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AGGREGATION RATES IN ONE-DIMENSIONAL STOCHASTIC
SYSTEMS WITH ADHESION AND GRAVITATION

BY MIKHAIL LIFSHITS1 AND ZHAN SHI

St. Petersburg State University, Université Lille I and Université Paris VI

We consider one-dimensional systems of self-gravitating sticky particles
with random initial data and describe the process of aggregation in terms of
the largest cluster sizeLn at any fixed time prior to the critical time. The
asymptotic behavior ofLn is also analyzed for sequences of times tending
to the critical time. A phenomenon of phase transition shows up, namely, for
small initial particle speeds (“cold” gas)Ln has logarithmic order of growth
while higher speeds (“warm” gas) yield polynomial rates forLn.

1. Introduction. We consider a system ofn particles living in one-dimen-
sional space. At initial moment, every particle is characterized by its mass, initial
position and initial speed. There exists a pairwise gravitation between the particles.
Between the moments of shocks, particles move in this gravitation field according
to usual rules of Newtonian mechanics. The shock between two (or more) particles
results in the birth of a new particle (“cluster”) whose characteristics are defined
by the laws of conservation of mass and momentum (while the energy is dissipated
at these nonelastic collisions).

The clusters gradually become larger and larger while the number of clusters
diminishes—until the unique cluster, containing the totality of mass, remains on
the line. This collapse vaguely models emergence of a “star” from dispersed “dust.”
Indeed, the roots of the model are in astrophysics (see [14, 18]), but the reason of
actual interest in similar particle systems is due to their relation with solutions of
nonlinear PDEs such as the Burgers equation (see [1, 3, 4, 7] and the references
therein).

The aim of the present work is to describe essential features of the aggregation
process provided that initial data arerandomand that the number of initial particles
tends to infinity. Assuming that at the beginning there existn particles, we try
to understand the behavior ofLn(t)—the largest number of particles that form a
common cluster at timet . Therefore,Ln(t) increases, as time goes by, from 1 at
the beginning ton at the collapse time.

We will extend the quantitative results obtained in recent works [2, 7, 10,
16, 17]. It is known from these works that, under reasonable assumptions, there
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exists acritical timeT ∗ such that limn→∞ Ln(t)
n

= 0 in probability for everyt < T ∗

and limn→∞ Ln(t)
n

= 1 in probability for everyt > T ∗. In other words, the time
when essential collapse occurs, is, in fact, deterministic. “Essential” means that
after critical time one can still observe a number of small peripheral clusters, but
the main core has already been formed and it contains the overwhelming part of
the total mass.

Our results show that the aggregation process behaves rather differently in the
cases of “large” and “small” initial speeds. In the literature the most frequently
used model is that of i.i.d. initial speeds. For this case, which is naturally
interpreted as “warm” system (see, e.g., [10, 17]), we essentially show that for
any t < T ∗,

Ln(t) ≈ c(t)n2/3(logn)1/3.

On the other hand, whenever initial speed is small or vanishes, which is natural to
interpret as “cold” system (see [7]), one has

Ln(t) ≈ c(t) logn.

Our results, in fact, cover the whole range of possible behaviors containing the two
aforementioned special cases.

In any case, one can observe from these formulae thatLn(t) � n, that is, the
aggregation process is rather slow and that genuinely macroscopic clusters appear
only shortly before the critical time. Therefore, it is interesting to describe the
behavior ofLn(tn) for tn → T ∗. This is done for cold systems in Theorem 3.4.

We give a rigorous description of the model in Section 2 and state our results
in Section 3. Section 4 provides the necessary information on conservation
laws which control the behavior of the systems. Finally, Section 5 contains the
collection of proofs. There is an amazing contrast between the elementary nature
of the results and the rather advanced techniques one needs to obtain them.

2. Systems of sticky particles.

2.1. Dynamics of deterministic systems.We consider the following one-
dimensional system (gas) of particles with gravitation. At the starting moment
t = 0, our gas consists ofn particles, positioned on the real line at points with
coordinatesx1(0), . . . , xn(0). Particles are always enumerated so thatx1(0) ≤
· · · ≤ xn(0). Each particle is characterized by its massmi and its initial speedvi(0).
The particles move under the action of forces of pairwise mutual gravitation. The
gravitation force acting on a particle of massm positioned atx, from a particle of
massµ positioned aty, is

F = γmµsign(y − x).(2.1)
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Here,γ > 0 is a positivegravitation constant. Note that there is no dependence of
the gravitation force on the distance between the particles. This feature is typical
for one-dimensional gravitation models.

Between collisions particles obey the Newton’s second law (F = md2x
dt2 ).

The total gravitation force acting on a particle is obviously proportional to the
difference of the masses on its right and on its left.

On collision particles stick together, following the conservation laws of mass
and momentum. In other words, two particles with characteristics(m,v) and
(µ,w) produce one particle with massM = m+µ and speedV = (mv +µw)/M .
This is a completely nonelastic collision, kinetic energy is dissipated. The particles
which are born upon collisions are calledclusters.

We assume that the initial particles do not die at collisions but continue their
movement as parts of the created clusters. Therefore, the position, the speed and
the acceleration of a particle are understood as those of the cluster containing this
particle. We denote them byxi(t), vi(t) := x′

i (t) andx′′
i (t), respectively, for each

t ≥ 0. The destiny of each particle is therefore defined during the life time of the
system. The speed and the acceleration have jumps at the times of collisions of the
particle or of the cluster which contains it (actually, the acceleration also hasδ-s at
collision times).

Throughout the paper, we callparticlesonly the initial particles, andclustersthe
products of collisions as well as the initial particles. Thus, at any time, the system
consists of a number of clusters, each cluster being a set of one or more particles.

Whenvi(0) = 0 (zero initial speed), the system is referred to as acold gas. If a
gas is not cold, we call it awarm gas.

2.2. Similarity of systems.Let positive numbers (similarity coefficients)
cx , cv , cm, ct andcγ satisfy the conditions

1 = cx

cvct

= cv

cmcγ ct

.

Consider two systems of particles. The first system has initial data(xi(0),

vi(0),mi) and gravitation coefficientγ , while the second has initial data
(cxxi(0), cvvi(0), cmmi) and gravitation coefficientcγ γ . These two systems are
similar at any timet ≥ 0, that is, the first system at timet has at positionx a
cluster of massm moving with the speedv if and only if the second system at time
ct t has at positioncxx a cluster of masscmm moving with the speedcvv.

2.3. Stochastic systems of particles.Let us introduce a stochastic version of
the problem by considering initial parameters of the particles as random variables,
while the interaction rules and the dynamics remain deterministic and follow the
rules described above. Moreover, we consider the asymptotic situation, in which
the numbern of particles tends to infinity, while other parameters vary in a
reasonably consistent way.
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2.3.1. Masses. We assume that the masses of the particles are deterministic
and equal toρn−1 each, whereρ > 0 is a fixed constant. This leads, at the limit,
to a model with a given density of the matterρ. We call thesizeof a cluster the
number of particles in it.

2.3.2. Initial speeds. We assume that the initial speeds of the particles have the
form vi(0) = σnui,1 ≤ i ≤ n, where(ui) is a collection of i.i.d. random variables
with zero mean and unit variance. Zero mean is assumed only for convenience
of notation. It is easy to see that adding the same constant to all initial speeds
affects neither the times of collisions nor the sizes of the created clusters. The only
consequence is an additional uniform drift of the whole system.

In the literature, the scaling parameterσn is usually assumed to be independent
of n. Then the caseσn = 0 corresponds to a cold gas, whileσn = σ > 0
corresponds to a warm gas. We prefer to handle the setting with variableσn, since
we are interested in identifying the border separating the models whose properties
are close to those of cold and warm gas, respectively.

2.3.3. Initial positions. Three meaningful different models are distinguished
here, though they often lead to the same asymptotic results.

The lattice deterministic modelassumes that the particles are initially located
on the latticexi(0) = i/n, 1≤ i ≤ n.

ThePoisson modelassumes that the particles are initially located on the positive
half-line at the firstn points of a Poisson point process with intensityn. In other
words, they are located at the times of first jumps of a Poisson process of the
just mentioned intensity (the space where the particles live is interpreted here as a
time parameter of the process). By the well-known property of Poisson processes,
the differencesxi(0) − xi−1(0) [notation:x0(0) := 0], 1≤ i ≤ n, are independent
exponential random variables with meann−1.

The i.i.d.-modelassumes that the particles are initially located at the points cor-
responding to a sample ofn independent random variables uniformly distributed
on the interval[0,1]. Since the particles are indexed by the order of initial posi-
tions, the initial location of theith particle corresponds to theith order statistics
of the uniform sample.

2.3.4. Relation between the Poisson and the i.i.d.-models.The Poisson model
is more convenient for investigation due to the (aforementioned) property of
independence of distances between the particles at time zero. The following
passage from the Poisson model to the i.i.d.-model is useful; it is well known and
stated here without proof.

FACT 2.1. Fixk ≥ 1, and letX1, . . . ,Xk,Xk+1 be the times of firstk jumps
of a Poisson process of constant intensity. Then the random variablesX̃i = Xi

Xk+1
,

1 ≤ i ≤ k, have the same joint distribution as the order statistics of a sample ofk



AGGREGATION IN SELF-GRAVITATING GAS 57

i.i.d. random variables uniformly distributed on the interval[0,1]. Moreover, the
random vector(X̃1, . . . , X̃k) and the random variableXk+1 are independent.

Note that the intensity of the Poisson process does not play any role. In the
sequel we use a standard Poisson process (of unit intensity), as well as a Poisson
process of intensityn.

3. Main results on aggregation rates. In this section we investigate the
asymptotic behavior ofLn(t), the largest cluster size at timet in the system ofn
initial particles. Since the cluster size coincides with the number of initial particles
in it, we always have 1≤ Ln(t) ≤ n.

The collapse timeT (n) is the first time when all the particles belong to a
common cluster, that is, when the total collapse of the particle system occurs.

Let us introduce thecritical time of the systemdefined by

T ∗ := (γρ)−1/2.(3.1)

3.1. Aggregations in a cold gas.First we recall a known result (see, e.g., [7])
on the collapse time, which motivates the definition (3.1).

FACT 3.1. In a cold gas, for any of the three models (lattice, Poisson or
i.i.d.) of initial positions, the random variableT (n) converges in probability (when
n → ∞) to the deterministic constantT ∗.

Therefore, the behavior of the largest cluster size after the critical time is trivial:

COROLLARY 3.2. In a cold gas, for any of the three models(lattice, Poisson
or i.i.d.), for any t > T ∗, we havelimn→∞ P{Ln(t) = n} = 1.

We consider nowLn(t) for t < T ∗, that is, we are interested in the largest cluster
size at a fixed time prior to the critical time.

The case of lattice initial positions is particularly instructive. For a cold gas we
deal here with a purely deterministic model. All the particles move to the point of
general meeting without any collision. More precisely, the particlei moves along
the trajectory

xi(s) = i

n
+ γρs2

2n
(n − 2i + 1),

with constant acceleration. We see that at timeT ∗ all the particles simultaneously
meet at the barycenter pointx = n+1

2n
. The absence of collisions prior to the global

meeting follows, for example, from the formula

xi(s) − xi−1(s) = 1− γρs2

n
.

However, in other models of initial positions, the situation is not so trivial.
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THEOREM 3.3. In a cold gas for both Poisson and i.i.d.-models, for any
t < T ∗, we have

lim
n→∞

Ln(t)

logn
= I

(
(t/T ∗)2)−1 in probability,(3.2)

where

I (r) := r − 1− logr, r > 0.(3.3)

The logarithmic order, already established in [7], indicates a very slow growth
of clusters in a cold gas. Our contribution is to prove the existence of the limit and
to determine its exact value.

The functionI (·) in (3.3) is the rate function in the large deviations for the
exponential law.

We set aside the delicate question of studying the behavior ofLn(T
∗), and

consider the maximal cluster size in a cold gas at times shortly prior to the critical
instantT ∗.

THEOREM 3.4. In a cold gas for both Poisson and i.i.d.-models, for any
sequence(tn) ⊂ [0, T ∗] which satisfies assumptions

lim
n→∞ tn = T ∗ and lim

n→∞n(T ∗ − tn)
2 = ∞,(3.4)

we have

lim
n→∞

Ln(tn)(T
∗ − tn)

2

log(n(T ∗ − tn)2)
= (T ∗)2

2
in probability.

Assumption (3.4) is quite natural, since it is shown in [7] for total collapse
timeT (n) thatT ∗ −T (n) has ordern−1/2. The assertion of our theorem obviously
becomes false when(tn) approachesT ∗ faster than what is admitted in (3.4).

3.2. Aggregations in a warm gas.Consider now a warm gas, that is, a system
of particles with nonzero initial speedsvi(0) = σnui , where the speed scale(σn) is
a sequence of nonnegative numbers and(ui) is a family of i.i.d. random variables
with E(ui) = 0 andE(u2

i ) = 1.
The aggregation in a warm gas has been extensively studied in [2, 10, 16, 17].

The critical timeT ∗ is still defined by (3.1), but its interpretation becomes slightly
different. It is not interpreted any more as a limit value of collapse times, but as
a time after which there exists a single cluster of huge mass and, possibly, a dust
of small clusters whose total mass is negligible. In other words, analogously to
Corollary 3.2, for anyt > T ∗, we have limn→∞ Ln(t)

n
= 1 in probability.

The aggregation in a warm gas at critical timeT ∗ is remarkably studied in [17]
(for lattice model withσn = 1). Therefore, it remains to evaluateLn(t) at times
t < T ∗ (cf. Theorem 3.2.1 in [17]).
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Before stating the result, let us explain a natural but somewhat nonstandard
notation of superior and inferior limits in probability which will be frequently used
in the sequel. Letξn be a sequence of random variables andc ∈ R. Then

lim inf
n→∞ ξn ≥ c in probability

means that for allε > 0,

lim
n→∞P(ξn ≤ c − ε) = 0.

Similarly,

lim sup
n→∞

ξn ≤ c in probability

means that for allε > 0,

lim
n→∞P(ξn ≥ c + ε) = 0.

THEOREM 3.5. Assume that

lim
n→∞

σn

n−1 logn
= ∞ and lim

n→∞
σn

n1/2 = 0,(3.5)

and thatui has a finite exponential momentEexp{a|ui |} < ∞ for somea > 0.
Then, for any of the three models(lattice, Poisson or i.i.d.), for any t < T ∗, we
have

lim inf
n→∞

Ln(t)

(nσn)2/3(log(n/σ 2
n ))1/3 ≥ c1(t) in probability,(3.6)

lim sup
n→∞

Ln(t)

(nσn)2/3(log(nσ
2/5
n ))1/3

≤ c2(t) in probability,(3.7)

where

c1(t) := 2
(

t

1− γρt2

)2/3

, c2(t) := (20/3)1/3c1(t).(3.8)

In the basic caseσn = 1, we get the estimateLn(t) ≈ n2/3 (logn)1/3.
For relatively largeσn (high temperature gas), a critical order turns out to

be σn ≈ n1/2. When approaching this order, the main term in the asymptotic
expression forLn(t) has ordern, while the logarithmic terms of our upper and
lower bounds are not of the same order anymore. This would indicate a kind of
phase transition. The critical time for such a hot gas should not follow the formula
T ∗ = (γρ)−1/2, but tend to infinity.

It is interesting to understand what happens if we replace the assumption
Eexp{a|ui |} < ∞ by the weaker condition

E[|ui |p] < ∞.(3.9)
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Then a small number of particles with high initial speeds can substantially perturb
the behavior ofLn(t). However, the following result says that ifp is large enough,
then Theorem 3.5 still holds true, but in narrower zones of speed ranges.

PROPOSITION3.6. Assume that(3.5)and (3.9)hold. Let ε > 0.

(a) Wheneverp > 2 andσn ≥ εn(3−p)/p, we have(3.6).
(b) Wheneverp > 6 andσn ≥ εn(7−p)/(p−4), we have(3.7).

It is worthwhile to compare Proposition 3.6 with estimates in [17]. In our
notation, Theorem 3.2.1 in [17] yieldsLn(t) ≤ nh, ∀h >

2(p+2)
3p

, for σn = 1
and p > 4, while Proposition 3.6 provides a better boundLn(t) ≤ const×
n2/3(logn)1/3. These bounds become closer whenp → ∞.

On the opposite side of the scale, for smallσn (we call it a low temperature gas),
namely, forσn � n−1 logn, it is easy to establish the same behavior as for the cold
gas, that is, (3.2) is true.

Moreover, if weformally apply Theorem 3.5 to critically smallσn = const×
n−1 logn, we also getLn(t) ≈ logn just as in Theorem 3.3. More rigorously, we
have the following analogue of Theorem 3.5.

THEOREM 3.7. Assume that

lim
n→∞

σn

n−1 logn
= c ∈ (0,∞),(3.10)

and thatEexp{a|ui |} < ∞ for somea > 0. Then, for any of the three models
(lattice, Poisson or i.i.d.), for eacht < T ∗,

lim inf
n→∞

Ln(t)

logn
≥ ĉ1(t) in probability,

lim sup
n→∞

Ln(t)

logn
≤ ĉ2(t) in probability,

where0< ĉ1(t) ≤ ĉ2(t) < ∞ are constants.

4. Barycenter technique. In this section we describe and extend a barycenter
technique for the study of particle systems. This technique has been already used,
for example, in [2, 6, 7, 10, 17].

We identify the particles with their numbers, and call ablock of particlesany
set of particles which have consecutive numbers. We denote such a block by
J = (i, i + k]; this block contains the particles numbered fromi + 1 to i + k.

The numberk is called thesizeof the block. It is worthwhile to mention that
at any timet > 0, some particles in the block may belong to a cluster containing
particles that are not in the block.
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We say that a block isfree from the rightup to timet if none of its particles
has collided up to timet with any of the particles initially located to the right of
the block. A blockfree from the leftis defined similarly. Finally, a block isfreeup
to time t if it is free both from the left and from the right. We note that collisions
inside a free block are possible.

Let MJ := ∑
j∈J mj . Define thebarycenter of the block J by x̄J (t) :=

M−1
J

∑
j∈J mjxj (t).

Define

x̄∗
J (s) := x̄J (0) + x̄′

J (0)s + 1
2γ

(
M

(R)
J − M

(L)
J

)
s2,(4.1)

whereM
(R)
J andM

(L)
J denote the total masses of the particles to the right and to

the left of J , respectively. Note thats �→ x̄∗
J (s) represents the trajectory of the

barycenter of the blockJ without taking into account the collisions with external
particles and is completely expressed in terms of initial data of the particles in the
blockJ .

The following observation contains a basic idea in the study of such particle
systems:

“The barycenter of a free block moves with constant acceleration, as if it were
a single particle with mass equal to the total mass of the particles in the block.”

More precisely, we have the following.

PROPOSITION4.1. Let a blockJ be free from the right up to timet . Then

x̄J (s) ≥ x̄∗
J (s), s ∈ [0, t].(4.2)

Similarly, if a blockJ is free from the left up to timet , then

x̄J (s) ≤ x̄∗
J (s), s ∈ [0, t].(4.3)

The proof of Proposition 4.1 is straightforward, and is omitted. An immediate
consequence is the following

COROLLARY 4.2. Let a blockJ be free up to timet . Then

x̄J (s) = x̄∗
J (s), 0≤ s ≤ t.

We call thecollapse timetcl
J of a blockthe first time when all the particles of

the blockJ are in a common cluster. It is possible to expresstcl
J via the random

variables of typēx∗
A;A ⊂ {1,2, . . . , n}. Toward this aim, let us introduce for every

particlej , the first timetcl
j when it collides with the neighboring particlej + 1. It

is clear that forJ = (i, i + k], we have

tcl
J = max

0<r<k
tcl
i+r .(4.4)
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On the other hand, let us consider for each tripletα < j < β, the quadratic function

Qα,j,β(s) := x̄∗
(α,j ](s) − x̄∗

(j,β](s).

We know that

Qα,j,β(0) ≤ xj (0) − xj+1(0) < 0.

Moreover, the main coefficient of the quadratic function is positive since by (4.1)
it is equal to

γ

2

[(
M

(R)
(α,j ] − M

(R)
(j,β]

) + (
M

(L)
(j,β] − M

(L)
(α,j ]

)] = γM(α,β] > 0.

Therefore, there exists a uniqueτ ∗
α,j,β > 0 such that

Qα,j,β(τ ∗
α,j,β) = 0.

From the mechanical point of view,τ ∗
α,j,β is the time when the trajectories of

barycenters of blocks(α, j ] and (j, β] meet, as long as we do not take shocks
into account. The valueτ ∗

α,j,β has an explicit expression via the coefficients of the
polynomialQi,j,β , in terms of initial positions, speeds and masses of the particles.
It is worth noticing that for anyt > 0,

t ≥ τ ∗
α,j,β ⇐⇒ Qα,j,β(t) ≥ 0.(4.5)

It turns out that the following is true.

PROPOSITION4.3. For anyj < n, we have

tcl
j = min

α<j, β>j
τ ∗
α,j,β .(4.6)

PROOF. At any time s < tcl
j , the particlesj and j + 1 belong to different

clusters, so that any block of the form(α, j ] is free from the right and any block
of the form(j, β] is free from the left. By Proposition 4.1,

x̄∗
(α,j ](s) ≤ x̄(α,j ](s) ≤ xj (s) < xj+1(s) ≤ x̄(j,β](s) ≤ x̄∗

(j,β](s).

Therefore,Qα,j,β(s) < 0. It follows thattcl
j < ∞ and by continuity ofQ, we have

Qα,j,β(tcl
j ) ≤ 0. Hence,τ ∗

α,j,β ≥ tcl
j . Sinceα < j andβ > j are arbitrary, we have

tcl
j ≤ minα<j, β>j τ ∗

α,j,β .

To prove the inequality in the other direction, we note that by definition,tcl
j is

the collision time between particlesj and j + 1, so that there existα < j and
β > j such that the blocks(α, j ] and(j, β] are free up to timetcl

j (and collide at

time tcl
j ). By Corollary 4.2,

x̄∗
(α,j ](tcl

j ) = x̄(α,j ](tcl
j ) = x̄(j,β](tcl

j ) = x̄∗
(j,β](tcl

j ).
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Hence,tcl
j = τ ∗

α,j,β . It follows that tcl
j ≥ minα<j, β>j τ ∗

α,j,β . The proposition is
proved. �

When estimating the collapse time of a block, it is sometimes more convenient
to deal with simpler expressions. For example, it is a consequence of (4.4) and
(4.6) that forJ := (i, i + k],

tcl
J ≤ max

0<r<k
τ ∗
α,i+r,β ∀α ≤ i, ∀β ≥ i + k.(4.7)

In particular, takingα = i andβ = i + k gives

tcl
J ≤ max

0<r<k
τ ∗
i,i+r,i+k.(4.8)

Note that the expression on the right-hand side depends only on the initial data of
the particles in the block itself.

There is a situation when (4.8) is sharp.

PROPOSITION4.4. If a blockJ = (i, i + k] is free up to its collapse timetcl
J ,

then

tcl
J = max

0<r<k
τ ∗
i,i+r,i+k.(4.9)

PROOF. It is sufficient to prove the inequality opposite to (4.8). Take arbitrary
integerr ∈ [1, k) and consider the blocks(i, i + r] and(i + r, i +k]. We know that,
up to timetcl

J , the first block is free from the left, while the second is free from the
right. Therefore, by Proposition 4.1,

x̄∗
(i,i+r](tcl

J ) ≥ x̄(i,i+r](tcl
J ) = x̄(i+r,i+k](tcl

J ) ≥ x̄∗
(i+r,i+k](tcl

J ).

Hence,Qi,i+r,i+k(t
cl
J ) ≥ 0, so that by (4.5),tcl

J ≥ τ ∗
i,i+r,i+k. Sincer ∈ [1, k) is

arbitrary, this yieldstcl
J ≥ max0<r<k τ ∗

i,i+r,i+k. �

5. Proofs.

5.1. Proof of Theorem3.3. In Theorem 3.3, we work with the cold gas, that
is, there is no initial speed. Thus,

τ ∗
α,j,β =

(
2n

γρ(β − α)

)1/2(
x̄(j,β](0) − x̄(α,j ](0)

)1/2
.(5.1)

We will first provide a lower bound forLn(t) for the Poisson model, that is, if
the initial positions(xi(0), 1 ≤ i ≤ n) of the particles are the firstn jump times,
denoted byX1 < · · · < Xn, of a Poisson process of intensityn. Recall that

Ln(t) = max
{
k : min

J : |J |=k
tcl
J ≤ t

}
.(5.2)
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Let k < n. Consider the blocksJ
 := (
k, (
+1)k], 0≤ 
 ≤ n
k
−1. It follows from

(5.2) that

P
(
Ln(t) < k

) ≤ P

(
min



tcl
J


> t

)
.(5.3)

For a generic blockJ = (i, i + k], we have, by (5.1),

b(J ) := max
0<r<k

τ ∗
i,i+r,i+k

(5.4)
=

(
2n

γρk

)1/2

max
0<r<k

[
1

k − r

i+k∑
j=i+r+1

(Xj − Xi) − 1

r

i+r∑
j=i+1

(Xj − Xi)

]1/2

.

TakingJ = J
 = (
k, (
 + 1)k], and in view of (4.8), we have

tcl
J


≤ b(J
) =
(

2n

γρk

)1/2

max
0<r<k

[
1

k − r

(
+1)k∑
j=
k+r+1

(Xj − X
k)

(5.5)

− 1

r


k+r∑
j=
k+1

(Xj − X
k)

]1/2

,

with the notationX0 := 0. Note that the random variablesb(J
), for 0≤ 
 ≤ n
k
−1,

are independent and identically distributed. Therefore, in light of (5.3), we obtain

P
(
Ln(t) < k

) ≤ P

(
min



b(J
) > t

)
(5.6)

= (
1− P

(
b(J0) ≤ t

))ν ≤ exp
{−νP

(
b(J0) ≤ t

)}
,

whereν := �n
k
� denotes the number of blocks. According to (5.4),

P
(
b(J0) ≤ t

) = P

(
max

0<r<k

(
1

k − r

k∑
j=r+1

Xj − 1

r

r∑
j=1

Xj

)
≤ γρk

2n
t2

)
.

At this stage, it is useful to recall from Fact 2.1 that

Xj = X̃jXk+1.(5.7)

Since(X̃1, . . . , X̃k) andXk+1 are independent, we arrive at the following estimate:
for anyδ > 0,

P
(
b(J0) ≤ t

) ≥ P

(
max

0<r<k

(
1

k − r

k∑
j=r+1

X̃j − 1

r

r∑
j=1

X̃j

)
≤ 1

2
+ δ

)
(5.8)

× P

(
Xk+1 ≤ γρk

(1+ 2δ)n
t2

)
.
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Consider the empirical quantile function

Qk(s) := inf{t :Fk(t) ≥ s}, 0 ≤ s ≤ 1,(5.9)

whereFk is the empirical distribution function based on the random variables
(X̃j )1≤j≤k , that is,Fk(t) := 1

k
#{j : 1≤ j ≤ k, X̃j ≤ t}. Then

X̃j = Qk(s),
j − 1

k
≤ s <

j

k
,

and we have

1

k − r

k∑
j=r+1

X̃j − 1

r

r∑
j=1

X̃j = 1

1− t

∫ 1

t
Qk(s) ds − 1

t

∫ t

0
Qk(s) ds, t := r

k
.

Accordingly,

max
0<r<k

∣∣∣∣∣ 1

k − r

k∑
j=r+1

X̃j − 1

r

r∑
j=1

X̃j − 1

2

∣∣∣∣∣
(5.10)

≤ max
0<t<1

∣∣∣∣ 1

1− t

∫ 1

t

(
Qk(s) − s

)
ds − 1

t

∫ t

0

(
Qk(s) − s

)
ds

∣∣∣∣.
The Glivenko–Cantelli theorem for quantile processes (see, e.g., [15], page 95)
asserts that limk→∞ sups |Qk(s) − s| = 0 almost surely. Hence,

lim
k→∞P

(
max

0<r<k

(
1

k − r

k∑
j=r+1

X̃j − 1

r

r∑
j=1

X̃j

)
≤ 1

2
+ δ

)
= 1.

For the second probability expression on the right-hand side of (5.8), we note
that γρk

(1+2δ)n
t2 = k

(1+2δ)n
(t/T ∗)2. Therefore, for all sufficiently largek (how large

depending onδ),

P

(
Xk+1 ≤ γρk

(1+ 2δ)n
t2

)
= P

(
nXk+1

k + 1
≤ k

(k + 1)(1+ 2δ)
(t/T ∗)2

)
(5.11)

≥ P

(
nXk+1

k + 1
≤ (1+ 3δ)−1(t/T ∗)2

)
.

By Chernoff’s large deviation principle, for all largek,

P

(
nXk+1

k + 1
≤ (1+ 3δ)−1(t/T ∗)2

)
≥ exp

{−(1+ δ)I
(
(1+ 3δ)−1(t/T ∗)2)(k + 1)

}
,

where the large deviation rate functionI (·) of the exponential law is as in (3.3).
We choose now

k = k(n) ∼ logn

(1+ 3δ)I ((1+ 3δ)−1(t/T ∗)2)
,
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so that by (5.8),

νP
(
b(J0) ≤ t

) ≥ const× n

logn
n−(1+δ)/(1+2δ) → ∞.

We derive via (5.6) thatP(Ln(t) < k) → 0. Therefore,

lim inf
n→∞

Ln(t)

logn
≥ (1+ 3δ)−1I

(
(1+ 3δ)−1(t/T ∗)2)−1 in probability.

By sendingδ to zero, we obtain the desired lower bound in Theorem 3.3 for the
Poisson model:

lim inf
n→∞

Ln(t)

logn
≥ I

(
(t/T ∗)2)−1 in probability.

We prove now the upper bound for the Poisson model. Letk < n. Assume that
we are in the situationLn(t) > k, which means that prior to (or at) timet , a cluster
(say,A) of sizek + 1 or larger appears. Actually, one can chooseA of size less
than or equal to 2k, but we do not need the upper bound inthisproof. Consider the
block of particlesJ which corresponds toA in a natural way. Notice thatJ is free
up to the time of formation ofA. By (5.4) and (4.9), we obtain

b(J ) = tcl
J ≤ t.(5.12)

To boundb(J ) from below, we use the following elementary estimate.

LEMMA 5.1. Let p ≥ 2 be an integer, and letx1 ≤ · · · ≤ xp be real numbers.
Then

max
0<r<p

(
1

p − r

p∑
j=r+1

xj − 1

r

r∑
j=1

xj

)
≥ xp − x1

2
.

PROOF. Forp = 2, the left-hand side just equalsxp − x1. Forp > 2, consider

the averagēx := 1
p−2

∑p−1
j=2 xj . Assume first that̄x ≤ x1+xp

2 . Then

max
0<r<p

(
1

p − r

p∑
j=r+1

xj − 1

r

r∑
j=1

xj

)
≥ xp − 1

p − 1

p−1∑
j=1

xj

= xp − 1

p − 1

(
(p − 2)x̄ + x1

)
≥ xp − p − 2

2(p − 1)
(x1 + xp) − x1

p − 1

= p

2(p − 1)
(xp − x1) ≥ xp − x1

2
.
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The casex̄ ≥ x1+xp

2 boils down to the considered one by the substitution ofxj

by −xj . �

The definition ofb(J ) and Lemma 5.1 yield for any blockJ = (i, i + p],

b(J ) ≥
(

2n

γρp

)1/2(Xi+p − Xi+1

2

)1/2

.

Plugging this into (5.12) yields that for anyk andt ,

{Ln(t) > k} ⊂
n⋃

p=k+1

n−p⋃
i=0

{(
2n

γρp

)1/2(Xi+p − Xi+1

2

)1/2

≤ t

}
.(5.13)

Since the random variablesXi+p −Xi+1, 0≤ i ≤ n−p, are identically distributed,
we get

P
(
Ln(t) > k

) ≤ n

n∑
p=k+1

P

((
2n

γρp

)1/2(Xp − X1

2

)1/2

≤ t

)

= n

n∑
p=k+1

P

(
Xp − X1 ≤ γρp

n
t2

)
.

The random variablen(Xp − X1) is distributed as the sum ofp − 1 independent
random variables having the standard exponential distribution. Therefore, Cher-
noff’s large deviation principle yields that for any fixedδ > 0 and all sufficiently
largek and allp > k,

P

(
Xp − X1 ≤ γρp

n
t2

)
= P

(
Xp − X1 ≤ p

n
(t/T ∗)2

)
≤ P

(
n(Xp − X1)

p − 1
≤ (1+ δ)(t/T ∗)2

)
≤ exp

{−(1− δ)I
(
(1+ δ)(t/T ∗)2)(p − 1)

}
,

from which it follows that

P
(
Ln(t) > k

) ≤ n

∞∑
p=k+1

exp
{−(1− δ)I

(
(1+ δ)(t/T ∗)2)(p − 1)

}

= nexp{−(1− δ)I ((1+ δ)(t/T ∗)2)k}
1− exp{−(1− δ)I ((1+ δ)(t/T ∗)2)} .

We choose now

k = k(n) ∼ (1+ δ) logn

(1− δ)I ((1+ δ)(t/T ∗)2)
, n → ∞,
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so thatP(Ln(t) > k) → 0, n → ∞. Therefore,

lim sup
n→∞

Ln(t)

logn
≤ 1+ δ

1− δ
I
(
(1+ δ)(t/T ∗)2)−1 in probability.

Finally, by sendingδ to zero, we obtain the desired estimate

lim sup
n→∞

Ln(t)

logn
≤ I

(
(t/T ∗)2)−1 in probability.

This completes the proof of Theorem 3.3 for the Poisson model. In order to prove it
for the i.i.d.-model, we use the representation from Fact 2.1 with a Poisson process
of intensityn. The system with initial positions(X̃i)i≤n is similar to the Poisson
model with initial positions(Xi)i≤n, if we take similarity coefficients as follows:
cx = (Xn+1)

−1, cv = (Xn+1)
−1/2, ct = (Xn+1)

−1/2. We infer from the similarity
that

L̃n(t) = Ln

(
t
√

Xn+1
)
,(5.14)

whereL̃n andLn denote the size of the maximal cluster in the i.i.d.-model and in
the Poisson model, respectively. Taking into account thatXn+1 → 1 in probability
(law of large numbers), we derive the statement of the theorem for the i.i.d.-model
from what we have just proved for the Poisson model.�

5.2. Proof of Theorem3.4. Consider first the Poisson model. Letεn := T ∗−tn
T ∗ .

The assumptions in the theorem take the form

lim
n→∞ εn = 0,(5.15)

lim
n→∞nε2

n = ∞.(5.16)

We fix a smallβ ∈ (0,2) and take a sequence of positive integers(kn) such that

kn ∼ log(nε2
n)

(2− β)ε2
n

, n → ∞.

It follows from (5.13) that

{Ln(tn) > kn} ⊂
n⋃

p=kn+1

n−p⋃
i=0

{
n(Xi+p − Xi+1) ≤ t2

np

(T ∗)2

}
.

It is easier to interpret the condition within the brackets on the right-hand side in
terms of centered random variables, namely,(

nXi+p − (i + p)
) − (

nXi+1 − (i + 1)
) ≤ t2

np

(T ∗)2 − p + 1= −pεn(2− εn) + 1.

Recall that for anyn ≥ 1, the random variables(nXi − i)i≥0 can be viewed
as sums of independent centered random variables having the standard centered
exponential distribution. Using the classical Komlós–Major–Tusnády estimate [8],
we approximate them by a Wiener processW . Namely, we need the following:
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FACT 5.2 (KMT construction). It is possible to constructW and (Xi) in a
common probability space such that for some numerical constantsC1 andC2, and
for all realr > 0,

P

{
max

1≤i≤n
|(nXi − i) − W(i)| > r

}
≤ (1+ C1n

1/2)exp{−C2r}.(5.17)

Since we study only convergence in probability, it is unimportant for us whether
the probability space in KMT construction is the same for alln or not. We just
make use of

lim
n→∞P

{
max

1≤i≤n
|(nXi − i) − W(i)| > logn

C2

}
= 0.

Observe that

P{Ln(tn) > kn}

≤ P

{
n⋃

p=kn+1

n−p⋃
i=0

{
|W(i + p) − W(i)| ≥ pεn(2− εn) − 1− 2

C2
logn

}}

+ P

{
max

1≤i≤n
|(nXi − i) − W(i)| > logn

C2

}
.

The second term on the right-hand side converges to zero by what we have just
seen. On the other hand, under assumptions (5.15)–(5.16), we havepεn ≥ knεn ∼
log(nε2

n)

(2−β)εn
� logn. Therefore, for any fixedh > 0,

lim sup
n→∞

P{Ln(tn) > kn}

≤ lim sup
n→∞

P

{
n⋃

p=kn+1

n−p⋃
i=0

{|W(i + p) − W(i)| ≥ pεn(2− h)}
}
.

By scaling, the probability expression on the right-hand side is

= P

{
n⋃

p=kn+1

n−p⋃
i=0

{(
p

kn

)−1/2∣∣∣∣W(
i

kn

+ p

kn

)
− W

(
i

kn

)∣∣∣∣ ≥ √
pεn(2− h)

}}

≤ P

{
sup

0≤t≤n/kn

sup
1≤u≤n/kn

u−1/2|W(t + u) − W(t)| ≥ √
knεn(2− h)

}
.

We write, for anya > 0 andb ≥ 1,

�(a,b) := sup
0≤t≤a

sup
1≤u≤b

u−1/2|W(t + u) − W(t)|.(5.18)

Then

lim sup
n→∞

P{Ln(tn) > kn} ≤ lim sup
n→∞

P

{
�

(
n

kn

,
n

kn

)
≥ √

knεn(2− h)

}
.(5.19)

The following lemma gives an upper bound for the tail of�.
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LEMMA 5.3. Let�(·, ·) be as in(5.18). For anyh ∈ (0,1), there existsch > 0
such that for allT ≥ 1, U ≥ 2 andr ≥ 1,

P
(
�(T ,U) ≥ r

) ≤ chT (logU)exp{−(1− h)r2/2}.
PROOF. By scaling, for anya ≥ 1,

P

(
sup

0≤s≤T

sup
a≤u≤2a

|W(s + u) − W(s)|
u1/2 ≥ r

)
= P

(
�(T/a,2) ≥ r

)
≤ P

(
�(T ,2) ≥ r

)
.

Therefore, by the stationarity of the increments of the Wiener process,

P
(
�(T ,U) ≥ r

) ≤ �T �
⌈

logU

log 2

⌉
P

(
�(1,2) ≥ r

)
.(5.20)

On the other hand, for any centered Gaussian process{Y (v), v ∈ V }, the following
estimate of large deviations holds (see [9], Chapter 12):

lim
r→∞ r−2 logP

(
sup
v∈V

|Y(v)| ≥ r

)
= − 1

2σ 2 ,

where σ 2 := supv∈V E[Y(v)2]. We apply this estimate to the two-parameter
process

Y(s, u) := W(s + u) − W(s)

u1/2 , (s, u) ∈ V := [0,1] × [1,2],
so that limr→∞ r−2 logP (�(1,2) ≥ r) = −1

2. Therefore,

sup
r≥1

P(�(1,2) ≥ r)

exp{−(1− h)r2/2} < ∞.

This, in light of (5.20), yields the lemma.�
Let nowh be so small that

z := (1− h)(2− h)2

2(2− β)
> 1.

Applying Lemma 5.3 toT = U = n/kn andr = √
kn(2− h)εn, we get

P

{
�

(
n

kn

,
n

kn

)
≥ √

knεn(2− h)

}

≤ ch

n log(n/kn)

kn

exp{−(1− h)(2− h)2ε2
nkn/2}

= ch

n

kn

(nε2
n)

−(1+o(1))z log(n/kn)

∼ ch(2− β)(nε2
n)

1−(1+o(1))z.
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(We have used the fact thatnε2
n → ∞.) Sincez > 1, we have(nε2

n)
1−(1+o(1))z → 0.

Plugging this into (5.19) gives limn→∞ P{Ln(tn) ≥ kn} = 0, which means that

1 ≥ lim sup
n→∞

Ln(tn)

kn

= (2− β) lim sup
n→∞

Ln(tn)ε
2
n

log(nε2
n)

= 2− β

(T ∗)2 lim sup
n→∞

Ln(tn)(T
∗ − tn)

2

log(n(T ∗ − tn)2)
in probability.

The desired upper bound for the Poisson model follows by lettingβ → 0.
We proceed now to the proof of the lower bound for the Poisson model. We

have already established in inequalities (5.6), (5.8) and (5.11) that for allt > 0,
δ > 0 and all integerk (such that k

k+1 ≥ 1+2δ
1+3δ

),

P
(
Ln(t) < k

) ≤ exp{−νP1(k, δ)P2(k, δ, t)},(5.21)

whereν := �n
k
� and

P1(k, δ) := P

(
max

0<r<k

(
1

k − r

k∑
j=r+1

X̃j − 1

r

r∑
j=1

X̃j

)
≤ 1

2
+ δ

)
,

P2(k, δ, t) := P

(
nXk+1

k + 1
≤ (1+ 3δ)−1(t/T ∗)2

)
.

Let us now specify the choice of the parameters. Letβ > 0 andh > 0 be some
small numbers. We still denoteεn := T ∗−tn

T ∗ , but this time we set(kn) such that

kn ∼ log(nε2
n)

(2+ β)ε2
n

.

Let δn := hεn. Then

P2(kn, δn, tn) = P

(
nXkn+1 − (kn + 1)√

kn + 1
≤ (

(1+ 3δn)
−1(tn/T ∗)2 − 1

)√
kn + 1

)
.

For all largen, (
(1+ 3δn)

−1(tn/T ∗)2 − 1
)√

kn + 1

≥ (
(1− 3δn)(1− εn)

2 − 1
)√

kn + 1

≥ −(3δn + 2εn)
√

kn + 1

= −(3h + 2)εn

√
kn + 1.

Therefore, for all largen,

P2(kn, δn, tn) ≥ P

(
nXkn+1 − (kn + 1)√

kn + 1
≤ −(3h + 2)εn

√
kn + 1

)
.
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Now we use the following result of moderate deviations (see [12], Chapter 8,
page 218).

FACT 5.4 (Cramér’s theorem). LetYi be a sequence of i.i.d. centered random
variables such thatEexp{γ |Yi |} < ∞ for someγ > 0. Then for any positive
sequence(xn) with xn = o(

√
n ), we have

P

{
1√
n

n∑
j=1

Yj > xn

}
= exp

(
−1+ o(1)

2
x2
n

)
.

Since εn → 0 [see (5.15)], we are entitled to apply Fact 5.4 toxn =
(3h + 2)εn

√
kn + 1. Note thatεn

√
kn + 1→ ∞ [see (5.16)]. Thus,

P2(kn, δn, tn) ≥ (
1+ o(1)

)
exp

{−(3h + 2)2ε2
nkn

(
1+ o(1)

)
/2

}
≥ (

1+ o(1)
)
exp

{
−(3h + 2)2

2(2+ β)
log(nε2

n)
(
1+ o(1)

)}
= (

1+ o(1)
)
(nε2

n)
−(1+o(1))z,

wherez := (3h+2)2

2(2+β)
. The parameterh can be chosen so small thatz < 1. With this

choice, (5.16) implies

νP2(kn, δn, tn) ≥ n

2kn

(nε2
n)

−(1+o(1))z ∼ (2+ β)(nε2
n)

1−(1+o(1))z

2 log(nε2
n)

→ ∞.(5.22)

Assume for a while that

lim inf
n→∞ P1(kn, δn) > 0.(5.23)

Then by (5.21) and (5.22), limn→∞ P{Ln(tn) ≤ kn} = 0, which implies the desired
lower bound:

lim inf
n→∞

Ln(tn)

kn

≥ 1 in probability.

To establish (5.23), we observe that

δnk
1/2
n = hεn

√
kn ∼ h

(
log(nε2

n)

2+ β

)1/2

→ ∞.(5.24)

We use the estimate (5.10), whereQk(·) is the empirical quantile function defined
in (5.9). The well-known functional limit theorem for quantile processes (see [15])
asserts that fork → ∞, the sequence of processesYk(r) = √

k (Qk(r) − r),

r ∈ [0,1], converges weakly to a Brownian bridge
◦
W in the Skorokhod topology.
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In light of (5.24), we arrive at

lim inf
n→∞ P1(kn, δn)

≥ lim inf
n→∞ P

(
max

0<t<1

∣∣∣∣ 1

1− t

∫ 1

t

(
Qkn(s) − s

)
ds − 1

t

∫ t

0

(
Qkn(s) − s

)
ds

∣∣∣∣ ≤ δn

)

≥ lim inf
n→∞ P

(
max

0<t<1

∣∣∣∣ 1

1− t

∫ 1

t
Ykn(s) ds − 1

t

∫ t

0
Ykn(s) ds

∣∣∣∣ < 1
)

= P

(
max

0<t<1

∣∣∣∣ 1

1− t

∫ 1

t

◦
W(s)ds − 1

t

∫ t

0

◦
W(s)ds

∣∣∣∣ < 1
)

> 0.

Therefore, relation (5.23) is true and Theorem 3.4 is proved for the Poisson model.
Consider now the i.i.d.-model. We use (5.14) which reduces the problem to

the Poisson case. Indeed, by the central limit theorem, for anyε > 0, there exists
M > 0 such that

lim sup
n→∞

P

(∣∣√Xn+1 − 1
∣∣ >

M√
n

)
< ε.

Let t̂n := tn(1+ M√
n
). The sequence( t̂n) satisfies the assumptions in Theorem 3.4,

and the norming sequences are equivalent:

lim
n→∞

(T ∗ − tn)
−2 log(n(T ∗ − tn)

2)

(T ∗ − t̂n)−2 log(n(T ∗ − t̂n)2)
= 1.

By (5.14), if
√

Xn+1 ≤ 1+ M√
n
, thenLn( t̂n) ≥ Ln(tn

√
Xn+1 ) = L̃n(tn). Therefore,

for anyβ > 0, we have, for all largen,

P

(
L̃n(tn) >

(T ∗)2 log(n(T ∗ − tn)
2)

(2+ β)(T ∗ − tn)2

)

≤ P

(√
Xn+1 > 1+ M√

n

)
+ P

(
Ln( t̂n) >

(T ∗)2 log(n(T ∗ − t̂n)
2)

(2+ 2β)(T ∗ − t̂n)2

)
.

The last probability term on the right-hand side tends to zero by what we have
proved for the Poisson case. Thus,

lim sup
n→∞

P

(
L̃n(tn) >

(T ∗)2 log(n(T ∗ − tn)
2)

(2+ β)(T ∗ − tn)2

)

≤ lim sup
n→∞

P

(√
Xn+1 > 1+ M√

n

)
≤ ε.

Sinceε is arbitrary, we get the desired upper bound: for anyβ > 0,

lim sup
n→∞

P

(
L̃n(tn) >

(T ∗)2 log(n(T ∗ − tn)
2)

(2+ β)(T ∗ − tn)2

)
= 0.

The lower bound follows exactly in the same way.�
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5.3. Proof of Theorem3.5. We first focus on the lattice model. In this model,
for every blockJ = (i, i + k], we have

x̄J (0) = 1

k

i+k∑
j=i+1

xj (0) = 1

k

i+k∑
j=i+1

j

n
= 2i + k + 1

2n
.(5.25)

Let

ūJ := 1

MJ

∑
j∈J

mjuj = 1

k

i+k∑
j=i+1

uj ,

which denotes the average of normalized initial speeds. Then (4.1) takes the form

x̄∗
J (s) = 2i + k + 1

2n
+ σnūJ s + γρ(n − 2i − k)

s2

2n
,(5.26)

and (4.5) becomes, for anyt > 0,

τ ∗
α,j,β ≤ t ⇐⇒ ū(α,j ] − ū(j,β] ≥ (β − α)(1− γρt2)

2nσnt
.(5.27)

We start with the proof of the lower bound forLn(t). Let ε ∈ (0,1/3) and let
k be an arbitrary positive integer. ConsiderJ
 = [(
 + ε)k, (
 + 1 − ε)k] ∩ Z.
According to (4.7), for any
, if there existα < (
+ ε)k andβ > (
+1− ε)k such
that maxj∈J


τ ∗
α,j,β ≤ t , then all the particles of the blockJ
 belong to a common

cluster at timet . We apply this toα = 
k andβ = (
+1)k to see, in light of (5.27),
that the condition

min
j∈J


(
ū(
k,j ] − ū(j,(
+1)k]

) ≥ k(1− γρt2)

2nσnt

ensures a single cluster at timet from the blockJ
. Thus, similarly to (5.6), we
have

P
(
Ln(t) ≤ (1− 2ε)k − 1

) ≤ exp{−νP1},(5.28)

whereν := �n
k
� denotes the number of blocks and

P1 := P

(
min
j∈J0

(
ū(0,j ] − ū(j,k]

) ≥ k(1− γρt2)

2nσnt

)
.

Let us express the average speeds in terms of the random walk

Sj :=
j∑

i=1

ui, j ≥ 0.
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Thenū(0,j ] − ū(j,k] = kSj−jSk

j (k−j)
and, thus,

P1 = P

{
k−1/2

(
Sj − j

k
Sk

)
≥ k3/2(1− γρt2)

2nσnt

j

k

(
1− j

k

)
,

(5.29)

ε ≤ j

k
≤ 1− ε

}
.

Let us now specify the choice ofk by letting

b = bn := log
(

n

σ 2
n

)
,

k = kn ∼ (1− 4ε)2/3c1(t)(nσn)
2/3b1/3,

wherec1(t) is defined in (3.8). Note that by the definition ofc1(t),
k3/2(1−γρt2)

2nσnt
∼

(1− 4ε)(2b)1/2. Accordingly, for all largen,

P1 ≥ P

{
k−1/2

(
Sj − j

k
Sk

)
≥ (1− 3ε)(2b)1/2j

k

(
1− j

k

)
, ε ≤ j

k
≤ 1− ε

}
.

Let W be the Wiener process in (5.17). We have

P1 ≥ P

{
k−1/2

(
W(j) − j

k
W(k)

)
≥ (1− ε)(2b)1/2j

k

(
1− j

k

)
,

k−1/2|W(j) − Sj | ≤ ε(2b)1/2j

k

(
1− j

k

)
, ε ≤ j

k
≤ 1− ε

}
≥ P

{
k−1/2(W(ks) − sW(k)) ≥ (1− ε)(2b)1/2s(1− s), ε ≤ s ≤ 1− ε,

k−1/2 max
1≤j≤k

|W(j) − Sj | ≤ ε2(1− ε)(2b)1/2
}
.

Sinces �→ k−1/2W(ks), s ≥ 0, is also a Wiener process, we getP1 ≥ P2 − P3,
where

P2 := P{W(s) − sW(1) ≥ (1− ε)(2b)1/2s(1− s), ε ≤ s ≤ 1− ε},
P3 := P

{
max

1≤j≤k
|W(j) − Sj | ≥ ε2(1− ε)(2bk)1/2

}
.

In order to estimateP2, we apply the functional large deviation principle (see,

e.g., [9], Chapter 12, Theorem 6) to the Brownian bridge
◦
W(s) = W(s) − sW(1):

lim inf
R→∞

1

R2 logP{W(s) − sW(1) ≥ Rs(1− s), ε ≤ s ≤ 1− ε}

≥ −1

2

∫ 1

0
(1− 2s)2 ds = −1

6
.
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By (3.5), we haveb → ∞, which implies that for largen,

P2 ≥ exp{−(1+ ε)2(1− ε)2b/3} =
(

n

σ 2
n

)−(1−ε2)2/3

.(5.30)

We now show thatP3 is negligible compared toP2. Indeed, by the Komlós–
Major–Tusnády estimate (5.17),

P3 ≤ (1+ C1k
1/2)exp{−C2ε

2(1− ε)(2bk)1/2}.(5.31)

Since k
b

∼ (1 − 4ε)2/3c1(t)(
nσn

bn
)2/3 � 1, we have, for all sufficiently largen,

C2ε
2(1− ε)(2bk)1/2 > b + log(1+ C1k

1/2), which implies that for all largen,

P3 ≤ exp{−b} =
(

n

σ 2
n

)−1

.

In view of (5.30), this yieldsP2 � P3. Hence,

νP1 ≥ ν(P2 − P3)

∼ n

k
P2 ≥ n

c1(t)(nσn)2/3(log(n/σ 2
n ))1/3

(
n

σ 2
n

)−(1−ε2)2/3

.

The expression on the right-hand side equals1
c1(t)

( n
σ2

n
)[1−(1−ε2)2]/3(log( n

σ2
n
))−1/3,

and thus goes to infinity. In light of (5.28), we obtain

lim inf
n→∞

Ln(t)

(nσn)2/3(log(n/σ 2
n ))1/3 ≥ (1− 2ε)(1− 4ε)2/3c1(t) in probability.

The lower bound in Theorem 3.5 for the lattice model is proved, sinceε can be
arbitrarily small.

We proceed now to the proof of the upper bound (for the lattice model). We
have already seen in the proof of Theorem 3.3 that ifLn(t) > k, then there exists a
block J = (i, i + p] of sizep betweenk + 1 and 2k, that is free up to its collapse
time tcl

J and such thattcl
J ≤ t . Let, for simplicity,p be even, say,p = 2q. By virtue

of Proposition 4.4, inequalitytcl
J ≤ t means that

max
0<r<2q

τ ∗
i,i+r,i+2q ≤ t.

In particular, we haveτ ∗
i,i+q,i+2q ≤ t , which, in light of (5.27), is equivalent to

ū(i,i+q] − ū(i+q,i+2q] ≥ q(1− γρt2)

nσnt
.

Similarly, wheneverp is odd, say,p = 2q + 1, we arrive at

ū(i,i+q] − ū(i+q+1,i+2q+1] ≥ q(1− γρt2)

nσnt
.
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Summarizing, we have

{Ln(t) > k} ⊂ 1 ∪ 2,

where

1 =
k⋃

q=k/2

n−2q⋃
i=0

{
1√
2q

q∑
j=1

(ui+j − ui+q+j ) ≥ q3/2(1− γρt2)√
2nσnt

}

and

2 =
k⋃

q=k/2

n−2q⋃
i=0

{
1√
2q

q∑
j=1

(ui+j − ui+q+1+j ) ≥ q3/2(1− γρt2)√
2nσnt

}
.

Thus,

P{Ln(t) > k} ≤ 2n

k∑
q=k/2

Pq,

where

Pq := P

(
1√
2q

q∑
j=1

(uj − uq+j ) ≥ xq,n

)

and

xq,n = q3/2(1− γρt2)√
2nσnt

.

Let ε > 0, and let

k = k(n) ∼ (1+ 2ε)c2(t)(nσn)
2/3(log(nσ 2/5

n )
)1/3

,

wherec2(t) is defined in (3.8). Since we want to apply Fact 5.4 toPq , let us check
that

lim
n→∞

xq,n

q1/2 = 0(5.32)

uniformly overq ≤ 2k(n). Indeed,

xq,n

q1/2 = O

(
q

nσn

)
= O

((
log(nσ

2/5
n )

nσn

)1/3)
.

By using twice the assumption (3.5), we have

lim sup
n→∞

log(nσ
2/5
n )

nσn

≤ lim sup
n→∞

2 log(n)

nσn

= 0
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and (5.32) follows. Now, by Fact 5.4, for all largen and allq ∈ [k/2, k],

Pq ≤ exp
{ −x2

q,n

2(1+ ε)

}
= exp

{
− 1

2(1+ ε)

q3(1− γρt2)2

2(nσn)2t2

}
,

so that

P{Ln(t) > k} ≤ 2n
∑

q≥k/2

exp
{
− 1

2(1+ ε)

q3(1− γρt2)2

2(nσn)2t2

}

= O

(
n(nσn)

2

k2 exp
{
− 1

2(1+ ε)

(k/2)3(1− γρt2)2

2(nσn)2t2

})
.

The expression on the right-hand side is, whenn is large,

= O

(
(nσ

2/5
n )5/3

(log(nσ
2/5
n ))2/3

exp
{
−(1+ ε)2c2(t)

3(1− γρt2)2 log(nσ
2/5
n )

25t2

})

= O

(
(nσ

2/5
n )5/3

(log(nσ
2/5
n ))2/3

exp
{
−5

3
(1+ ε)2 log(nσ 2/5

n )

})
,

which goes to 0 asn → ∞. Hence,

lim sup
n→∞

Ln(t)

(nσn)2/3(log(nσ
2/5
n ))1/3

≤ (1+ 2ε)c2(t) in probability.

This yields the desired upper bound in Theorem 3.5 for the lattice model.
The theorem is thus proved for the lattice model. It turns out that in the

considered range of initial speeds, the fluctuations in initial positions have no
significant influence upon the asymptotics ofLn(t). Indeed, for arbitrary initial
positions, (5.29) becomes

P1 = P

(
k−1/2

(
Sj − j

k
Sk

)
≥ k1/2

nσnt

(
k

2
(1− γρt2) + Dj

)
j

k

(
1− j

k

)
,

(5.33)

ε ≤ j

k
≤ 1− ε

)
,

where

Dj := 1

j

j∑
i=1

(nXi − i) − 1

k − j

k∑
i=j+1

(nXi − i).

Hence, for anyε1 > 0, we haveP1 ≥ P̃1 − P4, where

P̃1 := P

(
min
j∈J0

(
ū(0,j ] − ū(j,k]

) ≥ (1+ ε1)k(1− γρt2)

2nσnt

)
,

P4 := P

(
max
j≤k

|Dj | ≥ ε1k(1− γρt2)

2

)
.
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In the Poisson model, it follows from the large deviation principle that for some
constantc = c(γ,ρ, t, ε1) ∈ (0,∞),

P4 ≤ exp{−ck},(5.34)

whereas from what we have proved for the lattice model, we know thatP̃1 �
exp{−ck}. Therefore, the proof of the lower bound for the Poisson model goes
through along the same lines as for the lattice model, withP̃1 in place ofP1.

The same happens with the upper bound, wherePq should be replaced by

P̃q = P

(
1√
2q

q∑
j=1

(ui+j − ui+q+j ) ≥ q1/2
√

2nσnt

(
q(1− γρt2)

2
+ Dq

))
.(5.35)

Again, the exponential bound in (5.34) suffices to conclude the proof as for the
lattice model.

The passage between the Poisson and the i.i.d. models via Fact 2.1 is
straightforward.

5.4. Proof of Proposition3.6 (a sketch). Few changes are needed with respect
to the proof of Theorem 3.5, except that we have to provide alternative tools
to those based on exponential moments. For the lower bound, we can replace
the Komlós–Major–Tusnády estimate (5.31) by the Sakhanenko bound (see [13])
which states that under condition of the finiteness of thepth moment,

P

(
max

1≤j≤k
|Wj − Sj | ≥ r

)
≤ Ck

rp
∀ k ∈ N, ∀ r > 0,

where C > 0 is an unimportant constant. For the upper bound, we can use,
instead of Cramér’s moderate deviation principle (Fact 5.4) in the estimate
of Pq , the following result of Nagaev [11]: forα ∈ (0,1) and i.i.d. random
variablesY1, . . . , Yq with mean zero, unit variance and finitepth moment,

P

( q∑
j=1

Yj ≥ y
√

q

)
≤ Cα,p[q1−p/2

E|Y |py−p + exp{−αy2/2}]

∀q ∈ N, ∀y > 0,

whereCα,p > 0 is an unimportant constant. The rest of the proof is along the same
lines.

5.5. Proof of Theorem3.7 (a sketch). Under (3.10), the fluctuations of speeds
and initial positions have comparable influence on the asymptotic behavior
of Ln(t), hence, we have to take both of them into account. Fortunately, the large
deviation principle provides less precise (than in the preceding proofs), but still
sufficient, estimates. We just outline how the estimation works for the upper bound
for the Poisson model. The changes in the proof of the lower bound are similar.
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Fix M > 0; let q ≥ M logn andB := 1−γρt2

4 . We obtain forPq in (5.35) that
for anyε > 0 and all largen,

Pq = P

( q∑
j=1

(ui+j − ui+q+j ) ≥ q2

nσnt

(
1− γρt2

2
+ Dq

q

))

≤ P

( |Dq |
q

≥ B

)
+ P

( q∑
j=1

(ui+j − ui+q+j ) ≥ Mq(1− ε)

ct

(1− γρt2)

4

)

≤ e−(1+o(1))I1(B)q + e−(1+o(1))I2(C)q,

whereC := M(1−ε)(1−γρt2)
4ct

, I1 andI2 are relevant large deviation functions. We
takeM so large thatMI1(B) > 1 andMI2(C) > 1. Then

P
(
Ln(t) > 2M logn

) ≤ n
∑

q≥M logn

Pq → 0,

and the upper bound follows.
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