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SECOND-ORDER FLUCTUATIONS AND CURRENT ACROSS
CHARACTERISTIC FOR A ONE-DIMENSIONAL
GROWTH MODEL OF INDEPENDENT
RANDOM WALKS!

BY TIMO SEPPALAINEN
University of Wisconsin

Fluctuations from a hydrodynamic limit of a one-dimensional asymmet-
ric system come at two levels. On the central limit seal? one sees initial
fluctuations transported along characteristics and no dynamical noise. The
second order of fluctuations comes from the particle current across the char-
acteristic. For a system made up of independent random walks we show
that the second-order fluctuations appear at se&fé and converge to a
certain self-similar Gaussian process. If the system is in equilibrium, this
limiting process specializes to fractional Brownian motion with Hurst pa-
rameter ¥4. This contrasts with asymmetric exclusion and Hammersley’s
process whose second-order fluctuations appear at s&aleas has been
discovered through related combinatorial growth models.

1. Introduction. An interface model defined in terms of a height function on
an integer lattice is a stochastic process= {o,(x):x € Z¢}, where the value
o:(x) is interpreted as the height of the interface over sit€he random variables
oy(x) move up and down according to random rates whose momentary values
depend on the height values in some neighborhood around. giteydrodynamic
scaling limit is a type of law of large numbers for these systems. The conventional
statement is that under a suitable scaling of space and time, the entire space-time
random evolutior{o; (x) : x € Z¢, t > 0} converges to the solution of a differential
eqguation.

When the system is asymmetric, in the sense that there is an average drift
either up or down, the typical law of large numbers for the system is of the
following form. The result is for a sequence of procesggsvheren =1,2,3, ...
is the scaling parameter. The statement is that as oo, the random position
n—lo” ([nx]) converges to a functiom(x,r) that solves a Hamilton—-Jacobi

nt

equation

(1.1) u; + f(Vu) =0.
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760 T. SEPPALAINEN

In the macroscopic descriptiory, gives the local velocity of the height as a
function of the local gradient. A necessary hypothesis for this type of law of large
numbers is that a8 — oo, the sequence of scaled initial State‘slcr(’)’([ny]) in
some sense converges to a functigly). The functionug then serves as the initial
data for the equation; + f(Vu) = 0. The equation andg uniquely determine
u(x,t) at all later timeg. Depending on the situation, there might be additional
assumptions on the distributionsaff. Examples of results for various models can
be found in [12, 14, 16, 17, 19]. For general accounts of hydrodynamic limits, we
refer to the monographs [11] and [20], and to the lectures [4] and [21].

The fluctuation question for asymmetric systems has so far found answers
only in the one-dimensional situation, where the following picture has emerged.
Suppose the initial conditions satisfy a central limit theorem of the type

og ([ny]) — nuo(y)
Jn
with a continuous limiting procesg. This situation arises naturally when the

initial incrementsyy (x) — o (x — 1) are independent with slowly varying bounded

means and variances. Then at later times a weak limit

o), ([nx]) —nu(x,t)
Vn

holds. The process(x,t) is a deterministic function of the initial procegs.

More specifically, the valué(x, r) is determined by the valugg(y), such that

a generalized characteristic of the p.d.e. (1.1) emanatirig, & reachegqx, 1).

Qualitatively, a crucial feature is that there is no dynamical noise visible at this

scalenl/2. These types of results have been proved for the exclusion process under

various hypotheses [7, 8, 13] and for Hammersley’s process [18].

The motivation of the present paper is to describe fluctuations that lie “beyond”
the trivial fluctuations transported by the characteristics that appear in (1.2). This
second level of fluctuations appears when the first-order fluctuations of (1.2)
are suitably subtracted off or when the initial conditions are deterministic. In
the asymmetric exclusion and Hammersley settings, one should find some kind
of fluctuations at the:'/3 scale. The results of Baik—Deift-Johansson [2] and
Johansson [10] can be interpreted as fluctuation results for Hammersley’'s process
and the exclusion process with special deterministic initial configurations. So
for exclusion and Hammersley's process, the aim would be to generalize those
n/3 results to other initial conditions. What is special about exclusion and
Hammersley's process is that these “second-order” fluctuations arise through
natural growth models that are amenable to the powerful combinatorial and
analytic machinery of [2] and its descendants.

In the present paper we start another direction, the investigation of these
phenomena in other models besides exclusion and Hammersley's process. Two
questions arise. Do the trivial/? fluctuations transported by characteristics

— ¢o(y), yER,

1.2 —C(x,1)



CURRENT ACROSS CHARACTERISTIC 761

appear in other asymmetric models? What then would be the second-order
fluctuations, especially if there is no combinatorial growth model present that
would lead to thex/2 fluctuations and the random matrix connections?

A simple model is one where the increments of the height function come from
independent random walks. This case we analyze in the present paper. The initial
increments are taken independently with slowly varying means and variances.
Exactly as for exclusion and Hammersley, on the central limit seifewe have
the initial fluctuations transported by characteristics. Then we find the next order
of fluctuations on the scale/%. In the limit these fluctuations are described by
a certain Gaussian procegsy, r), where(y, 0) is the initial point of the (now
unique) characteristic that reachi@s¢). The covariance of (y, -) is determined
by the mean and variance of the initial increments around the macroscopig point
Imprecisely speaking, the random height expands as

o ([nx]) ~ nu(x, 1) +nY?¢(x, 1) + nY4Z (5, 1).

The processeZ(y, -) are independent for distinct initial poinis

In the special case when the height increments are in equilibrium, for ayixed
the proces« (¢t) = Z(y, t) specializes to fractional Brownian motion with Hurst
parameter%. These second-order fluctuations turn out to be the same as the
particle current across a characteristic of the macroscopic equation. Hence, the
juxtaposition in the title of the paper.

In the next section we describe the random walk model, its hydrodynamic
limit and the two levels of fluctuations. For the sake of comparison, we include
a brief section on the fluctuation picture of Hammersley's process. We show that
for Hammersley’s process the second-order fluctuations are, at most, of order
n1/3logn. This bound is valid also for shock locations. The last two sections prove
the theorems. In the proof§;, Cp, C1, ... denote constants whose actual values
may change from line to line. The set of natural numbef$is{1,2,3,...}.

2. The random walk model. We consider a model of an interface whose
height differences between neighboring sites are defined by independent random
walks onZ. The state of the system at timés a height functiors, : Z — Z. The
height function is nondecreasing in space, so the increments

(2-1) n:(x) =0r(x) —or(x — 1)

are nonnegative integers.

The randomly evolving height function is constructed as follows. {l&tr) :
i € J} be a countable collection of independent continuous-time random walks
on Z. The jump rates of the random walks are given by a probability kernel
{p(x):x € Z}. In other words, the assumption gfix) is

Y p=1

xeZ
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and the common transition probability of the random walks is

ootk
PIXi(s +1) = y|Xi(s) = x] = py(x. ) = Z%p“)(y ),
k=0 :
where
PP@= Y paDpx)-px)

X1+x2+-+x(=2

is thek-fold convolution of the kernep(x).

Given an initial height functiorrg = {og(x): x € Z} defined on some proba-
bility space, define the initial incremenig(x) = og(x) — op(x — 1). Choose the
initial positions of the random walks so that siteontainsng(x) particles:

(2.2) D 1UX;(0) = x} =no(x).

ied
Once the initial pointdX;(0):i € 4} have been specified, define the subsequent
evolutions{X;(t) — X;(0):i € 4,r > 0} as an i.i.d. collection of random walks
on this same probability space, independertgpfDefine the current, (x) as the
(net) number of particles that have moved frémoo, x] to [x + 1, co) in time
interval [0, ],

Jx) =Y UX;0) <x <X;(O} — Y _UX;(1) <x < X;(0)}.

The height function at timeis then defined by
(2.3) o1 (x) = oo(x) — Ji(x).

In other words, the interface height.atmovesdown one step with every particle
that jumps from(—oo, x] to [x + 1, 00), andup one step with every particle that
does the opposite. The increment variabjgs) defined by (2.1) also serve as the
occupation variables of the random walks: from (2.1)—(2.3) one can derive

(2.4) ne(x) =Y 1{X; () =x}.

We can describe the evolution of directly in terms of the rates, without
reference to the random walks. Given a height functior(a nondecreasing
functionZ — Z), andx, ¢ € Z, define a new height function®-* by

{U(y)—l, x=y=sx+t-1 if £>0;
xtpoy_ ) Loy, if y<xory=x-+¢, o
@8) M=\ ;)41 xre<y<x—1 i
{ . if £<0.
o(y), if y<x+£ory>x,

The dynamical rule for the height process is this: if the current statetisen for
eachx € Z and{ € Z, at ratep(£)(o (x) — o (x — 1)), the process jumps from
to o™ ¢, If £ =0, there is actually no change*° =o.
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Now some assumptions. We give them in three groups, first the assumption
on the kernelp(x) and then the assumptions on the sequence of initial height
functions{o;} that determine the hydrodynamic limit setting.

ASSUMPTION A. For the random walk kernel, we assume that, for some
§ >0,

(2.6) Y e’ px) <oo  for o] <.

xeZ

The purpose of Assumption A is to enable us to use standard large deviation
bounds on the random walks.

Assume given a sequence of initial height functiegjs random or determinis-
tic, defined on some probability space. The positive integer parametértend
to oo in the results. Define initial occupation variablggx) = o (x) —og (x = 1).

ASSUMPTIONB. Assume that for some nondecreas@yfunctionug on R,
and ally e R,

(2.7) nleoon—lag([ny]) =uo(y)  in probability.

Assumption B is for the hydrodynamic limit. For the fluctuation results we need
stricter control of the initial conditions, as in the next assumption.

AssUMPTIONC. For each, the initial occupation variable@)y(x) :x € Z}
are independent, with a uniformly bounded sixth moment:

(2.8) sup E[n8(x)°] < cc.

neN,xeZ

Let
po(x) = Eng(x) and vg(x) = Var[ng(x)]

be the mean and variance of the initial occupation variagie), x € Z. Letug be
the function specified in Assumption B, s&f = u, and letvg be another given
nonnegative function oR. Assume bothpg andvg are bounded. The meap§(x)
and variances(x) approximate the functionsg andug in the following precise
sense:

For eachy € R, there exist positive integefs= L (n) such thai=1/*L(n) — 0,
and for any finite constart,

L(n)

(29) lim  sup ' = > pg(nyl+m + j) — po(y)|=0.
Im|<A/nTogn (n) j=1

The same assumption holds whefhand pg are replaced byg anduwp.
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Throughout the papel, = L(n) denotes the quantity specified in the assump-
tion above. The awkwardly complicated assumption (2.9) is made to accommodate
both random and deterministic initial conditions. Given a funcpgthe expecta-
tion of a randomyg (x) can, of course, agree exactly wjth(:), but a deterministic
1 (x) cannot unlespo(;;) is integer-valued. Here are two basic examples of initial
conditions that satisfy Assumptions B and C.

ExAMPLE 2.1 (Random initial conditions). The functionspg = ug and vo
are bounded, nonnegative and satisfy a local Hélder property: for each bounded
interval[a, b], there exisi8 = B(a, b) > 1/2 andC = C(a, b) < oo such that

(2.10) |po(x) — po(y)| + [vo(x) — vo(y)| < Clx — y|? forall x, y € [a, b].

For each, let {ng(x) :x € Z} be independent, satisfy assumption (2.8) and have

X X
(2.12) Eng(x) = po<;> and Vafny(x)] = v0<;>.
Additionally, the variables{og(0)} are chosen so that (2.7) holds fer= 0.
Then (2.7) is satisfied for all € R.

EXAMPLE 2.2 Deterministic initial conditions). po = ug is bounded, non-
negative and satisfies the Holder condition (2.10) vgite B(a, b) > 1/2, andvg
is identically zero. Define deterministic initial occupation variables by

e )] ()]

where, as throughout the pappr] = maxk € Z: k < x} denotes the integer part
of a realx. The functionug is nondecreasing so eagkj(m) is a nonnegative
integer. And finally, the variablegr; (0)} can be random or deterministic, but must
satisfy (2.7) fory =0.

We set the stage with the hydrodynamic limit and the first-order fluctuations.
The first two moments of the random walk kernel appear in various parts of the
results. We denote these by

b= pr(x) and «2= szp(x).

Let
(2.13) u(x,t) =uo(x — bt).
It is the solution of the linear transport equation

(2.14) u; +buy =0, u(x,0) =ug(x).



CURRENT ACROSS CHARACTERISTIC 765

THEOREM 2.1. Assume Assumptions A—C. Then, for each (x,7) € R x
[0, 00),

(2.15) nleoon—la,yt([nx]) =u(x,t)  inprobability.

Given (x, 1), let y =x — bt. Then

o ([nx]) —nu(x, 1) og([nyl) — nuo(y)
vn vn

Furthermore, assume the specific situation of Example 2.1 and the normaliza-
tion up(0) = oy (0) = O for all n. Then it is possible to construct the processes o'
on the same probability space with a two-sided standard Brownian motion B(-)
such that these limits hold in probability, for all (x, ¢), y = x — bt:

(2.17) lim_ “gf([”x])\/_ﬁ””(x’ D_p ( /O ” 0(s) ds>.

A two-sided Brownian motiorB(-) is constructed by taking two independent
standard Brownian motion8; and B2 on [0, co) and setting

Ba(1), t >0,
—Bo(—1), t <0.

(2.16) nleoo{ } —0 inprobability.

B(t) = {
The integralfg vo(s)ds in (2.17) has to be interpreted with a sign, in other words,

5 0
f vo(s)ds = —/ vo(s)ds fory <O0.
0 ¥

The characteristics of (2.14) are straight lines with slépesox = y + bt
is the characteristic starting &p, 0). Limits (2.16) and (2.17) say that on the
central limit scalex/2, fluctuations from the hydrodynamic limit consist of initial
fluctuations rigidly transported along the characteristics, without any contribution
from dynamical noise.

The purpose of this paper is to describe the “second-order” fluctuations that
appear beyond the trivial fluctuations of Theorem 2.1.F&R. Let

(2.18) Y, (t) = o,,([ny] + [nbt]) — og ([ny]).
Sinceu(y + bt, t) = up(y), also
(2.19) oy, ([ny] + [nbt]) — nu(y + bt, t) = og ([ny]) — nuo(y) + Yy (t).

So Y,(¢) represents the difference between the fluctuation experienced by the
process at space-time poipt+ bz, t) and the fluctuation at the initial poig, 0)
of the characteristio:~1/2Y,,(r) is exactly the difference that appeared in (2.16).
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There is another way to look &j, (¢), directly in terms of the particles. Writg"
for the current of process and X7 (¢) for the random walks in the construction
of o/

Y, (t) = 0, ([ny] + [nbt]) — og ([ny])
= oq ([ny] + [nbt]) — Iy ([ny] + [nbt]) — o ([ny])
[nyl+[nbt]
= Y upim) — I ((ny]+ [nbr)).
m=[ny]+1
Switching back to the random walks and cancelling gives

Ya(t) =Y UX(0) > [nF]+ 1, X} (nt) < [nF] + [nbt]}

l

(2.20)
— > UX[(0) < [n3], X}'(nt) > [n3] + [nb1]}.
1
This counts the net number of particles that have moved from the right side of the
characteristic to the left side during time interf@lnz]. In other wordsy,, () also
represents the negative of the current across the characteristic.

Our main theorem is the distributional limit df,. Assumption B is not
relevant for the limit ofY,,. The previous paragraph already showed that even
thoughY, (r) was defined in terms of the height functions in (2.18), it is actually
determined by the increment procegs. We included Assumption B in the
earlier discussion only to give the complete hydrodynamic picture. Also, the
approximation assumption (2.9) is needed only for the particuldrat appears
in the definition ofY,,.

THEOREMZ2.2. Fixj € R and define Y, (¢) asin (2.18). Assume Assumptions
A and C. Then asn — oo, the process n~1/4Y,,(-) converges weakly on the space
DR[O, co0) to the mean-zero Gaussian process Z(-) with covariance

EZ(s)Z(t) :\/g{po(y)(\/s +1—AsVi—sAtl)
+ 00N (Vs + 1 — /s +1)}.

For the increment process = {n;(m) :m € Z}, i.i.d. Poisson distributions are
equilibrium distributions. If the mean of the Poissompighenpg(x) = vo(x) = p
for all x € R. The covariance in (2.21) then simplifies to

(2.22) EZ(s)Z(t):p\/g(\/E—{—\/;—«/t—s) fors <t.

This is the covariance of fractional Brownian motion with Hurst paraméter 7,

normalized byE Z (1)? = p/2x2/7 . Sandard fractional Brownian motion would
haveE Z(1)? = 1. Let us state this special case as a corollary.

(2.21)
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COROLLARY 2.1. Let n, be an equilibrium process whose occupation
variables {n,(x):x € Z} arei.i.d. Poisson with mean p. Let n! = n, for each n.
Then n~1/4Y,,(-) converges weakly on the space Dr[0, co) to fractional Brownian
motion with covariance givenin (2.22).

Another special case worth highlighting is that of deterministic initial height
functions described in Example 2.2. In that case the limit in (2.17) is zero
because the second fraction in (2.16) vanishes in the limit. (2.18) gives the actual
fluctuations from the hydrodynamic limit becausg([ny]) is deterministic. We
also omit the short derivation of this corollary from Theorem 2.2.

COROLLARY 2.2. Let ug beanondecreasing C? function on R with bounded
derivative pg. Assume pg satisfies the local Holder condition (2.10). Define
determinitic initial height functions by oy (m) = [nuo(%-)1, m € Z. The function
vo iISnow zero. Fix y € R. Then the process

o (5] + [nbt]) — nu(5 + bt, 1)
{ t i > 0}

converges weakly on DR[O, co) to the mean zero Gaussian process Z(-) with
covariance

EZ(5)Z(t) = po(3) /g—;(«/s Ti-i—s) fors<t.

Fractional Brownian motion has stationary increments, but the general process
Z () with covariance (2.21) does not unlgggy) = vo(y). One can check that for
afixedh > 0, E[(Z(t +h) — Z(1))?] is strictly decreasing withif vo(¥) > po(¥),
and strictly increasing ifg(y) < po(¥). A bound

E[(Z(t) — Z(9))?] < C(t — 5)V/?

is valid for all 0< s < ¢. Since the increment is mean-zero Gaussian, it follows
from Kolmogorov’s criterion that the procegshas continuous paths.

The proces« is self-similar with indelel, which means thaZ (at) : t > 0} 4
(a¥*Z (1) :t > 0}, as is immediate from the form of the covariance.

Next we address the joint distribution of proces3gé) from several initial
pointsy. Write Y, (y, t) for the random variable defined by (2.18) or, equivalently,
by (2.20) to display its dependence pnWrite Z (¥, ¢t) for the Gaussian process
with covariance given in (2.21).

THEOREM 2.3. Assume Assumptions A and C. Let y3 < yo < -+ <
be points on R. Then as n — oo, the joint process n=Y4(Y, (31, ), Yu(¥2, -),
..., Ya(3k, -)) converges in distribution on the space Dg«[0, c0) to a vector
(Z(3y1, ), Z(y2, ), ..., Z(Fx, -)) of independent DR[O, co)-valued components.
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Remark about mean-zero randomwalks. We have made no assumption on the
meanb of the random walk. The results are true alsodet 0. However, in this
case the convergence Bf does not relate to the hydrodynamic limit in the same
way because Theorem 2.1 is not the correct limit. The relevant hydrodynamic limit
takes place on the time scalé and the limiting evolution is governed by the heat
equation. Fow = 0, Theorem 2.1 is completely trivial becauséx, 1) = ug(x)
andy = x.

Remark about fractional Brownian motion with H = %1. There is, of course,

a result for Brownian motion that corresponds to the random walk result of
Theorem 2.2. We state here the equilibrium version.ALetO. Let{B;(¢):i € 4}

be a countable collection of independent standard Brownian motioRsvaimose

initial locations (and, consequently, the locations at any fixed time) are those of a
homogeneous, ratePoisson point process ¢t Fix y € R. Let

Vi)=Y UBi(0) <y, Bi(1) > y} = Y UBi(0) >y, Bi(1) <y}
i i
be the net current of Brownian particles across the peimturing time inter-
val [0, t]. To have sample paths iDr[0, co), we should replac, with the right-
continuous modificatiorY;r defined byYf(t) = Y, (t+). This change does not
affect finite-dimensional distributions. The covariance&’pis

A
\/T_n(\/gﬁ-«/;—\/l—s) fors <t.

THEOREM2.4. As\ — oo, the process A~ Y/2y .t () convergesin distribution
on the space Dr[0, oo) to fractional Brownian motion Z(-) with covariance

1
E(ﬁ+ﬁ—ﬂ) fors <t.

The calculations of this paper can be adapted from the random walk situation to
the Brownian situation and we omit the explicit proof.

Before turning to the proofs, we want to compare the independent walks with
Hammersley’s process.

EY) (s)Y).(1) =

EZ($)Z(t) =

3. A bound on second-order fluctuationsin Hammersey’sprocess. In this
section we look at Hammersley’s process from the same perspective from which
the previous section studied independent random walks. The difference is that now
there is genuine interaction among the patrticles. The hydrodynamic equation is a
nonlinear Hamilton—Jacobi equation. The characteristics of the equation can meet
and form shocks. Currently, we cannot prove the equivalent of Theorem 2.2 for
Hammersley’s process. We can only give bounds on the tails of the second-order
fluctuations which suggest that if there is a limit, it should be ot scale.
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The state of Hammersley's process at tiniez, = (z,(i) :i € Z). Depending on
the preferred interpretation, varialidi) € R is the location of particle labelgdat
timer or the height of the interface over sitélhe dynamics preserves the ordering
7z:(i—1) < z,(@). Particles jump to the left, according to this rule. If the state at time
tisz, = (z;(i):i € 2), then particle has an instantaneous rat&i) — z,(i — 1) of
jumping, independently of all other particles. And when partiglemps, its new
location is chosen uniformly at random from the intergali — 1), z;(i)). This
happens independently for all particles

This process can be defined in terms of a special graphical construction that
utilizes the increasing sequences in a space-time Poisson point process, see [1, 15]
or [18].

The process of increment variablgs= (1, (i) :i € Z) is defined as before by

n(i)=z/(i) —z, (i — D),

and is also known as the “stick process.” The dynamicg afperates as follows.
For eachi € Z, at rate equal tg)(i), this stick-breaking event happens: pick
uniformly distributed or{0, n(i)], and replace the statewith the new state

n(i)_us J:lv
=0+ D, j=itl
n(j). j#ii+ 1.

In other words ;- *+1 represents the stick configuration after a piece of gize
has been moved from siieto i 4+ 1. This process can be rigorously defined on a
certain subspace of the full product sp4deso)?, see [15] for details.

Next we describe one set of hypotheses under which the hydrodynamic limit and
the trivial fluctuations (1.2) can be proved. Then we state a bound on the size of the
second-order fluctuations. The setting is again that of a sequence of pragesses
neN.

AsSsuMPTIOND. Assume given a nondecreasing Lipschitz functigron R
and a bounded, continuous, nonnegative functipon R. For alln, z;(0) = 0 and
the initial increment variablel; (i) : i € Z} are mutually independent with means
and variances

E[ng(i)] = nuo(}i—) - nuo(l

Furthermore, assume uniformly bounded fourth moments:

) and Va[ng(i)]:vo(i).
n n

sup E[n(i)* < oo.

neN,ieZ

Letu(x, t) be the unique viscosity solution of the Hamilton—Jacobi equation

3.1) w4 w)?=0,  u(x,0)=uox).
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Equivalently,u is defined forr > 0 by the Hopf—Lax formula

(x :hy)2 }

The hypotheses guarantee that there exists a nonempty compaatxset C
(—o00, x] on which the infimum in (3.2) is achieved:

(x—y)z}

(32) utr.n) = inf fuo(y) +

4

A point (x, r) is ashock if I(x,7) is not a singleton. Equivalently,(x, 1) is not
differentiable in thex variable at(x,t). For a fixed: > 0, there are, at most,
countably many shocks. Shocks cannot happen for the linear equation (2.14) of
independent particles, because its characteristics are parallel straight lines.

Here is the starting point: the hydrodynamic limit and the fluctuations
transported by the characteristics.

I(x,1)= {y <x:iu(x,t) =uo(y) +

THEOREM 3.1. Assume Assumption D. Then, for each (x,7) € R x [0, 00),

(3.3) nleoon—lzz,([nx]) =u(x,t)  inprobability
and

[z (nx]) —nux, 1) 7o([ny]) — nuo(y) } _
(3.4 nll_)moo{ NG yeIIQI,t) NG =0
in probability.

It is possible to construct the processes z}' on the same probability space with a
two-sided standard Brownian motion B(-) such that theselimits hold in probability,
for all (x, 1):

2y ([nx]) — nu(x, 1)

y
. li = inf B .
(3.5) Jim NG yellrgx’t) (fo vo(s)ds)

This theorem is proved in [18]. The hypotheses for (3.5) in [18] are more
stringent than the ones used above (in [18] the initial increments are assumed
exponentially distributed) and the conclusion is stronger (a.s. convergence). The
argument in [18] gives convergence in probability in (3.5) under the fourth moment
bound included in Assumption D.

The infimum in (3.4) and (3.5) is in some sense the same infimum that appears
in the Hopf-Lax formula (3.2), which is inherited by a particle-level variational
formulation (5.2).

The result of Baik, Deift and Johansson [2] gives the fluctuations for Hammers-
ley’s process from the following particular deterministic initial statgi) = O for
i <0 andzo(i) = oo for i > 0. In this situation the number of particles in space
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interval (0, x] at timet equals the maximal numbér(x, ) of space-time Pois-
son points on an increasing path in the rectarifler] x (0, ¢]. This connection
comes from the graphical construction of Hammersley’'s process. The distribu-
tional limit for n=Y3{L (nx, nt) — 2n+/x1 } in [2] can be translated into a limit for
n~Y3{z,,([nx]) — nx?/(4t)} for x,t > 0.

We saw for the independent random walk model that the scale of the fluctuations
from deterministic initial conditions is the scale of the second-order fluctuations.
So, given the Baik—Deift-Johansson result, we would expect the next order of
fluctuations for Hammersley’s process at seal€’. To capture these fluctuations,
fix (x,1) € R x (0, o0) and define

Yy = {z,([nx]) —nu(x, )} = inf {z5([ny]) — nuo(y)}-
yel (x,1)
We shall prove a bound on the tails Bf that suggests?/2 as the correct order.
We need one more assumption. Givens), let

N2
B(y) = uo(y) + 4ty )

be the quantity minimized overin the Hopf—Lax formula (3.2).

ASSUMPTIONE. Given(x,t), the minimizers in (3.2) are uniformly quadra-
tic, in other words, there exist, § > 0 such that

(36) D(y) — O(F) = c1(y — §)°
forall y e Randy € I(x,t) such thaty — y| <.

THEOREM 3.2. Let (x,7) € R x (0, 00). Under Assumptions D and E, the

sequence
Y, ]
{n1/3logn = l}

istight.
We turn to proofs, beginning with the random walk model.

4. Proofs for the random walk model. The main work is in proving
Theorem 2.2. Along the way we derive an estimate that takes care of Theorem 2.3.
Last we explain how Theorem 2.1 follows. We start by proving the convergence of
finite-dimensional distributions to the correct limit, and then prove tightness at the
process level.

Using (2.20), writeY,, (1) = Y, 1(t) — Y, 2(t), where

Yo1(t) =Y UX[O0) > [n§] + 1, X} (nt) < [n3] + [nbt]} and

1

(4.2)
Yo2(t) =) UX[(0) < [ny], X (nt) > [ny] + [nbt]}.
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Y,.1(t) and Y, 2(¢r) represent contributions of slow and fast random walks,
respectively. Next write

Yn(t) = (EYn,l(t) - EYn,Z(t))
+ (Yu1(t) = EYy 1(t)) — (Yo 2(1) — EYy 2(1)).

We look at the behavior of these three terms on the scHfe Note thatY,, 1(r)
andY, »(¢) are independent of each other.

(4.2)

4.1. Convergence of finite-dimensional distributions.

PROPOSITION4.1. Fix N time points
O<sn<tr<---<ty.
As n — oo the vector n=Y4(Y,,(t1), Y, (r2), ..., Yu(tn)) converges in distribution

to the mean-zero Gaussian random vector (Z(r1), Z(t2), ..., Z(ty)) with the
covariance defined in (2.21).

ProOOF SinceY, (0) is identically zero, we may as well assume that O.
By the Cramér-Wold device, it suffices to show the convergence of the linear
combination

N
(4.3) n~ N0, Y, (1)
i=1
for an arbitrary vectoé = (01, ..., 0y) € RY and arbitraryN e N.
In Lemma 4.6 below we show that Y4EY,, (1) = n=Y4(EY, 1(t) — EY, 2(1))

vanishes ag — oo. Using the decomposition (4.2) and ignoring the first term that
vanishes, what we actually prove is the weak convergence of the difference

N N
(@.4) n Y6, (Ya 1) — EYn 1)) —n 4 Y 6 (Y 2(6) — EYy 2(1).

i=1 i=1
Since the two sums above are independent, we can treat them separately. We shall
show below that they converge to mean-zero normal distributions with variances

N 0
of = ZQiZ«/K—Z{po@)/ P(B; >z)P(B;, <z)dz
i=1 -
0 2
+ vo(i)/ P(B; <z) dz}
0
@5 42 ¥ aovmlwG) [ [P >2)P(E, <2)
1<i<j<N -

— P(Bli >z Z Btj)] dZ

0
+u) [P, =2)P(B, =2dz)
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and

N o
o =3 02 Re| o) [ P(By > 2)P(B, <) d:
i=1
+ v0(§) /OOO P(B, > z)zdz}

@8 +2 Y oo vRlwe [ [P(B>2)P(B, <2)

1<i<j<N

— P(B;, >z > By;)]dz

1) [ P8, > 2)P(By > 2)dz).

B; above stands for standard one-dimensional Brownian motion. The quantities
o? anda? are actually equal. Their different formulas connect to the calculations
by which they arise in the proof. The limit of (4.3) is then a centered Gaussian
with varianceo? + 0. To evaluate this sum, note that the terms wigliy) add

up to integrals ove(—oo, co), while the terms withyg(y) are actually equal. We
leave the proof of the next lemma to the reader (calculus and Fubini’'s theorem are
needed).

LEMMA 4.1. For 0 <s <, we have these formulas:

o _ NS+t
@.7) /_OOP(BS > OP(B = de= .
00 s+t = s+t
4.8 P (B P(B dz =
(4.8) /0 (Bs > 2)P(B; > z)dz o
and
o0 _At=s
(4.9) /_OOP(BS>zZB,)dz— Nz
From this lemma and the definitions (4.5)—(4.6), we get
N _ t; _ «/?—1 t;
o2 +02= ;9,-2\/@{,00()’)% + vo(}’)%}
NIRRT «/fj—fi>
2 0,0; —
+ 1§i<ZJ_SN ,\/Kz{po()’)( o o
_ \/E+\/ﬁ—4/li+tj}
+ vo(y) Nz

= Y 60,EZ(t)Z(1)),
1<i,j<N
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where the last equality comes from (2.21). Thus, the linear combination in (4.3)
converges in distribution to the linear combinat@ﬁ’zleiZ(t,-). Since the vecta?
was arbitrary, Proposition 4.1 follows.

Equations (4.7)—(4.9) can be manipulated to show that the functions r —

Jsvi—sAtand s+t — /s +1 are positive definite. This ensures that

(2.21) is a legitimate covariance of a Gaussian process for all nonnegative values

po(y) andvg(y).
It remains now to prove the weak convergence of the sums in (4.4) and the

vanishing of the mean—Y4EY, (¢) in the limit.

LEMMA 4.2. As n — oo, n Y4 N 6, (Yua(t) — EYn 1(t;)) converges
weakly to a mean-zero normal distribution with variance al defined by (4.5).

Lemma 4.2 will be proved after some preliminary steps. Relabel the random
walks so thatX,, ;(-) is the jth random walk that starts at sitey] + m. Then

oo Nonyl+m)

Vo1 =>Y Y. UXpj(nt) = Xp j(0) <[nbt] —m}.
Since the random walks are independent of the initial occupation numbers

(4.10) EY,1(t)= Y pg([ny)+m) - P{X(nt) < [nbt] —m},
m=1

whereX (-) represents a random walk with rategc) starting at the origin.
Write

n YY1 — EY,1(0) = Y Un(d),

with mean zero summands

o ((nyl+m)

Un(@)=n""* 3" UXp j(11) = Xy j(0) < [nbt] — m)
j=1

“YApE((nF] +m) - P{X (nt) < [nbt] — m}.

For fixedn andt¢, the variablegU,, (¢) : m > 1} are independent. Abbreviate

N
ﬁm = ZQZUm(tl)
i=1

Rearrange as follows:
oo N

N
n A0 (Y1) — EY, 1)) = Y Y 6iUn(t) = Z U, =S1+ S,

i=1 m=1li=1 m=1
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where
[r(my/nl oo .
S1= Z U, and S>= Z U,,.
m=1 m=[r(n)/n]+1

We shall apply the Lindeberg—Feller theoremStoand show thass, — 0 in L2,
To this end, we make(n) ' oo sufficiently slowly. Let

HM)= sup E[ngx)21{ngx) = M}].

n>1,xeZ

H(M) — 0 asM — oo by assumption (2.8). Now choosén) = o(,/logn) so
thatr(n) / oo while
(4.11) r(n)H(nY® — 0.

The conditionr(n) = o(y/logn) is imposed so that later we can use assump-
tion (2.9). _
We first showE S — 0. S, is a sum of independent mean-zero tefijs and so

00 _ N oo
Es?2= > EUZ<I012Y. Y. EUZmw).
m=[r(n)y/nl+1 i=1m=[r(n)ﬁ]+1

We wrote||0] for the Euclidean norm and used the Schwarz inequality. S\ce
is fixed it suffices to show that for a fixed

o
. 2 _
(4.12) lim > EUZA(t) =0.
m=[r(n)/n]+1

Recall that the variance of a random sdip = Zle Z; with i.i.d. summands
Z; independent of the randoii is

(4.13) Var[Tx]= EK -VarZy + (EZ1)? - VarK.

The variance of the indicatot{X (nt) < [nbt] — m} is P{X(nt) < [nbt] —
m}P{X (nt) > [nbt] —m}. X (nt) is a sum of a Poisson() distributed number of
independent jumps, each jump distributed accordifg{®)}. Hence, the variance
of X(nt) is ntkp. By Donsker’s invariance principle, the proceS8X (nt) —
[nbt])//nk2:t > 0} converges weakly to standard one-dimensional Brownian
motion.

By the definition ofU,, () and (4.13),

ng((nyl4-m)
E[U,ﬁ(z)]:Var[n—l/“ > 1{Xm,j(m)—xm,j(0)g[nbr]—m}]
j=1
(4.14) =n"Y2pl([n7] + m) P{X (nt) < [nbt] — m}P{X (nt) > [nbt] — m}

+n Y298 (3] + m) P{X (nt) < [nbt] — m)?.
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In particular, we get the bound
(4.15) E[U2(1)] < Cn~Y2P(X (nt) < [nbt] — m)

by the uniform bound (2.8) on the moments.

By standard large deviation theory and assumption (2.6)-asx0, the random
walk X (s) has a rate functiod which is convex and quadratic around its unique
minimum atb. Consequently, for arbitrarily smadl > 0, there exists a constant
0 < K < oo such that

2
(4.16) Hb+@z:KZ’ 2l < e,
K|z|, |z| > o

The rate function gives the bounds

P{X(s) <sb—su} <expl—sI(b—u)}
and

P{X(s)=sb+su} <exp{—sI(b+u)}

for all u > 0 ands > 0. Even though a large deviations rate function is an
asymptotic notion, these bounds are valid already for fiitby virtue of
superadditivity. We use these first in the form

m
P{X(nt) <[nbt] —m} < exp{ —nt1<b — —)}

nt
(4.17) 5
m
< eXp{—K—}, 0<m < nta,
= nt
exp{—Km}, m > nto.

Consequently, applying (4.15) and (4.17),

8]

> EUn0?
m=[r(n)/n1+1
[nta] 00
<cn™¥2 3 expl—KkmP()y ™+ Cn7V2 Y exp(—Km)
m=[r(n)/nl+1 m=[nta]+1

o —K11x2 —1/2 —Kant
<C e dx + -n e .

r(n) 1—e K
This vanishes as — oo due tor(n) — oo. We have proved (4.12).
Next follows the application of Lindeberg—Feller $g. Two things need to be
checked, namely, that

ONZ
(4.18) lim_ > E[U2{|Un| = e}]=0

m=1
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for anye > 0, and, second, that

ryal
(4.19) lim > E[U5=o0f.
m=1

(See Theorem (4.5) on page 116 in [5].) Note that
Un ()] <0~ 05 (In51+ m) +n~ 4 pg ((n5] + m)
and so by the uniform bound on moments,
Ul < Cn= Y4 (g ((n 3] +m) + 1).

(4.18) follows from this and property (4.11) ofn). In (4.11) we used /8 simply
because for any > 0, en'/* > n'/8 for large enough.
We turn to verify (4.19).

N
Uﬁf:Z@,-zUnz,(ti)—i-Z > 0:0;Un(t)Un(t)),
i=1 1<i<j<N

and so the sum in (4.19) can be expressed as

RONO . N
(4.20) Y EU21=) 0711t +2 Y. 6i0;S12(1.1)),
m=1 i=1 1<i<j<N
where we abbreviated
[r(m)v/n]
S11= > E[UA®]
m=1
and
[r(n)/n]
Si20s.0)= Y E[Un()Un(®)].
m=1

LEMMA 4.3. For¢ >0,
0
Jm S1a(0) = po) Rz [ P(B =2 P(B > 2)dz
—00

0
+ v Rz f_ P(B, < 2)2dz,

where B; is standard one-dimensional Brownian motion.
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PROOE By (4.14),

[r(n)y/n] [r(n)y/n]
> EWz0I=n"Y2 %" pf((ny]1+m)P{X (nt) < [nbt] —m)
m=1 m=1

X P{X (nt) > [nbt] — m}

(4.21)
[r(m)/nl
+n Y25 B (InF] 4+ m)PIX (nr) < [nbi] — m)?
m=1

=T11+T12.

The last equality above defines the sufag and 77 2. We work with 77 1, and
leave the analogous arguments Tar, to the reader.

We boundT73 1 from below. In the calculation that followd, = L(n) is the
integer that appeared in assumption (2.9). Bike~/4) error term below that
comes from that assumption is uniform overbecausexL = O(r(n)/n) =
O (4/nlogn), which is permitted in assumption (2.9),

[r(n)/n]
Tia=n"Y2 3" pg((ny]+m)P{X (nt) < [nbt] —m}P{X (nt) > [nbt] — m}
m=1
(L~ trmVnl-1 L
>n Y2 3 N pb(nFl+ kL + )

k=0 j=1

x P{X(nt) < [nbt] — (k + 1)L} P{X (nt) > [nbt] — kL}

[L7tr(n)/n]-1
>n Y2 N (Lpo) + L -o(n~ %)
k=0
X P{X(nt) <[nbt] — (k+1DL}P{X (nt) > [nbt] —kL}
[L~Yr () ]-1
=po(Mn Y2L Y7 P(X(n) <[nbt] — (k+DL)
k=0

x P{X (nt) > [nbt] —kL} 4+ o(n™ Y% . 0(r(n))

(L~ Yr(n)/n]-1 X
S ) (nt) —[nbr] _ L }
— po()n~Y2L /;) P{—M e
X (nt) — [nbt] L
P{W*km}

+om VY. 00 m)).
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The last termb(n=Y%) - O(r(n)) — 0 asn — oo because (n) = o(/Iogn). As
n — 00, a Riemann sum argument, together with the large deviation bounds (4.17),
shows that the main part of the lower bound converges to

0
po(ywx_z/_ P(B, <2)P(B, > 2)dz.

Similarly, one derives an upper bound fr; with the same limit. This proves the
convergence of 1.

We leave the similar argument f@f » to the reader. This completes the proof
of Lemma4.3. [J

LEMMA 4.4. ForO<s <,

Jim 81,205, 1)
0
422) = po()'f)\//f_zf (P(By > 2)P(B, <2) — P(By > z = B))}dz

0
+ vo(5) k2 f_ P(By <2)P(B, <2)dz.

PrROOF Formula (4.13) generalizes in the following way. Assume the i.i.d.
random variable$Z;} are independent of the random nonnegative intégeand
f andg are bounded measurable functions on the state space f thel'hen

K K
Cov[Zf(z,-), Zg(zu}
i=1

i=1
K K
(4.23) = E[mf(za —EK - Ef(Zl)] [Qg(zi) — EK - Eg(zl)”
=EK -Cov f(Z1),8(Z1)]+VarK - Ef (Z1) - Eg(Z1).
Applying this gives
EU,(s)Uy, (1)
=n"Y2pg([n3]+ m)(P{X (ns) < [nbs] — m, X (nt) < [nbt] —m}
— P{X(ns) < [nbs] —m} - P{X (nt) < [nbt] — m})
+ 0 V208 ([nF] + m) P{X (ns) < [nbs] —m} - P{X (nt) < [nbt] — m}.
The probabilities in the first term can be rearranged as follows:
P{X(ns) <[nbs]—m, X (nt) <[nbt] — m}
— P{X(ns) <[nbs] —m}- P{X(nt) <[nbt] —m}
= P{X (ns) > [nbs] —m} - P{X (nt) <[nbt] — m}
— P{X (ns) > [nbs] —m, X (nt) < [nbt] — m}.
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With m = [z./nk2] this last expression converges to

P(B; > 2)P(B; <z) — P(Bs >z = By),
which is the integrand of the first integral in (4.22). This points the way, and one
can follow the reasoning of the proof of Lemma 4.3

Together with (4.20), Lemmas 4.3 and 4.4 prove the limitin (4.19), and, thereby,
the central limit theorem claimed in Lemma 4.2. Next we need the corresponding
result for the second sum in the difference (4.4).

LEMMA 4.5. n~ Y4 N 6;(Y,2(t) — EY,2(t;)) converges weakly to a
mean-zero normal distribution with variance 022 defined in (4.6).
PROOE We have the same argument in principle,

o M([nFl—m)

Yo2o)=>_ Y UXu (1) — X j(0) > [nbt] + m}.
m=0 j=1

Then

(4.24) EY,2(t)="Y_ pg([ny] —m) - P{X (nt) > [nbt] + m}.
m=0

Next write

n YA (Y2(t) — EY,2(0) = Y Vin(0),
m=0

with independent, mean zero summands

i (n3]—m)
Va@® =n"1* 3" X, j(nt) — X ;(0) > [nbt] +m}
j=1

—n VA8 ([nj] — m) - P{X (nt) > [nbt] + m)}.
With

N
Vi =Y 60i Vin (1),
i=1

first separate out the part

o0

So = Z V.

m=[r(n)/n]



CURRENT ACROSS CHARACTERISTIC 781

Use large deviation estimates to show tisat— 0 in L2 asn — oo. To the

remaining part
[r(n)y/n1-1

S1= Z Vm’

m=0

apply Lindeberg—Feller. The details are similar to those in the proof of Lemma 4.2
O

LEMMA 4.6. ForanyO< T < oo,
lim sup n Y4 EY, ()| = lim_ sup nVHEY, 1(t) — EY,2(1)| =

=0 0<t<T X0<t<T

From (4.10) and (4.24),

PROOF
EYn,l(t) - EYn,Z(t) =S5+ Rl - RZ?
where
S = po@{ Y P{X(nr) <[nbt]—m}— ) P{X(nr) > [nbt] + m}},
m=1 m=0

= > (pg([nF1+m) — po(3)) P{X (nt) < [nbt] —m}

and

Z p6([ny] —m) — po(¥)) P{X (nt) > [nbt] + m}.

The part ofS in braces equalgibt] — E X (nt) = [nbt] —nbt. Thus,|S| < po(y)
uniformly overn ands.

Next we showR1 = o(n/4) uniformly overs € [0, T']. R is a sum of bounded
terms, and any sum of bounded terms can be rearranged in this manner:

o0 1 oo
Yan=13 Yan

m=1 j=1lm=1
1
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and so
o] M l — o]
Zam—zzz amyj| SOWL)+ Y laml.
m=1 m=1" j=0 m=M+1

In our situationL = o(n%/*) from assumption (2.9). We tak&/ = M(n) =
[ci/nlogn] for a large enough constant Then the large deviation esti-
mates (4.17) show that

sup > P{X(nt)<[nbt]—-m}—0  asn— oo.
O=t=T m>ca/nlogn
It remains to show that the sum
M L-1

1
Ry1= Z > (0 ((n31+m + j) — po(¥)) P{X (nt) < [nbt] —m — j}
m= l j=0

is o(n/4) uniformly overs. Rewrite R 1 as

M L-1
Rii= Z Y (05 (nF1+m + j) — po(3)) ZP{X(nt)—[nbt]—m k)
m:l j=0 k=j
M o~ 1 (L-1)Ak
=3 Y PIXen=Inbtl=m—k)— 3 (a§([n31+m+ )= po()
m=1k=0 =0

~
|
[REN

1 k
PIX (nt) = [nbr] —m = k)= (g ((n31+m + }) = po()

I
WE

m=1k=0 j=0
M 1 L-1

+ 2. PIX(n) <[nbt]l —m — L} > (pg(Iny] +m + ) = po(3)).
m=1 j=0

The next to last line above i® (L) = o(n'/*), as can be seen by replacing

pg([ny] +m + j) — po(y) with a uniform upper bound and then summing the

probabllltles overm. For the last line, use assumption (2.9) to replace each
12 SR ([nF]1+m + j) — po(¥)) with o(n=2/*) uniformly overm. Here the

assumptlonn O(y/nlogn) is used. Then we have

M
o™ . 3" P(X(n1) < [nbi] —m — L} = o(n™ Y4 . 0(n¥/?) = 0(n %),

m=1

The lastO (n'/?) bound comes from

Y P{X(nt) < [nbt] —m} = E[([nbt] — X (n1)), ] < C1+ Con'/?
m=1
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uniformly overt > 0 andn. This is a consequence of the central limit theorem and
uniform integrability from assumption (2.6).
We leave the similar treatment & to the reader. (J

Proposition 4.1 is now proved, and we turn to tightness at the process l&vel.

4.2. Moment bound for time increment. Using representation (2.20), the
differenceY, (¢) — Y, (s) for 0 < s <t simplifies to

Yo (t) = Yu(s) = ) (U{X] (ns) > [ny] + [nbs], X} (nt) < [ny] + [nbt]}

1

— X" (ns) < [ny] + [nbs], X! (nt) > [ny] + [nbr]}).

Let
Y, (t) =Y, (1) — EY, (1)

By virtue of Lemma 4.6, weak convergence of the processe$*Y,(.) is
equivalent to weak convergence mfl/“Y,,(-). We shall, in fact, work with the
centered processés(-).

Relabel the random walks so th’é;ﬁl,j(-), 1< j <ng(m), are the random walks

that start at siten in the process indexed by Let
Ap,j ={X}, ;j(ns) > [ny]+ [nbs], X}, ;(nt) <[ny]+ [nbt]},
By, j ={X,, ;(ns) < [ny]+ [nbs], X}, ;(nt) > [ny] + [nbt]}

and
no(m)
Gn=Y_ (1a,, —18,,;) — p5(m)(P(An.1) — P(Bu.1)).
j=1
Then

Ya(t) = Ya() =D Gn

meZ

is a sum of independent mean-zero random variables. Recall now assumption (2.8),
according to whichE[ng(x)G] is uniformly bounded ovet andx.

PROPOSITION4.2. There exists a constant C such that for all » € N and
O0<s <1,

(4.25)  E[(Tat) — YVu()®] < C(nY2(t — )Y2 1+ n¥2(1 — )32 1 1),
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PrROOE To prove Proposition 4.2, start with

E[(Ya(t) = Yo (5))°]
(4.26) = Y E[Gu,Gmp - Gimg]

:ZE[Gg]Jr(g) Y E[Gy |E[GZ)]

+(3) X EG 1G]

mi<my

+(,52) X FGIEGEIEGE)

mi<m<ms3s

< C{ > EIGE1+ ( > EGj,)( 3 EG;)

meZ meZ meZ

+( 2 |EG§,,|)2+(Z Eng)g}.

meZ meZ

Above we collected term&[G,,, G, - - - Gmgl according to how many times
distinct sites appear among the indiees, ..., mg. Independence andG,, =0
eliminate all termsE[G,,,Gn, - - - Gmg] Where an index appears by itself. This
point is actually critical for obtaining (4.25).

LEMMA 4.7. There exists a constant C such that for each positive integer
1<k <6andfor all m,

E[|Gnl*1 < C(P(Am.1) + P(Bn1)).

PROOF

ng (m)

k
E[IGnl"] < E[( > 14, =1, + g m)| P(An1) — P(Bm,1)|> }
j=1

o s (m) i
=2 <i ) E[( 2 [, - 13’""f‘> ]
i=0 j=1

X o (m) | P(Am.1) — P(Bm.1) <.
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The terms withi < k are bounded by’ (P (A1) + P(Bn.1)) as the conclusion
demands. For the= k term we bound as follows: sin¢®@ (A, ;) — P(Bn, ;)| <1,

j=1

00 k
=" Plnh(m)=h}- E[(me, 13,",)}

h=1

o0

<" P{yfm) = W} E[|14,,, — 18,,]]
h=1

< E[nBm)*1(P(Am.1) + P(Bm.1)). O

We can now bound all the sums on line (4.26) by
(4.27) Y EIGuf <C Y P(An1) +C Y. P(Bua),

meZ meZ meZ

S0 next we estimate the sums of probabilities on the right.

LEMMA 4.8. Thereisa finite constant C such that, for all 0 <s < ¢,

(4.28) Y E|Gu| < C(Vn(t—s)+1).

meZ
PROOF Write X (-) for a representative random walk that starts at the origin.
Y P(An1) = )Y P{X}, 1(ns) > [ny] + [nbs], X)), 1(nt) < [ny] + [nb1]}

meZ meZ

= Y P{X(ns) > [nbs] —m, X (nt) < [nbt] — m}.

meZ

Apply the Markov property to turn the sum into
> > P{X(ns)=[nbs] — Q}P{X (n(t —s)) < [nbt] — [nbs] + £ —m}.

meZl<m

Rearranging simplifies the sum to

> P{X(n(t —5)) <[nbt] — [nbs] + k}
k<0

<> P{X(n(t—s) <[nb(t — )]+ k+1}
k<0

= E[(X(n(t —5)) — [nb(t —s)] = 1)_]
< Coy/n(t —s) + C1.

(4.29)
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Above we first usednbt] — [nbs] < [nb(t — s)] + 1. Assumption (2.6) gives
uniform integrability to all moments af ~Y2(X («) — [bu]) asu — oco. Due to
the —1 inside the expectation, we need the constanin (4.29), Cov/n(t —s)
alone will notdo ag — s — 0.

We leave the corresponding calculation f¢B,, 1) to the reader, and consider
the lemma proved. O

We are ready to prove Proposition 4.2. Apply (4.28) to each sum in (4.26),
remove the squares with'? < x 4+ x3, and letC change its value from line to line:

E[(Ya(1) = Yu(s)®] < C{Vnlt —s) + 1+ (Vn(t —5) +1)°)
< C{Vn(t —s) +n%2@t —5)¥? +1}.
Proposition 4.2 is proved.[]

4.3. Switch to discrete-time process. The processes whose weak convergence
is claimed in Theorem 2.2 are /4y, (r). As observed earlier, it is equivalent to
prove convergence for the centered processés?Y, (r). The moment estimate
in (4.25) is not good enough for tightness, but we can get around this by a suitable
time discretization. The forthcoming Lemma 4.11 contains an estimate that gives
tightness for the time-discretized process we next define.

Fix two constantsr, 8 > 0 such that

(4.30) Sta<p<3.
Let
W () = n~ Y4, P[nP1))
(4.31)
=n"Y4 Y, (n"P[nP1]) — EY, (P [nP1)).

__Inthis section we show that it suffices to prove the weak convergence of process
W, by showing that: =14y, and W, come uniformly close on compact time
intervals.

PrROPOSITION4.3. ForanyO<T <oocande > 0,

lim P{ sup [n Y4, (1) — W, ()| > s} =0.
n— oo 0<t<T

PROOF Because the expectationsY/*EY,, (n~#[nft]) vanish uniformly over
0 <t <T byLemma 4.6, it suffices to prove

(4.32) lim_ P{ sup |Yu(t) — Yu(n " P[nPr])| > nl/4e} —=0.

0<t<T
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To prove (4.32), we consider the ways in whi¢h(¢) can differ fromY,, (n=#[nf1])
some time duringO, T']. First Lemma 4.9 shows that particles that start off at least
at distance: /2t from [ny] do not contribute t&,(-) during time interval0, T'],
inthen — oo limit.

LEMMA 4.9. Let
ng (m)
N(T)= ) > UX}, (1) = [ny] + [nbr] for someO <7 <T)
(4.33) m<[nyl-nt/2te j=1
' no(m)
+ > Y UXp (nt) <[ny]+ [nbr] for ome0 <7 <T}

mz[nyl+nl/2te j=1
be the number of particles that start at least at distance n%/2t® from [n7],

and reach the characteristic some time during [0,nT]. Then for a fixed T,
EN1(T)— Oasn — oc.

PrRoOr We handle the first sum in the definition &f(7) and omit the
similar argument for the other sum. Fix a positive integefarge enough so that
1/2 —a(2M — 1) < 0. Again X (-) denotes a random walk starting at the origin,
andC denotes a constant whose value may change from line to lin€n3én) is
uniformly bounded [assumption (2.8)], and by an application of Doob’s inequality
to the martingaleX (1) — br, the expectation of the first sum in (4.33) is bounded
by

c > P{ sup (X (nt) —nbt) > £ —1

¢>pt/2te (0st=T
<Cc Y ¢ME[(X(T)—nbT)?"]
(an/2+a
L>nl/2+a
The expectatio®[(X (nT) — an)iM] is 0 (n™), as suggested by the central limit
theorem, due to uniform integrability guaranteed by assumption (2(8).

Let
Nz = > ng(m)

m: |m—[nyl|<nl/Zte

be the number of particles initially within distane&?t® of [nj]. Fix a constant
¢ so that

lim P{N»> cn'/?t*} =0.
n—od
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The eventin (4.32) is contained in the event

{ sup 1Y, (1) — Y, (n Pl Zn1/4e}.

O<k<[Tnh] kn=P<t=(k+Dn~F

For a fixedk, the event in braces implies that at least one of these two scenarios
takes place:

(i) At Ieast%enl/ 4 particles cross the discretized characteristie [ny] + [bs]
during time intervals € [n'~#k, n'=#(k 4+ 1)] by jumping. (Note that the time
interval has been put in the microscopic time scale of the particles.) On the event
{N1(T) = 0}, these particles must be among the particles initially within
n/?te of [ny]. Consequently, conditioned ofivi(T) = 0}, the probability of
this event is bounded by the probability théi independent rate 1 random walks
altogether experience at ledstn/# jumps in a time interval of length~#.

(i) At least 3en?/* particles cross the discretized characteristic during time
interval [n1~#k, n1=P (k + 1)] by staying put while the characteristic crosses the
location of these patrticles. For large enouglthe distance between the endpoints
[(ny] + [n¥Pb(k + 1)] and [n¥] + [nYPbk] of the characteristic is at most 1.
Hence, at most 1 site moves from one side of the characteristic to the other during
this time interval, and so thesgen/4 particles must sit on a unique sitg at
timenlPk.

Accounting for all the possibilities gives the bound beldicn®?t2=#) is
a meancn®?+t*—F Poisson random variable and represents the total number of
jumps amongn'/?t independent particles during a time interval of length?,

P{ sup |Y, (1) = Yu(n P[nfr))| > nl/“s}

O<t<T
(4.34) < P{NU(T) > 1} + P{Np > cn¥/?+%)

(Tnf]
+ Z (P{H(cn3/2+a_ﬁ) > %n1/48} + P{n} 15(xx) = %nlms}).
k=0

The probabilitiesP{N1(T) > 1} and P{N> > cn/2t*} vanish asn — oo by
Lemma 4.9 and choice af. T1(cn®?t2=#) is stochastically larger than a sum
of M, = [en®?t*~F] i.i.d. mean 1 Poisson variables, and so a standard large
deviation estimate gives

P{M(cn¥?T=F) > Int/e) < exp{—M, 1(3M, 0" %)},
wherel is the Cramér rate function for the Poisson(1) distribution. By the choice
of « and B, M, > n®, while M1n'/4 — co. Consequently, there are constants
0< Cp, C1 < 00,
[Tn?]
Z P{H(cn3/2+a_ﬁ) > %n1/48} < Con® exp(—C1n®) — 0.
k=0
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To treat the last term in (4.34), we derive a moment estimate for the occupation
variables uniformly over space and time.

LEMMA 4.10. Letk e N and supposeinitially sup, . E[no(m)*] < co. Then

sup E[n:(m)*] < oo.
meZ,t>0

PROOE Fixx € Z andr > 0, and let

no(m)

{m = Z 1{Xm,j(t) =x}

j=1

be the number of particles initially at who find themselves at at timez. Then

Elni(x)*]1= E[( > ;m)k]

meZ

= Z E[§m1§m2 to ;mk]

miy,my,....my€L

=Y XYY (k) EIGRIERE] - Bl )
kp)

b=1(my,mo,...,mp) (k1,k2,...,

On the last line above we arrange the sum ovekaliples (mz, ..., my) € Z*

according to the numbeér of distinct sites among1, ..., my. The second sum on

the last line is oveb-tuples(my, ..., mp) of distinct sites fromZ. The third sum

is overb-tuples(ky, ..., kp) of positive integers such that + --- + k, =k, and

(klk;,kb) counts the number of wayg m1's, k» m2’s, and so on can be arranged

into ak-tuple. Sinceny, ..., m;, are distinct,,,, ..., ¢, are independent.
Calculating as in the proof of Lemma 4.7 gives the bound

E[¢k1 < Elno(m)¥1p,(m, x),

wherep; (m, x) = p;(0, x —m) is the translation-invariant transition probability of
the underlying random walk of the particles. Substituting this back above gives the
upper bound

> Y Y Gt

b=1(mq,mo,....,mp) (k1,k2,....kp)
(4.35)

b b
x { []p©0.x— mn} : { I1 E[no(m,-)kf]}.
i=1

i=1
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Hdlder’s inequality, the moment assumption &adk- - - - + kp = k give

b b
[ Elnom*1 <[] Elno(m)*1/* < C.
i=1

i=1

After this, sum the probabilitieg; (0, x — m;) over each indexz; in (4.35). This
leaves

> > (klkz’?..k,,),

b=1(k1,k>,...,

which is a constant that depends/an [

We turn to the last term of (4.34),

[Tn’]
Z Pt () = 3n"%e} < (Tn? + 128 ®n~3/2 supE[n] (x)°]

X,t,n

Since sup, , E[n?(x)e’] < oo by the moment hypothesis (2.8) and Lemma 4.10,
andg — 3/2 < 0, the right-hand side vanishesrmas> oco.

We have shown that the right-hand side of the inequality in (4.34) vanishes as
n — oo, and, thereby, proved Proposition 4.3

4.4. \Weak convergence. We first verify tightness of the discrete-time pro-
cesses. Let

=(3-2B)/2B) (0, ).

LEMMA 4.11. Fix0< T < oo. Then there exists a constant C such that for
alo<y <tr<tp<Tandaln,

(4.36)  E[|W,(1) — W (t0)P|Wo(12) — W ()3 < C(r2 — 1)

PROOF If 1 — 11 < n~#, then necessarily eithénfr] = [nPt1] or [nP1] =
[nP1]. In either case, the left-hand side of (4.36) vanishes and the inequality holds
trivially. So we may suppose — 11 > nP.
By the Schwarz inequality andk® < x? + y?,
E[|Wa (1) — Wu(10) P W (12) — Wa (D)1
< E[|Wa(t) — W (1) P12 E[| W (t2) — W (1)|°1Y/2
< E[|Wa(t) — Wa(t2) (%] + E[| W (r2) — Wy (1)[°].
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Apply (4.25) multiplied byn—%/2 to both terms, ignoring the consta@tin the
front, to get the upper bound

1<[nﬂr] - [nﬂm])” N }([nﬂrz] - [nﬂz]>1/2

n nb n nb

(4.37) B Br1\ 32 B B\ 3/2
+([ﬂ 1] ;ﬁ[n tll) Jr([n t2]n; [n l]) 4 2n-32,

Sincer, — 11 > n"P,

(nPt] — [nPr1] - nPr—nPr+1

1

and also
1
S = HY < ()P,
n
so the first term in (4.37) is bounded by
1

_ 12
(Wg ] [”ﬂlﬂ) < 2V2(1y _ ) Y2HUB < QL7 (B=D/@B) (g, _ g )12
n

nb

Apply similar reasoning to the other terms. Note also that
(2 — t)¥2 < TY2 (1 — 1)

and

2132 = 2(n= Yt < 2(1p — 17) 1+

Collecting terms gives (4.36).

Propositions 4.1 and 4.3 imply that the finite-dimensional distributions of the
processW, converge to those df defined in Theorem 2.2. This and Lemma 4.11
are the hypotheses needed for Theorem 15.6 in [3]. We conclude that the
processedV, converge to the procesd on the spaceDgr[0, T]. Proposition 4.3
then implies that the processes!/#y, converge toZ on the spaceDg[0, T'].
SinceT is arbitrary, the convergence holds Dg[0, co). This completes the proof
of Theorem 2.2. Instead of Theorem 15.6 in [3], one can use Theorem 8.8 on
page 139 of [6].

4.5. Proof of Theorem2.3. LetN1(y, T) denote the random variable defined
by (4.33) to display its dependence pnOn the event
(4.38) {N1(y1,T) = N1(y2, T) =--- = N1(x, T) = O},

the processe¥,, (y1, ), Yu (32,4, ..., Y, (3, -), restricted to[0, T], depend on
disjoint collections of independent random walksrifis large enough. The
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probability of (4.38) converges to 1 as— oo by Lemma 4.9. Consequently,
the restrictions tg0, 7] of the processeg, (¥;, -) become independent in the limit.

To prove the tightness of the joint process4(Y, (71, ), Yu(32, ), . .., Yu(Fk, )

on the spacér«[0, o), apply Theorem 8.8 from page 139 of [6] to the discrete-
time process(W, (31, ), W, (32, ), ..., Wo(3%, -)), each component defined as

in (4.31). The proof of Lemma 4.11 can be adapted to the multivariate case. We
omit the details, and consider Theorem 2.3 proved.

4.6. Proof of Theorem2.1. Limit (2.16) follows from (2.19) and Theorem 2.2.
Subsequently, the hydrodynamic limit (2.15) follows from limit (2.16) and
assumption (2.7).

To prove (2.17), we take a two-sided Brownian motiB¢), and create a bi-
infinite sequence of random times

"'fTn,—2§Tn,—1§0=Tn,0§Tn,lSTn,ZS"'

such that

X

(4.39) o3 = Y po( ) + VB T,.0)

m=1 n
can be taken as the initial condition. (iff < O, the sum actually ranges over
x +1<m <0.) To achieve this, apply the usual Skorokhod embedding (see,
e.g., Section 7.6 in [5]) to the independent mean-zero random varigjgles —
po(2):x € Z} and the two-sided Brownian motioB, (s) = n'/2B(%). Embed
{ng(x) — pg(x) :x > O} in the positive half ofB,,, the remaining random variables
in the negative half ofB,. Then the increment$7, . — T, —1:x € Z} are
independent with means

X
(4.40) E(Tyx = Tre2) = Vi) = vo - ).
and we have the equality in distribution of processes

(Bu(Tyx) — Bu(Tyr1)ix €Z) < {n(ﬁ(x) - po(%) xe z}.

Note that we have been using (2.11) which is assumed for this part of Theorem 2.1.
Now it is clear thaby, defined by (4.39), has the right distribution to serve as the
initial height function.

Next we observe the central limit theorem tgf. From (4.39), fory € R,

og ([ny]) — nuo(y) _

Jn

B(n™ Ty (ny))

(4.41) y
+n f (po(@> - ,Oo(S)> ds + 0 (1),
0 n
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One can show that

y
lim n1T fy = / vo(s)ds in probability.
0

n—oo

This follows from Chebyshev’s inequality and the moment bound

E[(Tym — Tym-1)?1 < CE[(ni(m) — Eni(m))*] < C1.

As n — oo, the integral term in (4.41) vanishes by the Holder property (2.10)
of po. Consequently,

og ([ny]) — nuo(y) ( y )
NG — B /c; vo(s)ds

in probability. Finally, (2.17) follows from this and (2.16).

5. Proof for Hammerdey’'s process. The proof of Theorem 3.2 is based on
the approach and estimates derived in [18]. To save space, we refer to that paper
for all the groundwork.

We construct the initial configuration by Skorohod’s representation, so that

28(i) = nuo(i /n) + nY2B(n1T, ),

where for each fixea, {7,,;:i € Z} are the hitting times of appropriate random
intervals independent of the two-sided Brownian mot®f). Section 8 in [18]
discusses this construction. Far, 1) € R x [0, 00), set

¢'x) = n~Y2(" ([nx]) — nu(x, 1))

In particular, in terms of the Brownian motionsat 0O,

(5.1) 28 (y) = B(n 1T 1ay1) + nY?(uo([nyl/n) — uo(y)).

Hammersley's process has a special graphical construction in terms of increas-
ing sequences among rate 1 Poisson points on the space-time plane. This represen-
tation goes back to [9] and [1]. It can be expressed as follows:

(5.2) g (k)= inf () + T (k — 1),

where Ff’i(m) is the minimal positivehr such that the space-time rectangle
(zg(@), zg(i) + h] x (0,¢] contains at leasiz Poisson points on an increasing
path. This appears as equation (45) in [18]. But observe that compared to [18],
in the present paper time arguments have become subscripts and space indices
have become arguments in parentheses.
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5.1. Upper bound. Following Section 6.1.4 on page 172 in [18] givEs <
R, 3+ Co WhereCy is a constant and

_ 2
Ris= sup [0 () - uyp) - LD
yel(x,1) 4nt

By Lemmas 4.4 and 4.5 in [18P(R,.3 > Cn'/3logn) — 0 if C is fixed large
enough.

5.2. Lower bound. Let ¢ > 0. We shall show that for some constant
0< C < o0, Y, > —Cn'3logn with probability at least t- ¢ for largen.

Let i, be the minimal microscopic minimizer faf,([nx]) defined by (59)
in [18]. By Lemma 5.3 in [18], digk—Yi,, I (x, )) — 0 in probability. Lets > 0O
be as in Assumption E. Then for large enouglthere exists a random, € I (x, t)
such that

(5.3) P{n"ti, — yp| <8} > 1—¢/4.

Assume now we are on the event in braces in (5.3).[kgta>] be a compact
interval that contains th&neighborhood of (x, ¢). Following the calculation in
Section 6.1.2 on page 170 in [18] gives

. —i)?
Y, > {FZ;’”([nx] — i) — %} + 02 (1 Vi) — 85 )

+n{®(n " tiy) — D (yn))
> Ry1 +nY2e (7 in) — ¢ )} + can i, — nyn)?.
We used the definition

Ny (nx — i)
Ry1= mln{FZ;’([nx] —i)———na1 <i < naz},
dnt
and applied assumption (3.6). By Lemma 4.3 in [18], for large enaygh
(5.4) P{R,1>—Cn'3logn}>1—¢/8

if C is fixed large enough. Of the lower bound ¥f given above, it remains to
handle this part:

(5.5) (58 (0 i) — 6§ )} + ean” i — nyn)?
' = n{B(n ™ T,i,) = B0 Ty, )} + cun i — nyn)? — 2.

The last constant-c, accounts for the last terms in (5.1), actually of ordet/2.
Let [b1, bo] be an interval such thajg vo(s)ds € [b1 + 1,bp — 1] for all
y € a1, a2]. Let

w(u) =SU|B(s) — B(r)|:s,r € [b1,b2],|s —r| <u}
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be the modulus of continuity of Brownian motion on the inteival b,] of length
A = by — b1. By Lévy’'s theorem,
lim sup(2u log(A /u))

u—0

Choos&yg € (0, 1/2) so that

wu)=1 a.s.

(5.6) Plw(u) <2(u Iog(A/u))l/2 forallu <8} >1—¢/16.

The following law of large numbers holds: for all large enough

(5.7) P{ sup

y€lai,az]

n Tn,[ny]—/o vo(s)ds

580} >1—¢/32

This can be proved as Lemma 8.1 in [18] is proved. The fourth moment assumption
enters here, because the hitting times satisfy

E[(Ty; — Tni-1)21 < CE[nE)*.

On the event (5.3), both, andn—1i, lie in [a1, a»]. Then on the event in (5.7),
both n_lTn,in and n—lTn,[nyn] lie in [b1, b2] and so fall within the range of the
eventin (5.6).

Thus, on the intersection of the events in (5.3), (5.6) and (5.7), the right-hand
side of the inequality in (5.5) is bounded below by

1/2 -1,.
(5.8) —2‘Tn,i,, — Tn,[ny,,ﬂ / (IOgAn)l/2 + c1n 1(1,, — nyn)2 —c3.

The new constant-c3 includes the earlier constanrtc, from (5.5) and the case
where

Tnin = Tatnyd| < 1,

as otherwise this factor should be in the denominator inside the logarithm. But
sinceu log(A/u) — 0 asu — 0, the case of small’, ;, — 75, xy,]| can be bounded

by a single constant.

The probabilities of the complements of the events in (5.3), (5.4), (5.6) and (5.7)
add up to less thasy2. On the intersection of these everlfgjs bounded below by
—Cn'3logn, plus the expression in (5.8). It remains to show that, with probability
at least 1— ¢/2, the expression in (5.8) is bounded below-bgn'/3logn for yet
another constant.

We begin with a simple general fact. Supp$Xe} are nonnegative, independent
random variables with bounded means and variances. Leta0b < oo, and

C>1+EX; andCy > VarX; for all i. Then,

l+k—1
(5.9) P sup Y Xi> 3c1<} <Cila+bn 3

1<t<an,n?/3<k<bn j—y
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To prove this, note first that the event in braces implies that

X; >Cn??®  forsome 1<m < (a + b)n/3.
mn?/3<i<(m+1)n2/3

Then by Chebyshev’s inequality,

P{ sup > X; > Cn2/3}

1<m<(a+b)nl/3 mn2/3<i<(m+1)n?/3

fPl sup > (X; —EXi)zn2/3}
1<m<(a+b)nl/3 mn2/3<i <(m+1)n2/3
C1n2/3
1/3
<(a+b)n 473

Applying (5.9) to|T;,.;, — Tn,(ny,| (these differences are sums of independent,
nonnegative increments), we conclude that on the event (5.3), for large enough
with probability at least - ¢/2,

|Tn, - Tn,[ny,,]| < C(lin — nyn| Vn2/3).

in
From this, the expression in (5.8) is bounded below by
(5.10) —2C (i — ny,|Y? v n¥3)(log An)Y? + c1n (i, — ny.)? — ca.

This last expression is no less tha€n/3(logn)?/3 for a suitable (new) constant
0 < C < o0. This a lower bound fot’,, with probability at least - ¢.
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