The Annals of Probability

2004, Vol. 32, No. 3A, 2099-2148

DOI 10.1214/009117904000000685

© Institute of Mathematical Statistics, 2004

POTENTIAL THEORY FOR HYPERBOLIC SPDEs!

BY ROBERTC. DALANG AND EULALIA NUALART
Ecole Polytechnique Fédérale de Lausanne

We give general sufficient conditions which imply upper and lower
bounds for the probality that a multiparameteprocess hits a given sét
in terms of a capacity of related to the process. This extends a result
of Khoshnevisan and ShiApn. Probab.27 (1999) 1135-1159], where
estimates for the hitting probabilities of thi&/, d) Brownian sheet in terms
of the (d — 2N) Newtonian capacity are obtained, and readily applies
to a wide class of Gaussian processes. Using Malliavin calculus and, in
particular, a result of Kohatsu-Higd&fobab. Theory Related Field&26
(2003) 421-457], we apply these general results to the solution of a system
of d nonlinear hyperbolic stochastic partial differential equations with two
variables. We show that under standard hypotheses on the coefficients,
the hitting probabilities D this solution are bounded above and below
by constants times thé&/ — 4) Newtonian capacity. As a consequence,
we characterize polar sets for this process and prove that the Hausdorff
dimension of its range is mid, 4) a.s.

1. Introduction. In this article, we are interested in the following basic
problem of potential theory foR¢-valued multiparameter stochastic processes:
given E c R?, does this process vis{or hit) E with positive probabilitp Sets
that, with probability 1, are not visited are said to ppelar for the process and
otherwise ar@nonpolar. One objective is to relate these hitting probabilities to an
analytic expression which is determined by the “geometry” of the set, namely the
capacityof the set. Another objective is to characterize polar sets for the process.
In this article, our main goal is to address these questions for non-Gaussian
processes that are solutions to a class of nonlinear hyperbolic stochastic partial
differential equations (SPDES) in the plane (a wide class of Gaussian processes is
also considered).

There is a large literature about potential theory for multiparameter processes.
For multiparameter processes whose components are independent single-parameter
Markov processes, Fitzsimmons and Salisbury [7] obtained upper and lower
bounds on fhting probabilities in terms of aotion of energy of a set. This
type of multiparameter process arises in the study of multiple points of single-
parameter processes. Song [26] characterized polar sets fou-tlagameter
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Ornstein—Uhlenbeck process on a separable Fréchet Gaussian spacecas null
capacity sets, where the capacity. is defined in a variational form. Hirsch and
Song [8] obtained bounds fadné hitting probabilities of alass of multiparameter
symmetric Markov processes in terms of capacity, also in a variational form.

However, in these references, the class of multiparameter Markov processes
does not readily cover certain basic multiparameter processes such as the Brownian
sheet or the fractional Brownian sheet. In [10], Khoshnevisan developed a potential
theory for a class of multiparameter Markov processes which includes these
processes.

This article is essentially motivated by the work of Khoshnevisan and Shi [11],
who obtained bounds for hitting probabilities of the Brownian sheet. In particular,
if W=W;,te ]Rﬁ) denotes aiR?-valued Brownian sheet, they showed that for
any compact subset of R? and any O< a < b < oo, there exists a finite positive
constantk such that

K1 Cap_py(A) <P(3r €a, b1V : W, € A} < K Cap,_py (A),

where Cap_,y denotes the capacity with respect to the Newtor(idn- 2N)

kernel. The proof of the lower bound is essentially based on estimates of the first
and second moments of functionals of occupation measures. The upper bound uses
Cairoli's maximal inequality forV-parameter martingales as a key step.

In this article, we begin by extending their result to a wide clasR6#alued
continuous multiparameter processés= (X;,t € ]Rﬁ) that are not necessarily
Gaussian but that have absolutely continuous univariate and bivariate distributions
away from the axes. In Section 2, we give sufficient conditions on the density of
the process that imply upper and lower bounds for the hitting probabilitiés of
in terms of a given capacity related to the process (Theorem 2.4). For the lower
bound on the itting probability, we require sompositivity of a functional of the
density of the process (see Hypothesis H1) and an upper bound on a functional
of the bivariate density of the process (Hypothesis H2). For the upper bound on
the hitting probability, we require that the process be adapted to a commuting
filtration (so that Cairoli’s maximal inequality can be used) and we need a lower
bound for the conditional density of the increment of the process given the past
(Hypothesis H3). As a consequence of Theorem 2.4, we obtain an analytic criterion
for polarity which is given in Corollary 2.5.

As a first application of the general result of Theorem 2.4, we consider
multiparameter Gaussian processes in Section 3. We give sufficient conditions
on the covariance function of a Gaussian process which imply bounds for
hitting probabilities in terms of the Newtonian capacity (Theorem 3.1). This
theorem contains many results that exist in the literature and readily applies
to multiparameter Gaussian processes such as the Brownian shesgfular
Gaussian fields, the Ornstein—Uhlenbeck sheet and the fractional Brownian sheet.
For the second and the fourth process, we obtain only a lower bound. The
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upper bound cannot be obtained from Theorem 3.1 since such processes are not
necessarily adapted to a commuting filtration.

In Section 4, we apply results of Malliavin calculus and, in particular, the very
recent result of Kohatsu-Higa [13] to the system of nonlinear hyperbolic SPDESs,

02xi & oo otwl
— (X b (X,), 1= (1, 1) € R?,
. ;0’( Do HP XD (i1, 12) € R2

(1.1)
X;:xo if 110 =0,1<i <d,

whereW = (W/, j =1,...,d) is a two-parametef-dimensional Wiener process,

the second-order mixed derivative Bf/ is the white noise on the plane angii,

b are smooth functions dR?. It is known [21] that (1.1) has a unique continuous
solution X = (X;,t € Ri). In this article, we consider this system of equations

in the integral form (4.7) as it was studied in [21]. In the case 0, under some
regularity and strong ellipticity conditions on the maisi{Conditions P1 and P2),

we give in Proposition 4.13 an upper bound of Gaussian type for the conditional
density of an increment ok given the past. This uses existing techniques of
Malliavin calculus that are adapted to the present context (cf. [17] and [18],
Chapter 2). We then use the result of Kohatsu-Higa [13] to establish a Gaussian-
type lower bound for the density of the random variakilefor any ¢ away from

the axes (Theorem 4.14) and use a Gaussian-type lower bound for the conditional
density of the increment of the process given the past (Theorem 4.16).

In the last section, we apply the results obtained in Sections 2—4 to the solution
of system (1.1). In the cage= 0, we prove in Theorem 5.1 that under Conditions
P1 and P2 introduced in Sectiom4the hitting probabilities of the solution can
be bounded above and below in terms of the{4) Newtonian capacity. The
verification of Hypothesis H2 uses the upper bound of Gaussian type obtained
in Section 44. The main effort in proving Theorem 5.1 lies in verification of
Hypothesis H3, which uses the lower bounds of Gaussian type for the density of the
solution obtained in Section®. These Gaussian-type lower bounds also imply the
positivity of the density of the solution and so the verification of Hypothesis H1.
We treat the cask # 0 via a change of probability measure (see Corollary 5.3).
As a consequence of Corollary 5.3, we prove in Corollaries 5.4 and 5.5 that polar
sets for the solution to (1.1) are those @f-{ 4) Newtonian capacity zero, that the
Hausdorff dimension of the range of the solution is (dir) almost surely and
its stochastic codimension {@ — 4)*. Finally, we identifyd = 3 as the critical
dimension for the solution to hit points & (see Corollary 5.6).

Notice that we obtain the same zero capacity condition for polarity and
Hausdorff dimension obtained by Dynkin [6], LeGall [16] and Perkins [24] for
super-Brownian motion. However, there is no direct connection between this work
and theirs.
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2. General theory. For anys,t € RY, we write s < ¢t whens; < ; for all
i=1, ..., N, wheres; denotes théth coordinate of, and we writes < ¢ when
s <t ands #t. By s A t, we mean the point whosih coordinate iss; A t;
foralli=1,...,N.If s,t € Rﬁ with s <, we write[s, 1] = ﬂf"zl[s,-,t,-] for an
N-dimensional rectangle and, t] = Hf"zl(s,-, t;1. Finally, we denote by - || the
Euclidean norm.

Let (2, 4, P) be a complete probability space and #t= (#;,1 € Ri’) be a
complete, right continuous, commuting filtration, that is, an increasing family of
subo-fields of g such that:

(i) Fo contains all the null sets ¢f.
(i) Foreveryr e RY, F =N, .
(i) For everys,t € Rﬁ and for all bounded,?;-measurable random vari-
ablesy,

E[Y|#]=E[Y[Fn]  as.

Note that whenV = 2, (iii) is hypothesis (F4) of Cairoli and Walsh [1]. FoF > 2,
hypothesis (iii) appearin [10], Chapter 7, Section 2.1.

Let X = (X;,t € ]Rﬁ) be a continuou®R?-valued stochastic process defined
on (2, 4, P) and not necessarilyadapted toF . We suppose that for all, ¢ €
(0, +00)N with r # s, the distribution of the random variablgX;, X,) has a
density that is denotegly, x, (x, y). We write px, (x) for the density of the random
variableX, for all r € (0, +00)™.

Given a Borel subseE of R?, we denote by# (E) the collection of all
probability measures oR? with support inE.

Following [10], Appendix D, we say that(-) is akernelin R¢ (or a gauge
function) if k(-) is an even, nonnegative and locally integrable functioriRgn
which is continuous orfR? \ {0} and positive in a neighborhood of the origin.
Basic examples of kernels are the Newtongakernelskg(-) (see Section 3.1).

Given a kernek(.), for anyu € £ (E), we write

€)= fR ) /};@ kG = Yuld)ady)

and term this quantity thie energyof . Thek capacityof E is defined by
Cap(E)= —mF—.
R inf,.coE) Ex (1)
The following properties of Cajg-) are given in [10], Appendix D, in particular,
Lemma 2.1.2 there.
LEMMA 2.1. Cap(-) has the following properties

(a) Monotonicity. For any two Borel subset&; c E, of RY, Cap.(E1) <
Cap.(E2).
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(b) Outer regularity on compact setBor any sequencet, E1, Eo, ... of
compact subsets &? such thatk, | E, lim,_ Cap.(E,) = Cap,.(E).

Let Po(E) denote the collection of all probability measuresRshwith support
in E that are absolutely continuous with respect to Lebesgue measure. The
absolutely continuous capacity C,‘faﬁ) of E with respect ta () is defined by

1
Cap(E) = - .
R inf.cpoE) €k (1)

Since Caﬁ is not outer regular on compact sets (cf. [10], Appendix D, Section 2.2),
we define, for all bounded Borel sdisc R,
Cag%E) =inf{Cad(F): F D E, F bounded and opén

Then Cap(A) > Cagi%(A). We now state an additional condition ér(which is
related to the classical notion balayage see [15], Chapter V) that ensures that
capacity and absolutely continuous capacity with respegtdagree on compact
sets.

Following [10], Appendix D, we say that a kerrl-) on R? is properif, for
all compact setst ¢ R¢ andu € £ (A), there exist bounded open seits, A, ...
such that:

1. A, ] A.
2. For all largen > 1, there exist absolutely continuous measurgsvith support
contained in4,, such that, for alt > 0, there exist# such that for alk > Ng:

(a) /‘Ln(zn) >1-—c¢;
(b) fra k(x — y)in(dy) < [pak(x — y)u(dy) for all x e R,

PROPOSITION2.2 ([10], Appendix D, Theorem 2.3.1).Letk(-) be a proper
kernel inR<. Then for all compact setst ¢ R?, Cap.(A) = Caf“(A).

We now introduce the following hypotheses, which ensure a lower bound on
hitting probabilities forX [see Theorem 2.4(a)].

HypOoTHESISH1. Forall 0 <a <b < oo and M > 0, there exists a finite
positive constan€1(a, b, M) such that for almost alk € R? with ||x|| < M,

[, pudi=cy
a,

HYPOTHESISH2. There exists a proper kernél-) in R¢ such that for all
O<a <b<ooandM > 0,there exists a finite positive constaiit(a, b, M) such
that, for almost allx, y € R? with ||x|| < M and||y| < M,

/[ b]N/[ By Px, x,(x,y)dtds < Cok(x — y).
a, a,
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In the case wher# is adapted toF, for s € (0, +00)", let Py (w, -) be a regular
version of the conditional distribution of the process — X, ¢ € Rﬁ \ [0, s])
given ¥;. If for almost allw and allz ]Rﬂ \ [0, 5], the law of X; — X under
P;(w, -) is absolutely continuous with respect to Lebesgue measul¥ pwe let
ps.t(w, x) denote the density of, — X underP;(w, -). In this case, there is a null
setN, € %, such that fow €  \ Ny, E a Borel subset dR? ands < ¢,

Py(w, (X, — X, € E}) = /E pos(@, %) dx.

In particular,p; ; (w, x) is a version of the conditional density &f — X, given¥;.
The function(w, t, x) — p; ;(w, x) can be chosen to be measurable.

PrOPOSITION2.3. Let f:R¢ x RY - R be a nonnegative Borel functipn
let Y be an #;-measurable random variable and suppose tRaf (X; — Xj,
Y)] < co. Then

ELf (X~ X DIF]= [ fxVpu@nds as
PROOF If f(x,y) = fi(x) f2(y), then using [5], Theorem 10.2.5, we have

ELf (X — Xs, VI F] = E[f1(X; — X,) f2(V)| F5]
= (ME[f1(X; — Xo)|F]

=f2(Y)/ F1(x) ps.t(w, x) dx a.s.

Rd

= [ f@ Dposo v dx as.
Rd

One easily concludes the proof using a monotone class argument ([3], Chapter I,
Theorem 21). O

We now introduce a third hypothesis, which leads to an upper bound on hitting
probabilities forX [see Theorem 2.4(b)].

HYPOTHESISH3. Forall 0<a <b < oo and M > 0, there exists a finite
positive constanCs(a, b, M) such that for alls € [a, b]V, a.s., for almost all
x eRY,

/ Ps,i(@, x)dt = C3k(X)Lijx4-x,1<M, |1 X, <M} (@),
[b,2b—a]N

wherek(x) is the same kernel as in Hypotheki&.

We are now ready to state the main result of this section.
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THEOREM2.4. (a)Assuming Hypothesétl andH2,forall 0 <a < b < o0
and M > 0, there exists a finite positive constakit (a, b, M) such that for all
compactsetsl C {x e R?: ||x|| < M},

K1Cap.(A) <P{3re[a,b]V: X, € A).

(b) If (X;,t € RY) is adapted to a commuting filtrations;, r € RY), and
Hypothese#i2 and H3 hold, then for all0 < a < b < o0 and M > 0, there exists
a finite positive constank,(a, b, M) such that for all compact setd C {x €
R x| < M},

P{3r € [a,b]" : X, € A} < K,Cap,(A).

Before proving Theorem 2.4, we mention an important consequence. Recall that
a Borel setE ¢ R? is said to bepolar for the proces if

P{3t € (0, +00) : X, € E} =0.

COROLLARY 2.5. For a processX adapted to a commuting filtratiomnder
HypotheseH1-H3, a compact subseE of R¢ is polar for X if and only if
Cap.(E)=0.

PrRoOF If E is polar for X, then clearly Cap(E) = 0 by Theorem 2.4(a).
Conversely, suppose CaiE) = 0. Write (0, +-00)N = UmeN[%, m]". By Theo-
rem 2.4(b), for alin > 1, there isK2 < co (depending om:) such that

N
IP’{EII € [l,m] (X € E} < K»Cap.(E)=0.

m
Since this holds for altz, E is polar forX. O

PROOF OF THEOREM 2.4. (a)The lower boundSuppose O< a < b < 0o
and O< M < oo are fixed. LetA be a compact subset of € R : ||x|| < M}. For
e € (0,1), defineA, = {x € R?:dist(x, A) < ¢}, the closec enlargement of4,
where distx, A) = ||x — proj, x|| and proj, x denotes the orthogonal projection
of x on A. Fix ¢ € (0, 1) and letf be a probability density oR¢ whose support
is contained inA.. We consider the functional, , () defined by

Jon(f) = /[ carn

By the Cauchy-Schwarz inequality,

{(ElJa5()I?

N . A
21) P{Erela,b] Xi € Ay 2 PUan () > O = g
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Using Fubini’s theorem, we easily deduce from Hypothesis H1 that

(2.2) ElJa ()] =C1
and from Hypothesis H2 that
(2.3) El{Ja.s ()} < C26(f),

whereég (f) denotes thé energy of the measurg(x) dx. Applying (2.2) and (2.3)
to (2.1), we obtain
2

_ C
Pt ela, bV : X, € A,) > LS
Brela. bl Xeedd = & e

Take the supremum over afl(x) dx € P (A,) and see that for al > 0,

_ c? _
P{At e [a, bV : X, € A} > C—l Caff%(A,).
2

By Proposition 2.2, we can replace ¢api.) by Cap (A.) becausé is proper.
As e — 0, A, | A, which is compact. By Lemma 2.1(b), G&d.) converges
to Cap(A) ase — 0. Finally, sinceA is compact and the process> X, is
continuous,

(3t ela, b]V: X, € A} = {3t e[a,b]" : X, € A}.

e>0

We conclude that
C2
P(at ela, bV : X, € A} > C—l Cap.(A).
2

This concludes the proof of (a) of Theorem 2.4.

(b) The upper boundSuppose O< a < b < oo and 0< M < oo are fixed.
Let A be a compact subset df € R?:|x| < M}. Let f:R¢ -~ R, be a
measurable function such thE({Jb,Zb_a(f)}z] < o0. We define the following
square integrable multiparameter martingale:

Mi(f) =Eldp2-a(IF],  1€RY.

Since #; is a commuting filtration, we can apply Cairoli's maximal inequality
(see [10], Chapter 7, Theorem 2.3.2), to get

E[ sup {Mf<f>}2]s4’v sup  E[M, ()} < 4V E{Jb.20—a ()},
tela,b]NNDN tela,b)N DN

whereD denotes the set of dyadic rationals. Suppose thista density function
onRR? supported offx € R¥: ||x|| < M}. By Hypothesis H2 and (2.3), we get

(2.4) E[ sup {Mz(f)}2]§4NC28k(f)-

tela,b]NNDN
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Fore € (0, 1), defineA, = {x € R?:dist(x, A) < ¢}, the opens enlargement
of A. Suppose is small enough so that, c {x € R¢:||x|| < M}. We can assume
that

(2.5) PArefa,b]V: X, €A} >0  foralle > 0.

Indeed, if there exists an> 0 such that this probability is equal to zero, then the
upper bound is trivial since

P{Atefa,b]V: X, € Ay <P{3t€[a,b]V:X, €A} foralle>0.

Assuming (2.5), we claim that there exists a random vari@blgaking values
in ([a, b]Y NDY) U {400}, such that

(2.6) (T <00} <= {3Frela,b]"NDV:X, €A}

and X7e € A, on {T¢ < oo}. Indeed, order the sét, b]Y N DY = (g1, g0, ...}
and definel'® = ginf (x: X €A} where infx is defined to betoo and in this case
T¢ = +o00. Note that assumption (2.5), the fact thgtis open and the continuity
of t = X, imply thatP{T*¢ < oo} > 0. In particular, it is possible to condition on
the even{T?¢ < oo}.

For any Borel seE ¢ R?, define

pe(E) =P{X7e € E|T® < 00}.

Clearly u, € £(A;). Moreover,u, is absolutely continuous because ev&pyis:
Let f.(x) be the Radon—Nikodym derivative gf, with respect tax. Then f; is
supported om.. Applying (2.4) to f,, we have that for alt € (0, 1),

E[ sup {Mt(fg)}z} < 4N o8k ().
rela,b]N ADN

We claim that for alks € (0, 1) and alls € [a, b]",
@7 M= Calyxgem [, S+ XDk dx  as.

Indeed, fixs € [a, b]V. Using the fact thak, is ¥;-measurable, Proposition 2.3
and Hypothesis H3, we have that for almostak <2,

g

=/ SJe(x + Xs)</ ps,t(w,x)dt) dx a.s.
R4 (b,2b—a)

> C3ly)x,||<m) /Rd fe(x + X)k(x)dx a.s.

M, (fy) =EU Fo(Xo = X, + X)dt
[b,2b—a]

The last inequality follows sinceg, is nonnegative and supported #y. This
completes the proof of (2.7).
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Since (2.7) holds for alt € [a, b]Y and sinceT? e [a, b]", we can replace
by T¢ in (2.7). Note tha{|| X7+ || < M} holds on{T* < oco}. Therefore,

(2.8) sup M;(fe) > C31{T€<oo}/ Je(x + Xre)k(x) dx a.s.
sela,b]N DN R4

Square both sides of the last inequality, take expectations and apply (2.4) to the
left-hand side, to obtain

2
4N o8 (f2) = C3P(T® < oo}E[(/Rd folx + XTe)k(x)dx> T¢ < oo]

2
= C3P{T* < oo}/Rd (/Rd Jelx +y)k(x)dX> Je(y)dy.

Using Jensen’s inequality, we get

2
4 Co8i(f = BRIt <ool([ | [ k= n £ s dxay)

= C3P{T* < oo} (&(f2))>
If &(f:) were finite, this would imply
4N Cy
C3&(fe)’

but we do not know a priori thaft, has finite energy. For that reason, we use a
truncation argument.
For allg > 0 and alle € (0, 1), define

I(x) = fe(Log(fe(x).,  xeR%

Since f. is supported oM, so is f¢. Moreover, the latter is a subprobability
density function that is bounded above fiyandq. Therefore, sincé is locally
integrable inR4, &(fd) < co. Apply to f exactly the same argument that led
to (2.8) to see that

(2.9) P(T¢ < 0o} <

sup M, (fI) > C3]l{T£<OO}/ fI(x + Xre)k(x) dx a.s.
sela,b]NNDN R4

Square both sides of the inequality, take expectations and use Jensen’s inequality
to get

B sup (]

s€la,b]NNDN

2
> c3(r <o) [ [ k-0 ptw s dxay)
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By (2.4), the left-hand side is bounded above BYC4&;( £). The right-hand side
is clearly bounded below bg3P{T¢ < co}(&(f))2. Hence, we obtain

4N C,
C5E(f)
Finally, sincek(x) is nonnegative, liny 4 & (f&) = &x(f:), we can leyy 1 400
in the above inequality and use the monotone convergence theorem to obtain (2.9).

Now, sincet — X; is continuous andi. is open, using (2.6) and (2.9), we
obtain

P{T? < o0} <

4N Cy

Pt ela, bV : X, € A} < ————.
CTTE T C2E (e

Recall thatu, € (A,), so for alle > 0,
NC2
3

P{Atela, bV : X, € A} <P{At €[a,b]V : X, € A} < Cap.(A).

Finally, sinceA, is compact, Lemma 2.1(b) implies that Gap.) converges as
& — 0T to Cap.(A). This concludes the proof of Theorem 2.4(b)J

3. Multiparameter Gaussian processes. In this section, we focus on
Gaussian processes and reformulae Hypotheses H1-H3 as conditions on the
covariance of the process so as to relate bounds on hitting probabilities directly to
properties of the covariance.

3.1. Relating Newtonian capacity and covariancéet (2, ¢, P) be a com-
plete probabity space. LetX = (X,,1 € Rﬁ) be a continuouR“-valued centered
Gaussian process with independent coordinate processes-or allz € (0, co)V,
we denote bypy, (x) the density function of the centered Gaussian random vari-
ableX, onR?. For alls, ¢ € (0, o0)™, we writeo (s, t) = E[X X!], which does not
depend oni, 02(t) = o (¢, 1) andp(s, 1) = o (s, 1)/ (o (t)o (5)).

Givena € (0,1) andy > «, we introduce the following hypotheses.

HypOTHESISAL. For all 0 < a < b < o0, there exist positive finite con-
stantss, ¢ andCy, ..., Cs such that for alls, 7 € [a, b]",

(3.1) C1<0%(t) < Ca,
t .
e LI il — sl <5,
o4(s)

(3.3)  Callt —s|?** <1—p2(s,1) < Cslt —s||®*  if lr —s| <8,
(3.4) lp(s, )| <1l—¢ if |t —s| >38.



2110 R. C. DALANG AND E. NUALART
HYPOTHESISA2. For all 0 <a < b < oo and M > 0, there exist finite
positive constant€’s, C7 and Cg such that for alls, 7 € [a, b]Y with s <1,
(3.5) Tyx,1<my | BIX: — X1l < Cellt — s,
(3.6) C7lit — SIIZO‘ <E[(X, — X,) —E[X; — Xslff's]]z < Cgllt — SIIZO‘-
THEOREM 3.1. (a) Assume there arex € (0,1) and y > « for which
HypothesisAl holds andN /o > 2. Then for all0 <a < b < o0 and M > 0,

there exists a finite positive constakii(a, b, M), such that for all compact sets
AcC{xeRe: x| <M},

K1Cap_(y/q)(A) <PAr€la,b]" X, € A},

where for g > 0, Cap(-) denotes the capacity with respect to the Newtonian
B kernelkg(-), where

x| =2, if0<p<d,
k = 3M
p(x) In(—), if g =0,
flx |l

and forg < 0, Cagj(-) =1.

(b) Suppose€X;,t € Rﬁ) is adapted to a commuting filtratio@;, ¢ € Rﬁ).
Assume there are € (0, 1) andy > « for which Hypothese&1 and A2 hold and
N/a>2.Thenfor all0 <a < b < 0o and M > 0, there exists a finite positive
constantks(a, b, M) such that for all compact set$ C {x € R?: ||x|| < M},

P(Ar € a, b1 1 X, € A} < K2Capy_(y/g)(A).

REMARK 3.2. (a) For O< B < d, the functionskg are not only positive but
even positive-definite: this follows from [27], Chapter V, Section 1, Lemma 2(b).
For 8 = 0, the kernekg is not nonnegative oR¢, butkg(x — y) >0 forx,y e A
whenA c {x e R?: ||x|| < M}, and this is sufficient for the results of Section 2 to
hold.

(b) Note that for any G< 8 < d — 2, kg(-) is a proper kernel. Indeed, given a
compact seft C {x e R?:||x|| < M} andu € P(A), foranyn > 1, letAd, = {x €
R? : dist(x, A) < 1/n} be the open enlargement af Let (B,, ¢ > 0) be a standard
Brownian motion inR¢ and letp, be the density oB,. Forn > 1, letu, , be the
measure whose density function is the restriction to thelgeif p, * u, wherex
denotes the convolution product. Sgtx) = (i * kg)(x). Since Akg(x) < 0O for
0<B=<d—2,E.(f(By)) < f(x)forallr >0andx e R4, or equivalently,

[kt =3 mrdy < [ ks =) nidy).

For smallz, the ,, , are nearly probability measures, and so (a) and (b) of the
definition of a proper kernel hold.
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(c) The conditionN /a > 2 ensures thak,_(n,«) IS @ proper kernel. This is
only a restriction whemv = 1.

(d) Ife=1/2andd < 2N, the choice Cap 5y (A) = 1 is natural, since in this
case, the Brownian sheet hits pointsiifi (cf. [23]).

Before proving Theorem 3.1, we mention an important consequence. Given
s > 0 and a Borel subsdi of RY, let

(e e] (e e]
H,(E) = Iin(1)+inf > @) tEC | Bxi,ri), supri <eft,
£~ i=1 i=1 i

where 8(x, r) denotes the closed ball of radius> 0 centered ak < R4, The
H; is called thad-dimensional Hausdorff measuidoreover, we associate to the
setE a number ding (E) as follows:

dimg (E) = sufs > 0: H,(E) = oo} = inf{s > 0: H(E) = 0}.

This is theHausdorff dimensionf E. Following [10], thestochastic codimension
of a random sett in R?, denoted codirE), if it exists, is the real number
B € [0, d] such that for all compact setsc R¢,

0, whenever din(A) > 8,

>
P{ENA # 2} { =0,  wheneverdiny(A) < B.

The following result gives a relationship between Hausdorff dimension and
stochastic codimension.

THEOREM 3.3 ([10], Theorem 4.7.1, Chapter 11)Given a random seE
in R? whose codimensiof is strictly betweer® andd,

dimg (E) +codim(E) =d as.
Theorems 3.1 and 3.3 imply the following result.

COROLLARY 3.4. Under the hypotheses of Theor8ri(b),
codim{ X ((0, +00)M)} = (d — (N /)™
and ifd > N/a,
dimg{X((0,+00)")} =N/«  as.

PROOF By Frostman’s theorem (see [10], Appendix C, Theorem 2.2.1), the
capacitarian and Hausdorff dimensions agree on compact sets. Therefore, the
desired result follows from Theorems 3.1 and 3.8]
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PROOF OFTHEOREM 3.1. (@) Suppose @ a <b < oo andM > 0 are fixed.
We assume that Hypothesis Al holdsdoe (0, 1) andy > « fixed, and show that
Hypotheses H1 and H2 of Theorem 2.4 hold.

VERIFICATION OF HYPOTHESIS H1. Fix x € R? such that|x| < M.
Inequality (3.1) implies that

2
dt = (2 _”’/2/ —d(yexp[ — Al )dt
/[a’b]N preodi=@n 2 [ olwe(—5 5

MZ
> (20) (€)1 (b — a)V eXp(—z—Cl),

which proves Hypothesis H1.

VERIFICATION OF HYPOTHESISH2. By (3.3) and (3.4), for alt, r € [a, b)Y
with ¢ # s, (X;, Xy) has a (Gaussian) densiyy, x,(x, y). The latter can be
written as

PXx;, X, (X, ¥) = px,1x,=y () px, (),
wherepy, x,=y denotes the conditional density function of the random varigble
givenX; =y.

Note that the conditional distribution of’ given X’ =y’ is Normal with mean
m(s,1)y’, wherem(s, t) = (o (s, 1))/(c(s)), and variancer2(s, 1) = o2(t)(1 —
p2(s, 1)). Observe that?(s, ) > 0 by (3.3) and (3.4), that (3.2) is a condition
on the conditional meam (s, t) and that (3.3) is a condition on the conditional
variance.

Fix x,y € R? such that|x|| < M and ||ly|| < M. By (3.4), px, x,(-,-) is
bounded by some constafit > 0 when|z — s|| > §. Therefore,

f f PX,,XS(x,y)dl‘dSSC-i-// px, x.(x. y)di ds.
[a,b]N Jla,b]V D(6)

whereD(8) = {(s, 1) € [a, b]N x [a,b]V : ||t —s|| <8} andC = C'(b —a)?N. The
integral on the right-hand side can be written

L d lx —m(s,r>y||2)
(2m) f/l)(a)r (s, 1) exp( 222 1)

vl
202(s)

By the triangle inequality and the identity — v)2 > u2/2 — v2,

lx —m(s, 0)y]|?
eXp(_ 222(s.1) )

— |2 211 _ 2
Sexp(_u>ex IyI21L = m(s. 1) )
At2(s, 1) 212(s. 1)

3.7
X a_d(s) ex

)dtds.

(3.8)
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By (3.2), there exists a constafit such that

(3.9) 11— m(s,0)|? < Callt — |1
By (3.1) and (3.3),
(3.10) Kallt — s|1% < t2(s,1) < Kallt — 5%,

We now apply (3.8)—(3.10) to (3.7). Because- «, this yields

/[ b]N/[ bIN pXr,X.y(X,y)dtds
a, a,

< C+ @u)d(Kp)~42(Cy) Y2 / /D  dedste sl

2 2 2 2 2
- C r—s|?
Xexp<_ llx =l )ex sliylclle — sl )exp(_llyll )
4Kt — 5|12 2K 1|t — s 2C;
- Ilx — yII?
§C+K3// It — s]| 7% ex —7)51:51&
D(5) 4K\t — s |2

We now fixz and use the change of variables- ¢ — s to see that this expression
is less than or equal to

C—I—Kg(b—a)N/ ]~ ex —M)du
B() AKolul?*)

whereB(8) = {u € R" :|u| < §}. Finally, use the change of variables= ||x —
y||Yez(4K2)~1 20 to see that this is less than or equal to

C + Kgllx — y||~4TN/®

(3.11) )
/ Iz~ exp(—1/||z %) dz.
B((4K2)Y/ @0 § /|| x—y || V)

We now state a real variable technical lemma which is crucial for our estimates.
The proof of this lemma is left to the reader.

LEMMA 3.5. Definege,s(r) = [z, lzll #e~¥I<1™ dz, for all r > 0. Then
for anyrg > 0 anda € (0, 1), there exist finite constants, ¢z, ¢3, c4 > 0 such
that for all r > rg,

€1 < @q,p(r) < c2, if 8> N,

c3In(r/ro) < @a,p(r) < caln(r), if B=N.
Continuing the verification of Hypothesis H2, apply Lemma 3.5 vfth ad

to (3.11) and use the fact that < C2M)~WV/D|x — y||~4+(N/®) pecause
x| < M and ||y|| < M, to conclude the verification of Hypothesis H2 for



2114 R. C. DALANG AND E. NUALART
d > N/a. Whend = N /a, chooserg > 0 such that4K,)Y/@0)s/2Mm)Ye > rq
and apply Lemma 3.5 to (3.11) to obtain

/ / (x,y)dtds < C + caK In(7(4K2)1/(2°‘)5)
pX , X5 X, y s = C4RN 4
la.b]V J{a.b)¥ llx — yl| ¥/

Note that for allx, y € R? with ||x|| < M and||y|| < M, ||x — y|| < 2M. Then we
can check that ifix — y|| < 2M, there exists a finite constafit > 1 such that

4K )Y @) s M
In(%)gc/ln( )
llx — ylIt/« lx — yll

On the other hand, note thaf < C(In(3/2))"tIn3M/|x — y|), and the
verification of Hypothesis H2 fod = N/« is completed. Whe < N/«, the
expression in (3.11) is bounded, so Hypothesis H2 holds iith = 1.

This completes the proof of Theorem 3.1(a).

(b) We now assume that Hypotheses Al and A2 holdxfer (0, 1) fixed and
y > «, and show that Hypothesis H3 of Theorem 2.4 holds. We also assume that
d > N /a, since otherwise, the statement is trivial.

VERIFICATION OF HYPOTHESISH3. Foralls, r € (0, co) with s < ¢, and for
almost allx € R? andw € , let ps.: (w, x) denote the conditional density of the
random variableX, — X given ¥;. By (3.4), the latter exists and, for almost all
w € 2, is a Gaussian density with conditional mears, ) = E[X, — X | %]
and deterministic variancg?(s, 1) = E[(X; — X,) — E[X, — X,|F11? (see [4],
Chapter II, Section 3).

It suffices to check the inequality in Hypothesis H3 whar| < 2M, since the
indicator on the right-hand side vanishes ffat| > 2M. Fix s € [a, b]". Then

[,y Prt@ 001
N —a

_ (Zn)—d/z/

[b,2b—a]N

(3.12)

L _le—u(s,t)llz)
prtenep( 0l ) ar

By the triangle inequality,

o o) s ol

We now apply (3.5), (3.6) and (3.13) to (3.12), and we see that this expression
is greater than or equal to

2 2 2

x Ce|lt — s

Ka It —s||~%¢ exp(—%) exp<_6”7”2) dt
[b,2b—a¥ C7lle — sl C7llt — ||
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Using the fact thay > o and the change of variables- s = ||x ||/ z(C7)~ /(@)
we get that this is greater than or equal to

(3.14)  Ks|x|~TWNV/@ f Izl =4 exp(—1/[1z11%*) dz.
BU(C)V @) (b—a)/||x||Ye)

It now suffices to choose) > 0 such thaiC7)Y @) (b — a)/(2M)V* > 3V/2p,
and apply Lemma 3.5 to (3.14). This concludes the verification of Hypothesis H3
whend > N /a. Finally, ford = N /a, we apply Lemma 3.5 to (3.14), to obtain

6L/ ppl/e 1 3M
f Ps.(@, x)dt > c3KsIn| ————) > —c3KsIn .
[b,2b—a]V [l || /e o

which concludes the proof of Hypothesis H3 the N /«.

[lxll

This completes the proof of Theorem 3.1(b).]
3.2. Examples.

3.2.1. The Brownian sheet.Suppose tha/ = (W, = (W}, ..., W), 1t e RY)
is ad-dimensionalV -parameter Brownian sheet, that is, the coordinate processes
of W are Gaussian, with zero mean and covariances

N
EWSW/1=T]Gsi At)d;  foralls,teRY, 1<k, j<d,
i=1
and defined on the canonical probability spé&ee g, P), whereQ is the space of
all continuous functions : RY — R¢ vanishing on the axe®,is the law of W and
g is the completion of the Boret-field of 2 with respect taP. We also consider
the increasing family ofr-fields & = (&, € RY), such that for any € RY,
F; is generated by the random variabl@g;, s < r), and the null sets o§. The
latter is a complete, right continuous, commuting filtration (see [10], Chapter 7,
Theorem 2.4.1).

THEOREM 3.6 ([11], Theorem 1.1). The (N,d) Brownian sheet satisfies
Hypothese#\1 and A2 with « = 1/2 and y = 1, and therefore the conclusions
of Theoren8.1.

PROOF Fix 0 < a < b < co. Inequality (3.1) is trivial sinceE[W?] =
1,1, for all r € RY. Moreover, since the Brownian sheet has independent
increments, (3.5) holds also trivially.

We claim that for alls,s € [a, b]Y with s < ¢, there exist two constants
C1 andC> such that

(3.15) Cillt — s|| < E[(W; — Wy)?] < Ca|lt — 5.
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Suppose < ¢ and note thaB[(W, — W,)?] = a2(t) — o%(s) = [Tyt — [T i
Let f(r) = vazltl- and letg = (¢1, ..., ¢n):[0,1] — RY be an affine function
such thatp (0) = s and¢ (1) = ¢. The partial derivatives of are bounded above
and below oria, bV, so

f@) = fs)= f(¢(1))—f(¢(0))—/ Z—(¢(u))¢l(u)du

N
Z ¢i(1) — ¢;(0)) < C'lIt — s,

which proves the upper bound in (3.15). The lower bound is obtained by
proceeding along the same lines.
We now prove (3.2) and (3.3). §f 7 € [a, b]V, using (3.1) and (3.15),

o?(s) —o(s,1)| ‘oz(s) —o%(s A1)
o2(s) o2(s)
which proves (3.2). To prove (3.3),f 7 € [a, b]", using (3.1) and (3.15),
o2(1)o?(s) — (o (s, 1))? . o2(s A1)
o2(t)o2(s) ~ 202(t)o2(s)
>C(lt =G ADl+ls—GAD)
>Cllt —s|l,

=Clis =(sAnll =Cllz = sl

(02(1) —02(s A1) +02(s) — 0%(s A D))

which concludes the proof of (3.3).

Since (3.6) follows from (3.15), it remains to prove (3.4). Because> p(s, 1)
is continuous orfia, b1V, it suffices to check that(s, 1) < 1 for anys, t € [a, b]Y
with s #¢. This is clear since

=
&
>
A
'_\

p(s, 1) =
S;t

1

]

This proves Theorem 3.6.C]

3.2.2. a-regular Gaussian fields.For« € (0, 1), an N-parameterR?-valued
processX = (X;,t € Rﬁ) is said to bex-regular (see [10], Chapter 11, Section 5.2)
if X is a centered, stationary Gaussian process with i.i.d. coordinate processes
whose covariance functioR satisfies the following:

ASSUMPTIONR1. If s #0, then|R(s)| < 1, and there exist finite positive
constants < ¢z andé > 0, such that, for alf Rﬁ with ||s|| <6,

2 2
callslI® =1—=R(s) < calls[*.
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Such Gaussian fields were studied in [10], Chapter 11, Section 5.2. In the latter,
the stochastic codimension and the Hausdorff dimension of the range of these
processes is obtained (see [10], Chapter 11, Theorem 5.2.1 and Corollary 5.2.1).

The following result proves that theregular Gaussian fields satisfy the lower
bound of Theorem 3.1(a). The upper bound cannot be obtained from Theo-
rem 3.1(b) since such processes are not necessarily adapted to a commuting
filtration. An upper bound involving Hausdorff measure is given in [10], Chap-
ter 11, Example 5.3.3.

THEOREM 3.7. Fix a € (0,1) with N/a > 2. Let X = (X;,t € RY) be
a-regular Fix 0 <a < b < 0o and0 < M < oo. Then there exists a finite positive
constantk such that for all compact sets c {x € R¢: ||x|| < M},

K Cap;_(y/q)(A) <PAr€la, b1V : X, € A}.

PROOF Under Assumption R1IR(0) = 1, soo?(r) = 1 andp(s, 1) = R(t —
s) =o(s,t). In particular, (3.1) withy = 2« and (3.2) hold. Condition (3.3) holds
(for a sufficiently smalb > 0) because

1—p2(s, 1) = (1+ p(s,0)) (L= p(s, 1)) = c1(L — callt — 5|12 ||t — 5]
> c1(1— c26%) ||t — 5|12,

Since R(-) is a bounded covariance function, it is nonnegative definite. By
Bochner's theorem ([25], Theorem 6.5.64&)(-) is the Fourier transform of a
nonnegative measure, which is a probability measure ki@ = 1. Therefore,
R() is in fact continuous, so by Assumption R1, therecis- O such that
|R(t —s)| <1—¢gfor |t —s| > 8 with s, € [a, b]Y. Therefore, (3.4) holds. This
proves that Hypothesis Al holds with = 2«, so the conclusion follows from
Theorem 3.1(a). O

3.2.3. The(N, d) Ornstein—Uhlenbeck sheefThe(N, d) Ornstein—Uhlenbeck
sheety = (U, 1 e RY) is defined as

—|t|/2 N
U=e "?W,,  teRY,

where |t = || + -+ + |tn], € = (€', ...,eV) and W = (W;, 1 € RY) is an
R?-valued Brownian sheet. Therefor&, is an N-parameter centered stationary
Gaussian process @&t with covariance function given by

E[UUl=e "2 s 1eRY.
Consider its natural and completed filtration, dend®ed, that is,

Fl=olUy,s<ty=c{W,s<e}=7F, 1eRl,

whereF," denotes the natural filtration of the Brownian sheet and is therefore a
commuting filtration.
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THEOREM 3.8. The (N, d) Ornstein—Uhlenbeck sheet satisfies Hypotheses
Al andA2 witha = 1/2 andy = 1, and therefore the estimates of Theor@.

PrROOF Since the(N, d) Ornstein—Uhlenbeck sheet is arregular Gaussian
field with « = 1/2, the lower bound follows from Theorem 3.7 and it remains
to verify Hypothesis A2. Using the estimate-le ™™ < x for all x > 0 and
using (3.15), we have, for ail 7 € [a, b)Y with s <1,

IE[U, — Us|FV1
— |E[e_m/2(Wez — W) + (e—\fl/2 _ e—\SI/Z)WeS |37€‘;V]|

(3.16) = |(e71/2 — e 12) s |
=< |Usl(z]l = 1sD/2
=CiM|lr — |

on {|Us| < M}, which proves (3.5). To prove (3.6), use (3.16) to see that the
expectation in (3.6) is equal to

E[e‘WZWez —e 2y, — (e—\tl/Z —\sI/Z) ] =FE[e —n2ow, — Weé)] ’

so by (3.15), there exist two constariis and C3 such that for alls, r € [a, b]V
with s <,

Colle’ — €|l < e ME[(Wy — Wes)?] < Calle’ — €*|l.
Finally, using the inequalitiesx <1 —e¢™ < x, for x € [0, b], we obtain
Callt — sl < e "E[(Wr — We)?] < Csllt — s,

which proves (3.6). The upper bound follows then from Theorem 3.1(D).

3.2.4. The fractional Brownian sheet.The fractional Brownian sheet with
Hurst parameted € (0,1), X = (x,t e RY), is ad-dimensional centered
Gaussian process with independent coordinate processes, each with covariance
function given by

=

E[(x[ (x)7] H 2y — 512, s;reRY 1< j<d,

wherec is a positive finite constant. Note thatif = % one obtains the standard
Brownian sheet.

As in Theorem 3.7, we obtain only a lower capacity estimate for the fractional
Brownian sheet as a consequence of Theorem 3.1(a), since this process is not
necessarily adapted to a commuting filtration.
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THEOREM 3.9. Fix H € (0,1), 0<a<b<ooand0 < M < oco. Then
there exists a finite positive constakitsuch that for all compact setd C {x €
R?: x|l < M},

K Cap_y/m)(A) <PErela,b]" : X[" € A}.

PrROOFE By Theorem 3.1(a), it suffices to prove that Hypothesis A1 holds with
a=H andy =2H A 1. Fix 0<a < b < 00. Sinces?(r) = c]_[f-vzltl-ZH for all
t € RY, (3.1) holds trivially. On the other hand, for all7 € [a, b]", we have

o (s, 0)| [Ty s?” = TSy (6P + 27 — 1 — 5i7)/2)

o%(s) | [Ty 57" .

To prove (3.2) fors fixed, setf(u) = [T/, 327 + u?# — |u; — 5;1?7) and
let ¢ = (¢1, ..., ¢0n):[0,1] — RY be an affine function such that(0) = r and

¢ (1) = 5. Becausef is differentiable in the orthant centeredsathat containg,
and in this orthant, fofjz — s|| sufficiently small and: € Im ¢, |af w)| < C(ju; —

si|?#~1 v 1), the numerator on the right-hand side of (3.17) can be bounded by

(3.17) ‘1—

|f<¢<1>>—f<¢<0>>|<6f Z|¢l<r>—sl|2H LV D)gi(rydr =Clt — 5|2

This concludes the proof of (3.2).

To prove (3.3), setf(u) = [1/L,g(u;), where g(u;) = su; (1 + u?H —
lu; — 1)2"). An elementary calculation shows that fow; — 1| sufficiently
small, there are constanfs > ¢ > 0 such thatéy|u; — 1)27-1 < |g/(u;)| <
&lu; — 11211, Therefore, there are constarts> ¢1 > 0 such that for||ju —
(1, ..., )] sufficiently small,

<colu; — 1|2H_1.

(3.18) crlu; —1)2H1 < ‘ f(u)

Let ¢ = (¢1,...,¢0n):[0,1] — RN be an affine function such that(l) =
1,...,1) and¢(0) = (t1/s1, ..., ty/sn). Observe that

1— ps.1) = f(PD) — f($(0) = / b () dr.

By (3.18), fors,t € [a, b]? with ||s — 1| sufficiently small, this expression is
bounded above and below by constants times

f i (r) — 12~ 1¢l<r>dr—2|rl si[21 /52

i=1

Because - ,02(s, HN=A-p(s,1))A+ p(s,1)) and the second factor is less than
or equal to 2 and bounded away from 0, it follows that (3.3) holds.
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It remains to prove (3.4). For this, it suffices to check that for any € [«, b]

with; —s; > 0,
tl-ZH +sl-2H — |t — s,-|2H < 2\/tl-2Hsi2H.

Move the square root to the left-hand side and isolate the perfect square to see that
this is equivalentte” — s/’ < |;; —s;|, which holds since & H < 1. The lower
bound follows then from Theorem 3.1(a)J

4. Gaussian-type bounds for densities of solutions of hyperbolic SPDEs.
In this section, we use techniques of Malliavin calculus to establish Gaussian-
type bounds on the density of the solution to a nonlinear hyperbolic SPDE. These
bounds are such that they can be used to verify Hypotheses H1-H3, as we see in
Section 5.

4.1. Elements of Malliavin calculus.In this section, we recall, follow-
ing [18], some elements of Malliavin calculus. L8t = (W, = (W}, ..., W9),

t € R%) be anR?-valued two-parameter Brownian sheet defined on its canonical
probability spac&<2, ¢, P) and let¥ = (¥;,r € Ri) be its natural filtration (see
Section 32.1).

Let H be the Hilbert spac& = L2(R2,R?). For anyh € H, we setW (h) =
Y4 Jw2 hj(z) dW/. The Gaussian subspate= (W (h), h € H) of L%, 4, P)
is isomorphic toH .

Let S denote the class of smooth random varialifles f(W (h1), ..., W(hy)),
wherehy, ..., h, areinH,n > 1, andf belongs taC3° (R"), the set of functiong’
such thatf and all its partial derivatives have at most polynomial growth.

Given F in S, its derivativeis the d-dimensional stochastic processF =

(D,F =(D"F, ..., D" F),1 e R2) given by
DiF =3 = (Wh), ... Wh))hi(®).
i=1 !

More generally, théth-order derivative of’ is obtained by iterating the derivative
operatork times: if F is a smooth random variable aridis an integer, set
Dzkl,...,sz = Dy, --- Dy F. Then for everyp > 1 and any natural numbér, we

denote byD*-? the closure ofs with respect to the seminorin: I, p defined by

k
IFI , =EIFIP1+ Y ElID! Fllje;],
j=1

whereH®/ is the product spack?((R2)/, R?), and

d 1/2
; () k (kj) 12
||D<’F||H®.f=< > fz“'leDfl”---Dr_," F| drl---drj) :
K, k=17 RY R}
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We SeﬂD)oo = mle mkzl]D)k’p'

Similarly, for any separable Hilbert spatewe can define the analogous spaces
Dk-P (V) and D*®(V) of V-valued random variables, and the related|«, p,v
seminorms (the related smooth functionals being of the férm 3"}, Fjv;,
whereF; € S andv; € V).

We denote by the adjoint of the operata, which is an unbounded operator
on L%(Q, H) taking values inL2(2) ([18], Definition 1.3.1). In particular, if:
belongs to Do, thend(«) is the element o1.2(Q) characterized by the duality
relationship

d . .

(4.1) E(F§(u)) =E<2/2 DY Ful dt) for any F € D2,
i
J=170

If ue LZ(Ri x Q,RR%) is an adapted process, then (see [18], Proposition 1.3.4)
u belongs to Dond andé (1) coincides with the Itd integral

d
S(u) = ZfRz ul dWy.
j=1"%%
We use the following estimate of thie ||k, , norm of§(u).

PROPOSITION 4.1 ([18], Proposition 3.2.1, and [19], (1.11) and page 131).
The adjoints is a continuous operator fro**1-7(H) to D*? for all p > 1,
k > 0.Hencefor all u € D¥*1-P(H),

(4.2) 18 Ik, p < ck,pllttlliss, p,
for some constant; , > 0.

Our first application of Malliavin calculus to the study of probability laws is the
following global criterion for smoothness of densities.

THEOREM 4.2 ([18], Theorem 2.1.2 and Corollary 2.1.2).et F = (F!,
..., F%) be a random vector satisfying the following two conditions

() Foralli=1,...,d, F' eD*.
(i) The Malliavin matrix of F defined byyr = (DF', DF/)p)1<i j<a IS
invertible as.
Then the probability law of F is absolutely continuous with respect to Lebesgue
measureMoreoveyassumingi) and (ii), and
(iii) (detyp)~leLPforall p>1,

the probability density function df is infinitely differentiable
A random vectorF that satisfies conditions (i)—(iii) of Theorem 4.2 is said to

be nondegeneratd-or a hondegenerate random vector, the followiriggration
by parts formulagplays a key role.
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PROPOSITION4.3 ([19], Proposition 3.2.1). Let F = (F1,..., F%) e (D®)4
be a nondegenerate random vectet G € D* and letg < C;O(Rd). Fix k > 1.
Then for any multindex: = (a1, ..., ar) € {1,.. .,d}¥, there exists an element
H,(F, G) € D* such that

(4.3) E[(08)(F)G] =E[g(F)Hy (F, G)],

where the random variableS, (F, G) are recursively given by
d .
Hiy(F,G) =Y 8(G(y; HijDF),
j=1
Hy(F,G)= H(ak) (F, H(Oll,---,ak—l)(F’ G))

4.2. Conditional Malliavin calculus. In this section, we give the conditional
version of some of the results established in Sectidn #he proofs are very
similar to the one-parameter case and are left to the reader.

The first result is the conditional version of the duality relationship (4.1), which
is the two-parameter version of [17], (2.12).

PrRoPOSITION4.4. Lets,t e Ri with s < . Let F be a random variable
in D12 and letu be an adapted process such Y2 llus||2ds] < co. Then the
following duality relationship holds

7|

(4.4) IE[F/ uy dW, }1] =E[/ (D, F,u,)dr
[0,£1\[0,s] [0,71\[0,s]

The following norms are the two-parameter versions of those in [17], Defini-
tion 1. Lets, t € R2 with s < ¢. For any functionf € L3([0, r]", R?), any random
variable F € DX? and any process such thatu, € D¥? for all r € [0, ¢], we
define

Hy, = L?([0,]\ [0, s], RY),

, 12
If =(/ 0] dr) ,
Hsi (10.1\[0,s])" R?

k 1/p
\T's [rog j [rod
WEI by, = {E[IFlplfs] + ZE[anFnZ@jus]}
j=l st
and

k

/p
Fs j =
el = [E[nun’z;,,m] + ZE[anun';;@,Hus]} -
j=1
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Moreover, we writey}” for the Malliavin covariance matrix with respect i) ;,
that is,

y;,’t = ((DFl, DFJ)H;,!)ISi,de'

With this notation, we can state the following conditional version of inequal-
ity (4.2), which is the two-parameter version of [17], (2.15).

PROPOSITION4.5. Lets,t € R with s < . For anyu € D¥LP(H, ), we
have

F F
(4.5) 18O, by, = Chopllllicin p g,

for some constant; , > 0.

Finally, we give the conditional version of the two-parameter Burkholder
inequality (see [18], A.2, for the twparameter nonconditional version).

PROPOSITION4.6. Fix p > 1. There is a finite constaiit, > 0 such that for
all adaptedX = (X,,7 € R2) in L?2(R2 x Q) and alls, t e RZ withs <1,

r/2
(4.6) EH/ X, dW, }‘}}gb,,EH/ X2dr f;}
[0,11\[O,s] [0,11\[O,s]

4.3. Hyperbolic stochastic partial differential equations.etb, o; ‘R4 — RY,
1< j <d, be measurable globally Lipschitz functions, where the vector-valued
functionsoy, . .., o4 denote the columns of a matiix= (crj’i)ls,-,‘,-sd.

Consider the system of stochastic integral equations on the plane

p

d

@.7) x;'=x0+2/ a;i(xs)deJr/ b (X,)ds, 1eR2,1<i<d,
1 J[0,1] [0,7]
j=1

where the first integral is an 1td integral with respect to the Brownian sheet (as
defined in [28], Chapter 4) and) € R? is the constant value of the proce$son

the axes. It is well known (see [21], Lemma 3.1) that there exists a unique two-
parameterd-dimensional, continuous and adapted procéss (X;,t € Ri) that
satisfies equation (4.7). In additioB[sup.¢q ,1X,[”] < oo for any p > 2 and

te Ri. In [21], Malliavin calculus is used to establish the following result.

THEOREM 4.7 ([21], Proposition 3.3). If the coefficients ob and b are
infinitely differentiable with bounded partial derivatives of all ordetisen X;
belongs taD> for all r e R2 andi =1,...,d.

Assuming the latter infinite differentiability condition on the coefficientsrof
andb, we state the following standahypoellipticity hypothesis
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CoNDITION P. There isn > 1 such that the vector space spanned by the
column vectorsoy, ...,04, 0;Vo;, 1 <i,j <d, o;V(ojVor), 1 <1, j,k <
d,...,01,Y(--(0i,_,Voi)---),1<i1,...,i, <d,atthe pointgisR?, where the
column vectow; Vo ; denotes the covariant derivative®f in the direction of;.

The following result uses Theorem 4.2 and gives the existence and smoothness
of the density ofX; for any: away from the axes.

THEOREM 4.8 ([18], Theorem 2.4.2, and [21], Theorem 4.3Ynder Condi-
tion P, for any pointr away from the axeshe random vectok, is nondegenerate
and therefore has an absolutely continuous probability distribution with respect
to Lebesgue measure &{. Moreoverits probability density function is infinitely
differentiable

4.4, Gaussian-type upper boundsn this section, we present some prelimi-
nary results and establish a Gausdigpe upper bound for the drift-free case with
vanishing initial conditions.

Let X = (X;,t € ]Ri) be the unique solution of (4.7) with= 0 andxg = 0,
that is,

d
(4.8) x;’:Zf[Ot]q;i(xs)de, reR2,1<i=<d.
e

We assume that the following two hypotheses on the mattiold:

HypPOTHESISP1. The coefficients of the matrix are bounded and infinitely
differentiable with bounded partial derivativése denote by the uniform bound
on the coefficients ef and its first partial derivatives

HypoTHESIS P2. Strong ellipticity: [|o (x)& (1% = Y{_1 (X% 1 0} (x)E7)? >
p2 > 0for somep > 0, for all x € R? and for all¢ € R? with ||£]| = 1.

Note that Hypothesis P2 implies Condition P. Indeed, Hypothesis P2 implies
that the vector space spanned by the column veatg(s), ..., o, (x) at any
pointx in R is R, so Condition P holds.

Fix s € ]R_’X. Let Py(w,-) be a regular version of the conditional distribution
of the processX; — X;,t € Rﬁ \ [0, s]) given F;, as defined in Section 2. As
in Theorem 4.8, we can check that under Condition PFealmost allw €
and for anys < ¢, the law of X; — X under Py(w, -) is absolutely continuous
with respect to Lebesgue measure ®h We let p, ,(w, x) denote the density
of X; — X, under P;(w, -). We note thatp, ;(w, x) is the conditional density of
X; — X, given F;. Therefore, for a random variable, we interpretE[Y | %] as
Es;(w,Y), where E;(w, -) denotes the expectation undey(w, -). However, for
s € Rﬁ fixed, there isN, € F; with P(N;) = 0 such thatp; ;(w, -) is defined for
weQ\Ngandalls <r.
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LEMMA 4.9. Assume Hypothes@&sl and P2.Fix s,t € Ri with s < ¢, and

x e R?. Leto be a subset of the set of indicEs .. ., d}. Then for all w € 2\ N,
and every,

ps,;(a), x) = (—:I.)d_lo‘HE[]].{X;'_)(;:>xz‘7 ieo, X;—X§<xi, l‘¢o}H(1,...,d)(Xl - XSa 1)|‘(F:S]7
where|o| is the cardinality ofo and in agreement with Propositioh.3,
Ha, a)(X; — X, 1)

=8(((rxx,) DX = X)) '8( - 8((rie L, DX = X)) ).

Lemma 4.9 is a consequence of the integration by parts formula (4.3). It gives an
explicit expression for the density of the process that will be very useful for further
computations. Whea = {1, ..., d}, the proof of Lemma 4.9 follows along the
same lines as the one-parameter nonconditional case (see [19], Corollary 3.2.1)
and is therefore omitted. For the general case, see [22], (5.3), where a similar
expression is obtained for the kernel of a stochastic semigroup.

A key property is that the moments of the iterated derivativeX @re finite;
see [17], Lemma 6, where similar nonconditional estimates are obtained for one-
parameter Brownian martingalesi.

LEMMA 4.10. Assuming HypothesR1,foranyO<a <b < o0, p > 1and
n > 1, there exists a finite constaiit > 0 depending oru, b and the uniform
bounds from Hypothes1such that for any, 7 € [a, b]? with s <, on 2\ N,

(4.9) sup _ E[|DEY - DY (xp|P1F] < C
Z1=1,..,2n =T ! 8
Z1,--,2n,r€[0,¢]1\[0,s]
forl<i,ki,....k, <d.
PROOFE We prove this lemma by induction en Suppose: = 1. For any;

[0,71\ [O,s] ands, t € ]R%r with s < ¢, the procesSng) (X;'), 1 <k <d) satisfies
the following system of stochastic differential equations (see [18], page 127):

d
(4.10) DO XD =of(X)+ > /[z ’ DPol(X,)dW).

j=1"%
Using Burkholder’s inequality (4.6) for conditional expectations, for any 1,

d
Y E[|D®(X)|7|F]
i=1

d
<Y ot Enaz(Xz)meE{
i=1

[l

d

o .
E:/[ ’ DPol(X,)dW]
j=1’1z



2126 R. C. DALANG AND E. NUALART

/2
<or1 ’

d
dT? +bpd?™1 Y EH/[ ]|D§")o§(Xr)|2dr
i,j=1 o

=)

d
< 2”_1{dT” - bdePbp_zT”/[ ’ ZE[|D§k)(Xj)|p|J‘US]dr}.
Z i—=1

Finally, for z fixed, using a two-parameter version of Gronwall's lemma (see [18],
Exercise 2.4.3) in the form

(4.11) fn 5A+Bf[ SGryr
zZ,t

we conclude the proof of (4.9) far=1.
We now assume that (4.9) holds for= 1. Apply n times the derivative operator
to (4.10), which yields

n+1
k, - ki—1) (K kn ;
Dgzl) .. D( *1)(X;) — Z Dgl) .. Dglill)pglfll) .. D( +1)(Ulé,(Xzz))
=1

Zn+1 Zn+1

d
+ Z/ D& pln (gl (X,)) dW.

n+1
j=17 21V V]

For the first term, we use the induction hypothesis and the uniform bounds on
the derivatives of the coefficients af For the second term, we use Burkholder’s
inequality and again the induction hypothesis and the bounds on the derivatives on
the coefficients o& . We finally obtain

d
> E[[DEY - Dy (x|

In+1
i=1

d
§C1+C2E|:/[ Z|D§Ifl)"'Dgﬁl)(xi)|pdri|
e

1\/~~~\/Zn+]_,l‘] i=1

and the proof is completed using Gronwall's lemmal

In the next lemma, we follow [17], Lemma 12, where similar estimates are
carried out for one-parameter Brownian martingaleRin

LEMMA 4.11. Assuming Hypothes®&d and P2,there exists a finite constant
C > 0depending om, » and the uniform bounds from HypothegdsandP2such
that, for anys, ¢ € [a, b]? with s < ¢, 0n 2\ Ny,

1/2

(4.12) E[{Ha...a) (X — Xg, DYPIFDY2 < Clle — 5742,
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PrRoOOF To simplify the notation, we Wl’ltd{(l = Ha..aoX — X, 1).

Using (4.5) and Holder’s inequality for conditional Sobolev norms in Wiener space
(see [29], Proposition 10, page 50), we obtain

|Hi d)”OZH”

7
= |Hay(X: — X Hts a—p)lo2.m,,

.....

Fs

d

£ -l iy
Z d=1) Vx,t—x_;) )d;D(XzJ_Xf))
j=1 0,2,Hy;

<c|H7 4 1)||14HArZ|| YXo—x.) d]H18H””D(X/ XJ)”IBH”'

Hence, to prove (4.12), it suffices to show that for eachl andn =1, ...,d,
(4.13) IDX! = XD, o, <tk e —s) M

for some finite constant} , > 0 and

(4.14) () D10, < €2l =517

for some finite constamﬁ’p > 0.
Indeed, (4.13) and (4.14) with= 1 andp = 8 imply that

, % _ , z
I H(tl:v...,d) ”O,AZ,HX,, = Cdclcznf — 5| 1/2“ H(tlf...,d—l) |}1f4,11;,,-

Iterating the process, we find

1HE _aloz.n, < cdce® = s~
which concludes the proof of (4.12)
PROOF OF(4.13). Fixp > 1. By definition,
IDX} = XD, 4,
(4.15) . . n+1 1/p
B DO = XD, 5]+ 3 B[O = XD 6l 7]

k=2

Furthermore, for any € [0, ¢] \ [0, s], the proces$D§k)(Xf — X, 1<k <d)
satisfies the system of stochastic differential equations

d
416)  DOX| - XD =0l (X)+ ) /[ (Do} (X dW].
L Z,t
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By Burkholder's inequality (4.6) for anditional expectations and using the
Cauchy-Schwarz inequality, for apy> 1,

E[ID(X; = X5, 155]

L

d
S IDR - XDz
k=1 [O,t]\[o,s]

p/2
‘%}

d
<dP? Y|t — s|P/eL IE[/ DY (X! — x1)|P dz
kgl [o,z]\[o,s]| Wx; - x|

g

< 2P=1gP/2= Y — s |P/3

X [dTcht — sl

d
+ar~1 E[ /
k;l [0,£]1\[0,s]

< 2P Y|t — s|)P/?

p
dz

DVl (X,)dW]

[z,7]

x [dp/sz + (cllt — s|)P/2d®P /22 (TP

d
x D, sup E[|D§")<X£>|”|ﬂ]}'
k,1=17-2€[0,1\[0,s]

Finally, by Lemma 4.10, we get that there exists a positive finite constant
k1(a, b, T) such that

(4.17) E[ID(X] = XDy, 1F:] < kalle — 5|17/,

To estimate the second term on the right-hand side of (4.15), we afphes
the derivative operator to (4.16) to get

n+1

k (knt1) [ yri i k (k1) 1y (ki41) (knt1) (i
Dill) o Dz;ﬁjil (X; - va) = Z Dill) o Dzzill Dzzﬁl U Dznﬁl (Glé, (Xzz))
=1
d k . .
3 DY ... DY (a1 (X, ) W,
j=1 [z2V--VZu11,t]

Proceeding as above, by Burkholder's ineldy#4.6) for conditional expectations,
and using the Cauchy—Schwarz inequality and Lemma 4.10, we obtain, for all
k=2,....n+1,

(4.18) E[ID* (X} = XON o 5] < kallt — 511772,
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whereks is a finite positive constant.
Finally, substituting (4.17) and (4.18) into (4.15) concludes the proof of (4.13).
]

PROOF OF(4.14). Fixp > 1. By definition

PR N -
H((V)S(f—xs) )ij “n,YP,Hs,r

(4.19) - E[(|(V§LI—XS)_1)U|I}|5ES]

n 1/p
, -1
+ Y E[DH (v ) )y e 17
k=1 s

We use a standard argument to estimate the moments of the inverse of the Malliavin
matrix. We follow [18], proof of (3.22), and [17], Lemma 10. Using the Cauchy—
Schwarz inequality and Cramér’s formula for”_, )~*, we can easily check that
forall p>1, '

E[((ry"_x.) i) 15:]

; —2D | o~ 2 -1, ~ 2
< ca pE[(detyy’_y ) "IF ]2 < BE[IDX, — X150V 17 ]Y

(4.20)

for some constant; , > 0. For the second factor, we use (4.17) to get

Ap(d—1),| ~ _
(4.22) E[ID(X, — X)) V1 7] < kallr — s))2P@D

for some finite constari (a, b, T) > 0. On the other hand, we write
detyy’ y > ||ir”1f 1(va)S(”_X v)?
s vll= t s
d . .
> DV (X; — XDy

d 2 d
= inf / dz) .
||v||=1<k§:l [0./1\[0.51{; )

Using (4.16) and Hypothesis P2, for ale (0, 1], we see that the expression in
parentheses is bounded below by

d d d
dz|Y vl af(x,) + / D<’<)o’i<X>de)
,;flo,t—(l—hxz—s)]\[o,s] ,; ’( ) 12::1 o T

> 3Ap% — I,

2

whereA denotes the area of the regiftht — (1 — h)(r — s)] \ [0, s] and

d d 2
Iy = Z/[ S [ DWaix,)aw))
k=1

l,]=l [z,t]

dz.

0,t—(1—h)(t—s)I\[O,s]
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We choosey such thatdp? = 4y~1/4 and notice that sinceé <1, y > ¢ :=

44(b/2)"|t — 5|~ p~%. In addition, ash varies in(0, 1], y varies in[c, o).
Applying Chebyshev’s inequality for conditional probabilities, we find that for any
]P’{detyj(;’_XS <=

q>2,
1 1 d 1q
) <ol (B <o)
y 2 y

<Pl > y V4| F,} < yIE[|1,1| 7.

Using Burkholder’s inequality (4.6) for conditional expectations, for any 2,
we have
7]

By Lemma 4.10(i), the conditional expectation of the right-hand side is bounded
above by some finite positive constaata, b, T). Using the definition ofA, we
obtain

d
EII7 < d g A58 5 EU / DW6! (X)X drdz
i,j,k=1 ([0,£1\[0,5])2

42(¢—1)

y2(1—q)/d
p4(q_1) ’

E[1,17|F5]1 < k3

Consequently, taking > 2+ 2pd,

E[(detyy’_y )~ 1%:]

o0
=/0 2py?rYP{(detyy’ ¢ )7t > yIF} dy

o0 1
= 2p [yt den! < : A
Cc
42dp 00
< +2 / 2p—1+(q/d)E[|[h|q |F.1d
I — s /22 prar P e o
42dp 42q=1)  roo

2p—1—(q/d)+(2/d) dy

= =122 i F A ),
<kallt — 572,

wherek, is a finite positive constant. Therefore, we have proved that
(4.22) E[(detyy’_y.) 2PIF,] < kallt — s|| =P
Substituting (4.21) and (4.22) into (4.20), we obtain
E[|((rix,) )i "15] < ks(lle — 11727l — s 2P@=D) 12

= ksllt —s|™7

(4.23)
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for some finite constarits > 0 not depending on or j. This proves the desired
estimate for the first term in (4.19). Turning to the second term, we claim that for
alli,j=1....,dandk=1,...,n

(4.24) B DM (i —x,) iy | 7] < ksl = 1177
for some finite constankg > 0. Indeed, by iterating the equality (see [18],

Lemma 2.1.6)

d

D(yy, )U =— Z (V)?,l)ikD()’x:)kz(V;,l)jl’

k,l=1

and using Hdélder's inequality for conditional expectations, we have

SUPE[| D (73, ) ™)y 15061 :]
L]

k
1 1/(r+1
<csupy ) E[IID’“(V;?,’_X_S)Z-MII”(éZ)I?'s] [
r=1 ky+--+k =k

p(A+r),

1/(r+1
E[|| D* ( VX, _x,) ir ji “Hgkr | F+] [+

-1 12 11 1
X SUpEH((V)S{,t—xS) )ij|p(r+ ) | %3] /D,
i,j

where the supremum before the summation is eve, ..., i, j- €{1,...,d}.
By (4.23),foralli, j=1,...,d

_ 2 _ 2
E[((ry"x,) 1" 1] < kalle — s 7P HD

for some finite constarit; > 0.
For the other factors, expreﬁﬁ‘(yx _x,)ij using the definition oj/ _x, and
use the Cauchy—Schwarz inequality twice and (4.18) to get

E[ID (i x, )i | 001 %5]

®k
s,

. . . . p
_E[”Dk< D, (X! — X'y Dy (X] —X;)dr)
0 I\[O,s]

7]
k k p , ,
§(k+1)1’_12(l> E[H/ D'D, (X! — X1)
= [0.11\[0.5]

. . p
-D'D.(X] — X)) dr

g
®.
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k
- k\? - N 2
a2+ 0773 () IEID DO = XDI, 015
=0 5.t

x B[ DX = XD 10| 7))

<kgllt —s||”

for some finite constartg > 0 not depending onhand ;. This concludes the proof
of (4.24). Finally, substituting (4.23) and (4.24) into (4.19), we conclude the proof
of (4.14).

The proof of Lemma 4.11 is now completel]

The following result is a consequence of Lemmas 4.9 and 4.11.

LEMMA 4.12. Assuming Hypothes&sl andP2,for any0 < a < b < oo, the
density functiorpy, (x) is uniformly bounded for € [a, b]? andx e RY.

PrOOF Using Lemma 4.9 withk = 0 ando = {1, ...,d} and the Cauchy-
Schwarz inequality, we obtain

px, X) < (E[{Ha,...a)(X;, 1)}2])

By Lemma 4.11 withs = 0, there exists a finite positive constantdepending
ona, b and the uniform bounds from Hypotheses P1 and P2 such that

1/2

which proves the lemma.[
The next proposition is the main result of this section.

PrROPOSITION 4.13. Assuming Hypothesd®1 and P2, for any 0 < a <
b < 00, there exists a finite positive constantlepending o, b and the uniform
bounds from Hypothesdl and P2 such that for any € R?, s, ¢ € [a, b]2 with
s <tandforwe Q\ Ny,

2
(4.25) ps,,(a),x)5c||t—s||—d/2exp(— Il )

cllr — sl

PrROOF.  Apply the Cauchy—Schwarz and Holder inequalities for conditional
expectations to the expression of Lemma 4.9 with: {i € {1,...,d}:x" > 0} to
find that

.....

i=1
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Consider the one-parameter martingaig, = (ML}, e, M;f), O<u<|t|—|s|]
defined by

d
oH(X,)dW/, ifO<u<t —s1,

‘/-:1/[S1,S1+u]><[0,sz]

My=1 d | .
My, + Z _/[0 o (X)) dW/,
j=1""

t1]x[s2,u+s2+s1—11]

if 11 —s1<u<|t|—|s],

foralli =1,...,d, with respect to the filtrationg,, 0 < u < |¢r| — |s|) defined by

Gu =

{ Flsr4u,50)» ifO<u=<rt—sg,

Flty utso+s1—11)> if 11 —s1<u<|t] —|s].

Notice thatMo = 0, M|;— s = X; — Xy andGo = ;. By [1], (2.9),

(M"Y jg1—151 = (Mg + (MY e1—15) — (M) y—s;)

d
= Z/ ol(X,)?dr.
o/

Moreover, Hypothesis P1 and the Cauchy—-Schwarz inequality imply that
(M')51—5) < Cllt — s|l, where C = bd2¥/2T2 for all 1 <i < d. Applying the
exponential martingale inequality [18], A.2, we get

iy <12 ) :
4.27) P{X: - X! = |x"'||F)<2exg ——— ), 1<i<d.
(4.27) P{IX] - X = |¥'[|F} < 2Cl =31 <is
Finally, substituting (4.27) into (4.26) and using Lemma 4.11 concludes the
proof of (4.25). O

4.5. Gaussian-type lower boundsln this section we present a lower bound
of Gaussian type for the density of the random variabldor any+ away from
the axes, wher& = (X;,t € Ri) denotes the solution of (4.8), and we present
an analogous lower bound for the conditional densitXpf- X given #;, when
s < t. These results are an application of results by Kohatsu-Higa [13], where
Gaussian-type lower bounds are obtained for the density of a general class of
uniformly elliptic random variables on a Wiener space, which generalize the lower
bound estimates for uniformly elliptic diffusion processes obtained by Kusuoka
and Stroock [14].

THEOREM4.14. Assume Hypothes@dandP2and letX = (X,,t € R2) be
the solution of(4.8). Then for any0 < a < b < oo, there is a constan€ which
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depends only om, b and the uniform bounds from Hypothed&kand P2 such
that, for all s = (s1, s2) € [a, b]?,

2
px,(x) = C(s1s2) /2 exp<_ B3 )
| Cs152

ProoOF Following [13], Theorem 5, we need to prove that for fixee=
(s1, 52) € [a, b]?, thed-dimensional random vectox; is uniformly elliptic, with
constants that do not dependsrirollowing the same notation as in the Main setup
of [13], we replace theif0, T] x A with [0, s1] x [0, s2] and we set(-,-) = 1. The
underlying one-parameter filtration is defined @', 0 < r < s1), where

Fl=0{W(z1.22). (z1.22) € [0, 1] x [0, 521}

(In this proof,: denotes a real number, as in [13].)

Consider a sufficiently fine partitiofD =1y < --- < ty = s1} of the interval
[0, s1]. To simplify the notation, we writeR, ,, for the rectangldz,_1,#,] x
[0, s2]. For anyd = (01, 62) € R;, ,.,,, we writexr 6§ for the point(z,_1, 62), that is,
the orthogonal projection éfon the vertical line througty,,_1, 0). We write R ¢
for the rectangldz,—1,61] x [0, 62]. Finally, for any6 € R, ,; andn € Rxg.0,
we writed A 5 for the point(n1, 62), that is, the orthogonal projection gfon the
horizontal line throughré and6. Let A,,_1(g) be the quantities denotek} _1(g)
in the Main setup of [13], that is,

Iy
Bam1(®) = [ 18 NZ2 g 40y = (0 — tr-2)s2
n—1

forn=1,..., N. Note thatl|gll ;20 s;]x[0.5,]. RY) = 5152-

We now define the sequence of nondegenerate random vegtoegjuired in
the Main setup of [13] byF,, = X,n 520 for 0<n < N, with Fy = X, 5,. Notice
thatF, = (F}, ..., F$) andF} = X! . By (4.8),

52

(4.28)  Fi—Fi_ 1_2/ ol(Xp)dW], 1<i<d.
In—1tn

The first objective is to find the It6 expansion of order- 1 of the
random variableF, — F,’l'_1 to obtain the approximations; required in [13],
Theorem 5. For this, we need to introduce some notation. We define the multiindex
B € U,>1{0,1}", with length [(8), and write 8 = (B1,..., Bis)). We write
—pB and g— for the multindex obtained by deleting the first and the last
component, respectiy, of the multiindex8. For completeness, we wrife} for
the multiindex of length zero. These multiindices will be used to write multiple
integrals, some of which are stochastic and some are deterministic: when the index
is 1, d'W; denotesdW;, and when the index is @°W, denotesid. Usually,
these integrals are not taken on the whole spagcg] x [0, s2], but on subsets of
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it. The subset most often is of the typpg_1, 7,1 x [0, s2]. In general, these integrals
are denoted byg(hg) for an J’ftj_l—measurable random procegssuch that

SUBI g Il L2((1,-1.11x 10,5218 ey (@) < OO
we
Given a family of M functions f;, ‘RI > R, 1<m<M, and M points

6%, ...,6™ placed on the same vertical lineRy, _, ,,, we define forany k r < d
and¢ € R, , ;, the following operations on random variables:

ig ..... ( II fﬁ(xbm )

M d af
= 1Rn9m,9m<s>< 11 fn(Xems))Za—;]:(xemg)ﬁrk(xs),

n=1,n#m k=1

o)

M 1 M
= { Z E:H'RHG'",Q”' (E)< l_[ fn(XenAg))
m=1 n=1,n#m

4 2w
0xi 0x]

(Xgmpg)o X (Xe)o! (Xs)}
k,/=1
M

g1
+ { Z EﬂRngml’gmlﬂRngmzﬁmz (E)( 1_[ fn(XQ"AE)>

my,mp=1 n=1n#my,my

d
0 my m
X f—(XemlAg)U (Xs) f 2

k=1 0%k

(Xemmg)ff (Xs)}

Note that the point8? A £,...,0M A £ and¢ are also placed on a single vertical

lineinR;, ,4,-
These operations will be used to apply the standard multidimensional Itd
formula to f (X1, ..., Xpu), when f(x1, ..., xM) is of the form[T¥_, f,,(x™),

where thef,, are as above, £ m < M. Indeed,
ur > (X o1 -0 Xy o) th-1=<ug <ty,

is an M d-dimensional martingale with mutual covariation

N
=dulz/ Gk(Xulé“z) ( Idléz)dé:2

k l
(X g0 X gy) A
r=1

ug
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Therefore, according to the 1t6 formula [2],

M M
1_[ fm(XQm) = 1_[ fm(erQm)

m=1 m=1

d M
(4.29) + Zl fR Lygi QM,S( nlfm(Xem)) dwi
r= m=

In—1-in
d M
+ Z/ L?ﬂl ..... ‘9M’5< 1_[ fm(XG’“)) d§.
r=17Riy_g.1m m=1

We are now going to iteratively apply the 1td formula to the integrands in (4.29),
to obtain an Itd expansion similar to the one presented in [12], Chapter 5. For
this, we introduce some additidn@otation. Given a multiindey, we define the
functions

5.j(0) =0](Xo). it B = (v},
L 0.8 =L (cl(Xe), if B=(D),
bir0.6) =12 (0l(Xp)),  if B=1(0),

i 1 1By _ 18 i
BoJ:r1seT1(p) (6.6 ....6") = Lrl ..... rip).0,61,... 1P (Gj (Xp)),
where
B _rh B2 Big)
Lrl ..... rip).0,6%,... 1B T er(,fs)ﬂ,él ,,,,, gle ° er(,fs)—lﬂ,él ,,,,, glp-107770 Lr1,9,€1'

We define the multiple (Ité stochastic/deterministic) integiglby

. 1 1p)-1
Tl i 2 @ 8L - 8O,

- Lo UL

j 1 1(B)—1
X h;g—,j,rl,...,r[(ﬂ)_l(e’ E IR S 2 )

n—1-In

(4.30)

« dP ngg;j) . ) dﬁuﬁ)lwg’}) a’Wé,

where the domain of integration of each integral is given by the indicator functions
that appear in the definition of the operat&/SandL?.

Note that the functiongj,_ ;. = (6.§%....6'®~1) are sums of func-

tions of the form]‘[il(ﬁ)1 fn(Xgn), wheref, :R¢ — R are derivatives of some order
of the coefficients of the matrix, and6?, ..., 6'® arel(8) points placed on a
single vertical line inR,,_, ,, that depends o8, £2,...,£/®~1 We now define
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multiple 1t6 stochastic integrals; , by modifying the integrand in the definition
of Ig: each pointin (4.30) is projected onto the vertical line throggh,, 0), that
is,

In—1-in

Ig [h,iB—,j,rl,..,,rz(ﬂ),l(0’ gl’ teto gl(ﬂ)_l)]R
1(B)

/R, mn (/Rn@ﬁ( (/Z H Jn(Xzgn)
X dﬂlwrﬁgg; 1) )

X dﬂlwwwg) dw,.

..... rl,B _1=1

LEMMA 4.15. The It expansion of ordér> 1,
j j j 1 1(8)—1
Fl’ll - Fl'll—l = Z Ig [h;‘}—,j,rl,...,rl(ﬁ),l (9’ E 30 E (ﬁ) )]R

4.31 pe o
(4.31) I.[hi 9 £l 1(B)—-1
+ Z ﬂ[ ﬁ—,j,rl,-~-,rl(/3)—l( "i: s ,E )]an_l,[n’
BeB;

holds where the setst; and B; are recursively defined byt = {(1)}, 81 =
{(1,1), (0, 1)}, Ajp1={A;, B} andBj1={B:—p € By} forl > 1.

PROOF  We prove this lemma by induction @nBy the standard multidimen-
sional It6 formula, applied to the random varlab1jHX9) with respect to the first
coordinate, it follows from (4.28) that

Fi—Fi_ 1_2/ ol (Xg) dW]
_1.in

=3[ olaw]
X R ‘

8GI(X9AH) .
+ / (/ —_—okx dW’)de
Z 1. W Rzo0 dx r (Xn) 7 o

Jik,r=1

8207 (Xoan) -
+— Z / (/R 6917)70,]((X,,)0,1(X,,)d77)dW9’
—1:in o,

]klr 1 92 Dx;

forall 1 <i <d, which proves (4.31) fof = 1.

Now assume that (4.31) holds with;_; and 8;_1 for [ > 1. Then we apply
the It6 formula (4.29) to all the random variables of the fdr 5)1 fn(Xgn) that
appear in the stochastic integrals of the second term of (4.31) 8jith. Here,
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M = [1(B), the functionsf,, RIS R, 1<m< [(B), are derivatives of order
greater than or equal to 0 of the coefficients of the matriand 61, ..., 9!®
arel(p) points placed on a single vertical line &, _, ;, . The first term on the
right-hand side of (4.29) gives a nej/g integral and the two other terms each

give a newls integral. Note that integrals with the operatot add a 1 to all
the multindexes ofB;_; and that integrals with the operatéf add a 0. This
yields (4.31) forl with A; = {A;_1, Bi_1} andB; ={B:—B € B;—1}. O

Continuing the proof of Theorem 4.14, with this result we define, follow-
ing [13], Theorem 5, the approximatidrj of order/ > 1 by

F = ((tn — tm)s2) 220 + Fi_y

+ Z Ig [h,iB—,j,rl,..,,rz(ﬂ),l(0’ gl’ teto El(ﬁ)_l)]R
BeA

9
In—1:In

where ¢,,n=1,..., N) is an i.i.d. sequence af-dimensionalv (0, I) random
variables independent of the Wiener proc#sdn the setting of [13], Theorem 5,
we havek = 1 and set

! ] 1 1(B)—1
Gl = Z Ig[ g_’j,rl’,.,’,l(ﬂ)_l(e,s L e
BeA\ AL

In—21:Mn )
To simplify notation we Writehf3 for
i 1 (p-1
ﬁ—,j,rl,...,rl(ﬂ)_l(e’ E IR E )
With these definitions and since by Hypothesis P1, for any multiinglexA;,
SUP A | L2((11, .1, 110,521 ®) ety (@) < 0O,
we

(H1) of [13], Theorem 5 is satisfied. To prove (H2a) of [13], Theorem 5, note that
by definition

1
‘?}nfl

—1:n

. 141)/2 i .
I F, — Frlz”n,r;il = ”((tn — tn_l)sz)( +0/ Z, + Z Iﬁ[hig]an
BeB:

n.p

and, for eactg € By,
1

AT
/3 ﬂ Rtn—l’r" Q5P’Hrn_1,tn

(4.32) = {E[|Iﬁ[hi‘3]an_l,rn |p|3:l‘,:1]_71]

q ) . 1/p
DI (TN | I

j:]_ n—1tn
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whereH;, , 1, = L2([ta—1, 1] X [0, s2], RY).

Fix 8 € 8; and recall thai(8) =1 + 1. To estimate the first term in (4.32),
we use Burkholder’s inequality (4.6) fopnditional expectations and the uniform
bounds on the derivatives of the coefficienteab get

|p|3_j~1

(4.33) AT L 1<t — tap)s2) VP2

for some positive finite constarf > 0 independent of the partitions, s and
w € Q.

For the second term in (4.32) fiy € {1,...,¢q}. Using formula (1.46)
from [18], we can easily check that the temﬂﬁ[h};]R,ﬂ_w contains multiple
(It6 stochastic/deterministic) integrals of ordérs 1,...,1 + 1 — j. Therefore,
again using Burkholder’s inequality f@onditional expectations and the uniform
bounds on the derivatives of the coefficientgofve obtain

(4.34) E[HD!’ Iglhis, ff‘,n{l] < C((tn — ta_1)s2) 1 THP/2

—1:in

1% i |
1.0 QJ
n—1.n anflvfn

for some positive finite constarf > 0 independent of the partitions, s and
w € Q.

Finally, using (4.33) and (4.34), we get that there exists a congfant
independent of the partitiom, s andw € 2, such that

=i T 1+1)/2
IEE — il < C((t — ta_1)s2) P2,

which proves (H2a) of [13], Theorem 5, with=1/2.
Now, using exactly the same argument that led to (4.22) we can easily check
that

(E[(dety ") 1FL DYP < C((t — ta-1)52)

where yp 2" = ((DFL DF]) 2, .01x(0.90.09)1<i.j<d: fOr some positive

finite constantC independent of the partition; and w € Q2. Therefore, (H2b)
of [13], Theorem 5, is proved.
Condition (H2c) of [13], Theorem 5, can be rewritten in our case as

d [/ d 2
Co < ((tn — ty—1)52) fR Z(Zo,i(xms") do < C1

n—1m k=1 \i=1

for £ € R? with ||&|| = 1. This is obviously satisfied by Hypotheses P1 and P2.

Finally, condition (H2d) of [13], Theorem 5, is satisfied using the same
argument that led teondition (H2a), because the higherder integrals are, in
the J’ftj_l conditionalD™” norm, smaller thariz, — t,—1)s2. Theorem 4.14 is now
proved. O

The nextresultis the conditional version of Theorem 4.14 dgtw, x) be the
density of X; — X, under the conditional distributioR, (w, -) defined just above
Lemma 4.9, fow € Q \ N;.
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THEOREM 4.16. Assuming Hypotheséxl and P2,for any0 <a < b < o0,
there exists a positive finite constantwhich depends oam, » and the uniform
bounds from Hypothesdzl and P2, with the following propertyFor all 5,7 €
[a,b]? withs < ¢, x € R?, and forw € \ Ny,

a2 Ix11?
Ps.i(@,x) = cllt —s[| 7% exp( — :

cllr = sl

PROOF Fix s,7 € [a,b]? with s < . As in Theorem 4.14, Theorem 4.16
is an application of [13], Theorem 5. We replace thi€r7T] by the union of
two segments with extremitie@1, s2), (f1, s2) and (r1, s2), (t1, 2), and we set
g(,) = 1. We consider a sufficiently fine partitiofs =19 < --- <ty = ¢} of
the union of the two segments, wheye- (tl-l, tl-z), 1<i < N. Note that there exist
two constantg1(a, b) andca(a, b) such that

-1
Cq1 ltn — th—1ll < Ap—1(8) < calltn — tn—1ll

and

-1
eyl = sl = gl 2o, 0,51, re) = c2llt — sl

In this case, all of the Wiener stochastic integrals are taken on subsets of one
of the[0, 7,1\ [0, t,—1]. Then, the projection of a given poiéte [0, 7,1\ [0, ,,_1]
depends on its position. Namelyfifis in the rectanglgs1, 1] x [0, s2], w6 will be
its orthogonal projection on the vertical line througj}u_l, 0), while if 6 is in the
rectanglef0, r1] x [s2, t2], w6 will be its orthogonal projection on the horizontal
line through(0, #2_,).

DefineF, =X; —Xiforl1<i<d,0<n<N.Then

d
Fi—Fi_ = / ol (Xg)dW) 1<i<d.
noo ]221 (0,6, \[0,5 ] 7 ’

Now, using the same notation as in the proof of Theorem 4.14 and proceeding
exactly along the same lines, we can easily establish the following result:

LEMMA 4.17. The It6 expansion of ordér> 1,

F;i - ri—l = Z Ig [h%—,]'»rlwwrl(ﬂ)—l(e’ E1,- - El(ﬁ)_l)][ostn]\[ovtnfl]
BeA;

+ 2 I5 g iy 081 E1-1) 01 (0,1
BeB

holds where the setst; and B; are recursively defined byt = {(1)}, 81 =
{(LD,O,D}, A1 ={A, B}and B 1 ={B:—BeB}forl>1.
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Again, following [13], Theorem 5, we define the approximatibj of order
[>1by

Fl= |ty —t,_)| Y27 4 FP |

+ 2 IE e gy (0480 E18-1) (0 0y
BeA

where ¢:, n =0, ..., N)is an i.i.d. sequence ef-dimensionalV (0, ) random
variables independent of the Wiener procBas

The remainder of the proof follows exactly as in the proof of Theorem 4.14.
We note that the constantin the conclusion of Theorem 4.16 is also uniform in
weQ\ Ny, s,t€la,bl?withs <t andx e R, O

5. Potential theory for hyperbolic SPDEs. In this section, we extend the
results obtained in Section 2 to the solution of equation (4.7). The proofs make
use of Malliavin calculus and are an application of the results of Section 4, which
contains the technical work.

5.1. The caseh =0. Let X = (X,,t € Ri) be the unigued-dimensional
adapted continuous process defined@ng, P) that solves (4.8). The aim of this
section is to establish the following result.

THEOREM 5.1. Assuming Hypothesd3l and P2,for all 0 <a < b < o0
and M > 0, there exists a positive finite constakitdepending or, b, M, p and
the uniform bounds on the coefficientscofind its derivativessuch that for all
compactsetsl C {x e R : ||x|| < M},

K~1Cap,_4(A) <P{3re[a,b]*: X, € A} < K Cap,_4(A),

whereCap; denotes the capacity with respect to the Newtorfiakernel kg (-)
defined in Theorera.1.

PrRoOOF To prove Theorem 5.1 it suffices to prove that Hypotheses H1-H3 of
Theorem 2.4 hold for the proces& Since Hypothesis H3 is only used for the
upper bound in the statement of Theorem 5.1, we only prove Hypothesis H3 when
d > 4, since the upper bound is trivially satisfied tbx 3. Fix O<a < b < 00,

M > 0 and recall that Hypotheses P1 and P2 are satisfied.

VERIFICATION OF HYPOTHESISH1. Fixx € R¢ such that|x| < M. Using
Theorem 4.14, we find that

_ [lx 112
x)dt zC/ 1t WZexp(——)dt
f[a,b]z px, (%) o) T

2
>C(bh—a)’h™ exp(—M—),
- Ca?
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which shows that Hypothesis H1 is satisfied.

VERIFICATION OF HYPOTHESISH2. Fix x andy such that|x|| < M and
Iyl <M. Lets,t € |a, b]2 and assume that< ¢. Clearly,

Px,. x, (X, ¥Y) =px,—x, x,(x —y,y)

= DX, —X,|X;=y(* — V) px, (V).

Letz =x — y and letE be a Borel subset dk¢. By Proposition 4.13, we have,
a.s.,

2
]P’{Xz—XseEm}s/c||z_s||—d/2e><p(_ K] )d
E

cllr —sll

for some finite constant> 0. Take the conditional expectation of both sides with
respect tar (Xy) to find that

2
—d/2? Izl
PX,—X,|X,=y(2) < cllt — 5] / exp(— .

cllr —sll

By Lemma 4.12,px,(y) is uniformly bounded oves ¢ [a,b]? and x € RY.
Therefore, for alk, € [a, b]? with s < ¢, we have proved that

_ lx — yI?
(5.1) pxx, (6 y) <l — s d/zexp(——)
el —sl

for some finite constant > 0.
We now assume that 7 € [a, b]? with s £ 7 andt £ s. Let E; and E» be two
Borel subsets dR?. Using the conditional independence property, we obtain

P{X; € E1, X5 € Eo} =E[P{X; € E1, X5 € E2|Fsnr}]
=E[P{X; € E1|Fsn}P{ X € E2| Fsnr}]

= E|:/ DPsat,e (5, X — Xs/\t)dx/ Psat,s(y — XsAz)d)’]~
Eq E3

Setp(c, x) = c~42exp(—|1x||2/(2¢)). By Proposition 4.13 and Lemma 4.12, the
right-hand side is bounded above by

CEU dx plellt — (s AD) ], x — XW)/ dy plells — (s AD) ]y — XW)]
Eq Es

=C a’x/ a’y/ dzp(cllt = (s At x —z)plclls = (s AD, y —2).
Eq E> R4

For x fixed, do the change of variables= 7z — x and use the fact thé}t(az, 2
is an even function to write the inner integral as a convolution of two Gaussian
densities, which is equal to

plelt = (s Al +clls = (s ADIL y —x) <CpElit —sll,y —x)
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by the triangle inequality. We conclude that
PIX € B X, € B2} <C [ dx [ dypGlir sy =)
Eq E>

and, therefore,

_ 2
(5.2) Pxx, (6, y) < Cllt —s||—d/2exp(—M).
&l —s|

This shows that an estimate like (5.1) holds also wherr andr £ s.
Using (5.1) and (5.2), we get

,/[ b]2‘/£ b]sztvx.y(x’ )’)dl‘ds
a, a,

2
x—
§C/ / ||t—s||_d/2exp(—w) dtds.
[a.b]2 J[a,b]2 cllit — sl

Fix ¢+ and use the change of variables= ¢ — s to see that this expression is less
than or equal to

_ 2
4C(b—a)2/ ||u||_d/zexp(—u)du.
[0,b—a]? cllull

Next, use the change of variables= ||x — y||2c 1z, to see that this is less than or
equal to

c?724C (b — a)?||x — y| 70+ / Izl =% exp(—1/|IzIl) dz.
[0,c(b—a)/l|lx—yl?]2

Whend > 4, applying Lemma 3.5 witl8 =d/2 > 2 anda = 1/2 in the same
way as in the proof of Theorem 3.1 shows that Hypothesis H2 is verified with
k() = kg_4(-) andd > 4. Whend < 4, the above expression is bounded and
Hypothesis H2 holds with(x) = 1.

VERIFICATION OF HYPOTHESISH3. Assumel > 4. Fixx € R? with ||x|| <
M. Use the Gaussian-type lower bound fgr; (w, x), obtained in Theorem 4.16,
to see that for alk € [a, »]? and for almost alb,

2
x
/ Ps.i(@,x)dt = c/ It —s||“’/2exp(—&) d1
[b,2b—a)? [b,2b—a]? C”l‘ s ”

for some finite constant > 0. Now, using the change of variables= c(r — s)/
|x|I2, we see that this expression is

> 272 x| / Izl7/? exp(=1/l1zI)) dz.
[0,c(b—a)/||Ix||?1?

Finally, Lemma 3.5 with8 = d/2 > 2 anda = 1/2 shows that Hypothesis H3

holds ford > 4 in the same way as in the proof of Theorem 3.1.

The proof of Theorem 5.1 is completel]
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5.2. The casé #£ 0. The aim of this section is to extend Theorem 5.1 to the
caseb # 0. Our main tool is Girsanov’s theorem for an adapted translation of the
Brownian sheet (see [20], Proposition 1.6).

LetY = (Y;,r € Ri) denote thed-dimensional adapted continuous process
defined on(2, 4, P) satisfying (4.7) withxg = 0, that is,

d

(5.3) Y/ = Z/ o (Ys) dW] +/ b (Yy)ds, teR3, 1<i<d.
—J[0,1] [0,7]
j=1

We introduce the following condition on the vectar

_HYPOTHESIS P3. For some constantV, for all 1 <i <d and x € RY,
|b'(x)] < N.

Consider the random variable
L= exp[— f o ¥b(Yy) - dW; — f lo = (¥)by)II ds].
[0,7] [0,7]
We have the following Girsanov theorem.

THEOREM 5.2 ([20], Proposition 1.6). The random variable., is such that
E[L,] = 1.If P denotes the probability measure ¢, ) defined by

dP
ﬁ(w) =L (),
thenW, = W, + f[o,;] o~ 1(Y,)b(Y,) ds is a standard Brownian sheet under

Consequently, the law df underP coincides with the law ok underP, where
X = (X,,t € R?) is the solution of (5.3) wittb = 0.

The following result is the extension of Theorem 5.1 to the dase0. It is
sufficient to characterize polar setsof

COROLLARY 5.3. Assuming Hypothesd®1-P3,for all 0 <a < b < o©
ande, M > 0, there exists a finite positive constat depending om, b, ¢, A, M,
N, p and the uniform bounds of the coefficientsadind its derivativessuch that
for all compact setst C {x e R?: || x| < M},

K1 (Cap,_4(A)M <P{Erela. b1V, € A} < Ko (Capy_4(A)" .
ProoFr Consider the random variable

i=expl= [ o XX W+ 3 [ e bR ds |
1 .t
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Fix 0<a <b<ooand letGy = {3r € [a,b]?: X, € A} and Gy = {31 €
[a,b]2:Y, € A}. By Theorem 5.2,

(5.4) P[Gyl=Ep[lg,] =Eg[le, L; Y] = Ep[lgyJ, Y
Lete > 0 and apply Holder’s inequality:

]P[GX] — E]P[]].GX Jt—l/l-‘rSJtl/l-‘rS] < (E]P[]].GX Jt_l])1/1+8GEIP’[J[:L/E])S/:L—’_E.
Rewriting the last inequality we obtain

1/e

P[Gy] > (P[G x )Y+ (Ep[J; /] 5.

Letr > 0. By the Cauchy—Schwarz inequality

BelJ/] < (B [exp[ [, (2o HXb () - dW,

12
] G S al ds]])
[0,7]

1/2
X <E[p>|:exp|:/[0 t](2r2+r)||a—1(xs)b(xs)||§d ds]]) .

The first expectation on the right-hand side equals 1 since it is the expectation
of an exponential martingale with bounded quadratic variation (see [9], Chapter 3,
Proposition 5.12). By Hypotheses P2 and P3, the second factor is bounded by some
positive finite constant. Therefore,

Ep[J}*] < ke

for some constant, > 0. Finally, by Theorem 5.1 there exists a positive finite
positive constank such thatP[G x] > K Cap,_,(A), which concludes the proof
of the lower bound.

The upper bound is proved along the same linessLet0 and apply Holder’s
inequality to the right-hand side of (5.4):

PIGy]=Ep[lc, /Y] < PIGx DY (Bp[s,”HH/9]) /1.
Letr > 0. Again by the Cauchy—Schwarz inequality we find that

Bl < (Ep[exp[ /[ L 2O b W,

12
o G e ST e ol dsﬂ)
[0,7]

1/2
X (Ep[exd:/[o’t](Zrz — o X)b(X,) 1 ds]]) .
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The first expectation on the right-hand side equals 1 since it is the expectation
of an exponential martingale with bounded quadratic variation, as above. By
Hypotheses P2 and P3, the second factor is bounded by some positive finite
constant. Therefore,

EP[Jt_(1+S/8)] < ke

for some constank, > 0. Finally, by Theorem 5.1, there exists a positive finite
positive constank such thafP[G x] < K Cap;_4(A), which completes the proof
of the Corollary 5.3. I

As a consequence of Corollaries 2.5 and 5.3 we obtain the following analytic
criterion for polarity for the procesg:

COROLLARY 5.4. Assume Hypothesd31-P3. Let E be compact subset
of R?. ThenE is a polar set forY if and only ifCap,_4(E) =0.

Finally, Theorem 3.3 and Corollary 5.3 give the stochastic codimension and
Hausdorff dimension of the range of the proc&ss

COROLLARY 5.5. Assuming Hypothes&d-P3,
codim{Y ((0, 4+00)?)} = (d — 4"
and ifd > 4,then
dimy{Y((0, +00)?)} =4  as.
5.3. Critical dimension for hitting points. For an N-parameterR?-valued

Brownian sheetW = (W,,t € Rﬁ), Orey and Pruitt [23] showed that for any
x eRY,

1, if d <2N,

N . _ _

This fact also can be obtained as a consequence of work by Khoshnevisan and
Shi [11]. Corollary 5.4 immediately yields an analogous result for the solution
of (5.3):

COROLLARY 5.6. Assuming Hypothes®4-P3,for anyx € R?,

P(3reR2:Y,=x}>0 ifandonlyifd < 4.
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