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ASYMPTOTICS FOR HITTING TIMES

BY M. K UPSA AND Y. L ACROIX

Charles University and Université de Toulon et du Var

In this paper we characterize possible asymptotics for hitting times
in aperiodic ergodic dynamical systems: asymptotics are proved to be the
distribution functions of subprobability measures on the line belonging to the
functional class

(A) F =

F :R → [0,1] :




F is increasing, null on]−∞,0];
F is continuous and concave;

F(t) ≤ t for t ≥ 0.


 .

Note that all possible asymptotics are absolutely continuous.

1. Introduction. Throughout(X,B,µ) is aprobability space, T : X → X is
measurable and preservesµ. We also assume thedynamical system(X,T ,µ) to
beergodic.

For U ⊂ X with µ(U) > 0, Poincaré’s recurrence theoremstates that the
variable

τU (x) = inf{k ≥ 1 :T kx ∈ U}
is µ-a.s. well defined. Ifx ∈ U , τU (x) denotes thereturn timeof x to U , and for
arbitraryx ∈ X, τU (x) is thehitting timeof x to U (also often called entrance
time).The return time theorem[Kac (1947)] reads

E
(
µ(U)τU

) = ∑
t≥1

tµ(U ∩ {τu = t}) = 1,

where the expectation is computed with respect to the induced probability measure
onU , µU := µ

µ(U)
.

Finer statistical properties of the variableµ(U)τU have been investigated; for
instance, Chazottes (2003) states conditions for the existence of higher-order
moments, in connection with mixing properties of the system.

Another approach, rapidly developing in the last decade, relevant to the study
of recurrence to rare events in dynamical systems, is to describe asymptotics for
hitting or return times.

We say a sequence of distribution functions(Fn) converges weakly to a
function F (which might not be a distribution function itself ) ifF is increasing
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(not necessarily strictly) and at any point of continuity ofF , say t0, Fn(t0) →
F(t0). Notice that we assumeF increasing a priori. We will writeFn ⇒ F if (Fn)

converges weakly toF .
ForU ⊂ X measurable withµ(U) > 0, we define

F̃U (t) := 1

µ(U)
µ

(
U ∩ {τUµ(U) ≤ t})

and

FU(t) = µ
({µ(U)τU ≤ t}).

Let (Un)n≥1 denote a sequence inB with µ(Un) → 0. The question of asymptotics
asks for weak convergence of(F̃Un)n≥1 or (FUn)n≥1, and in the case it does, asks
for the nature of the limit. The latter concerns hitting times, and the former return
times.

Weak limits (for both hitting and return times) have been shown to exist for
suitably chosen(Un)n≥1 (essentially decreasing sequences of balls in a metric
spaceX) and identified to be the distribution function of the positive exponential
law with parameter 1, in many classes of mixing systems, in Abadi and Galves
(2001), Collet and Galves (1993), Hirata, Saussol and Vaienti (1999), Saussol
(1998) and Young (1999). Nonexponential asymptotics have been obtained in
Coelho and de Faria (1990), for instance. The literature on the subject is rather
important and our list is incomplete. For further information we refer the reader to
the surveys Abadi (2004) or Coelho (2000).

There exists a connection between return time asymptotics and hitting time
asymptotics, indeed, as shown in Hirata, Saussol and Vaienti (1999), when the
asymptotics for return times is exponential with parameter 1, then so is the one for
hitting times.

Possible asymptotics for return times, that is, weak limits for(F̃Un)n≥1, were
determined in Lacroix (2002). These arẽF ’s in [0,1], null on]−∞,0], increasing,
such that

∫ +∞
0 (1− F̃ (t)) dt ≤ 1.

Though asymptotics for hitting times have been studied in many papers in the
literature, the question of the nature of possible asymptotics is still completely
open.

We answer this question from probability theory. Let

F =

F :R → [0,1] :




F is increasing, null on]−∞,0];
F is continuous, concave on[0,+∞[;
F(t) ≤ t for t ≥ 0.


 .(A)

Notice thatF contains only absolutely continuous distributions, some of which
are associated to subprobability measures.

We say the system(X,T ,µ) is aperiodicif for any m ≥ 1,

µ({x :T mx = x}) = 0.

We prove:
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THEOREM 1. Let (X,T ,µ) be an ergodic aperiodic dynamical system. Given
F :R → R increasing, there exists(Un)n≥0 with µ(Un) → 0 andFUn ⇒ F if and
only if F ∈ F .

Hence possible asymptotics for hitting times are exactly the elements ofF .

We stress that the classF is rather restricted, which is unexpected.
Let us remark that the continuous parameter case has been studied in this

journal, namely in Geman (1973). The characteristics of possible asymptotics in
that case differ from ours, in that, for instance, asymptotics for the continuous
parameter case may have a discontinuity jump at the origin. The proof technique
is quite different, too.

A SHORT SKETCH OF THE(ELEMENTARY) PROOF OFTHEOREM 1. Our
proof uses the same techniques as those developed in Lacroix (2002). We provide,
however, a few simplifications. We think that once the spirit of the proof is
understood, details are easy to follow.

Here is how the proof goes: first we state (conditionsC in Section 2) necessary
conditions for anF to be anFU for some U in some ergodic system. We
then define rationalF ’s, which are those satisfyingC with additional rationality
assumptions. These rationalF ’s are shown in the stamp machine lemma to be
exactly those arising from periodic ergodic systems.

Second, the concavity–continuity lemma characterizes weak limits of rational
F ’s as to be exactly the elements of the classF described above.

Third, in a periodic system aU is a finite collection of points, spaced along
the irreducible cycle that defines the ergodic periodic transformation. It defines
spacing and return times, and the rationalF ’s thereby produce models (that we
call stamps) that enable one to mark the levels in Rohlin towers [cf. Shields (1973)
for definitions]. Then if we call̃U the union of the marked levels in the tower, it is
easy to see that the larger the tower is, the uniformly closerFU andFŨ are. This
is the approximation lemma, using the classical Rohlin lemma.

Fourth, there is also an obvious observation that anyFU is arbitrarily uniformly
close to a rationalF . It follows at once that asymptotics in a given aperiodic
ergodic system are the same as weak limits ofFU ’s arising from all periodic
ergodic systems.

Let us proceed.

2. Kac’s towns, stamps and Rohlin towers. Since µ(U) > 0, it is a
standard construction in ergodic theory to build Kac’s town aboveU , which is
a juxtaposition of skyscrapers: the groundU is partitioned into setsU ∩ {τU = k},
k ≥ 1, and above each of these the action ofT goes upward along the floors of a
skyscraper of heightk − 1. Once reached, the top floor points go back somewhere
in U under the action ofT .
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The measure of the union of the floors in Kac’s town, including the ground floor,
equals 1; this is yet another expression of Kac’s return time theorem.

The connection with hitting time can be made as follows: if one wants to
computeµ(τU = k) for somek ≥ 1, one has to take the measure of the union
of the floors that havek − 1 levels left above.

A closer look at anFU shows that it must have the following elementary
properties:

1. Its discontinuities are located at pointsµ(U),2µ(U), . . . , the collection of
which might be finite or not, depending on the fact that entry times toU are
bounded or not.

2. The distribution functionFU is simple (it is the distribution function of a
discrete random variable), constant on intervals of lengthµ(U) [the random
variable concerned isµ(U)τU ], is 0 on]−∞,µ(U)[ and tends to 1 at+∞.

3. It has decreasing jumps of discontinuity; this is because the value of the jump
at pointkµ(U) equals the measure of the union of the floors havingk −1 floors
left above in Kac’s town, which necessarily decreases withk.

4. The first discontinuity jump equalsµ(U).

The conditions enumerated above—denote them by the symbolC—are neces-
sary for a distribution function to be anFU for someU of positive measure and
for some ergodic system(X,T ,µ).

We will need the following definition: a distribution functionF on the real line
is rational if it satisfiesC, has finitely many discontinuity points, all located at
rationals, and has rational discontinuity jumps.

STAMP MACHINE LEMMA . A distribution functionF is an FU for some
ergodic periodic system(X,T ,µ) if and only if it is rational.

PROOF. The necessity follows from the preceding discussion, and the fact that
in a periodic ergodic system, the set of possible return times is finite, anyU with
positive measure has rational measure, and for any suchU any floor in Kac’s town
has a rational measure.

Conversely, given a rationalF , we will build Kac’s town with baseU such
that F = FU . The first thing to do is to collect the collection of decreasing
discontinuity jumps in decreasing order, and to sort out from this collection the
set of (decreasing) values of jumps, and for each value of a jump, the cardinality
of the consecutive run of jumps having the given selected value.

The first set will provide the opportunity to compute the measures of the floors
of the skyscrapers, while the second one will provide the possibility to compute
the heights of the skyscrapers.

Let us assume that the discontinuities ofF are located at pointsα,2α, . . . ,Kα,
with α ∈ Q. We have a discontinuity jumpβk = F(kα+) − F(kα−) ∈ Q, for
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1≤ k ≤ K . Notice thatβ1 = α, and that

β1 + · · · + βK = 1,

becauseF goes from 0 to 1 upward along its discontinuity jumps.
There are somes ≥ 1 and integers 1≤ k1 < k2 < · · · < ks = K such that

(β1, . . . , βK) = (
β1 = · · · = βk1 > βk1+1 = · · · = βk2 > · · · > βks−1+1 = · · · = βks

)
.

We draw a ground floor of measureα, as well as, piled vertically underneath,
downward,k1 − 1 underground floors, of the same measureα = βk1.

Next we pile rightmost, underneath, downward,k2 consecutive floors of
measureβk2, nextk3 ones, the same way, and so on.

The procedure ends up with something looking like Kac’s town, but mirrored
downward. Never mind; we reverse direction, and get the picture of something
looking much like Kac’s town. The union of the floors has measure 1 since
β1 + · · · + βK = 1. It now remains to find a periodic ergodic system, together
with a U , for which this construction is the construction of Kac’s town associated
to U . We can writeα = p/q andβkj

= pj/q, 1≤ j ≤ s, for some denominatorq.
We denote by(X,T ,µ) the periodic ergodic system withq elements and

periodq. We will constructU ⊂ X with p elements: we setX = {1,2,3, . . . , q},
andT x = x + 1 if x < q, T q = 1. The measureµ is the equidistribution. We set

U = {1,1+ k1, . . . ,1+ (p1 − p2)k1,

1+ (p1 − p2)k1 + k2, . . . ,1+ (p1 − p2)k1 + (p2 − p3)k2,

. . . , . . . , . . . , . . . , . . . , . . . , . . . ,

1+ (p1 − p2)k1 + · · · + (ps−1 − ps)ks−1,

1+ (p1 − p2)k1 + · · · + (ps−1 − ps)ks−1 + ks, . . . ,

1+ (p1 − p2)k1 + · · · + (ps−1 − ps)ks−1 + psks}.
ThenU containsp = p1 = 1+ (p1 − p2) + · · · + (ps−1 − ps) + ps − 1 elements,
henceµ(U) = α.

Also notice that since

q = q(β1 + · · · + βK)

= (
k1(p1 − p2) + · · · + ks−1(ps−1 − ps) + ks(ps − 1) + ks

)
,

possible return times toU are exactlyk1, . . . , ks , and exactlyp1 − p2 elements of
U return toU at timek1, p2 − p3 of them do so for timek2, and so on.

We think that now the best thing to convince the reader that such system with
suchU makesF = FU is to let him work out a handmade example along with the
above guidelines, maybe also using the example developed below.�
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DEFINITION 1. Given rationalF , with parametersK , α = p/q, βkj
= pj/q,

we can construct(X,T ,µ) periodic andU as in the proof of the preceding lemma.
A stamp forF marks the levels in a tower of a given width and a height equal

to q by marking those that have the same heights (counting from the stamps base)
as those of the floors corresponding to heights inU in the preceding lemma.

AN EXAMPLE OF A STAMP CONSTRUCTION. With the above notation
let F be rational with parametersα = 5/27 and (β1 ≥ β2 ≥ · · · ≥ β7) =
(5/27,5/27,5/27,3/27,3/27,3/27,3/27).

In Figure 1, for a finite periodic system with 27 points, we show Kac’s town
with baseU consisting of five points, where each floor in the town consists of a
single point in the space. Each level in the town corresponds to a measure equal to
the correspondingβi , which reads, for our example, successively 5,5,5,3,3,3,3
points. We also figure how this town produces stamps forF : we mark the baseU ,
and unmark the floors above, then we pile the skyscrapers right above left from left
to right. We obtain a vertical tower, in which marked floors (thickened in Figure 1)
have a union equal toU .

FIG. 1. FromF to the town to its stamp.
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3. Weak limits and the class F . The proof of the following lemma is left
to the reader; it may look very much like the one of the last statement of the
concavity–continuity lemma below.

WEAK LIMITS LEMMA . Given anyε > 0, any ergodic aperiodic system
(X,T ,µ) and anyU ⊂ X with µ(U) > 0, there exists a rationalF such that for
any t ≥ 0, there exists ans ≥ 0 with

|s − t | < ε and |F(s) − FU(t)| ≤ ε.

Next we have:

CONCAVITY–CONTINUITY LEMMA . Any weak limit of a sequence(FUn)

arising from a system(X,T ,µ) and some sequence of sets of positive measures
in it, (Un), with µ(Un) → 0, must be inF [cf. (A)].

AnyF ∈ F is the weak limit of a sequence of rationalF ’s.

PROOF. AssumeFUn ⇒ F . ThenF must be increasing, hence has an at most
countable set of discontinuity points. It has a dense set of continuity points whence
F must be zero on]−∞,0[ and must take its values in[0,1].

Recall thatFUn satisfies conditionsC. In particular, if 0≤ s < t , the increase
FUn(t) − FUn(s) is at most equal to the maximal discontinuity jump ofFUn , that
is, µ(Un), times the number of intervals of lengthµ(Un) needed to go froms to t ,
plus 1. This means we have an inequality

0≤ FUn(t) − FUn(s) ≤ µ(Un)

(
t − s

µ(Un)
+ 1

)
= t − s + µ(Un).(I)

We haveµ(Un) → 0, and the continuity modulus ofFUn is

δ(FUn) := lim sup
ε↓0+

sup
|x−y|<ε

∣∣FUn(x) − FUn(y)
∣∣ = µ(Un).

Let us supposeF has a discontinuity point atx0 ≥ 0; becauseF increases, there
exists F(x−

0 ) = limy<x0 ↑ F(y) < F(x+
0 ) := limy>x0 ↓ F(y). Let us putδ =

δ(F, x0) := F(x+
0 ) − F(x−

0 ). There existsx0 − δ
4 < x1 < x0 < x2 < x0 + δ

4 such
thatF is continuous atx1 andx2. ThenFUn(x1) → F(x1) andFUn(x2) → F(x2).

Passing to the limit and applying inequality (I), we obtain

0 < δ ≤ F(x2) − F(x1) = lim
n

(
FUn(x2) − FUn(x1)

)
≤ lim sup

n
(x2 − x1) + µ(Un) = x2 − x1 <

δ

2
,

a contradiction. SoF is continuous.
The fact that the weak limit is continuous makes it a simple limit. EachFUn

clearly satisfiesFUn(t) ≤ t for t ≥ 0 (cf. conditionsC). So the simple limitF
satisfiesF(t) ≤ t for t ≥ 0, too.
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The concavity ofF is a consequence of the fact thatFUn ’s have decreasing
discontinuity jumps.

To prove that anF0 ∈ F is the weak limit of a sequence of rationalF ’s, it
is enough, becauseF0 is continuous, to prove that for anyε > 0, there exists a
rationalF such that for any1

ε
≥ t ≥ 0, there exists ans ≥ 0 with

|s − t | < ε and |F0(t) − F(s)| ≤ ε.(�)

This can be done about the same way we would be proving the weak limits
lemma, except we have a more complicated situation with a truncation, because
F0 might not grow up to 1 at+∞.

Never mind; pick an integerN > 1
ε
, and divide the interval[0,N] into intervals

of equal lengths1
N

. This produces a sequence of decreasing jumpsF0(
k+1
N

) −
F0(

k
N

), 0≤ k < N (by concavity ofF0). We then approximate eachF0(
k
N

), k > 0,
from above, by a positive rational at distance at mostε, and less than 1, call
it F( k

N
), in such a way that the new sequence of jumpsF(k+1

N
) − F( k

N
) still

decreases, withF(0) = 0.
Then we putF(s) = F( [Ns]

N
). Finally, we complete if necessary by growing up

from F(N) to 1 using smaller rational jumps, being still constant on intervals of
length 1

N
.

The obtainedF is rational and satisfies(�). �

4. Stamping along Rohlin towers.

APPROXIMATION LEMMA. Given (X,T ,µ) ergodic and aperiodic, given a
rational F and givenε > 0, there existsU ⊂ X measurable withµ(U) > 0
and such that for anyt ≥ 0, there exists ans ≥ 0 with both |s − t | ≤ ε and
|F(t) − FU(s)| ≤ ε.

PROOF. The rationalF may be realized in a periodic system of periodq > 0,
and produces stamps of arbitrary widths and heightq, by the stamp machine
lemma. We assumeF comes along with its rational parametersα,β1 ≥ · · · ≥ βK ,
ands ≥ 1 such that

β1 = · · · = βk1 > βk1+1 = · · · > βks−1+1 = · · · = βks

(we take the notation from Section 2). We denoteα = p/q, βkj
= pj

q
, 1≤ j ≤ s.

Our construction of a stamp for thisF in fact produces a subsetW consisting
of p points in a periodic system of periodq, all spaced one with the following
one by somekj , such thatpj − pj+1 such “spacings” equalkj for each 1≤ j ≤ s

(ps+1 = 0). We assume the first point belongs toW (as in Section 2).
By ergodicity and aperiodicity, using the Rohlin lemma, givenδ > 0 and1

δ
≤ N

q
,

there existV ⊂ X andn ≥ N with 0< qµ(V ) < δ, V,T V, . . . , T n−1 disjoint, and
µ(

⋃
k<n T kV ) ≥ 1− δ.



618 M. KUPSA AND Y. LACROIX

We can writen = qr + s with r ≥ 1 and 0≤ s < q, and divide the tower
V,T V, . . . , T n−1V into r subtowers of heightq, except for the topmosts
remaining floors, that are left as they are.

Next each subtower is stamped with the stamp we have forF with appropriate
width µ(V ), and so we have marked with the stamp some floors along the Rohlin
tower, exactlyrp of them. All floors that are marked in the Rohlin tower are spaced
by runs oftj −1 unmarked floors, for some 1≤ j ≤ s. There arerpj marked floors
that are at timetj to the upper next marked one.

We callU the union of the marked floors in this tower. We have

µ(U) = rpµ(V ) ∈
]

r

r + 1

p

q
(1− δ),

p

q

]
⊂

]
(1− δ)2p

q
,
p

q

]

becausen ≥ N , (rq + s)µ(V ) ≥ 1− δ and 1
δ

≤ N
q

.

In each subtower that has another one above, sayS̃k = T kqV ∪· · ·∪T kq+q−1V ,
for some 0≤ k < r , and for anyt ∈]−∞, ks], one has

1

µ(S̃k)
µ

(
x ∈ S̃k :ατU(x) ≤ t

) = F(t).

So if we denote bỹS = ⋃
k<r S̃k , we obtain that for anyt ∈]−∞, ks],
1

µ(S̃)
µ(x ∈ S̃ :ατU ≤ t) = F(t).

From this the proof follows rather easily becauseµ(U) is very close toα and
µ(S̃) can be made arbitrarily close to 1.�

5. End of the proof.

PROOF OFTHEOREM 1. Pick anF ∈ F : by the concavity–continuity lemma,
there exists a sequence of rationalF ’s, (Fn)n≥1, with Fn ⇒ F .

Then pick a decreasing sequenceεn ↓ 0 of positive reals. By the approximation
lemma, for eachn ≥ 1, there existsUn ⊂ X measurable such that for anyt ≥ 0,
there exists ans ≥ 0, with |Fn(t) − FUn(s)| ≤ εn and|s − t | ≤ εn. Then obviously
FUn ⇒ F .

To obtain the reciprocal, assumingFUn ⇒ F , the concavity–continuity lemma
precisely states thatF must belong toF . �
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