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POTENTIAL THEORY FOR HYPERBOLIC SPDEs1

BY ROBERT C. DALANG AND EULALIA NUALART

École Polytechnique Fédérale de Lausanne

We give general sufficient conditions which imply upper and lower
bounds for the probability that a multiparameterprocess hits a given setE

in terms of a capacity ofE related to the process. This extends a result
of Khoshnevisan and Shi [Ann. Probab.27 (1999) 1135–1159], where
estimates for the hitting probabilities of the(N,d) Brownian sheet in terms
of the (d − 2N) Newtonian capacity are obtained, and readily applies
to a wide class of Gaussian processes. Using Malliavin calculus and, in
particular, a result of Kohatsu-Higa [Probab. Theory Related Fields126
(2003) 421–457], we apply these general results to the solution of a system
of d nonlinear hyperbolic stochastic partial differential equations with two
variables. We show that under standard hypotheses on the coefficients,
the hitting probabilities of this solution are bounded above and below
by constants times the(d − 4) Newtonian capacity. As a consequence,
we characterize polar sets for this process and prove that the Hausdorff
dimension of its range is min(d,4) a.s.

1. Introduction. In this article, we are interested in the following basic
problem of potential theory forRd -valued multiparameter stochastic processes:
givenE ⊂ R

d , does this process visit(or hit) E with positive probability? Sets
that, with probability 1, are not visited are said to bepolar for the process and
otherwise arenonpolar. One objective is to relate these hitting probabilities to an
analytic expression which is determined by the “geometry” of the set, namely the
capacityof the set. Another objective is to characterize polar sets for the process.
In this article, our main goal is to address these questions for non-Gaussian
processes that are solutions to a class of nonlinear hyperbolic stochastic partial
differential equations (SPDEs) in the plane (a wide class of Gaussian processes is
also considered).

There is a large literature about potential theory for multiparameter processes.
For multiparameter processeswhose components are independent single-parameter
Markov processes, Fitzsimmons and Salisbury [7] obtained upper and lower
bounds on hitting probabilities in terms of anotion of energy of a set. This
type of multiparameter process arises in the study of multiple points of single-
parameter processes. Song [26] characterized polar sets for then-parameter
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Ornstein–Uhlenbeck process on a separable Fréchet Gaussian space as nullcn,2
capacity sets, where the capacitycn,2 is defined in a variational form. Hirsch and
Song [8] obtained bounds for the hitting probabilities of a class of multiparameter
symmetric Markov processes in terms of capacity, also in a variational form.

However, in these references, the class of multiparameter Markov processes
does not readily cover certain basic multiparameter processes such as the Brownian
sheet or the fractional Brownian sheet. In [10], Khoshnevisan developed a potential
theory for a class of multiparameter Markov processes which includes these
processes.

This article is essentially motivated by the work of Khoshnevisan and Shi [11],
who obtained bounds for hitting probabilities of the Brownian sheet. In particular,
if W = (Wt, t ∈ R

N+) denotes anRd -valued Brownian sheet, they showed that for
any compact subsetA of R

d and any 0< a < b < ∞, there exists a finite positive
constantK such that

K−1 Capd−2N(A) ≤ P{∃ t ∈ [a, b]N :Wt ∈ A} ≤ K Capd−2N(A),

where Capd−2N denotes the capacity with respect to the Newtonian(d − 2N)

kernel. The proof of the lower bound is essentially based on estimates of the first
and second moments of functionals of occupation measures. The upper bound uses
Cairoli’s maximal inequality forN -parameter martingales as a key step.

In this article, we begin by extending their result to a wide class ofR
d -valued

continuous multiparameter processesX = (Xt , t ∈ R
N+) that are not necessarily

Gaussian but that have absolutely continuous univariate and bivariate distributions
away from the axes. In Section 2, we give sufficient conditions on the density of
the process that imply upper and lower bounds for the hitting probabilities ofX

in terms of a given capacity related to the process (Theorem 2.4). For the lower
bound on the hitting probability, we require somepositivity of a functional of the
density of the process (see Hypothesis H1) and an upper bound on a functional
of the bivariate density of the process (Hypothesis H2). For the upper bound on
the hitting probability, we require that the process be adapted to a commuting
filtration (so that Cairoli’s maximal inequality can be used) and we need a lower
bound for the conditional density of the increment of the process given the past
(Hypothesis H3). As a consequence of Theorem 2.4, we obtain an analytic criterion
for polarity which is given in Corollary 2.5.

As a first application of the general result of Theorem 2.4, we consider
multiparameter Gaussian processes in Section 3. We give sufficient conditions
on the covariance function of a Gaussian process which imply bounds for
hitting probabilities in terms of the Newtonian capacity (Theorem 3.1). This
theorem contains many results that exist in the literature and readily applies
to multiparameter Gaussian processes such as the Brownian sheet,α-regular
Gaussian fields, the Ornstein–Uhlenbeck sheet and the fractional Brownian sheet.
For the second and the fourth process, we obtain only a lower bound. The
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upper bound cannot be obtained from Theorem 3.1 since such processes are not
necessarily adapted to a commuting filtration.

In Section 4, we apply results of Malliavin calculus and, in particular, the very
recent result of Kohatsu-Higa [13] to the system of nonlinear hyperbolic SPDEs,

∂2Xi
t

∂t1 ∂t2
=

d∑
j=1

σ i
j (Xt )

∂2W
j
t

∂t1 ∂t2
+ bi(Xt ), t = (t1, t2) ∈ R

2+,

Xi
t = x0 if t1t2 = 0,1≤ i ≤ d,

(1.1)

whereW = (Wj , j = 1, . . . , d) is a two-parameterd-dimensional Wiener process,
the second-order mixed derivative ofWj is the white noise on the plane andσ i

j ,
bi are smooth functions onRd . It is known [21] that (1.1) has a unique continuous
solutionX = (Xt , t ∈ R

2+). In this article, we consider this system of equations
in the integral form (4.7) as it was studied in [21]. In the caseb ≡ 0, under some
regularity and strong ellipticity conditions on the matrixσ (Conditions P1 and P2),
we give in Proposition 4.13 an upper bound of Gaussian type for the conditional
density of an increment ofX given the past. This uses existing techniques of
Malliavin calculus that are adapted to the present context (cf. [17] and [18],
Chapter 2). We then use the result of Kohatsu-Higa [13] to establish a Gaussian-
type lower bound for the density of the random variableXt for any t away from
the axes (Theorem 4.14) and use a Gaussian-type lower bound for the conditional
density of the increment of the process given the past (Theorem 4.16).

In the last section, we apply the results obtained in Sections 2–4 to the solution
of system (1.1). In the caseb ≡ 0, we prove in Theorem 5.1 that under Conditions
P1 and P2 introduced in Section 4.4, the hitting probabilities of the solution can
be bounded above and below in terms of the (d − 4) Newtonian capacity. The
verification of Hypothesis H2 uses the upper bound of Gaussian type obtained
in Section 4.4. The main effort in proving Theorem 5.1 lies in verification of
Hypothesis H3, which uses the lower bounds of Gaussian type for the density of the
solution obtained in Section 4.5. These Gaussian-type lower bounds also imply the
positivity of the density of the solution and so the verification of Hypothesis H1.
We treat the caseb �≡ 0 via a change of probability measure (see Corollary 5.3).
As a consequence of Corollary 5.3, we prove in Corollaries 5.4 and 5.5 that polar
sets for the solution to (1.1) are those of (d − 4) Newtonian capacity zero, that the
Hausdorff dimension of the range of the solution is min(d,4) almost surely and
its stochastic codimension is(d − 4)+. Finally, we identifyd = 3 as the critical
dimension for the solution to hit points inRd (see Corollary 5.6).

Notice that we obtain the same zero capacity condition for polarity and
Hausdorff dimension obtained by Dynkin [6], LeGall [16] and Perkins [24] for
super-Brownian motion. However, there is no direct connection between this work
and theirs.
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2. General theory. For anys, t ∈ R
N+ , we write s ≤ t when si ≤ ti for all

i = 1, . . . ,N , wheresi denotes theith coordinate ofs, and we writes < t when
s ≤ t and s �= t . By s ∧ t , we mean the point whoseith coordinate issi ∧ ti
for all i = 1, . . . ,N . If s, t ∈ R

N+ with s ≤ t , we write [s, t] =∏N
i=1[si, ti] for an

N -dimensional rectangle and(s, t] =∏N
i=1(si, ti]. Finally, we denote by‖ · ‖ the

Euclidean norm.
Let (�,G,P) be a complete probability space and letF = (Ft , t ∈ R

N+) be a
complete, right continuous, commuting filtration, that is, an increasing family of
sub-σ -fields ofG such that:

(i) F0 contains all the null sets ofG.
(ii) For everyt ∈ R

N+ , Ft =⋂
s>t Fs .

(iii) For every s, t ∈ R
N+ and for all bounded,Ft -measurable random vari-

ablesY ,

E[Y |Fs] = E[Y |Fs∧t ] a.s.

Note that whenN = 2, (iii) is hypothesis (F4) of Cairoli and Walsh [1]. ForN > 2,
hypothesis (iii) appears in [10], Chapter 7, Section 2.1.

Let X = (Xt , t ∈ R
N+) be a continuousRd -valued stochastic process defined

on (�,G,P) and not necessarilyadapted toF . We suppose that for alls, t ∈
(0,+∞)N with t �= s, the distribution of the random variable(Xt ,Xs) has a
density that is denotedpXt ,Xs (x, y). We writepXt (x) for the density of the random
variableXt for all t ∈ (0,+∞)N .

Given a Borel subsetE of R
d , we denote byP (E) the collection of all

probability measures onRd with support inE.
Following [10], Appendix D, we say thatk(·) is a kernel in R

d (or a gauge
function) if k(·) is an even, nonnegative and locally integrable function onR

d

which is continuous onRd \ {0} and positive in a neighborhood of the origin.
Basic examples of kernels are the Newtonianβ kernelskβ(·) (see Section 3.1).

Given a kernelk(·), for anyµ ∈ P (E), we write

Ek(µ) =
∫

Rd

∫
Rd

k(x − y)µ(dx)µ(dy)

and term this quantity thek energyof µ. Thek capacityof E is defined by

Capk(E) = 1

infµ∈P (E) Ek(µ)
.

The following properties of Capk(·) are given in [10], Appendix D, in particular,
Lemma 2.1.2 there.

LEMMA 2.1. Capk(·) has the following properties:

(a) Monotonicity.For any two Borel subsetsE1 ⊂ E2 of R
d , Capk(E1) ≤

Capk(E2).
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(b) Outer regularity on compact sets.For any sequenceE,E1,E2, . . . of
compact subsets ofR

d such thatEn ↓ E, limn→∞ Capk(En) = Capk(E).

Let P0(E) denote the collection of all probability measures onR
d with support

in E that are absolutely continuous with respect to Lebesgue measure. The
absolutely continuous capacity Cap0

k(E) of E with respect tok(·) is defined by

Cap0k(E) = 1

infµ∈P0(E) Ek(µ)
.

Since Cap0k is not outer regular on compact sets (cf. [10], Appendix D, Section 2.2),
we define, for all bounded Borel setsE ⊂ R

d ,

Capac
k (E) = inf{Cap0k(F ) :F ⊃ E,F bounded and open}.

Then Capk(A) ≥ Capac
k (A). We now state an additional condition onk (which is

related to the classical notion ofbalayage; see [15], Chapter IV) that ensures that
capacity and absolutely continuous capacity with respect tok agree on compact
sets.

Following [10], Appendix D, we say that a kernelk(·) on R
d is proper if, for

all compact setsA ⊂ R
d andµ ∈ P (A), there exist bounded open setsA1,A2, . . .

such that:

1. An ↓ A.
2. For all largen ≥ 1, there exist absolutely continuous measuresµn with support

contained inAn such that, for allε > 0, there existsN0 such that for alln ≥ N0:

(a) µn(An) ≥ 1− ε;
(b)

∫
Rd k(x − y)µn(dy) ≤ ∫

Rd k(x − y)µ(dy) for all x ∈ R
d .

PROPOSITION 2.2 ([10], Appendix D, Theorem 2.3.1).Let k(·) be a proper
kernel inR

d . Then, for all compact setsA ⊂ R
d , Capk(A) = Capac

k (A).

We now introduce the following hypotheses, which ensure a lower bound on
hitting probabilities forX [see Theorem 2.4(a)].

HYPOTHESIS H1. For all 0 < a < b < ∞ and M > 0, there exists a finite
positive constantC1(a, b,M) such that for almost allx ∈ R

d with ‖x‖ ≤ M ,∫
[a,b]N

pXt (x) dt ≥ C1.

HYPOTHESIS H2. There exists a proper kernelk(·) in R
d such that for all

0 < a < b < ∞ andM > 0, there exists a finite positive constantC2(a, b,M) such
that, for almost allx, y ∈ R

d with ‖x‖ ≤ M and‖y‖ ≤ M ,∫
[a,b]N

∫
[a,b]N

pXt ,Xs (x, y) dt ds ≤ C2k(x − y).
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In the case whereX is adapted toF , for s ∈ (0,+∞)N , letPs(ω, ·) be a regular
version of the conditional distribution of the process(Xt − Xs, t ∈ R

N+ \ [0, s])
given Fs . If for almost all ω and all t ∈ R

N+ \ [0, s], the law ofXt − Xs under
Ps(ω, ·) is absolutely continuous with respect to Lebesgue measure onR

d , we let
ps,t (ω, x) denote the density ofXt −Xs underPs(ω, ·). In this case, there is a null
setNs ∈ Fs such that forω ∈ � \ Ns , E a Borel subset ofRd ands < t ,

Ps(ω, {Xt − Xs ∈ E}) =
∫
E

ps,t (ω, x) dx.

In particular,ps,t (ω, x) is a version of the conditional density ofXt −Xs givenFs .
The function(ω, t, x) �→ ps,t (ω, x) can be chosen to be measurable.

PROPOSITION 2.3. Let f :Rd × R
d → R be a nonnegative Borel function,

let Y be an Fs-measurable random variable and suppose thatE[f (Xt − Xs,

Y )] < ∞. Then

E[f (Xt − Xs,Y )|Fs] =
∫

Rd
f (x,Y )ps,t (ω, x) dx a.s.

PROOF. If f (x, y) = f1(x)f2(y), then using [5], Theorem 10.2.5, we have

E[f (Xt − Xs,Y )|Fs] = E[f1(Xt − Xs)f2(Y )|Fs]
= f2(Y )E[f1(Xt − Xs)|Fs]
= f2(Y )

∫
Rd

f1(x)ps,t (ω, x) dx a.s.

=
∫

Rd
f (x,Y )ps,t (ω, x) dx a.s.

One easily concludes the proof using a monotone class argument ([3], Chapter I,
Theorem 21). �

We now introduce a third hypothesis, which leads to an upper bound on hitting
probabilities forX [see Theorem 2.4(b)].

HYPOTHESIS H3. For all 0 < a < b < ∞ and M > 0, there exists a finite
positive constantC3(a, b,M) such that for alls ∈ [a, b]N , a.s., for almost all
x ∈ R

d , ∫
[b,2b−a]N

ps,t (ω, x) dt ≥ C3k(x)1{‖x+Xs‖≤M,‖Xs‖≤M}(ω),

wherek(x) is the same kernel as in HypothesisH2.

We are now ready to state the main result of this section.
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THEOREM 2.4. (a)Assuming HypothesesH1 andH2, for all 0 < a < b < ∞
and M > 0, there exists a finite positive constantK1(a, b,M) such that for all
compact setsA ⊂ {x ∈ R

d :‖x‖ < M},
K1 Capk(A) ≤ P{∃ t ∈ [a, b]N :Xt ∈ A}.

(b) If (Xt , t ∈ R
N+) is adapted to a commuting filtration(Ft , t ∈ R

N+), and
HypothesesH2 andH3 hold, then for all0 < a < b < ∞ andM > 0, there exists
a finite positive constantK2(a, b,M) such that for all compact setsA ⊂ {x ∈
R

d :‖x‖ < M},
P{∃ t ∈ [a, b]N :Xt ∈ A} ≤ K2 Capk(A).

Before proving Theorem 2.4, we mention an important consequence. Recall that
a Borel setE ⊂ R

d is said to bepolar for the processX if

P{∃ t ∈ (0,+∞)N :Xt ∈ E} = 0.

COROLLARY 2.5. For a processX adapted to a commuting filtration, under
HypothesesH1–H3, a compact subsetE of R

d is polar for X if and only if
Capk(E) = 0.

PROOF. If E is polar forX, then clearly Capk(E) = 0 by Theorem 2.4(a).
Conversely, suppose Capk(E) = 0. Write (0,+∞)N =⋃

m∈N[ 1
m

,m]N . By Theo-
rem 2.4(b), for allm ≥ 1, there isK2 < ∞ (depending onm) such that

P

{
∃ t ∈

[
1

m
,m

]N

:Xt ∈ E

}
≤ K2 Capk(E) = 0.

Since this holds for allm, E is polar forX. �

PROOF OF THEOREM 2.4. (a)The lower bound.Suppose 0< a < b < ∞
and 0< M < ∞ are fixed. LetA be a compact subset of{x ∈ R

d :‖x‖ < M}. For
ε ∈ (0,1), defineAε = {x ∈ R

d : dist(x,A) ≤ ε}, the closedε enlargement ofA,
where dist(x,A) = ‖x − projA x‖ and projA x denotes the orthogonal projection
of x on A. Fix ε ∈ (0,1) and letf be a probability density onRd whose support
is contained inAε. We consider the functionalJa,b(f ) defined by

Ja,b(f ) =
∫
[a,b]N

f (Xt ) dt.

By the Cauchy–Schwarz inequality,

P{∃ t ∈ [a, b]N :Xt ∈ Aε} ≥ P{Ja,b(f ) > 0} ≥ {E[Ja,b(f )]}2

E[{Ja,b(f )}2] .(2.1)
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Using Fubini’s theorem, we easily deduce from Hypothesis H1 that

E[Ja,b(f )] ≥ C1(2.2)

and from Hypothesis H2 that

E[{Ja,b(f )}2] ≤ C2Ek(f ),(2.3)

whereEk(f ) denotes thek energy of the measuref (x) dx. Applying (2.2) and (2.3)
to (2.1), we obtain

P{∃ t ∈ [a, b]N :Xt ∈ Aε} ≥ C2
1

C2Ek(f )
.

Take the supremum over allf (x) dx ∈ P (Aε) and see that for allε > 0,

P{∃ t ∈ [a, b]N :Xt ∈ Aε} ≥ C2
1

C2
Capac

k (Aε).

By Proposition 2.2, we can replace Capac
k (Aε) by Capk(Aε) becausek is proper.

As ε → 0+, Aε ↓ A, which is compact. By Lemma 2.1(b), Capk(Aε) converges
to Capk(A) as ε → 0+. Finally, sinceA is compact and the processt �→ Xt is
continuous, ⋂

ε>0

{∃ t ∈ [a, b]N :Xt ∈ Aε} = {∃ t ∈ [a, b]N :Xt ∈ A}.

We conclude that

P{∃ t ∈ [a, b]N :Xt ∈ A} ≥ C2
1

C2
Capk(A).

This concludes the proof of (a) of Theorem 2.4.

(b) The upper bound.Suppose 0< a < b < ∞ and 0< M < ∞ are fixed.
Let A be a compact subset of{x ∈ R

d :‖x‖ < M}. Let f :Rd → R+ be a
measurable function such thatE[{Jb,2b−a(f )}2] < ∞. We define the following
square integrable multiparameter martingale:

Mt(f ) = E[Jb,2b−a(f )|Ft ], t ∈ R
N+ .

SinceFt is a commuting filtration, we can apply Cairoli’s maximal inequality
(see [10], Chapter 7, Theorem 2.3.2), to get

E

[
sup

t∈[a,b]N∩DN

{Mt(f )}2
]

≤ 4N sup
t∈[a,b]N∩DN

E[{Mt(f )}2] ≤ 4N
E[{Jb,2b−a(f )}2],

whereD denotes the set of dyadic rationals. Suppose thatf is a density function
onR

d supported on{x ∈ R
d :‖x‖ < M}. By Hypothesis H2 and (2.3), we get

E

[
sup

t∈[a,b]N∩DN

{Mt(f )}2
]

≤ 4NC2Ek(f ).(2.4)
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For ε ∈ (0,1), defineAε = {x ∈ R
d : dist(x,A) < ε}, the openε enlargement

of A. Supposeε is small enough so thatAε ⊂ {x ∈ R
d :‖x‖ < M}. We can assume

that

P{∃ t ∈ [a, b]N :Xt ∈ Aε} > 0 for all ε > 0.(2.5)

Indeed, if there exists anε > 0 such that this probability is equal to zero, then the
upper bound is trivial since

P{∃ t ∈ [a, b]N :Xt ∈ A} ≤ P{∃ t ∈ [a, b]N :Xt ∈ Aε} for all ε > 0.

Assuming (2.5), we claim that there exists a random variableT ε, taking values
in ([a, b]N ∩ D

N) ∪ {+∞}, such that

{T ε < ∞} ⇐⇒ {∃ t ∈ [a, b]N ∩ D
N :Xt ∈ Aε}(2.6)

andXT ε ∈ Aε on {T ε < ∞}. Indeed, order the set[a, b]N ∩ D
N = {q1, q2, . . .}

and defineT ε = qinf {k : Xqk
∈Aε}, where inf∅ is defined to be+∞ and in this case

T ε = +∞. Note that assumption (2.5), the fact thatAε is open and the continuity
of t �→ Xt imply thatP{T ε < ∞} > 0. In particular, it is possible to condition on
the event{T ε < ∞}.

For any Borel setE ⊂ R
d , define

µε(E) = P{XT ε ∈ E|T ε < ∞}.
Clearlyµε ∈ P (Aε). Moreover,µε is absolutely continuous because everyXt is:
Let fε(x) be the Radon–Nikodym derivative ofµε with respect toλ. Thenfε is
supported onAε. Applying (2.4) tofε , we have that for allε ∈ (0,1),

E

[
sup

t∈[a,b]N∩DN

{Mt(fε)}2
]

≤ 4NC2Ek(fε).

We claim that for allε ∈ (0,1) and alls ∈ [a, b]N ,

Ms(fε) ≥ C31{‖Xs‖≤M}
∫

Rd
fε(x + Xs)k(x) dx a.s.(2.7)

Indeed, fixs ∈ [a, b]N . Using the fact thatXs is Fs-measurable, Proposition 2.3
and Hypothesis H3, we have that for almost allω ∈ �,

Ms(fε) = E

[∫
[b,2b−a]

fε(Xt − Xs + Xs)dt
∣∣∣Fs

]

=
∫

Rd
fε(x + Xs)

(∫
[b,2b−a]

ps,t (ω, x) dt

)
dx a.s.

≥ C31{‖Xs‖≤M}
∫

Rd
fε(x + Xs)k(x) dx a.s.

The last inequality follows sincefε is nonnegative and supported inAε. This
completes the proof of (2.7).
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Since (2.7) holds for alls ∈ [a, b]N and sinceT ε ∈ [a, b]N , we can replaces
by T ε in (2.7). Note that{‖XT ε‖ ≤ M} holds on{T ε < ∞}. Therefore,

sup
s∈[a,b]N∩DN

Ms(fε) ≥ C31{T ε<∞}
∫

Rd
fε(x + XT ε)k(x) dx a.s.(2.8)

Square both sides of the last inequality, take expectations and apply (2.4) to the
left-hand side, to obtain

4NC2Ek(fε) ≥ C2
3P{T ε < ∞}E

[(∫
Rd

fε(x + XT ε)k(x) dx

)2∣∣∣T ε < ∞
]

= C2
3P{T ε < ∞}

∫
Rd

(∫
Rd

fε(x + y)k(x) dx

)2

fε(y) dy.

Using Jensen’s inequality, we get

4NC2Ek(fε) ≥ C2
3P{T ε < ∞}

(∫
Rd

∫
Rd

k(x − y)fε(x)fε(y) dx dy

)2

= C2
3P{T ε < ∞}(Ek(fε)

)2
.

If Ek(fε) were finite, this would imply

P{T ε < ∞} ≤ 4NC2

C2
3Ek(fε)

,(2.9)

but we do not know a priori thatfε has finite energy. For that reason, we use a
truncation argument.

For allq > 0 and allε ∈ (0,1), define

f q
ε (x) = fε(x)1[0,q]

(
fε(x)

)
, x ∈ R

d .

Sincefε is supported onAε, so isf
q
ε . Moreover, the latter is a subprobability

density function that is bounded above byfε andq. Therefore, sincek is locally
integrable inR

d , Ek(f
q
ε ) < ∞. Apply to f

q
ε exactly the same argument that led

to (2.8) to see that

sup
s∈[a,b]N∩DN

Ms(f
q
ε ) ≥ C31{T ε<∞}

∫
Rd

f q
ε (x + XT ε)k(x) dx a.s.

Square both sides of the inequality, take expectations and use Jensen’s inequality
to get

E

[
sup

s∈[a,b]N∩DN

{Ms(f
q
ε )}2

]

≥ C2
3P{T ε < ∞}

(∫
Rd

∫
Rd

k(x − y)f q
ε (x)fε(y) dx dy

)2

.
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By (2.4), the left-hand side is bounded above by 4NC2Ek(f
q
ε ). The right-hand side

is clearly bounded below byC2
3P{T ε < ∞}(Ek(f

q
ε ))2. Hence, we obtain

P{T ε < ∞} ≤ 4NC2

C2
3Ek(f

q
ε )

.

Finally, sincek(x) is nonnegative, limq↑+∞ Ek(f
q
ε ) = Ek(fε), we can letq ↑ +∞

in the above inequality and use the monotone convergence theorem to obtain (2.9).
Now, sincet �→ Xt is continuous andAε is open, using (2.6) and (2.9), we

obtain

P{∃ t ∈ [a, b]N :Xt ∈ Aε} ≤ 4NC2

C2
3Ek(µε)

.

Recall thatµε ∈ P (Aε), so for allε > 0,

P{∃ t ∈ [a, b]N :Xt ∈ A} ≤ P{∃ t ∈ [a, b]N :Xt ∈ Aε} ≤ 4NC2

C2
3

Capk(Aε).

Finally, sinceAε is compact, Lemma 2.1(b) implies that Capk(Aε) converges as
ε → 0+ to Capk(A). This concludes the proof of Theorem 2.4(b).�

3. Multiparameter Gaussian processes. In this section, we focus on
Gaussian processes and reformulate the Hypotheses H1–H3 as conditions on the
covariance of the process so as to relate bounds on hitting probabilities directly to
properties of the covariance.

3.1. Relating Newtonian capacity and covariance.Let (�,G,P) be a com-
plete probability space. LetX = (Xt , t ∈ R

N+) be a continuousRd -valued centered
Gaussian process with independent coordinate processes(Xi

t ). For allt ∈ (0,∞)N ,
we denote bypXt (x) the density function of the centered Gaussian random vari-
ableXt onR

d . For alls, t ∈ (0,∞)N , we writeσ(s, t) = E[Xi
sX

i
t ], which does not

depend oni, σ 2(t) = σ(t, t) andρ(s, t) = σ(s, t)/(σ (t)σ (s)).
Givenα ∈ (0,1) andγ ≥ α, we introduce the following hypotheses.

HYPOTHESIS A1. For all 0 < a < b < ∞, there exist positive finite con-
stantsδ, ε andC1, . . . ,C5 such that for alls, t ∈ [a, b]N ,

C1 ≤ σ 2(t) ≤ C2,(3.1) ∣∣∣∣1− σ(s, t)

σ 2(s)

∣∣∣∣ ≤ C3‖t − s‖γ if ‖t − s‖ ≤ δ,(3.2)

C4‖t − s‖2α ≤ 1− ρ2(s, t) ≤ C5‖t − s‖2α if ‖t − s‖ ≤ δ,(3.3)

|ρ(s, t)| < 1− ε if ‖t − s‖ > δ.(3.4)



2110 R. C. DALANG AND E. NUALART

HYPOTHESIS A2. For all 0 < a < b < ∞ and M > 0, there exist finite
positive constantsC6, C7 andC8 such that for alls, t ∈ [a, b]N with s ≤ t ,

1{‖Xs‖≤M}|E[Xt − Xs |Fs]| ≤ C6‖t − s‖γ ,(3.5)

C7‖t − s‖2α ≤ E
[
(Xt − Xs) − E[Xt − Xs |Fs]]2 ≤ C8‖t − s‖2α.(3.6)

THEOREM 3.1. (a) Assume there areα ∈ (0,1) and γ ≥ α for which
HypothesisA1 holds andN/α ≥ 2. Then for all 0 < a < b < ∞ and M > 0,
there exists a finite positive constantK1(a, b,M), such that for all compact sets
A ⊂ {x ∈ R

d :‖x‖ < M},
K1 Capd−(N/α)(A) ≤ P{∃ t ∈ [a, b]N :Xt ∈ A},

where, for β ≥ 0, Capβ(·) denotes the capacity with respect to the Newtonian
β kernelkβ(·), where

kβ(x) =



‖x‖−β, if 0 < β < d,

ln
(

3M

‖x‖
)
, if β = 0,

and forβ < 0, Capβ(·) = 1.

(b) Suppose(Xt , t ∈ R
N+) is adapted to a commuting filtration(Ft , t ∈ R

N+).
Assume there areα ∈ (0,1) andγ ≥ α for which HypothesesA1 andA2 hold and
N/α ≥ 2. Then for all0 < a < b < ∞ and M > 0, there exists a finite positive
constantK2(a, b,M) such that for all compact setsA ⊂ {x ∈ R

d :‖x‖ < M},
P{∃ t ∈ [a, b]N :Xt ∈ A} ≤ K2 Capd−(N/α)(A).

REMARK 3.2. (a) For 0< β < d , the functionskβ are not only positive but
even positive-definite: this follows from [27], Chapter V, Section 1, Lemma 2(b).
Forβ = 0, the kernelk0 is not nonnegative onRd , butk0(x − y) > 0 for x, y ∈ A

whenA ⊂ {x ∈ R
d :‖x‖ < M}, and this is sufficient for the results of Section 2 to

hold.
(b) Note that for any 0≤ β ≤ d − 2, kβ(·) is a proper kernel. Indeed, given a

compact setA ⊂ {x ∈ R
d :‖x‖ < M} andµ ∈ P (A), for anyn ≥ 1, letAn = {x ∈

R
d : dist(x,A) < 1/n} be the open enlargement ofA. Let (Bt , t ≥ 0) be a standard

Brownian motion inR
d and letpt be the density ofBt . Forn ≥ 1, letµn,t be the

measure whose density function is the restriction to the set�An of pt ∗ µ, where∗
denotes the convolution product. Setf (x) = (µ ∗ kβ)(x). Since�kβ(x) ≤ 0 for
0 ≤ β ≤ d − 2, Ex(f (Bt )) ≤ f (x) for all t ≥ 0 andx ∈ R

d , or equivalently,∫
Rd

kβ(x − y)(pt ∗ µ)(y) dy ≤
∫

Rd
kβ(x − y)µ(dy).

For smallt , the µn,t are nearly probability measures, and so (a) and (b) of the
definition of a proper kernel hold.
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(c) The conditionN/α ≥ 2 ensures thatkd−(N/α) is a proper kernel. This is
only a restriction whenN = 1.

(d) If α = 1/2 andd < 2N , the choice Capd−2N(A) = 1 is natural, since in this
case, the Brownian sheet hits points inR

d (cf. [23]).

Before proving Theorem 3.1, we mention an important consequence. Given
s ≥ 0 and a Borel subsetE of R

d , let

Hs(E) = lim
ε→0+ inf

{ ∞∑
i=1

(2ri)
s :E ⊂

∞⋃
i=1

B(xi, ri),sup
i

ri ≤ ε

}
,

whereB(x, r) denotes the closed ball of radiusr > 0 centered atx ∈ R
d . The

Hs is called thed-dimensional Hausdorff measure. Moreover, we associate to the
setE a number dimH (E) as follows:

dimH (E) = sup{s > 0 :Hs(E) = ∞} = inf{s > 0 :Hs(E) = 0}.
This is theHausdorff dimensionof E. Following [10], thestochastic codimension
of a random setE in R

d , denoted codim(E), if it exists, is the real number
β ∈ [0, d] such that for all compact setsA ⊂ R

d ,

P{E ∩ A �= ∅}
{

> 0, whenever dimH (A) > β,
= 0, whenever dimH (A) < β.

The following result gives a relationship between Hausdorff dimension and
stochastic codimension.

THEOREM 3.3 ([10], Theorem 4.7.1, Chapter 11).Given a random setE
in R

d whose codimensionβ is strictly between0 andd ,

dimH (E) + codim(E) = d a.s.

Theorems 3.1 and 3.3 imply the following result.

COROLLARY 3.4. Under the hypotheses of Theorem3.1(b),

codim
{
X
(
(0,+∞)N

)}= (
d − (N/α)

)+
and ifd > N/α,

dimH
{
X
(
(0,+∞)N

)}= N/α a.s.

PROOF. By Frostman’s theorem (see [10], Appendix C, Theorem 2.2.1), the
capacitarian and Hausdorff dimensions agree on compact sets. Therefore, the
desired result follows from Theorems 3.1 and 3.3.�
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PROOF OFTHEOREM 3.1. (a) Suppose 0< a < b < ∞ andM > 0 are fixed.
We assume that Hypothesis A1 holds forα ∈ (0,1) andγ ≥ α fixed, and show that
Hypotheses H1 and H2 of Theorem 2.4 hold.

VERIFICATION OF HYPOTHESIS H1. Fix x ∈ R
d such that‖x‖ ≤ M .

Inequality (3.1) implies that∫
[a,b]N

pXt (x) dt = (2π)−d/2
∫
[a,b]N

σ−d(t)exp
(
− ‖x‖2

2σ 2(t)

)
dt

≥ (2π)−d/2(C2)
−d/2(b − a)N exp

(
− M2

2C1

)
,

which proves Hypothesis H1.

VERIFICATION OF HYPOTHESISH2. By (3.3) and (3.4), for alls, t ∈ [a, b]N
with t �= s, (Xt ,Xs) has a (Gaussian) densitypXt ,Xs (x, y). The latter can be
written as

pXt ,Xs (x, y) = pXt |Xs=y(x)pXs (y),

wherepXt |Xs=y denotes the conditional density function of the random variableXt

givenXs = y.
Note that the conditional distribution ofXi

t givenXi
s = yi is Normal with mean

m(s, t)yi , wherem(s, t) = (σ (s, t))/(σ 2(s)), and varianceτ2(s, t) = σ 2(t)(1 −
ρ2(s, t)). Observe thatτ2(s, t) > 0 by (3.3) and (3.4), that (3.2) is a condition
on the conditional meanm(s, t) and that (3.3) is a condition on the conditional
variance.

Fix x, y ∈ R
d such that‖x‖ ≤ M and ‖y‖ ≤ M . By (3.4), pXt ,Xs (·, ·) is

bounded by some constantC′ > 0 when‖t − s‖ > δ. Therefore,∫
[a,b]N

∫
[a,b]N

pXt ,Xs (x, y) dt ds ≤ C +
∫ ∫

D(δ)
pXt ,Xs (x, y) dt ds,

whereD(δ) = {(s, t) ∈ [a, b]N × [a, b]N :‖t − s‖ ≤ δ} andC = C′(b − a)2N . The
integral on the right-hand side can be written

(2π)−d
∫ ∫

D(δ)
τ−d(s, t)exp

(
−‖x − m(s, t)y‖2

2τ2(s, t)

)

× σ−d(s)exp
(
− ‖y‖2

2σ 2(s)

)
dt ds.

(3.7)

By the triangle inequality and the identity(u − v)2 ≥ u2/2− v2,

exp
(
−‖x − m(s, t)y‖2

2τ2(s, t)

)

≤ exp
(
−‖x − y‖2

4τ2(s, t)

)
exp

(‖y‖2|1− m(s, t)|2
2τ2(s, t)

)
.

(3.8)
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By (3.2), there exists a constantC3 such that

|1− m(s, t)|2 ≤ C3‖t − s‖2γ .(3.9)

By (3.1) and (3.3),

K1‖t − s‖2α ≤ τ2(s, t) ≤ K2‖t − s‖2α.(3.10)

We now apply (3.8)–(3.10) to (3.7). Becauseγ ≥ α, this yields∫
[a,b]N

∫
[a,b]N

pXt ,Xs (x, y) dt ds

≤ C + (2π)−d(K1)
−d/2(C1)

−d/2
∫ ∫

D(δ)
dt ds‖t − s‖−αd

× exp
(
− ‖x − y‖2

4K2‖t − s‖2α

)
exp

(
C2

3‖y‖2‖t − s‖2γ

2K1‖t − s‖2α

)
exp

(
−‖y‖2

2C2

)

≤ C + K3

∫ ∫
D(δ)

‖t − s‖−αd exp
(
− ‖x − y‖2

4K2‖t − s‖2α

)
dt ds.

We now fixt and use the change of variablesu = t −s to see that this expression
is less than or equal to

C + K3(b − a)N
∫
B(δ)

‖u‖−αd exp
(
− ‖x − y‖2

4K2‖u‖2α

)
du,

whereB(δ) = {u ∈ R
N :‖u‖ ≤ δ}. Finally, use the change of variablesu = ‖x −

y‖1/αz(4K2)
−1/(2α) to see that this is less than or equal to

C + K4‖x − y‖−d+(N/α)

×
∫
B((4K2)

1/(2α)δ/‖x−y‖1/α)
‖z‖−αd exp(−1/‖z‖2α) dz.

(3.11)

We now state a real variable technical lemma which is crucial for our estimates.
The proof of this lemma is left to the reader.

LEMMA 3.5. Defineϕα,β(r) = ∫
B(r) ‖z‖−βe−1/‖z‖2α

dz, for all r > 0. Then
for any r0 > 0 and α ∈ (0,1), there exist finite constantsc1, c2, c3, c4 > 0 such
that for all r ≥ r0,

c1 ≤ ϕα,β(r) ≤ c2, if β > N,

c3 ln(r/r0) ≤ ϕα,β(r) ≤ c4 ln(r), if β = N.

Continuing the verification of Hypothesis H2, apply Lemma 3.5 withβ = αd

to (3.11) and use the fact thatC ≤ C(2M)d−(N/α)‖x − y‖−d+(N/α) because
‖x‖ ≤ M and ‖y‖ ≤ M , to conclude the verification of Hypothesis H2 for
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d > N/α. Whend = N/α, chooser0 > 0 such that(4K2)
1/(2α)δ/(2M)1/α ≥ r0

and apply Lemma 3.5 to (3.11) to obtain∫
[a,b]N

∫
[a,b]N

pXt ,Xs (x, y) dt ds ≤ C + c4K4 ln
(

(4K2)
1/(2α)δ

‖x − y‖1/α

)
.

Note that for allx, y ∈ R
d with ‖x‖ ≤ M and‖y‖ ≤ M , ‖x − y‖ ≤ 2M . Then we

can check that if‖x − y‖ ≤ 2M , there exists a finite constantC′ > 1 such that

ln
(

(4K2)
1/(2α)δ

‖x − y‖1/α

)
≤ C′ ln

(
3M

‖x − y‖
)
.

On the other hand, note thatC ≤ C(ln(3/2))−1 ln(3M/‖x − y‖), and the
verification of Hypothesis H2 ford = N/α is completed. Whend < N/α, the
expression in (3.11) is bounded, so Hypothesis H2 holds withk(x) ≡ 1.

This completes the proof of Theorem 3.1(a).

(b) We now assume that Hypotheses A1 and A2 hold forα ∈ (0,1) fixed and
γ ≥ α, and show that Hypothesis H3 of Theorem 2.4 holds. We also assume that
d ≥ N/α, since otherwise, the statement is trivial.

VERIFICATION OF HYPOTHESISH3. For alls, t ∈ (0,∞) with s < t , and for
almost allx ∈ R

d andω ∈ �, let ps,t (ω, x) denote the conditional density of the
random variableXt − Xs givenFs . By (3.4), the latter exists and, for almost all
ω ∈ �, is a Gaussian density with conditional meanµ(s, t) = E[Xt − Xs |Fs]
and deterministic varianceβ2(s, t) = E[(Xt − Xs) − E[Xt − Xs |Fs]]2 (see [4],
Chapter II, Section 3).

It suffices to check the inequality in Hypothesis H3 when‖x‖ ≤ 2M , since the
indicator on the right-hand side vanishes for‖x‖ > 2M . Fix s ∈ [a, b]N . Then∫

[b,2b−a]N
ps,t (ω, x) dt

= (2π)−d/2
∫
[b,2b−a]N

β−d(s, t)exp
(
−‖x − µ(s, t)‖2

2β2(s, t)

)
dt.

(3.12)

By the triangle inequality,

exp
(
−‖x − µ(s, t)‖2

2β2(s, t)

)
≥ exp

(
− ‖x‖2

2β2(s, t)

)
exp

(
−‖µ(s, t)‖2

2β2(s, t)

)
.(3.13)

We now apply (3.5), (3.6) and (3.13) to (3.12), and we see that this expression
is greater than or equal to

K4

∫
[b,2b−a]N

‖t − s‖−αd exp
(
− ‖x‖2

C7‖t − s‖2α

)
exp

(
−C2

6‖t − s‖2γ

C7‖t − s‖2α

)
dt.
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Using the fact thatγ ≥ α and the change of variablest − s = ‖x‖1/αz(C7)
−1/(2α),

we get that this is greater than or equal to

K5‖x‖−d+(N/α)
∫
B((C7)1/(2α)(b−a)/‖x‖1/α)

‖z‖−αd exp(−1/‖z‖2α) dz.(3.14)

It now suffices to chooser0 > 0 such that(C7)
1/(2α)(b − a)/(2M)1/α ≥ 31/αr0

and apply Lemma 3.5 to (3.14). This concludes the verification of Hypothesis H3
whend > N/α. Finally, ford = N/α, we apply Lemma 3.5 to (3.14), to obtain∫

[b,2b−a]N
ps,t (ω, x) dt ≥ c3K5 ln

(
61/αM1/α

‖x‖1/α

)
≥ 1

α
c3K5 ln

(
3M

‖x‖
)
,

which concludes the proof of Hypothesis H3 ford ≥ N/α.

This completes the proof of Theorem 3.1(b).�

3.2. Examples.

3.2.1. The Brownian sheet.Suppose thatW = (Wt = (W1
t , . . . ,Wd

t ), t ∈ R
N+)

is ad-dimensionalN -parameter Brownian sheet, that is, the coordinate processes
of W are Gaussian, with zero mean and covariances

E[Wk
s W

j
t ] =

N∏
i=1

(si ∧ ti )δkj for all s, t ∈ R
N+,1 ≤ k, j ≤ d,

and defined on the canonical probability space(�,G,P), where� is the space of
all continuous functionsω :RN+ → R

d vanishing on the axes,P is the law ofW and
G is the completion of the Borelσ -field of � with respect toP. We also consider
the increasing family ofσ -fields F = (Ft , t ∈ R

N+), such that for anyt ∈ R
N+ ,

Ft is generated by the random variables(Ws, s ≤ t), and the null sets ofG. The
latter is a complete, right continuous, commuting filtration (see [10], Chapter 7,
Theorem 2.4.1).

THEOREM 3.6 ([11], Theorem 1.1). The (N,d) Brownian sheet satisfies
HypothesesA1 and A2 with α = 1/2 and γ = 1, and therefore the conclusions
of Theorem3.1.

PROOF. Fix 0 < a < b < ∞. Inequality (3.1) is trivial sinceE[W2
t ] =∏N

i=1 ti , for all t ∈ R
N+ . Moreover, since the Brownian sheet has independent

increments, (3.5) holds also trivially.
We claim that for all s, t ∈ [a, b]N with s ≤ t , there exist two constants

C1 andC2 such that

C1‖t − s‖ ≤ E[(Wt − Ws)
2] ≤ C2‖t − s‖.(3.15)
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Supposes ≤ t and note thatE[(Wt − Ws)
2] = σ 2(t) − σ 2(s) =∏N

i=1 ti −∏N
i=1 si .

Let f (t) = ∏N
i=1 ti and letφ = (φ1, . . . , φN) : [0,1] → R

N be an affine function
such thatφ(0) = s andφ(1) = t . The partial derivatives off are bounded above
and below on[a, b]N , so

f (t) − f (s) = f (φ(1)) − f (φ(0)) =
∫ 1

0

N∑
i=1

∂f

∂ti
(φ(u))φ̇i(u) du

≤ C

N∑
i=1

(
φi(1) − φi(0)

)≤ C′‖t − s‖,

which proves the upper bound in (3.15). The lower bound is obtained by
proceeding along the same lines.

We now prove (3.2) and (3.3). Ifs, t ∈ [a, b]N , using (3.1) and (3.15),∣∣∣∣σ
2(s) − σ(s, t)

σ 2(s)

∣∣∣∣=
∣∣∣∣σ

2(s) − σ 2(s ∧ t)

σ 2(s)

∣∣∣∣≤ C‖s − (s ∧ t)‖ ≤ C‖t − s‖,

which proves (3.2). To prove (3.3), ifs, t ∈ [a, b]N , using (3.1) and (3.15),

σ 2(t)σ 2(s) − (σ (s, t))2

σ 2(t)σ 2(s)
≥ σ 2(s ∧ t)

2σ 2(t)σ 2(s)

(
σ 2(t) − σ 2(s ∧ t) + σ 2(s) − σ 2(s ∧ t)

)
≥ C

(‖t − (s ∧ t)‖ + ‖s − (s ∧ t)‖)
≥ C‖t − s‖,

which concludes the proof of (3.3).
Since (3.6) follows from (3.15), it remains to prove (3.4). Becauses, t �→ ρ(s, t)

is continuous on[a, b]N , it suffices to check thatρ(s, t) < 1 for anys, t ∈ [a, b]N
with s �= t . This is clear since

ρ(s, t) =
N∏

i=1

si ∧ ti√
siti

< 1.

This proves Theorem 3.6.�

3.2.2. α-regular Gaussian fields.For α ∈ (0,1), anN -parameter,Rd -valued
processX = (Xt , t ∈ R

N+) is said to beα-regular (see [10], Chapter 11, Section 5.2)
if X is a centered, stationary Gaussian process with i.i.d. coordinate processes
whose covariance functionR satisfies the following:

ASSUMPTION R1. If s �= 0, then|R(s)| < 1, and there exist finite positive
constantsc1 ≤ c2 andδ > 0, such that, for alls ∈ R

N+ with ‖s‖ ≤ δ,

c1‖s‖2α ≤ 1− R(s) ≤ c2‖s‖2α.
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Such Gaussian fields were studied in [10], Chapter 11, Section 5.2. In the latter,
the stochastic codimension and the Hausdorff dimension of the range of these
processes is obtained (see [10], Chapter 11, Theorem 5.2.1 and Corollary 5.2.1).

The following result proves that theα-regular Gaussian fields satisfy the lower
bound of Theorem 3.1(a). The upper bound cannot be obtained from Theo-
rem 3.1(b) since such processes are not necessarily adapted to a commuting
filtration. An upper bound involving Hausdorff measure is given in [10], Chap-
ter 11, Example 5.3.3.

THEOREM 3.7. Fix α ∈ (0,1) with N/α ≥ 2. Let X = (Xt , t ∈ R
N+) be

α-regular. Fix 0 < a < b < ∞ and0 < M < ∞. Then there exists a finite positive
constantK such that for all compact setsA ⊂ {x ∈ R

d :‖x‖ < M},
K Capd−(N/α)(A) ≤ P{∃ t ∈ [a, b]N :Xt ∈ A}.

PROOF. Under Assumption R1,R(0) = 1, soσ 2(t) = 1 andρ(s, t) = R(t −
s) = σ(s, t). In particular, (3.1) withγ = 2α and (3.2) hold. Condition (3.3) holds
(for a sufficiently smallδ > 0) because

1− ρ2(s, t) = (
1+ ρ(s, t)

)(
1− ρ(s, t)

)≥ c1(1− c2‖t − s‖2α)‖t − s‖2α

≥ c1(1− c2δ
2α)‖t − s‖2α.

Since R(·) is a bounded covariance function, it is nonnegative definite. By
Bochner’s theorem ([25], Theorem 6.5.64),R(·) is the Fourier transform of a
nonnegative measure, which is a probability measure sinceR(0) = 1. Therefore,
R(·) is in fact continuous, so by Assumption R1, there isε > 0 such that
|R(t − s)| < 1− ε for ‖t − s‖ > δ with s, t ∈ [a, b]N . Therefore, (3.4) holds. This
proves that Hypothesis A1 holds withγ = 2α, so the conclusion follows from
Theorem 3.1(a). �

3.2.3. The(N,d) Ornstein–Uhlenbeck sheet.The(N,d) Ornstein–Uhlenbeck
sheetU = (Ut , t ∈ R

N+) is defined as

Ut = e−|t|/2Wet , t ∈ R
N+,

where |t| = |t1| + · · · + |tN |, et = (et1, . . . , etN ) and W = (Wt, t ∈ R
N+) is an

R
d -valued Brownian sheet. Therefore,U is anN -parameter centered stationary

Gaussian process onRd with covariance function given by

E[UsUt ] = e−|t−s|/2, s, t ∈ R
N+ .

Consider its natural and completed filtration, denotedF U
t , that is,

F U
t = σ {Us, s ≤ t} = σ {Ws, s ≤ et} = F W

et , t ∈ R
N+,

whereF W
t denotes the natural filtration of the Brownian sheet and is therefore a

commuting filtration.
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THEOREM 3.8. The (N,d) Ornstein–Uhlenbeck sheet satisfies Hypotheses
A1 andA2 with α = 1/2 andγ = 1, and therefore the estimates of Theorem3.1.

PROOF. Since the(N,d) Ornstein–Uhlenbeck sheet is anα-regular Gaussian
field with α = 1/2, the lower bound follows from Theorem 3.7 and it remains
to verify Hypothesis A2. Using the estimate 1− e−x ≤ x for all x ≥ 0 and
using (3.15), we have, for alls, t ∈ [a, b]N with s ≤ t ,

|E[Ut − Us |F U
s ]|

= ∣∣E[e−|t|/2(Wet − Wes ) + (
e−|t|/2 − e−|s|/2)Wes |F W

es

]∣∣
= ∣∣(e−|t|/2 − e−|s|/2)Wes

∣∣
≤ |Us |(|t| − |s|)/2

≤ C1M‖t − s‖

(3.16)

on {|Us | ≤ M}, which proves (3.5). To prove (3.6), use (3.16) to see that the
expectation in (3.6) is equal to

E
[
e−|t|/2Wet − e−|s|/2Wes − (

e−|t|/2 − e−|s|/2)Wes

]2 = E
[
e−|t|/2(Wet − Wes )

]2
,

so by (3.15), there exist two constantsC2 andC3 such that for alls, t ∈ [a, b]N
with s ≤ t ,

C2‖et − es‖ ≤ e−|t|
E[(Wet − Wes )2] ≤ C3‖et − es‖.

Finally, using the inequalitiescx ≤ 1− e−x ≤ x, for x ∈ [0, b], we obtain

C4‖t − s‖ ≤ e−|t|
E[(Wet − Wes)2] ≤ C5‖t − s‖,

which proves (3.6). The upper bound follows then from Theorem 3.1(b).�

3.2.4. The fractional Brownian sheet.The fractional Brownian sheet with
Hurst parameterH ∈ (0,1), XH = (XH

t , t ∈ R
N+), is a d-dimensional centered

Gaussian process with independent coordinate processes, each with covariance
function given by

E[(XH
t )j (XH

s )j ] =
N∏

i=1

c

2
(t2H

i + s2H
i − |ti − si|2H), s, t ∈ R

N+,1 ≤ j ≤ d,

wherec is a positive finite constant. Note that ifH = 1
2, one obtains the standard

Brownian sheet.
As in Theorem 3.7, we obtain only a lower capacity estimate for the fractional

Brownian sheet as a consequence of Theorem 3.1(a), since this process is not
necessarily adapted to a commuting filtration.
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THEOREM 3.9. Fix H ∈ (0,1), 0 < a < b < ∞ and 0 < M < ∞. Then
there exists a finite positive constantK such that for all compact setsA ⊂ {x ∈
R

d :‖x‖ < M},
K Capd−(N/H)(A) ≤ P{∃ t ∈ [a, b]N :XH

t ∈ A}.
PROOF. By Theorem 3.1(a), it suffices to prove that Hypothesis A1 holds with

α = H andγ = 2H ∧ 1. Fix 0< a < b < ∞. Sinceσ 2(t) = c
∏N

i=1 t2H
i for all

t ∈ R
N+ , (3.1) holds trivially. On the other hand, for alls, t ∈ [a, b]N , we have∣∣∣∣1− σ(s, t)

σ 2(s)

∣∣∣∣=
∣∣∣∣
∏N

i=1 s2H
i −∏N

i=1((s
2H
i + t2H

i − |ti − si|2H)/2)∏N
i=1 s2H

i

∣∣∣∣.(3.17)

To prove (3.2) fors fixed, setf (u) = ∏N
i=1

1
2(s2H

i + u2H
i − |ui − si|2H) and

let φ = (φ1, . . . , φN) : [0,1] → R
N be an affine function such thatφ(0) = t and

φ(1) = s. Becausef is differentiable in the orthant centered ats that containst ,
and in this orthant, for‖t − s‖ sufficiently small andu ∈ Imφ, | ∂f

∂ui
(u)| ≤ C(|ui −

si|2H−1 ∨ 1), the numerator on the right-hand side of (3.17) can be bounded by

|f (φ(1)) − f (φ(0))| ≤ C

∫ 1

0

N∑
i=1

(|φi(r) − si|2H−1 ∨ 1
)
φ̇i(r) dr = C|t − s|2H∧1.

This concludes the proof of (3.2).
To prove (3.3), setf (u) = ∏N

i=1 g(ui), where g(ui) = 1
2u−H

i (1 + u2H
i −

|ui − 1|2H). An elementary calculation shows that for|ui − 1| sufficiently
small, there are constants̃c2 > c̃1 > 0 such thatc̃1|ui − 1|2H−1 ≤ |g′(ui)| ≤
c̃2|ui − 1|2H−1. Therefore, there are constantsc2 > c1 > 0 such that for‖u −
(1, . . . ,1)‖ sufficiently small,

c1|ui − 1|2H−1 ≤
∣∣∣∣ ∂f∂ui

(u)

∣∣∣∣≤ c2|ui − 1|2H−1.(3.18)

Let φ = (φ1, . . . , φN) : [0,1] → R
N be an affine function such thatφ(1) =

(1, . . . ,1) andφ(0) = (t1/s1, . . . , tN/sN). Observe that

1− ρ(s, t) = f (φ(1)) − f (φ(0)) =
∫ 1

0

N∑
i=1

∂f

∂ui

(φ(r))φ̇i(r) dr.

By (3.18), for s, t ∈ [a, b]2 with ‖s − t‖ sufficiently small, this expression is
bounded above and below by constants times

N∑
i=1

∫ 1

0
|φi(r) − 1|2H−1φ̇i(r) dr =

N∑
i=1

|ti − si |2H/s2H
i .

Because 1−ρ2(s, t) = (1−ρ(s, t))(1+ρ(s, t)) and the second factor is less than
or equal to 2 and bounded away from 0, it follows that (3.3) holds.
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It remains to prove (3.4). For this, it suffices to check that for anysi, ti ∈ [a, b]
with ti − si > 0,

t2H
i + s2H

i − |ti − si|2H < 2
√

t2H
i s2H

i .

Move the square root to the left-hand side and isolate the perfect square to see that
this is equivalent totHi − sH

i < |ti − si|H , which holds since 0< H < 1. The lower
bound follows then from Theorem 3.1(a).�

4. Gaussian-type bounds for densities of solutions of hyperbolic SPDEs.
In this section, we use techniques of Malliavin calculus to establish Gaussian-
type bounds on the density of the solution to a nonlinear hyperbolic SPDE. These
bounds are such that they can be used to verify Hypotheses H1–H3, as we see in
Section 5.

4.1. Elements of Malliavin calculus.In this section, we recall, follow-
ing [18], some elements of Malliavin calculus. LetW = (Wt = (W1

t , . . . ,Wd
t ),

t ∈ R
2+) be anR

d -valued two-parameter Brownian sheet defined on its canonical
probability space(�,G,P) and letF = (Ft , t ∈ R

2+) be its natural filtration (see
Section 3.2.1).

Let H be the Hilbert spaceH = L2(R2+,R
d). For anyh ∈ H , we setW(h) =∑d

j=1
∫
R

2+ hj(z) dW
j
z . The Gaussian subspaceH = {W(h),h ∈ H } of L2(�,G,P)

is isomorphic toH .
Let S denote the class of smooth random variablesF = f (W(h1), . . . ,W(hn)),

whereh1, . . . , hn are inH , n ≥ 1, andf belongs toC∞
P (Rn), the set of functionsf

such thatf and all its partial derivatives have at most polynomial growth.
Given F in S, its derivative is the d-dimensional stochastic processDF =

(DtF = (D
(1)
t F, . . . ,D

(d)
t F ), t ∈ R

2+) given by

DtF =
n∑

i=1

∂f

∂xi

(
W(h1), . . . ,W(hn)

)
hi(t).

More generally, thekth-order derivative ofF is obtained by iterating the derivative
operatork times: if F is a smooth random variable andk is an integer, set
Dk

t1,...,tk
F = Dt1 · · ·DtkF . Then for everyp ≥ 1 and any natural numberk, we

denote byDk,p the closure ofS with respect to the seminorm‖ · ‖k,p defined by

‖F‖p
k,p = E[|F |p] +

k∑
j=1

E[‖DjF‖p

H⊗j ],

whereH⊗j is the product spaceL2((R2+)j ,R
d), and

‖DjF‖H⊗j =
(

d∑
k1,...,kj =1

∫
R

2+

(j )· · ·
∫

R
2+

∣∣D(k1)
t1

· · ·D(kj )
tj

F
∣∣2 dt1 · · ·dtj

)1/2

.
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We setD∞ =⋂
p≥1

⋂
k≥1 D

k,p.
Similarly, for any separable Hilbert spaceV , we can define the analogous spaces

D
k,p(V ) and D

∞(V ) of V -valued random variables, and the related‖ · ‖k,p,V

seminorms (the related smooth functionals being of the formF = ∑n
j=1Fjvj ,

whereFj ∈ S andvj ∈ V ).
We denote byδ the adjoint of the operatorD, which is an unbounded operator

on L2(�,H) taking values inL2(�) ([18], Definition 1.3.1). In particular, ifu
belongs to Domδ, thenδ(u) is the element ofL2(�) characterized by the duality
relationship

E(F δ(u)) = E

(
d∑

j=1

∫
R

2+
D

(j)
t Fu

j
t dt

)
for anyF ∈ D

1,2.(4.1)

If u ∈ L2(R2+ × �,R
d) is an adapted process, then (see [18], Proposition 1.3.4)

u belongs to Domδ andδ(u) coincides with the Itô integral

δ(u) =
d∑

j=1

∫
R

2+
uj

s dWj
s .

We use the following estimate of the‖ · ‖k,p norm ofδ(u).

PROPOSITION 4.1 ([18], Proposition 3.2.1, and [19], (1.11) and page 131).
The adjointδ is a continuous operator fromDk+1,p(H) to D

k,p for all p > 1,
k ≥ 0. Hence, for all u ∈ D

k+1,p(H),

‖δ(u)‖k,p ≤ ck,p‖u‖k+1,p,H(4.2)

for some constantck,p > 0.

Our first application of Malliavin calculus to the study of probability laws is the
following global criterion for smoothness of densities.

THEOREM 4.2 ([18], Theorem 2.1.2 and Corollary 2.1.2).Let F = (F 1,

. . . ,F d) be a random vector satisfying the following two conditions:

(i) For all i = 1, . . . , d , F i ∈ D
∞.

(ii) The Malliavin matrix ofF defined byγF = (〈DF i,DF j 〉H)1≤i,j≤d is
invertible a.s.
Then the probability law of F is absolutely continuous with respect to Lebesgue
measure. Moreover, assuming(i) and(ii), and

(iii) (detγF )−1 ∈ Lp for all p ≥ 1,

the probability density function ofF is infinitely differentiable.

A random vectorF that satisfies conditions (i)–(iii) of Theorem 4.2 is said to
be nondegenerate. For a nondegenerate random vector, the followingintegration
by parts formulaplays a key role.



2122 R. C. DALANG AND E. NUALART

PROPOSITION4.3 ([19], Proposition 3.2.1). Let F = (F 1, . . . ,F d) ∈ (D∞)d

be a nondegenerate random vector, let G ∈ D
∞ and letg ∈ C∞

p (Rd). Fix k ≥ 1.
Then for any multiindexα = (α1, . . . , αk) ∈ {1, . . . , d}k, there exists an element
Hα(F,G) ∈ D

∞ such that

E[(∂αg)(F )G] = E[g(F )Hα(F,G)],(4.3)

where the random variablesHα(F,G) are recursively given by

H(i)(F,G) =
d∑

j=1

δ
(
G(γ −1

F )ijDF j
)
,

Hα(F,G) = H(αk)

(
F,H(α1,...,αk−1)(F,G)

)
.

4.2. Conditional Malliavin calculus. In this section, we give the conditional
version of some of the results established in Section 4.1. The proofs are very
similar to the one-parameter case and are left to the reader.

The first result is the conditional version of the duality relationship (4.1), which
is the two-parameter version of [17], (2.12).

PROPOSITION 4.4. Let s, t ∈ R
2+ with s < t . Let F be a random variable

in D
1,2 and letu be an adapted process such thatE[∫

R
2+ ‖us‖2 ds] < ∞. Then the

following duality relationship holds:

E

[
F

∫
[0,t]\[0,s]

ur dWr

∣∣∣Fs

]
= E

[∫
[0,t]\[0,s]

〈DrF,ur〉dr
∣∣∣Fs

]
.(4.4)

The following norms are the two-parameter versions of those in [17], Defini-
tion 1. Lets, t ∈ R

2+ with s < t . For any functionf ∈ L2([0, t]n,R
d), any random

variableF ∈ D
k,p and any processu such thatur ∈ D

k,p for all r ∈ [0, t], we
define

Hs,t = L2([0, t] \ [0, s],R
d),

‖f ‖H⊗n
s,t

=
(∫

([0,t]\[0,s])n
‖f (r)‖2

Rd dr

)1/2

,

‖F‖Fs

k,p,Hs,t
=
{

E[|F |p|Fs] +
k∑

j=1

E
[‖DjF‖p

H
⊗j
s,t

∣∣Fs

]}1/p

and

‖u‖Fs

k,p,Hs,t
=
{

E
[‖u‖p

Hs,t
|Fs

]+ k∑
j=1

E
[‖Dju‖p

H
⊗j+1
s,t

|Fs

]}1/p

.
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Moreover, we writeγ s,t
F for the Malliavin covariance matrix with respect toHs,t ,

that is,

γ
s,t
F = (〈DF i,DF j 〉Hs,t

)
1≤i,j≤d .

With this notation, we can state the following conditional version of inequal-
ity (4.2), which is the two-parameter version of [17], (2.15).

PROPOSITION 4.5. Let s, t ∈ R
2+ with s < t . For any u ∈ D

k+1,p(Hs,t ), we
have

‖δ(u)‖Fs

k,p,Hs,t
≤ ck,p‖u‖Fs

k+1,p,Hs,t
(4.5)

for some constantck,p > 0.

Finally, we give the conditional version of the two-parameter Burkholder
inequality (see [18], A.2, for the two-parameter nonconditional version).

PROPOSITION4.6. Fix p > 1. There is a finite constantbp > 0 such that for
all adaptedX = (Xt , t ∈ R

2+) in L2(R2+ × �) and all s, t ∈ R
2+ with s < t ,

E

[∣∣∣∣
∫
[0,t]\[0,s]

Xr dWr

∣∣∣∣
p∣∣∣Fs

]
≤ bpE

[∣∣∣∣
∫
[0,t]\[0,s]

X2
r dr

∣∣∣∣
p/2∣∣∣Fs

]
.(4.6)

4.3. Hyperbolic stochastic partial differential equations.Letb,σj :Rd → R
d ,

1 ≤ j ≤ d , be measurable globally Lipschitz functions, where the vector-valued
functionsσ1, . . . , σd denote the columns of a matrixσ = (σ i

j )1≤i,j≤d .
Consider the system of stochastic integral equations on the plane

Xi
t = x0 +

d∑
j=1

∫
[0,t]

σ i
j (Xs) dWj

s +
∫
[0,t]

bi(Xs) ds, t ∈ R
2+,1 ≤ i ≤ d,(4.7)

where the first integral is an Itô integral with respect to the Brownian sheet (as
defined in [28], Chapter 4) andx0 ∈ R

d is the constant value of the processXt on
the axes. It is well known (see [21], Lemma 3.1) that there exists a unique two-
parameter,d-dimensional, continuous and adapted processX = (Xt , t ∈ R

2+) that
satisfies equation (4.7). In addition,E[supr∈[0,t] |Xr |p] < ∞ for any p ≥ 2 and
t ∈ R

2+. In [21], Malliavin calculus is used to establish the following result.

THEOREM 4.7 ([21], Proposition 3.3). If the coefficients ofσ and b are
infinitely differentiable with bounded partial derivatives of all orders, then Xi

t

belongs toD∞ for all t ∈ R
2+ andi = 1, . . . , d .

Assuming the latter infinite differentiability condition on the coefficients ofσ

andb, we state the following standardhypoellipticity hypothesis:



2124 R. C. DALANG AND E. NUALART

CONDITION P. There isn ≥ 1 such that the vector space spanned by the
column vectorsσ1, . . . , σd , σi�σj , 1 ≤ i, j ≤ d , σi�(σj�σk), 1 ≤ i, j, k ≤
d, . . . , σi1�(· · · (σin−1�σin) · · ·), 1≤ i1, . . . , in ≤ d , at the pointx0 is R

d , where the
column vectorσi�σj denotes the covariant derivative ofσj in the direction ofσi .

The following result uses Theorem 4.2 and gives the existence and smoothness
of the density ofXt for anyt away from the axes.

THEOREM 4.8 ([18], Theorem 2.4.2, and [21], Theorem 4.3).Under Condi-
tion P, for any pointt away from the axes, the random vectorXt is nondegenerate
and therefore has an absolutely continuous probability distribution with respect
to Lebesgue measure onR

d . Moreover, its probability density function is infinitely
differentiable.

4.4. Gaussian-type upper bounds.In this section, we present some prelimi-
nary results and establish a Gaussian-type upper bound for the drift-free case with
vanishing initial conditions.

Let X = (Xt , t ∈ R
2+) be the unique solution of (4.7) withb ≡ 0 andx0 = 0,

that is,

Xi
t =

d∑
j=1

∫
[0,t]

σ i
j (Xs) dWj

s , t ∈ R
2+,1 ≤ i ≤ d.(4.8)

We assume that the following two hypotheses on the matrixσ hold:

HYPOTHESISP1. The coefficients of the matrixσ are bounded and infinitely
differentiable with bounded partial derivatives(we denote byT the uniform bound
on the coefficients ofσ and its first partial derivatives).

HYPOTHESIS P2. Strong ellipticity:‖σ(x)ξ‖2 = ∑d
k=1(

∑d
i=1 σ i

k(x)ξ i)2 ≥
ρ2 > 0 for someρ > 0, for all x ∈ R

d and for all ξ ∈ R
d with ‖ξ‖ = 1.

Note that Hypothesis P2 implies Condition P. Indeed, Hypothesis P2 implies
that the vector space spanned by the column vectorsσ1(x), . . . , σd(x) at any
pointx in R

d is R
d , so Condition P holds.

Fix s ∈ R
N+ . Let Ps(ω, ·) be a regular version of the conditional distribution

of the process(Xt − Xs, t ∈ R
N+ \ [0, s]) given Fs , as defined in Section 2. As

in Theorem 4.8, we can check that under Condition P forP-almost allω ∈ �

and for anys < t , the law ofXt − Xs underPs(ω, ·) is absolutely continuous
with respect to Lebesgue measure onR

d . We let ps,t (ω, x) denote the density
of Xt − Xs underPs(ω, ·). We note thatps,t (ω, x) is the conditional density of
Xt − Xs given Fs . Therefore, for a random variableY , we interpretE[Y |Fs] as
Es(ω,Y ), whereEs(ω, ·) denotes the expectation underPs(ω, ·). However, for
s ∈ R

N+ fixed, there isNs ∈ Fs with P(Ns) = 0 such thatps,t (ω, ·) is defined for
ω ∈ � \ Ns and alls < t .
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LEMMA 4.9. Assume HypothesesP1 and P2.Fix s, t ∈ R
2+ with s < t , and

x ∈ R
d . Letσ be a subset of the set of indices{1, . . . , d}. Then, for all ω ∈ � \ Ns

and everyσ ,

ps,t (ω, x) = (−1)d−|σ |
E
[
1{Xi

t −Xi
s>xi , i∈σ, Xi

t −Xi
s<xi, i /∈σ }H(1,...,d)(Xt −Xs,1)|Fs

]
,

where|σ | is the cardinality ofσ and, in agreement with Proposition4.3,

H(1,...,d)(Xt − Xs,1)

= δ
(((

γ
s,t
Xt−Xs

)−1
D(Xt − Xs)

)d
δ
(· · · δ((γ −1

Xt−Xs
D(Xt − Xs)

)1) · · ·)).
Lemma 4.9 is a consequence of the integration by parts formula (4.3). It gives an

explicit expression for the density of the process that will be very useful for further
computations. Whenσ = {1, . . . , d}, the proof of Lemma 4.9 follows along the
same lines as the one-parameter nonconditional case (see [19], Corollary 3.2.1)
and is therefore omitted. For the general case, see [22], (5.3), where a similar
expression is obtained for the kernel of a stochastic semigroup.

A key property is that the moments of the iterated derivatives ofX are finite;
see [17], Lemma 6, where similar nonconditional estimates are obtained for one-
parameter Brownian martingales inR

d .

LEMMA 4.10. Assuming HypothesisP1, for any0 < a < b < ∞, p ≥ 1 and
n ≥ 1, there exists a finite constantC > 0 depending ona, b and the uniform
bounds from HypothesisP1such that for anys, t ∈ [a, b]2 with s < t , on� \ Ns ,

sup
z1≤r,...,zn≤r

z1,...,zn,r∈[0,t]\[0,s]
E
[∣∣D(k1)

z1
· · ·D(kn)

zn
(Xi

r )
∣∣p|Fs

]≤ C(4.9)

for 1 ≤ i, k1, . . . , kn ≤ d .

PROOF. We prove this lemma by induction onn. Supposen = 1. For anyz ∈
[0, t] \ [0, s] ands, t ∈ R

2+ with s < t , the process(D(k)
z (Xi

t ),1 ≤ k ≤ d) satisfies
the following system of stochastic differential equations (see [18], page 127):

D(k)
z (Xi

t ) = σ i
k(Xz) +

d∑
j=1

∫
[z,t]

D(k)
z σ i

j (Xr) dWj
r .(4.10)

Using Burkholder’s inequality (4.6) for conditional expectations, for anyp ≥ 1,

d∑
i=1

E
[∣∣D(k)

z (Xi
t )
∣∣p|Fs

]

≤
d∑

i=1

2p−1

{
E[|σ i

k(Xz)|p|Fs] + E

[∣∣∣∣∣
d∑

j=1

∫
[z,t]

D(k)
z σ i

j (Xr ) dWj
r

∣∣∣∣∣
p∣∣∣Fs

]}



2126 R. C. DALANG AND E. NUALART

≤ 2p−1

{
dT p + bpdp−1

d∑
i,j=1

E

[∣∣∣∣
∫
[z,t]

∣∣D(k)
z σ i

j (Xr)
∣∣2dr

∣∣∣∣
p/2∣∣∣Fs

]}

≤ 2p−1

{
dT p + bpd2pbp−2T p

∫
[z,t]

d∑
i=1

E
[∣∣D(k)

z (Xi
r )
∣∣p|Fs

]
dr

}
.

Finally, for z fixed, using a two-parameter version of Gronwall’s lemma (see [18],
Exercise 2.4.3) in the form

f (z, t) ≤ A + B

∫
[z,t]

f (z, r) dr,(4.11)

we conclude the proof of (4.9) forn = 1.
We now assume that (4.9) holds forn > 1. Applyn times the derivative operator

to (4.10), which yields

D(k1)
z1

· · ·D(kn+1)
zn+1 (Xi

t ) =
n+1∑
l=1

D(k1)
z1

· · ·D(kl−1)
zl−1 D

(kl+1)
zl+1 · · ·D(kn+1)

zn+1

(
σ i

kl

(
Xzl

))

+
d∑

j=1

∫
[z1∨···∨zn+1,t]

D(k1)
z1

· · ·D(kn+1)
zn+1

(
σ i

j (Xr)
)
dWj

r .

For the first term, we use the induction hypothesis and the uniform bounds on
the derivatives of the coefficients ofσ . For the second term, we use Burkholder’s
inequality and again the induction hypothesis and the bounds on the derivatives on
the coefficients ofσ . We finally obtain

d∑
i=1

E
[∣∣D(k1)

z1
· · ·D(kn+1)

zn+1 (Xi
t )
∣∣p]

≤ C1 + C2E

[∫
[z1∨···∨zn+1,t]

d∑
i=1

∣∣D(k1)
z1

· · ·D(kn+1)
zn+1 (Xi

r )
∣∣p dr

]

and the proof is completed using Gronwall’s lemma.�

In the next lemma, we follow [17], Lemma 12, where similar estimates are
carried out for one-parameter Brownian martingales inR

d .

LEMMA 4.11. Assuming HypothesesP1andP2,there exists a finite constant
C > 0 depending ona, b and the uniform bounds from HypothesesP1andP2such
that, for anys, t ∈ [a, b]2 with s < t , on� \ Ns ,(

E
[{

H(1,...,d)(Xt − Xs,1)
}2|Fs

])1/2 ≤ C‖t − s‖−d/2.(4.12)
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PROOF. To simplify the notation, we writeHt,s
(1,...,d) = H(1,...,d)(Xt − Xs,1).

Using (4.5) and Hölder’s inequality for conditional Sobolev norms in Wiener space
(see [29], Proposition 1.10, page 50), we obtain∥∥Ht,s

(1,...,d)

∥∥Fs

0,2,Hs,t

= ∥∥H(d)

(
Xt − Xs,H

t,s
(1,...,d−1)

)∥∥Fs

0,2,Hs,t

=
∥∥∥∥∥

d∑
j=1

δ
(
H

t,s
(1,...,d−1)

((
γ

s,t
Xt−Xs

)−1)
djD(X

j
t − Xj

s )
)∥∥∥∥∥

Fs

0,2,Hs,t

≤ c
∥∥Ht,s

(1,...,d−1)

∥∥Fs

1,4,Hs,t

d∑
j=1

∥∥((γ s,t
Xt−Xs

)−1)
dj

∥∥Fs

1,8,Hs,t
‖D(X

j
t − Xj

s )‖Fs

1,8,Hs,t
.

Hence, to prove (4.12), it suffices to show that for eachp ≥ 1 andn = 1, . . . , d ,

‖D(X
j
t − Xj

s )‖Fs

n,p,Hs,t
≤ c1

n,p‖t − s‖1/2(4.13)

for some finite constantc1
n,p > 0 and

∥∥((γ s,t
Xt−Xs

)−1)
ij

∥∥Fs

n,p,Hs,t
≤ c2

n,p‖t − s‖−1(4.14)

for some finite constantc2
n,p > 0.

Indeed, (4.13) and (4.14) withn = 1 andp = 8 imply that∥∥Ht,s
(1,...,d)

∥∥Fs

0,2,Hs,t
≤ cdc1c2‖t − s‖−1/2∥∥Ht,s

(1,...,d−1)

∥∥Fs

1,4,Hs,t
.

Iterating the process, we find∥∥Ht,s
(1,...,d)

∥∥Fs

0,2,Hs,t
≤ (cdc1c2)d‖t − s‖−d/2,

which concludes the proof of (4.12).�

PROOF OF(4.13). Fixp ≥ 1. By definition,

‖D(Xi
t − Xi

s)‖Fs

n,p,Hs,t

=
{

E
[‖D(Xi

t − Xi
s)‖p

Hs,t
|Fs

]+ n+1∑
k=2

E
[‖Dk(Xi

t − Xi
s)‖p

H⊗k
s,t

|Fs

]}1/p

.
(4.15)

Furthermore, for anyz ∈ [0, t] \ [0, s], the process(D(k)
z (Xi

t − Xi
s),1 ≤ k ≤ d)

satisfies the system of stochastic differential equations

D(k)
z (Xi

t − Xi
s) = σ k

i (Xz) +
d∑

j=1

∫
[z,t]

D(k)
z σ i

j (Xr) dWj
r .(4.16)
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By Burkholder’s inequality (4.6) for conditional expectations and using the
Cauchy–Schwarz inequality, for anyp ≥ 1,

E
[‖D(Xi

t − Xi
s)‖p

Hs,t
|Fs

]

= E

[∣∣∣∣∣
d∑

k=1

∫
[0,t]\[0,s]

|D(k)
z (Xi

t − Xi
s)|2 dz

∣∣∣∣∣
p/2∣∣∣Fs

]

≤ dp/2−1(c‖t − s‖)p/2−1
d∑

k=1

E

[∫
[0,t]\[0,s]

∣∣D(k)
z (Xi

t − Xi
s)
∣∣p dz

∣∣∣Fs

]

≤ 2p−1dp/2−1(c‖t − s‖)p/2−1

×
{
dT pc‖t − s‖

+ dp−1
d∑

k,j=1

E

[∫
[0,t]\[0,s]

∣∣∣∣
∫
[z,t]

D(k)
z σ i

j (Xr) dWj
r

∣∣∣∣
p

dz
∣∣∣Fs

]}

≤ 2p−1(c‖t − s‖)p/2

×
{
dp/2T p + (c‖t − s‖)p/2d5p/2−2bp(T )p

×
d∑

k,l=1

sup
r,z∈[0,t]\[0,s]

E
[∣∣D(k)

z (Xl
r )
∣∣p|Fs

]}
.

Finally, by Lemma 4.10, we get that there exists a positive finite constant
k1(a, b, T ) such that

E
[‖D(Xi

t − Xi
s)‖p

Hs,t
|Fs

]≤ k1‖t − s‖p/2.(4.17)

To estimate the second term on the right-hand side of (4.15), we applyn times
the derivative operator to (4.16) to get

D(k1)
z1

· · ·D(kn+1)
zn+1 (Xi

t − Xi
s) =

n+1∑
l=1

D(k1)
z1

· · ·D(kl−1)
zl−1 D

(kl+1)
zl+1 · · ·D(kn+1)

zn+1

(
σ i

kl

(
Xzl

))

+
d∑

j=1

∫
[z1∨···∨zn+1,t]

D(k1)
z1

· · ·D(kn+1)
zn+1

(
σ i

j (Xr)
)
dWj

r .

Proceeding as above, by Burkholder’s inequality (4.6) for conditional expectations,
and using the Cauchy–Schwarz inequality and Lemma 4.10, we obtain, for all
k = 2, . . . , n + 1,

E
[‖Dk(Xi

t − Xi
s)‖p

H⊗k
s,t

|Fs

]≤ k2‖t − s‖p/2,(4.18)
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wherek2 is a finite positive constant.
Finally, substituting (4.17) and (4.18) into (4.15) concludes the proof of (4.13).

�

PROOF OF(4.14). Fixp ≥ 1. By definition∥∥((γ s,t
Xt−Xs

)−1)
ij

∥∥Fs

n,p,Hs,t

=
{

E
[(∣∣(γ s,t

Xt−Xs

)−1)
ij

∣∣p|Fs

]

+
n∑

k=1

E
[∥∥Dk((γ s,t

Xt−Xs

)−1)
ij

∥∥p

H⊗k
s,t

|Fs

]}1/p

.

(4.19)

We use a standard argument to estimate the moments of the inverse of the Malliavin
matrix. We follow [18], proof of (3.22), and [17], Lemma 10. Using the Cauchy–
Schwarz inequality and Cramér’s formula for(γ

s,t
Xt−Xs

)−1, we can easily check that
for all p ≥ 1,

E
[(((

γ
s,t
Xt−Xs

)−1)
ij

)p|Fs

]
≤ cd,pE

[(
detγ s,t

Xt−Xs

)−2p|Fs

]1/2 × E
[‖D(Xt − Xs)‖4p(d−1)

Hs,t
|Fs

]1/2
(4.20)

for some constantcd,p > 0. For the second factor, we use (4.17) to get

E
[‖D(Xt − Xs)‖4p(d−1)

Hs,t
|Fs

]≤ k1‖t − s‖2p(d−1)(4.21)

for some finite constantk1(a, b, T ) > 0. On the other hand, we write

detγ s,t
Xt−Xs

≥ inf‖v‖=1

(
vT γ

s,t
Xt−Xs

v
)d

= inf‖v‖=1

(
d∑

k=1

∫
[0,t]\[0,s]

∣∣∣∣∣
d∑

i=1

D(k)
z (Xi

t − Xi
s)vi

∣∣∣∣∣
2

dz

)d

.

Using (4.16) and Hypothesis P2, for anyh ∈ (0,1], we see that the expression in
parentheses is bounded below by

d∑
k=1

∫
[0,t−(1−h)(t−s)]\[0,s]

dz

∣∣∣∣∣
d∑

i=1

vi

(
σ i

k(Xz) +
d∑

j=1

∫
[z,t]

D(k)
z σ i

j (Xr) dWj
r

)∣∣∣∣∣
2

≥ 1
2Aρ2 − Ih,

whereA denotes the area of the region[0, t − (1− h)(t − s)] \ [0, s] and

Ih =
d∑

k=1

∫
[0,t−(1−h)(t−s)]\[0,s]

∣∣∣∣∣
d∑

i,j=1

∫
[z,t]

D(k)
z σ i

j (Xr) dWj
r )

∣∣∣∣∣
2

dz.
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We choosey such thatAρ2 = 4y−1/d and notice that sinceh ≤ 1, y ≥ c :=
4d(b

√
2)−d‖t − s‖−dρ−2d . In addition, ash varies in(0,1], y varies in[c,∞).

Applying Chebyshev’s inequality for conditional probabilities, we find that for any
q ≥ 2,

P

{
detγ s,t

Xt−Xs
<

1

y

∣∣∣Fs

}
≤ P

{(
1

2
Aρ2 − Ih

)d

<
1

y

∣∣∣Fs

}

≤ P{Ih > y−1/d |Fs} ≤ yq/d
E[|Ih|q |Fs].

Using Burkholder’s inequality (4.6) for conditional expectations, for anyq ≥ 2,
we have

E[|Ih|q |Fs] ≤ d5q−3bqA
2(q−1)

d∑
i,j,k=1

E

[∫ ∫
([0,t]\[0,s])2

∣∣D(k)
z σ i

j (Xr)
∣∣2q

dr dz
∣∣∣Fs

]
.

By Lemma 4.10(i), the conditional expectation of the right-hand side is bounded
above by some finite positive constantk2(a, b, T ). Using the definition ofA, we
obtain

E[|Ih|q |Fs] ≤ k3
42(q−1)

ρ4(q−1)
y2(1−q)/d.

Consequently, takingq > 2+ 2pd ,

E
[(

detγ s,t
Xt−Xs

)−2p|Fs

]
=
∫ ∞

0
2py2p−1

P
{(

detγ s,t
Xt−Xs

)−1
> y|Fs

}
dy

≤ c2p + 2p

∫ ∞
c

y2p−1
P

{
detγ s,t

Xt−Xs
<

1

y

∣∣∣Fs

}
dy

≤ 42dp

‖t − s‖2dp(b
√

2)2dpρ4dp
+ 2p

∫ ∞
c

y2p−1+(q/d)
E[|Ih|q |Fs]dy

≤ 42dp

‖t − s‖2dp(b
√

2)2dpρ4dp
+ 2pk3

42(q−1)

ρ4(q−1)

∫ ∞
c

y2p−1−(q/d)+(2/d) dy

≤ k4‖t − s‖−2dp,

wherek4 is a finite positive constant. Therefore, we have proved that

E
[(

detγ s,t
Xt−Xs

)−2p|Fs

]≤ k4‖t − s‖−2dp.(4.22)

Substituting (4.21) and (4.22) into (4.20), we obtain

E
[∣∣((γ s,t

Xt−Xs

)−1)
ij

∣∣p|Fs

]≤ k5
(‖t − s‖−2pd‖t − s‖2p(d−1)

)1/2

= k5‖t − s‖−p
(4.23)
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for some finite constantk5 > 0 not depending oni or j . This proves the desired
estimate for the first term in (4.19). Turning to the second term, we claim that for
all i, j = 1, . . . , d andk = 1, . . . , n,

E
[∥∥Dk

((
γ

s,t
Xt−Xs

)−1)
ij

∥∥p

H⊗k
s,t

|Fs

]≤ k6‖t − s‖−p(4.24)

for some finite constantk6 > 0. Indeed, by iterating the equality (see [18],
Lemma 2.1.6)

D(γ −1
Xt

)ij = −
d∑

k,l=1

(
γ −1
Xt

)
ikD

(
γXt

)
kl

(
γ −1
Xt

)
j l,

and using Hölder’s inequality for conditional expectations, we have

sup
i,j

E
[∥∥Dk

((
γ

s,t
Xt−Xs

)−1)
ij

∥∥p

H⊗k
s,t

|Fs

]

≤ c sup
k∑

r=1

∑
k1+···+kr=k

kl≥1,l=1,...,r

E
[∥∥Dk1

(
γ

s,t
Xt−Xs

)
i1j1

∥∥p(r+1)

H
⊗k1
s,t

|Fs

]1/(r+1) × · · ·

× E
[∥∥Dkr

(
γ

s,t
Xt−Xs

)
ir jr

∥∥p(1+r)

H
⊗kr
s,t

|Fs

]1/(r+1)

× sup
i,j

E
[∣∣((γ s,t

Xt−Xs

)−1)
ij

∣∣p(r+1)2|Fs

]1/(r+1)
,

where the supremum before the summation is overi1, j1, . . . , ir , jr ∈ {1, . . . , d}.
By (4.23), for alli, j = 1, . . . , d ,

E
[∣∣((γ s,t

Xt−Xs

)−1)
ij

∣∣p(r+1)2|Fs

]≤ k7‖t − s‖−p(r+1)2

for some finite constantk7 > 0.
For the other factors, expressDk(γ

s,t
Xt−Xs

)ij using the definition ofγ s,t
Xt−Xs

and
use the Cauchy–Schwarz inequality twice and (4.18) to get

E
[∥∥Dk(γ s,t

Xt−Xs

)
ij

∥∥p

H⊗k
s,t

|Fs

]

= E

[∥∥∥∥Dk

(∫
[0,t]\[0,s]

Dr(X
i
t − Xi

s) · Dr(X
j
t − Xj

s ) dr

)∥∥∥∥
p

H⊗k
s,t

∣∣∣Fs

]

≤ (k + 1)p−1
k∑

l=0

(
k

l

)p

E

[∥∥∥∥
∫
[0,t]\[0,s]

DlDr(X
i
t − Xi

s)

·Dk−lDr(X
j
t − Xj

s ) dr

∥∥∥∥
p

H⊗k
s,t

∣∣∣Fs

]
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≤ dp/2(k + 1)p−1
k∑

l=0

(
k

l

)p {(
E[‖DlD(Xi

t − Xi
s)‖2p

H
⊗(l+1)
s,t

|Fs])1/2

×(E[‖Dk−lD(X
j
t − Xj

s )‖2p

H
⊗(k−l+1)
s,t

|Fs

])1/2}
≤ k8‖t − s‖p

for some finite constantk8 > 0 not depending oni andj . This concludes the proof
of (4.24). Finally, substituting (4.23) and (4.24) into (4.19), we conclude the proof
of (4.14).

The proof of Lemma 4.11 is now complete.�

The following result is a consequence of Lemmas 4.9 and 4.11.

LEMMA 4.12. Assuming HypothesesP1andP2,for any0 < a < b < ∞, the
density functionpXt (x) is uniformly bounded fort ∈ [a, b]2 andx ∈ R

d .

PROOF. Using Lemma 4.9 withs = 0 andσ = {1, . . . , d} and the Cauchy–
Schwarz inequality, we obtain

pXt (x) ≤ (
E
[{

H(1,...,d)(Xt ,1)
}2])1/2

.

By Lemma 4.11 withs = 0, there exists a finite positive constantc2 depending
ona, b and the uniform bounds from Hypotheses P1 and P2 such that

E
[{

H(1,...,d)(Xt ,1)
}2]≤ c2,

which proves the lemma.�

The next proposition is the main result of this section.

PROPOSITION 4.13. Assuming HypothesesP1 and P2, for any 0 < a <

b < ∞, there exists a finite positive constantc depending ona, b and the uniform
bounds from HypothesesP1 and P2 such that for anyx ∈ R

d , s, t ∈ [a, b]2 with
s < t and forω ∈ � \ Ns ,

ps,t (ω, x) ≤ c‖t − s‖−d/2 exp
(
− ‖x‖2

c‖t − s‖
)
.(4.25)

PROOF. Apply the Cauchy–Schwarz and Hölder inequalities for conditional
expectations to the expression of Lemma 4.9 withσ = {i ∈ {1, . . . , d} :xi ≥ 0} to
find that

ps,t (ω, x) ≤
d∏

i=1

(P{|Xi
t − Xi

s | ≥ |xi | |Fs})1/(2d)
(
E
[{

H
t,s
(1,...,d)

}2])1/2
.(4.26)
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Consider the one-parameter martingale[Mu = (M1
u, . . . ,Md

u ),0 ≤ u ≤ |t|−|s|]
defined by

Mi
u =




d∑
j=1

∫
[s1,s1+u]×[0,s2]

σ i
j (Xr) dWj

r , if 0 ≤ u ≤ t1 − s1,

Mi
t1−s1

+
d∑

j=1

∫
[0,t1]×[s2,u+s2+s1−t1]

σ i
j (Xr) dWj

r ,

if t1 − s1 ≤ u ≤ |t| − |s|,
for all i = 1, . . . , d , with respect to the filtration(Gu,0≤ u ≤ |t| − |s|) defined by

Gu =
{

F(s1+u,s2), if 0 ≤ u ≤ t1 − s1,
F(t1,u+s2+s1−t1), if t1 − s1 ≤ u ≤ |t| − |s|.

Notice thatM0 = 0, M|t|−|s| = Xt − Xs andG0 = Fs . By [1], (2.9),

〈Mi〉|t|−|s| = 〈Mi〉t1−s1 + (〈Mi〉|t|−|s| − 〈Mi〉t1−s1

)

=
d∑

j=1

∫
[0,t]\[0,s]

σ i
j (Xr)

2dr.

Moreover, Hypothesis P1 and the Cauchy–Schwarz inequality imply that
〈Mi〉|t|−|s| ≤ C‖t − s‖, whereC = bd21/2T 2 for all 1 ≤ i ≤ d . Applying the
exponential martingale inequality [18], A.2, we get

P{|Xi
t − Xi

s | ≥ |xi ||Fs} ≤ 2 exp
(
− |xi |2

2C‖t − s‖
)
, 1 ≤ i ≤ d.(4.27)

Finally, substituting (4.27) into (4.26) and using Lemma 4.11 concludes the
proof of (4.25). �

4.5. Gaussian-type lower bounds.In this section we present a lower bound
of Gaussian type for the density of the random variableXt for any t away from
the axes, whereX = (Xt , t ∈ R

2+) denotes the solution of (4.8), and we present
an analogous lower bound for the conditional density ofXt − Xs givenFs , when
s < t . These results are an application of results by Kohatsu-Higa [13], where
Gaussian-type lower bounds are obtained for the density of a general class of
uniformly elliptic random variables on a Wiener space, which generalize the lower
bound estimates for uniformly elliptic diffusion processes obtained by Kusuoka
and Stroock [14].

THEOREM 4.14. Assume HypothesesP1andP2and letX = (Xt , t ∈ R
2+) be

the solution of(4.8). Then for any0 < a < b < ∞, there is a constantC which
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depends only ona, b and the uniform bounds from HypothesesP1 and P2 such
that, for all s = (s1, s2) ∈ [a, b]2,

pXs (x) ≥ C(s1s2)
−d/2 exp

(
− ‖x‖2

Cs1s2

)
.

PROOF. Following [13], Theorem 5, we need to prove that for fixeds =
(s1, s2) ∈ [a, b]2, thed-dimensional random vectorXs is uniformly elliptic, with
constants that do not depend ons. Following the same notation as in the Main setup
of [13], we replace their[0, T ]×A with [0, s1]× [0, s2] and we setg(·, ·) ≡ 1. The
underlying one-parameter filtration is defined as(F 1

t ,0≤ t ≤ s1), where

F 1
t = σ {W(z1, z2), (z1, z2) ∈ [0, t] × [0, s2]}.

(In this proof,t denotes a real number, as in [13].)
Consider a sufficiently fine partition{0 = t0 < · · · < tN = s1} of the interval

[0, s1]. To simplify the notation, we writeRtn−1,tn for the rectangle[tn−1, tn] ×
[0, s2]. For anyθ = (θ1, θ2) ∈ Rtn−1,tn , we writeπθ for the point(tn−1, θ2), that is,
the orthogonal projection ofθ on the vertical line through(tn−1,0). We writeRπθ,θ

for the rectangle[tn−1, θ1] × [0, θ2]. Finally, for anyθ ∈ Rtn−1,tn andη ∈ Rπθ,θ ,
we writeθ � η for the point(η1, θ2), that is, the orthogonal projection ofη on the
horizontal line throughπθ andθ . Let �n−1(g) be the quantities denoted�i−1(g)

in the Main setup of [13], that is,

�n−1(g) =
∫ tn

tn−1

‖g(t, ·)‖2
L2([0,s2],Rd )

dt = (tn − tn−1)s2

for n = 1, . . . ,N . Note that‖g‖L2([0,s1]×[0,s2],Rd ) = s1s2.
We now define the sequence of nondegenerate random vectorsFn required in

the Main setup of [13] byFn = Xtn,s2, for 0 ≤ n ≤ N , with FN = Xs1,s2. Notice
thatFn = (F 1

n , . . . ,F d
n ) andF i

n = Xi
tn,s2

. By (4.8),

F i
n − F i

n−1 =
d∑

j=1

∫
Rtn−1,tn

σ i
j (Xθ ) dW

j
θ , 1 ≤ i ≤ d.(4.28)

The first objective is to find the Itô expansion of orderl ≥ 1 of the
random variableF i

n − F i
n−1 to obtain the approximations�F i

n required in [13],
Theorem 5. For this, we need to introduce some notation. We define the multiindex
β ∈ ⋃

n≥1{0,1}n, with length l(β), and write β = (β1, . . . , βl(β)). We write
−β and β− for the multiindex obtained by deleting the first and the last
component, respectively, of the multiindexβ. For completeness, we write{v} for
the multiindex of length zero. These multiindices will be used to write multiple
integrals, some of which are stochastic and some are deterministic: when the index
is 1, d1W

j
θ denotesdW

j
θ , and when the index is 0,d0W

j
θ denotesdθ . Usually,

these integrals are not taken on the whole space[0, s1] × [0, s2], but on subsets of



POTENTIAL THEORY FOR HYPERBOLIC SPDEs 2135

it. The subset most often is of the type[tn−1, tn]×[0, s2]. In general, these integrals
are denoted byIβ(hβ) for anF 1

tn−1
-measurable random processhβ such that

sup
ω∈�

‖hβ‖L2(([tn−1,tn]×[0,s2])l(β),Rd)(ω) < ∞.

Given a family of M functions fm :Rd → R, 1 ≤ m ≤ M , and M points
θ1, . . . , θM placed on the same vertical line inRtn−1,tn , we define for any 1≤ r ≤ d

andξ ∈ Rtn−1,tn the following operations on random variables:

L1
r,θ1,...,θM,ξ

(
M∏

m=1

fm(Xθm)

)

=
M∑

m=1

1Rπθm,θm (ξ)

(
M∏

n=1,n �=m

fn(Xθn�ξ )

)
d∑

k=1

∂fm

∂xk

(Xθm�ξ )σ
k
r (Xξ ),

L0
r,θ1,...,θM,ξ

(
M∏

m=1

fm(Xθm)

)

=
{

M∑
m=1

1

2
1Rπθm,θm (ξ)

(
M∏

n=1,n �=m

fn(Xθn�ξ )

)

×
d∑

k,l=1

∂2fm

∂xk ∂xl

(Xθm�ξ )σ
k
r (Xξ )σ

l
r (Xξ )

}

+
{

M∑
m1,m2=1

1

2
1Rπθm1 ,θm1 ∩Rπθm2 ,θm2 (ξ)

(
M∏

n=1,n �=m1,m2

fn(Xθn�ξ )

)

×
d∑

k,l=1

∂fm1

∂xk

(Xθm1�ξ )σ
k
r (Xξ )

∂fm2

∂xl

(Xθm2�ξ )σ
l
r (Xξ )

}
.

Note that the pointsθ1 � ξ, . . . , θM � ξ andξ are also placed on a single vertical
line in Rtn−1,tn .

These operations will be used to apply the standard multidimensional Itô
formula tof (Xθ1, . . . ,XθM ), whenf (x1, . . . , xM) is of the form

∏M
m=1 fm(xm),

where thefm are as above, 1≤ m ≤ M . Indeed,

u1 �→ (
Xu1,θ

1
2
, . . . ,Xu1,θM

2

)
, tn−1 ≤ u1 ≤ tn,

is anMd-dimensional martingale with mutual covariation

d
〈
Xk

·,θn
2
,Xl

·,θm
2

〉
u1

= du1

d∑
r=1

∫ θn
2∧θm

2

0
σ k

r

(
Xu1,ξ2

)
σ l

r

(
Xu1,ξ2

)
dξ2.
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Therefore, according to the Itô formula [2],

M∏
m=1

fm(Xθm) =
M∏

m=1

fm(Xπθm)

+
d∑

r=1

∫
Rtn−1,tn

L1
r,θ1,...,θM,ξ

(
M∏

m=1

fm(Xθm)

)
dWr

ξ

+
d∑

r=1

∫
Rtn−1,tn

L0
r,θ1,...,θM,ξ

(
M∏

m=1

fm(Xθm)

)
dξ.

(4.29)

We are now going to iteratively apply the Itô formula to the integrands in (4.29),
to obtain an Itô expansion similar to the one presented in [12], Chapter 5. For
this, we introduce some additional notation. Given a multiindexβ, we define the
functions

hi
β,j (θ) = σ i

j (Xθ ), if β = {v},
hi

β,j,r (θ, ξ) = L1
r,θ,ξ

(
σ i

j (Xθ )
)
, if β = (1),

hi
β,j,r (θ, ξ) = L0

r,θ,ξ

(
σ i

j (Xθ )
)
, if β = (0),

hi
β,j,r1,...,rl(β)

(
θ, ξ1, . . . , ξ l(β)

)= L
β

r1,...,rl(β),θ,ξ1,...,ξ l(β)

(
σ i

j (Xθ )
)
,

where

L
β

r1,...,rl(β),θ,ξ1,...,ξ l(β) = L
β1
rl(β),θ,ξ1,...,ξ l(β) ◦ L

β2
rl(β)−1,θ,ξ1,...,ξ l(β)−1 ◦ · · · ◦ L

βl(β)

r1,θ,ξ1.

We define the multiple (Itô stochastic/deterministic) integralsIβ by

Iβ

[
hi

β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξ l(β)−1)]

Rtn−1,tn

=
d∑

j,r1,...,rl(β)−1=1

∫
Rtn−1,tn

(∫
Rπθ,θ

(
· · ·

(∫

× hi
β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξ l(β)−1)

× dβ1W
rl(β)−1

ξ l(β)−1

)
· · ·
)

dβl(β)−1W
r1
ξ1

)
dW

j
θ ,

(4.30)

where the domain of integration of each integral is given by the indicator functions
that appear in the definition of the operatorsL0 andL1.

Note that the functionshi
β−,j,r1,...,rl(β)−1

(θ, ξ1, . . . , ξ l(β)−1) are sums of func-

tions of the form
∏l(β)

n=1 fn(Xθn), wherefn :Rd → R are derivatives of some order
of the coefficients of the matrixσ , andθ1, . . . , θ l(β) are l(β) points placed on a
single vertical line inRtn−1,tn that depends onθ, ξ1, . . . , ξ l(β)−1. We now define
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multiple Itô stochastic integralsIπ
β , by modifying the integrand in the definition

of Iβ : each point in (4.30) is projected onto the vertical line through(tn−1,0), that
is,

Iπ
β

[
hi

β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξ l(β)−1)]

Rtn−1,tn

=
d∑

j,r1,...,rl(β)−1=1

∫
Rtn−1,tn

(∫
Rπθ,θ

(
· · ·

(∫ ∑ l(β)∏
n=1

fn(Xπθn)

× dβ1W
rl(β)−1

ξ l(β)−1

)
· · ·
)

× dβl(β)−1W
r1
ξ1

)
dW

j
θ .

LEMMA 4.15. The Itô expansion of orderl ≥ 1,

F i
n − F i

n−1 = ∑
β∈Al

I π
β

[
hi

β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξ l(β)−1)]

Rtn−1,tn

+ ∑
β∈Bl

Iβ

[
hi

β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξ l(β)−1)]

Rtn−1,tn
,

(4.31)

holds, where the setsAl and Bl are recursively defined byA1 = {(1)}, B1 =
{(1,1), (0,1)}, Al+1 = {Al ,Bl} andBl+1 = {β :−β ∈ Bl} for l ≥ 1.

PROOF. We prove this lemma by induction onl. By the standard multidimen-
sional Itô formula, applied to the random variableσ i

j (Xθ ) with respect to the first
coordinate, it follows from (4.28) that

F i
n − F i

n−1 =
d∑

j=1

∫
Rtn−1,tn

σ i
j (Xθ ) dW

j
θ

=
d∑

j=1

∫
Rtn−1,tn

σ i
j (Xπθ ) dW

j
θ

+
d∑

j,k,r=1

∫
Rtn−1,tn

(∫
Rπθ,θ

∂σ i
j (Xθ�η)

∂xk

σ k
r (Xη) dWr

η

)
dW

j
θ

+ 1

2

d∑
j,k,l,r=1

∫
Rtn−1,tn

(∫
Rπθ,θ

∂2σ i
j (Xθ�η)

∂xk ∂xl

σ k
r (Xη)σ

l
r (Xη) dη

)
dW

j
θ

for all 1 ≤ i ≤ d , which proves (4.31) forl = 1.
Now assume that (4.31) holds withAl−1 andBl−1 for l > 1. Then we apply

the Itô formula (4.29) to all the random variables of the form
∏l(β)

n=1fn(Xθn) that
appear in the stochastic integrals of the second term of (4.31) withBl−1. Here,
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M = l(β), the functionsfm :Rd → R, 1 ≤ m ≤ l(β), are derivatives of order
greater than or equal to 0 of the coefficients of the matrixσ and θ1, . . . , θ l(β)

are l(β) points placed on a single vertical line inRtn−1,tn . The first term on the
right-hand side of (4.29) gives a newIπ

β integral and the two other terms each

give a newIβ integral. Note that integrals with the operatorL1 add a 1 to all
the multiindexes ofBl−1 and that integrals with the operatorL0 add a 0. This
yields (4.31) forl with Al = {Al−1,Bl−1} andBl = {β :−β ∈ Bl−1}. �

Continuing the proof of Theorem 4.14, with this result we define, follow-
ing [13], Theorem 5, the approximation�F i

n of orderl ≥ 1 by

�F i
n = (

(tn − tn−1)s2
)(l+1)/2

Zi
n + F i

n−1

+ ∑
β∈Al

I π
β

[
hi

β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξ l(β)−1)]

Rtn−1,tn
,

where (Zn, n = 1, . . . ,N ) is an i.i.d. sequence ofd-dimensionalN(0, I ) random
variables independent of the Wiener processW . In the setting of [13], Theorem 5,
we havek = 1 and set

Gl
n = ∑

β∈Al\A1

Iπ
β

[
hi

β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξ l(β)−1)]

Rtn−1,tn
.

To simplify notation we writehi
β for

hi
β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξ l(β)−1).

With these definitions and since by Hypothesis P1, for any multiindexβ ∈ Al ,

sup
ω∈�

‖hi
β‖L2(([tn−1,tn]×[0,s2])l(β),Rd )(ω) < ∞,

(H1) of [13], Theorem 5 is satisfied. To prove (H2a) of [13], Theorem 5, note that
by definition

‖F i
n − �F i

n‖
F 1

tn−1
n,p =

∥∥∥∥∥((tn − tn−1)s2
)(l+1)/2

Zi
n + ∑

β∈Bl

Iβ[hi
β ]Rtn−1,tn

∥∥∥∥∥
F 1

tn−1

n,p

and, for eachβ ∈ Bl ,

∥∥Iβ[hi
β ]Rtn−1,tn

∥∥F 1
tn−1

q,p,Htn−1,tn

=
{

E
[∣∣Iβ[hi

β]Rtn−1,tn

∣∣p|F 1
tn−1

]

+
q∑

j=1

E

[∥∥DjIβ[hi
β ]Rtn−1,tn

∥∥p

H
⊗j
tn−1,tn

|F 1
tn−1

]}1/p

,

(4.32)
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whereHtn−1,tn = L2([tn−1, tn] × [0, s2],R
d).

Fix β ∈ Bl and recall thatl(β) = l + 1. To estimate the first term in (4.32),
we use Burkholder’s inequality (4.6) forconditional expectations and the uniform
bounds on the derivatives of the coefficients ofσ to get

E
[∣∣Iβ[hi

β]Rtn−1,tn

∣∣p|F 1
tn−1

]≤ C
(
(tn − tn−1)s2

)(l+1)p/2(4.33)

for some positive finite constantC > 0 independent of the partition,t1, s and
ω ∈ �.

For the second term in (4.32) fixj ∈ {1, . . . , q}. Using formula (1.46)
from [18], we can easily check that the termDjIβ[hi

β ]Rtn−1,tn
contains multiple

(Itô stochastic/deterministic) integrals of ordersl + 1, . . . , l + 1 − j . Therefore,
again using Burkholder’s inequality for conditional expectations and the uniform
bounds on the derivatives of the coefficients ofσ , we obtain

E

[∥∥DjIβ[hi
β]Rtn−1,tn

∥∥p

H
⊗j
tn−1,tn

|F 1
tn−1

]
≤ C

(
(tn − tn−1)s2

)(l+1)p/2(4.34)

for some positive finite constantC > 0 independent of the partition,t1, s and
ω ∈ �.

Finally, using (4.33) and (4.34), we get that there exists a constantC

independent of the partition,t1, s andω ∈ �, such that

‖F i
n − �F i

n‖
F 1

tn−1
n,p ≤ C

(
(tn − tn−1)s2

)(l+1)/2
,

which proves (H2a) of [13], Theorem 5, withγ = 1/2.
Now, using exactly the same argument that led to (4.22) we can easily check

that (
E
[(

detγ tn−1,tn
Fn

)−p|F 1
tn−1

])1/p ≤ C
(
(tn − tn−1)s2

)−d
,

where γ
tn−1,tn
Fn

= (〈DF i
n,DF

j
n 〉L2([tn−1,tn]×[0,s2],Rd ))1≤i,j≤d , for some positive

finite constantC independent of the partition,t1 and ω ∈ �. Therefore, (H2b)
of [13], Theorem 5, is proved.

Condition (H2c) of [13], Theorem 5, can be rewritten in our case as

C2 ≤ (
(tn − tn−1)s2

)−1
∫
Rtn−1,tn

d∑
k=1

(
d∑

i=1

σ i
k(Xπθ)ξ

i

)2

dθ ≤ C1

for ξ ∈ R
d with ‖ξ‖ = 1. This is obviously satisfied by Hypotheses P1 and P2.

Finally, condition (H2d) of [13], Theorem 5, is satisfied using the same
argument that led tocondition (H2a), because the higher-order integrals are, in
theF 1

tn−1
conditionalDn,p norm, smaller than(tn − tn−1)s2. Theorem 4.14 is now

proved. �

The next result is the conditional version of Theorem 4.14. Letps,t (ω, x) be the
density ofXt − Xs under the conditional distributionPs(ω, ·) defined just above
Lemma 4.9, forω ∈ � \ Ns .
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THEOREM 4.16. Assuming HypothesesP1 and P2, for any 0 < a < b < ∞,
there exists a positive finite constantc, which depends ona, b and the uniform
bounds from HypothesesP1 and P2, with the following property: For all s, t ∈
[a, b]2 with s < t , x ∈ R

d , and forω ∈ � \ Ns ,

ps,t (ω, x) ≥ c‖t − s‖−d/2 exp
(
− ‖x‖2

c‖t − s‖
)
.

PROOF. Fix s, t ∈ [a, b]2 with s < t . As in Theorem 4.14, Theorem 4.16
is an application of [13], Theorem 5. We replace their[0, T ] by the union of
two segments with extremities(s1, s2), (t1, s2) and (t1, s2), (t1, t2), and we set
g(·, ·) ≡ 1. We consider a sufficiently fine partition{s = t0 < · · · < tN = t} of
the union of the two segments, whereti = (t1

i , t2
i ), 1≤ i ≤ N . Note that there exist

two constantsc1(a, b) andc2(a, b) such that

c−1
1 ‖tn − tn−1‖ ≤ �n−1(g) ≤ c1‖tn − tn−1‖

and

c−1
2 ‖t − s‖ ≤ ‖g‖L2([0,t]\[0,s],Rd ) ≤ c2‖t − s‖.

In this case, all of the Wiener stochastic integrals are taken on subsets of one
of the[0, tn] \ [0, tn−1]. Then, the projection of a given pointθ ∈ [0, tn] \ [0, tn−1]
depends on its position. Namely, ifθ is in the rectangle[s1, t1]× [0, s2], πθ will be
its orthogonal projection on the vertical line through(t1

n−1,0), while if θ is in the
rectangle[0, t1] × [s2, t2], πθ will be its orthogonal projection on the horizontal
line through(0, t2

n−1).
DefineF i

n = Xi
tn

− Xi
s for 1≤ i ≤ d , 0≤ n ≤ N . Then

F i
n − F i

n−1 =
d∑

j=1

∫
[0,tn]\[0,tn−1]

σ i
j (Xθ ) dW

j
θ , 1 ≤ i ≤ d.

Now, using the same notation as in the proof of Theorem 4.14 and proceeding
exactly along the same lines, we can easily establish the following result:

LEMMA 4.17. The Itô expansion of orderl ≥ 1,

F i
n − F i

n−1 = ∑
β∈Al

Iβ

[
hi

β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξl(β)−1

)]
[0,tn]\[0,tn−1]

+ ∑
β∈Bl

I π
β

[
hi

β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξl(β)−1

)]
[0,tn]\[0,tn−1],

holds, where the setsAl and Bl are recursively defined byA1 = {(1)}, B1 =
{(1,1), (0,1)}, Al+1 = {Al,Bl} andBl+1 = {β :−β ∈ Bl} for l ≥ 1.
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Again, following [13], Theorem 5, we define the approximation�F i
n of order

l ≥ 1 by

�F i
n = ‖tn − tn−1‖(l+1)/2Zi

n + F i
n−1

+ ∑
β∈Al

I π
β

[
hi

β−,j,r1,...,rl(β)−1

(
θ, ξ1, . . . , ξl(β)−1

)]
[0,tn]\[0,tn−1],

where (Zi
n, n = 0, . . . ,N ) is an i.i.d. sequence ofd-dimensionalN(0, I ) random

variables independent of the Wiener processW .
The remainder of the proof follows exactly as in the proof of Theorem 4.14.

We note that the constantc in the conclusion of Theorem 4.16 is also uniform in
ω ∈ � \ Ns , s, t ∈ [a, b]2 with s < t andx ∈ R

d . �

5. Potential theory for hyperbolic SPDEs. In this section, we extend the
results obtained in Section 2 to the solution of equation (4.7). The proofs make
use of Malliavin calculus and are an application of the results of Section 4, which
contains the technical work.

5.1. The caseb ≡ 0. Let X = (Xt , t ∈ R
2+) be the uniqued-dimensional

adapted continuous process defined on(�,G,P) that solves (4.8). The aim of this
section is to establish the following result.

THEOREM 5.1. Assuming HypothesesP1 and P2, for all 0 < a < b < ∞
andM > 0, there exists a positive finite constantK depending ona, b,M,ρ and
the uniform bounds on the coefficients ofσ and its derivatives, such that for all
compact setsA ⊂ {x ∈ R

d :‖x‖ < M},
K−1 Capd−4(A) ≤ P{∃ t ∈ [a, b]2 :Xt ∈ A} ≤ K Capd−4(A),

whereCapβ denotes the capacity with respect to the Newtonianβ kernelkβ(·)
defined in Theorem3.1.

PROOF. To prove Theorem 5.1 it suffices to prove that Hypotheses H1–H3 of
Theorem 2.4 hold for the processX. Since Hypothesis H3 is only used for the
upper bound in the statement of Theorem 5.1, we only prove Hypothesis H3 when
d ≥ 4, since the upper bound is trivially satisfied ford ≤ 3. Fix 0< a < b < ∞,
M > 0 and recall that Hypotheses P1 and P2 are satisfied.

VERIFICATION OF HYPOTHESISH1. Fix x ∈ R
d such that‖x‖ ≤ M . Using

Theorem 4.14, we find that∫
[a,b]2

pXt (x) dt ≥ C

∫
[a,b]2

(t1t2)
−d/2 exp

(
− ‖x‖2

Ct1t2

)
dt

≥ C(b − a)2b−d exp
(
− M2

Ca2

)
,



2142 R. C. DALANG AND E. NUALART

which shows that Hypothesis H1 is satisfied.

VERIFICATION OF HYPOTHESIS H2. Fix x andy such that‖x‖ ≤ M and
‖y‖ ≤ M . Let s, t ∈ [a, b]2 and assume thats < t . Clearly,

pXt ,Xs (x, y) = pXt−Xs,Xs (x − y, y)

= pXt−Xs |Xs=y(x − y)pXs (y).

Let z = x − y and letE be a Borel subset ofRd . By Proposition 4.13, we have,
a.s.,

P{Xt − Xs ∈ E|Fs} ≤
∫
E

c‖t − s‖−d/2 exp
(
− ‖z‖2

c‖t − s‖
)

dz

for some finite constantc > 0. Take the conditional expectation of both sides with
respect toσ(Xs) to find that

pXt−Xs |Xs=y(z) ≤ c‖t − s‖−d/2 exp
(
− ‖z‖2

c‖t − s‖
)
.

By Lemma 4.12,pXs (y) is uniformly bounded overs ∈ [a, b]2 and x ∈ R
d .

Therefore, for alls, t ∈ [a, b]2 with s < t , we have proved that

pXt ,Xs (x, y) ≤ c′‖t − s‖−d/2 exp
(
−‖x − y‖2

c‖t − s‖
)

(5.1)

for some finite constantc′ > 0.
We now assume thats, t ∈ [a, b]2 with s �≤ t andt �≤ s. Let E1 andE2 be two

Borel subsets ofRd . Using the conditional independence property, we obtain

P{Xt ∈ E1,Xs ∈ E2} = E[P{Xt ∈ E1,Xs ∈ E2|Fs∧t }]
= E[P{Xt ∈ E1|Fs∧t}P{Xs ∈ E2|Fs∧t }]
= E

[∫
E1

ps∧t,t (·, x − Xs∧t ) dx

∫
E2

ps∧t,s(·, y − Xs∧t ) dy

]
.

Setp(c, x) = c−d/2 exp(−‖x‖2/(2c)). By Proposition 4.13 and Lemma 4.12, the
right-hand side is bounded above by

CE

[∫
E1

dx p
(
c‖t − (s ∧ t)‖, x − Xs∧t

) ∫
E2

dy p
(
c‖s − (s ∧ t)‖, y − Xs∧t

)]

= C

∫
E1

dx

∫
E2

dy

∫
Rd

dzp
(
c‖t − (s ∧ t)‖, x − z

)
p
(
c‖s − (s ∧ t)‖, y − z

)
.

For x fixed, do the change of variablesu = z − x and use the fact thatp(σ 2, ·)
is an even function to write the inner integral as a convolution of two Gaussian
densities, which is equal to

p
(
c‖t − (s ∧ t)‖ + c‖s − (s ∧ t)‖, y − x

)≤ Cp(c̃‖t − s‖, y − x)
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by the triangle inequality. We conclude that

P{Xt ∈ E1,Xs ∈ E2} ≤ C

∫
E1

dx

∫
E2

dy p(c̃‖t − s‖, y − x)

and, therefore,

pXt ,Xs (x, y) ≤ C‖t − s‖−d/2 exp
(
−‖x − y‖2

c̃‖t − s‖
)
.(5.2)

This shows that an estimate like (5.1) holds also whens �≤ t andt �≤ s.
Using (5.1) and (5.2), we get∫

[a,b]2

∫
[a,b]2

pXt ,Xs (x, y) dt ds

≤ C

∫
[a,b]2

∫
[a,b]2

‖t − s‖−d/2 exp
(
−‖x − y‖2

c‖t − s‖
)

dt ds.

Fix t and use the change of variablesu = t − s to see that this expression is less
than or equal to

4C(b − a)2
∫
[0,b−a]2

‖u‖−d/2 exp
(
−‖x − y‖2

c‖u‖
)

du.

Next, use the change of variablesu = ‖x − y‖2c−1z, to see that this is less than or
equal to

cd/2−24C(b − a)2‖x − y‖−d+4
∫
[0,c(b−a)/‖x−y‖2]2

‖z‖−d/2 exp(−1/‖z‖) dz.

Whend ≥ 4, applying Lemma 3.5 withβ = d/2 ≥ 2 andα = 1/2 in the same
way as in the proof of Theorem 3.1 shows that Hypothesis H2 is verified with
k(·) = kd−4(·) and d ≥ 4. Whend ≤ 4, the above expression is bounded and
Hypothesis H2 holds withk(x) ≡ 1.

VERIFICATION OF HYPOTHESISH3. Assumed ≥ 4. Fix x ∈ R
d with ‖x‖ ≤

M . Use the Gaussian-type lower bound forps,t (ω, x), obtained in Theorem 4.16,
to see that for alls ∈ [a, b]2 and for almost allω,∫

[b,2b−a]2
ps,t (ω, x) dt ≥ c

∫
[b,2b−a]2

‖t − s‖−d/2 exp
(
− ‖x‖2

c‖t − s‖
)

dt

for some finite constantc > 0. Now, using the change of variablesz = c(t − s)/

‖x‖2, we see that this expression is

≥ cd/2−2‖x‖−d+4
∫
[0,c(b−a)/‖x‖2]2

‖z‖−d/2 exp(−1/‖z‖) dz.

Finally, Lemma 3.5 withβ = d/2 ≥ 2 andα = 1/2 shows that Hypothesis H3
holds ford ≥ 4 in the same way as in the proof of Theorem 3.1.

The proof of Theorem 5.1 is complete.�
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5.2. The caseb �≡ 0. The aim of this section is to extend Theorem 5.1 to the
caseb �≡ 0. Our main tool is Girsanov’s theorem for an adapted translation of the
Brownian sheet (see [20], Proposition 1.6).

Let Y = (Yt , t ∈ R
2+) denote thed-dimensional adapted continuous process

defined on(�,G,P) satisfying (4.7) withx0 = 0, that is,

Y i
t =

d∑
j=1

∫
[0,t]

σ i
j (Ys) dWj

s +
∫
[0,t]

bi(Ys) ds, t ∈ R
2+, 1 ≤ i ≤ d.(5.3)

We introduce the following condition on the vectorb:

HYPOTHESIS P3. For some constantN , for all 1 ≤ i ≤ d and x ∈ R
d ,

|bi(x)| ≤ N .

Consider the random variable

Lt = exp
[
−
∫
[0,t]

σ−1(Ys)b(Ys) · dWs − 1
2

∫
[0,t]

‖σ−1(Ys)b(Ys)‖2
Rd ds

]
.

We have the following Girsanov theorem.

THEOREM 5.2 ([20], Proposition 1.6). The random variableLt is such that
E[Lt ] = 1. If P̃ denotes the probability measure on(�,F ) defined by

dP̃

dP
(ω) = Lt(ω),

thenW̃t = Wt + ∫
[0,t] σ−1(Ys)b(Ys) ds is a standard Brownian sheet underP̃.

Consequently, the law ofY underP̃ coincides with the law ofX underP, where
X = (Xt , t ∈ R

2+) is the solution of (5.3) withb ≡ 0.
The following result is the extension of Theorem 5.1 to the caseb �≡ 0. It is

sufficient to characterize polar sets ofY .

COROLLARY 5.3. Assuming HypothesesP1–P3, for all 0 < a < b < ∞
andε,M > 0, there exists a finite positive constantKε depending ona, b, ε, λ, M ,
N , ρ and the uniform bounds of the coefficients ofσ and its derivatives, such that
for all compact setsA ⊂ {x ∈ R

d :‖x‖ < M},
K−1

ε

(
Capd−4(A)

)1+ε ≤ P{∃ t ∈ [a, b]2 :Yt ∈ A} ≤ Kε

(
Capd−4(A)

)1/1+ε
.

PROOF. Consider the random variable

Jt = exp
[
−
∫
[0,t]

σ−1(Xs)b(Xs) · dWs + 1
2

∫
[0,t]

‖σ−1(Xs)b(Xs)‖2
Rd ds

]
.
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Fix 0 < a < b < ∞ and let GX = {∃ t ∈ [a, b]2 :Xt ∈ A} and GY = {∃ t ∈
[a, b]2 :Yt ∈ A}. By Theorem 5.2,

P[GY ] = EP

[
1GY

]= E
P̃

[
1GY

L−1
t

]= EP

[
1GX

J−1
t

]
.(5.4)

Let ε > 0 and apply Hölder’s inequality:

P[GX] = EP

[
1GX

J
−1/1+ε
t J

1/1+ε
t

]≤ (
EP

[
1GX

J−1
t

])1/1+ε
(EP[J 1/ε

t ])ε/1+ε.

Rewriting the last inequality we obtain

P[GY ] ≥ (P[GX])1+ε(EP[J 1/ε
t ])−ε.

Let r > 0. By the Cauchy–Schwarz inequality

EP[J r
t ] ≤

(
EP

[
exp

[∫
[0,t]

(−2)rσ−1(Xs)b(Xs) · dWs

− 1
2

∫
[0,t]

4r2‖σ−1(Xs)b(Xs)‖2
Rd ds

]])1/2

×
(

EP

[
exp

[∫
[0,t]

(2r2 + r)‖σ−1(Xs)b(Xs)‖2
Rd ds

]])1/2

.

The first expectation on the right-hand side equals 1 since it is the expectation
of an exponential martingale with bounded quadratic variation (see [9], Chapter 3,
Proposition 5.12). By Hypotheses P2 and P3, the second factor is bounded by some
positive finite constant. Therefore,

EP[J 1/ε
t ] ≤ kε

for some constantkε > 0. Finally, by Theorem 5.1 there exists a positive finite
positive constantK such thatP[GX] ≥ K Capd−4(A), which concludes the proof
of the lower bound.

The upper bound is proved along the same lines. Letε > 0 and apply Hölder’s
inequality to the right-hand side of (5.4):

P[GY ] = EP

[
1GX

J−1
t

]≤ (P[GX])1/1+ε
(
EP

[
J

−(1+ε/ε)
t

])ε/1+ε
.

Let r > 0. Again by the Cauchy–Schwarz inequality we find that

EP[J−r
t ] ≤

(
EP

[
exp

[∫
[0,t]

2rσ−1(Xs)b(Xs) · dWs

− 1
2

∫
[0,t]

4r2‖σ−1(Xs)b(Xs)‖2
Rd ds

]])1/2

×
(

EP

[
exp

[∫
[0,t]

(2r2 − r)‖σ−1(Xs)b(Xs)‖2
Rd ds

]])1/2

.
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The first expectation on the right-hand side equals 1 since it is the expectation
of an exponential martingale with bounded quadratic variation, as above. By
Hypotheses P2 and P3, the second factor is bounded by some positive finite
constant. Therefore,

EP

[
J

−(1+ε/ε)
t

]≤ kε

for some constantkε > 0. Finally, by Theorem 5.1, there exists a positive finite
positive constantK such thatP[GX] ≤ K Capd−4(A), which completes the proof
of the Corollary 5.3. �

As a consequence of Corollaries 2.5 and 5.3 we obtain the following analytic
criterion for polarity for the processY :

COROLLARY 5.4. Assume HypothesesP1–P3. Let E be compact subset
of R

d . ThenE is a polar set forY if and only ifCapd−4(E) = 0.

Finally, Theorem 3.3 and Corollary 5.3 give the stochastic codimension and
Hausdorff dimension of the range of the processY :

COROLLARY 5.5. Assuming HypothesesP1–P3,

codim
{
Y
(
(0,+∞)2)}= (d − 4)+

and ifd > 4, then

dimH
{
Y
(
(0,+∞)2)}= 4 a.s.

5.3. Critical dimension for hitting points. For an N -parameterRd -valued
Brownian sheetW = (Wt , t ∈ R

N+), Orey and Pruitt [23] showed that for any
x ∈ R

d ,

P{∃ t ∈ R
N+ :Wt = x} =

{
1, if d < 2N ,
0, if d ≥ 2N .

This fact also can be obtained as a consequence of work by Khoshnevisan and
Shi [11]. Corollary 5.4 immediately yields an analogous result for the solutionY

of (5.3):

COROLLARY 5.6. Assuming HypothesesP1–P3,for anyx ∈ R
d ,

P{∃ t ∈ R
2+ :Yt = x} > 0 if and only ifd < 4.
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