

0 (1)
)
.

Now apply (4.20) to see there is a constantC such that

ηN
2 (s) ≤ CK|A|(ec̄s − 1)XN

0 (1).(5.10)

Turning to ηN
4 (s), by adding and subtractinḡXN

s (φ) and then proceeding as
above, there is a constantC such that

ηN
4 (s) ≤ CK(ec̄s − 1)XN

0 (1).(5.11)

We come now to the main term,ηN
3 (s). Here we will use the independent

random walk system{BN,x
t , x ∈ SN} and the coalescing random walk system

{B̂N,x
t , x ∈ SN} introduced in Section 1. Recall that forA ∈ PF ,

τN(A) = inf
{
t : |{B̂N,x

t , x ∈ A/�N }| = 1
}
.

For y ∈ SN, let τN
y (A) = τN(y�N + A). By translation invariance and symmetry,

for anyy ∈ SN and finiteA ⊂ Z
d ,

P
(
τN
y (A) ≤ s

)= P
(
τN

0 (A) ≤ s
)= P

(
τN

0 (−A) ≤ s
)= P

(
τN
y (−A) ≤ s

)
.(5.12)
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Also, we may assume here that our coalescing random walk system is constructed
from the independent random walk system via some collision rule. In particular,
for a �= a′ ∈ Z

d , we may assume that

P
(
B̂N,x+a/�N

s = y, B̂N,x+a′/�N
s = z, τN

x ({a, a′}) > s
)

= P
(
BN,x+a/�N

s = y,BN,x+a′/�N
s = z, τN

x ({a, a′}) > s
)

(5.13)

≤ P(BN,x+a/�N
s = y)P (BN,x+a′/�N

s = z).

Finally, we will make use of the well-known duality between the voter model and
coalescing random walk (see Section 3 of [5], e.g.) in the form

E
(
χN(A,x, ξ̂N

s )
)= P(B̂N,x+a/�N

s ∈ ξ̂N
0 ∀a ∈ A).(5.14)

We will evaluate the right-hand side above by decomposing the event according to
whetherτN

x (A) ≤ s or not.
To estimateηN

3 (s), we define

ηN
3,1(s) =

∣∣∣∣∣ 1

N

∑
x∈SN

φ(x)P
(
B̂N,x+a/�N

s ∈ ξ̂N
0 ∀a ∈ A,τN

x (A) > s
)∣∣∣∣∣,(5.15)

ηN
3,2(s) =

∣∣∣∣∣ 1

N

∑
x∈SN

φ(x)P
(
B̂N,x+a/�N

s ∈ ξ̂N
0 ∀a ∈ A,τN

x (A) ≤ s
)

(5.16)

− P
(
τN(A) ≤ s

)
X̂N

0 (φ)

∣∣∣∣∣,
and observe that the duality equation (5.14) above implies that

ηN
3 (s) ≤ ηN

3,1(s) + ηN
3,2(s).

We proceed now to estimate each of these terms.
For ηN

3,1(s), fix any ā ∈ A. Since {τN
x (A) > s)} = ⋃a∈A\{ā}{τN

x (a, ā) > s},
it follows from (5.13) andP(BN,z

s = w) ≤ P(BN,0
s = 0) (e.g., see Lemma A.3

of [3]) that

ηN
3,1(s) ≤ ‖φ‖∞

1

N

∑
x∈SN

∑
a∈A\{ā}

P
(
B̂N,x+a/�N

s ∈ ξ̂N
0 ,

B̂N,x+ā/�N
s ∈ ξ̂N

0 , τN
x (a, ā) > s

)
≤ ‖φ‖∞

∑
a∈A\{ā}

1

N

∑
x,y,z∈SN

P(BN,x+a/�N
s = y)

× P(BN,x+ā/�N
s = z)ξ̂N

0 (y)ξ̂N
0 (z)
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≤ ‖φ‖∞
∑

a∈A\{ā}

1

(N)2

∑
x,y,z∈SN

NP(BN,0
s = 0)

× P(BN,x+ā/�N
s = z)ξ̂N

0 (y)ξ̂N
0 (z).

By symmetry and time reversal,P(B̂
N,x+ā/�N
s = z) = P(B̂N,z

s = x+ ā/�N). Thus,
in the inequality above, if we carry out the summation first overx, and then over
y andz, we obtain the estimate

ηN
3,1(s) ≤ K(|A| − 1)NP (BN,0

s = 0)
(
X̂N

0 (1)
)2

.(5.17)

For ηN
3,2(s), we begin with a calculation that uses time reversal, symmetry and

translation invariance. For anȳa ∈ A,

P
(
B̂N,x+ā/�N

s = y, τN
x (A) ≤ s

)
= P

(
B̂N,0

s = y − (x + ā/�N), B̂N,0
s = B̂N,(a−ā)/�N

s ∀a ∈ A
)

= P
(
B̂N,0

s = (x + ā/�N) − y, B̂N,0
s = B̂N,(ā−a)/�N

s ∀a ∈ A
)

= P
(
B̂N,y−ā/�N

s = x, B̂N,y−ā/�N
s = B̂N,y−a/�N

s ∀a ∈ A
)

= P
(
B̂N,y−ā/�N

s = x, τN
y (−A) ≤ s

)
.

Using this equality, we have, for any fixedā ∈ A,

1

N

∑
x∈SN

φ(x)P
(
B̂N,x+a/�N

s ∈ ξ̂N
0 ∀a ∈ A,τN

x (A) ≤ s
)

= 1

N

∑
x,y∈SN

φ(x)ξ̂N
0 (y)P

(
B̂N,x+ā/�N

s = y, τN
x (A) ≤ s

)

= 1

N

∑
x,y∈SN

φ(x)ξ̂N
0 (y)P

(
B̂N,y−ā/�N

s = x, τN
y (−A) ≤ s

)

= 1

N

∑
y∈SN

ξ̂N
0 (y)E

(
φ(B̂N,y−ā/�N

s ); τN
y (−A) ≤ s

)
.

Furthermore, sinceP(τN(A) ≤ s) = P(τN
y (−A) ≤ s) for all y ∈ SN [by (5.12)],

adding and subtractingφ(y) in the sum above gives

1

N

∑
x∈SN

φ(x)P
(
B̂N,x+a/�N

s ∈ ξ̂N
0 ∀a ∈ A,τN

x (A) ≤ s
)

= 1

N

∑
y∈SN

ξ̂N
0 (y)E

(
φ(B̂N,y−ā/�N

s ) − φ(y); τN
y (−A) ≤ s

)

+ P
(
τN(A) ≤ s

)
X̂N

0 (φ).
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Therefore,

ηN
3,2(s) ≤ 1

N

∑
y∈SN

ξ̂N
0 (y)

∣∣E(φ(B̂N,y−ā/�N
s ) − φ(y); τN

y (−A) ≤ s
)∣∣.

Now, since‖φ‖Lip ≤ K ,∣∣E(φ(BN,y−ā/�N
s ) − φ(y); τN

y (−A) ≤ s
)∣∣

≤ (2KP
(
τN(A) ≤ s

))∧ E

(∣∣∣∣φ
(
y − ā

�N

+ BN,0
s

)
− φ(y)

∣∣∣∣
)

≤ 2K

(
P
(
τN(A) ≤ s

)∧ ( |ā|
�N

+ E(|BN,0
s |)

))
.

Assembling these estimates, we obtain

ηN
3,2(s) ≤ 2KX̂N

0 (1)

(
P
(
τN(A) ≤ s

)∧ ( |ā|
�N

+ E(|BN,0
s |)

))
.

It now follows from the estimates onηN
3,1(s) andηN

3,2(s) that

ηN
3 (s) ≤ 2KXN

0 (1)

[
P
(
τN(A) ≤ s

)∧ ( |ā|
MN

√
N

+ E|BN,0
s |
)]

(5.18)
+ K|A|NP(BN,0

s = 0)
(
XN

0 (1)
)2

.

Combining (5.9)–(5.11) and (5.18) completes the proof of (5.3). Settings = ε∗
N

in (5.3) and using the kernel assumption (K1), we obtain (5.4), provided
that E(|BN,0

ε∗
N

|) → 0 as N → ∞. But this follows easily from (H1), since

E(|BN,0
ε∗
N

|2) = ε∗
NE(|WN |2). �

6. Proof of Proposition 3.4. Let T ,K,φ,A, J and 0≤ t ≤ T be as in the
statement of Proposition 3.4. Define the hitting times

T N
J = inf{s ≥ 0 :XN

s (1) > J }.
By Proposition 3.3,

sup
N

P (T N
J ≤ t) ≤ C3(K,T )J−2.(6.1)

Let ε∗
N > 0 be as in (K1)–(K3). Also, define


N(A,φs, ξ
N
s ) = 1

N

∑
x

φs(x)χN(A,x, ξN
s ) − P

(
τN(A) ≤ ε∗

N

)
XN

s (φs).

Step1. We claim that fort ≤ T ,

E

((∫ t

(T N
J +ε∗

N)∧t

N(A,φs, ξ

N
s ) ds

)2)
(6.2)

≤ 4K2T C3(K,T )J−2
∫ t

0
E
(
XN

s (1)
)2

ds.
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This inequality is easily derived. For anyā ∈ A, χN(A,x, ξN
s ) ≤ ξN

s (x + ā/�N),
and, hence,

|
N(A,φs, ξ
N
s )| ≤ 1

N

∑
x

|φs(x)|
(
ξN
s

(
x + ā

�N

)
+ ξN

s (x)

)
(6.3)

≤ 2‖φ‖∞XN
s (1).

With this inequality, Cauchy–Schwarz implies(∫ t

0
1{s > T N

J + ε∗
N }
N(A,φs, ξ

N
s ) ds

)2

≤ tP (T N
J ≤ t)4‖φ‖2∞

∫ t

0

(
XN

s (1)
)2

ds

and the claim follows from (6.1).
Step2. Because1{T N

J < s1 < T N
J + ε∗

N }1{s1 + ε∗
N < s2 < T N

J + ε∗
N } = 0,

E

((∫ (T N
J +ε∗

N)∧t

0

N(A,φs, ξ

N
s ) ds

)2)
= I1(N,J, t) + I2(N,J, t),(6.4)

where

I1(N,J, t) = 2
∫ t

0
E

[
1{s1≤T N

J +ε∗
N }


N (A,φs1, ξ
N
s1

)
(6.5)

×
∫ (s1+ε∗

N)∧t

s1

1{s2≤T N
J +ε∗

N }

N (A,φs2, ξ

N
s2

))
ds2

]
ds1

and

I2(N,J, t) = 2
∫ t

0
E

[
1{s1≤T N

J }

N (A,φs1, ξ

N
s1

)
(6.6)

×
∫ t

(s1+ε∗
N)∧t

1{s2≤T N
J +ε∗

N }

N (A,φs2, ξ

N
s2

)
ds2

]
ds1.

By (6.3), (4.17) and the Markov property,

|I1(N,J, t)| ≤ 8‖φ‖2∞E

(∫ t

0
XN

s1
(1)

∫ s1+ε∗
N

s1

XN
s2

(1) ds2 ds1

)

≤ 8‖φ‖2∞E

(∫ t

0
XN

s1
(1)

∫ s1+ε∗
N

s1

EXN
s1

(
XN

s2−s1
(1)
)
ds2 ds1

)

≤ 8‖φ‖2∞E

(∫ t

0
XN

s1
(1)ε∗

Nec̄ε∗
N XN

s1
(1) ds1

)

= 8K2ε∗
Nec̄ε∗

N

∫ t

0
E
(
XN

s (1)
)2

ds.
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Now considerI2(N,J, t). Let 0≤ s1 < s2 < t satisfys1 + ε∗
N < s2 < T N

J + ε∗
N ,

in which caseXN
s2−ε∗

N
(1) ≤ J . Then

∣∣E(1{s1 < T N
J }1{s2 < T N

J + ε∗
N }
N

(
A,φs1, ξ

N
s1

)

N

(
A,φs2, ξ

N
s2

))∣∣
≤ E

(
1{s1 < T N

J }1{s2 < T N
J + ε∗

N }∣∣
N

(
A,φs1ξ

N
s1

)∣∣
× ∣∣EXN

s2−ε∗
N

(

N

(
A,φs2, ξ

N
ε∗
N

)∣∣))
≤ E

(
1{s1 < T N

J }1{s2 < T N
J + ε∗

N }∣∣
N

(
A,φs1, ξ

N
s1

)∣∣ηN,J

(
A,φs2, ε

∗
N

))
≤ ηN,J

(
A,φs2, ε

∗
N

)
2‖φ‖∞E

(
XN

s1
(1)
)
,

the last by (6.3). By these estimates we have

I2(N,J, t) ≤ 2
∫ t

0
ηN,J (A,φs, ε

∗
N)ds 2K

∫ t

0
E
(
XN

s (1)
)
ds.(6.7)

Now for the proof of (3.2). By the above bounds, and Proposition 3.3 and
Lemma 5.1, ifā, εN andJ are as in Lemma 5.1, then fort ≤ T ,

EN(A,φ,K, t)

≤ C(K,T )

[(
J−2 + ε∗

Nec̄ε∗
N
) ∫ T

0
E
(
XN

s (1)2)ds

+
∫ T

0
ηN,J (A,φs, ε

∗
N)ds

∫ T

0
E
(
XN

s (1)
)
ds

]

≤ C(K,T )

[
J−2 + ε∗

Nec̄ε∗
N + J 2

(
εN |A| + σN(A) ∧

(
ā

�N

+ εN

))]
,

and we are done.
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