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CONVERGENCE OF FUNCTIONALS OF SUMS OF R.V.s TO
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Consider a sequenceXk = ∑∞
j=0 cj ξk−j , k ≥ 1, wherecj , j ≥ 0, is a

sequence of constants andξj , −∞ < j < ∞, is a sequence of independent
identically distributed (i.i.d.) random variables (r.v.s) belonging to the domain
of attraction of a strictly stable law with index 0< α ≤ 2. Let Sk =∑k

j=1 Xj . Under suitable conditions on the constantscj it is known that
for a suitable normalizing constantγn, the partial sum processγ −1

n S[nt ]
converges in distribution to a linear fractional stable motion (indexed by
α and H , 0 < H < 1). A fractional ARIMA process with possibly heavy
tailed innovations is a special case of the processXk. In this paper it is
established that the processn−1βn

∑[nt ]
k=1 f (βn(γ −1

n Sk + x)) converges in
distribution to(

∫ ∞−∞ f (y)dy)L(t,−x), whereL(t, x) is the local time of
the linear fractional stable motion, for a wide class of functionsf (y) that
includes the indicator functions of bounded intervals of the real line. Here
βn → ∞ such thatn−1βn → 0. The only further condition that is assumed
on the distribution ofξ1 is that either it satisfies the Cramér’s condition or has
a nonzero absolutely continuous component. The results have motivation in
large sample inference for certain nonlinear time series models.

1. Introduction. Consider a sequenceξj , −∞ < j < ∞, of independent
identically distributed (i.i.d.) random variables (r.v.s) belonging to the domain of
attraction of a strictly stable law with index 0< α ≤ 2. DefineXk = ∑∞

j=0 cj ξk−j ,
wherecj , j ≥ 0, is a sequence of real numbers. LetSk = ∑k

j=1Xj , k ≥ 1. Then
under suitable conditions on the constantscj it is known that for a suitable
0 < H < 1 and for a suitable slowly varying functionu(n), the finite-dimensional
distributions of the process(nHu(n))−1S[nt] converge in distribution to those of a
linear fractional stable motion (LFSM). See, for example, Kasahara and Maejima
(1988). Whenα = 2, the LFSM reduces to the fractional Brownian motion (FBM),
and whenH = 1/α, it is taken to be theα-stable Lévy motion. (Definitions of the
preceding processes are recalled in Section 2.)

Now, for simplicity, let γn = nHu(n). Let the constantsβn be such that
βn → ∞ with n−1βn → 0. In this paper it is established that the finite-dimensional
distributions of the processn−1βn

∑[nt]
k=1 f (βn(γ

−1
n Sk + x)) (indexed byt andx)
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converge in distribution to those of(
∫ ∞
−∞ f (y) dy)L(t,−x), whereL(t, x) is the

local time of the LFSM, for a wide class of functionsf (y) that, in particular,
includes the indicator functions of bounded intervals. (The only further condition
that will be assumed on the distribution ofξ1 is that either it satisfies the Cramér’s
condition or has a nonzero absolutely continuous component.)

For the particular situation where the limit ofγ −1
n S[nt] is a Brownian motion or

a FBM, some partial results in some form are available in Akonom (1993), Park
and Phillips (1999, 2001) and Tyurin and Phillips (1999), where the motivation is
an interesting development of a large sample theory in some time series models
that have functions of the formf (Sk) occurring as regressions. The present paper
has the same motivation.

Major works for the i.i.d. situationSk = ∑k
j=1 ξj that are related to the approach

of the present paper include Skorokhod and Slobodenjuk (1970) and Ibragimov
(1984, 1985). The approach of Ibragimov (1984, 1985) [a thorough account of
which is presented in the book by Borodin and Ibragimov (1995)] does not rely
on the moment conditions and hence, implicitly on the restriction of the Brownian
motion limit, of the earlier approach of Skorokhod and Slobodenjuk (1970) but
mainly on the requirement of the attraction of

∑k
j=1 ξj to stable laws. This

approach is based on the representation

βn

n

n∑
k=1

f (βnγ
−1
n Sk) = 1

n

n∑
k=1

fn(γ
−1
n Sk) =

∫ ∞
−∞

(
1

n

n∑
k=1

e−iuγ −1
n Sk

)
f̂n(u) du,

where fn( y) = βnf (βny) and f̂n(u) is the Fourier transform offn( y). The
conditions sought (in the i.i.d. case) are naturally through the Fourier transform
f̂n(u) which in certain situations are then transformed in terms offn( y) and/or on
the distribution ofξ1.

The approach of the present paper involves the approximation that the difference

1

n

n∑
k=1

fn(γ
−1
n Sk) − 1

n

n∑
k=1

∫ ∞
−∞

fn(γ
−1
n Sk + zε)φ(z) dz → 0 in L2(1)

asn → ∞ first and thenε → 0, whereφ(z) = 1√
2π

exp{− z2

2 }. The approximating

quantity1
n

∑n
k=1

∫ ∞
−∞ fn(γ

−1
n Sk +zε)φ(z) dz can be handled relatively easily. This

approach has some advantages, especially for the situation of the present paper,
for instance, the required conditions for establishing the approximation (1) can be
viewed directly throughfn( y) and the distribution ofξ1 themselves.

In Section 2 we recall the definition of the LFSM, state a result on the
existence of its local time and also recall a result on the weak convergence of
the processγ −1

n S[nt]. Section 3 contains the statements and the discussions of the
main results, and Section 4 contains the proofs of them as consequences of (1).
Section 5 contains auxiliary results for establishing the approximation (1). The
proof of (1) constitutes Section 6.
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NOTATION. The constantsγn, βn and the functionsf (y) and fn( y) =
βnf (βny) are exclusively used in the sense they are used above. Similarly,φ(z) is
used in the sense of (1) above,bn in the sense of (4), andMh,η( y) andmh,η( y) in
the sense of (6). We let

φε(z) = 1

ε
√

2π
exp

{
− z2

2ε2

}
[so thatφ(z) = φ1(z)]. K̂ stands for the Fourier transform of the measureK ,
IA(·) stands for the indicator function of the setA andR stands for the real line.
Convergence inL2 has the usual meaning of the convergence in mean-square. The
notationC stands for a generic constant that may take different values even at
different places of the same proof.

2. Preliminaries. Let {Zα(t), t ∈ R}, 0< α ≤ 2 be anα-stable Lévy motion.
This meansZα(t) has stationary independent increments having a strictly
α-stable distribution, that is, fors < t , Zα(t) − Zα(s) has the characteristic
function exp{−(t − s)|u|α(1 + iβ sign(u) tan(πα

2 ))}, where|β| ≤ 1 with β = 0
whenα = 1. (Note that this definition of strictα-stability for the caseα = 1 differs
from the usual one in that we take the shift parameter to be 0.) Whenα = 2, Zα(t)

becomes theBrownian motion with variance 2.
A process {	α,H(t), t ≥ 0} is called a LFSM with Hurst parameterH ,

0 < H < 1, if it is given by

	α,H (t) = a

∫ 0

−∞
{(t − u)H−1/α − (−u)H−1/α}Zα(du)

+ a

∫ t

0
(t − u)H−1/αZα(du),

whereZα(t) is anα-stable Lévy motion as above anda is a nonzero constant.
Whenα = 2, the LFSM reduces to the FBM. See Samorodnitsky and Taqqu (1994)
and Maejima (1989) for the details of LFSM.

We make the convention that in the caseH = 1/α, the LFSM{	α,H (t), t ≥ 0}
is taken to be{Zα(t), t ≥ 0}. It is important to note, however, that in this case the
restriction 0< H < 1 is equivalent to that of 1< α ≤ 2.

Let {ζ(t), t ≥ 0} be a real valued measurable process. Then a measurable
process{L(t, x), t ≥ 0, x ∈ R} is said to be alocal time of {ζ(t), t ≥ 0} if for
eacht ≥ 0,∫ t

0
IA(ζ(s)) ds =

∫ ∞
−∞

IA(x)L(t, x) dx for all Borel subsetA of R(2)

with probability one. [Without loss of generality we take	α,H (t) to be measur-
able.] For the symmetric LFSM, the existence ofL(t, x) is known, see Kôno and
Maejima (1991). For the general LFSM, we have the following result. [It may be
noted that when 0< α ≤ 1, the local time for{Zα(t)} does not exist; the case
1 < α ≤ 2 is covered by the next result.]
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THEOREM 0. For a LFSM {	α,H(t), t ≥ 0} with 0 < α ≤ 2 and 0 < H < 1,
there is a local time L(t, x) such that for each t and x,

lim
η↓0

1

η

∫ t

0
I[x,x+η)

(
	α,H(s)

)
ds = L(t, x) in L2.

In addition, L(t, x) has the representation L(t, x) = 1
2π

∫ ∞
−∞

∫ t
0 eiu(	α,H (s)−x) ds du.

Next we recall the result on the weak convergence of the partial sum
processS[nt]. Recall thatξj ,−∞ < j < ∞, is a sequence of i.i.d. r.v.s belonging to
the domain of attraction of a strictly stable law with index 0< α ≤ 2. For the later
purpose we mention that this, in particular, means for allu in some neighborhood
of 0,

E
[
eiuξ1

] =
exp

{
−|u|αG(|u|)

(
1+ iβ sign(u) tan

(
πα

2

))}
, if α �= 1,

exp{−|u|G(|u|)}, if α = 1,
(3)

with |β| ≤ 1, whereG(u) is slowly varying asu → 0. In addition, if one lets

b−1
n = inf{u > 0 :uαG(u) = n−1},(4)

then bn is of the form n1/αh(n) for some slowly varyingh(n); in fact, bα
n �

nG(b−1
n ). [For the details of these facts, see, e.g., Bingham, Goldie and Teugels

(1987), page 344.]
Now recall thatcj , j = 0,1, . . . , is a sequence of real numbers such thatc0 = 1,

andXk = ∑∞
j=0 cj ξk−j . We impose the following (mutually exclusive) conditions:

(C.1)

cj = jH−1−1/αR(j) with H �= 1/α,0< H < 1,(5)

whereR(j) is slowly varying at infinity, and

∞∑
j=0

cj = 0 whenH − 1/α < 0.

(C.2)

∞∑
j=0

|cj |τ < ∞ for someτ such that 0< τ < α, τ ≤ 1

and
∞∑

j=0

cj �= 0.
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Throughout what follows we let, withbn as in (4),

γn =


nH−1/αR(n)bn, if the condition (C.1) is satisfied,( ∞∑

j=0

cj

)
bn, if the condition (C.2) is satisfied.

Becausebn = n1/αh(n), one hasnH−1/αR(n)bn = nHu(n) for a slowly vary-
ing u(n).

The following result is taken from Kasahara and Maejima [(1988), Theo-
rems 5.1–5.3], but see also the references given there, especially Astrauskas
(1983).

PROPOSITION 1. (i) Assume that the condition (C.1) is satisfied. Then the
finite-dimensional distributions of the process γ −1

n S[nt] converge in distribution to
those of the LFSM process 	α,H(t), H �= 1/α.

(ii) Assume that the condition (C.2) is satisfied. Then the finite-dimensional
distributions of the process γ −1

n S[nt] converge in distribution to those of the
α-stable Lévy motion Zα(t).

Note that the statement (ii) of this result holds for the entire range 0< α ≤ 2,
but our interest is only on the range 1< α ≤ 2 because, as was mentioned earlier,
the local time forZα(t) does not exist when 0< α ≤ 1. So in the situation of (5)
with H −1/α < 0 but

∑∞
j=0 cj �= 0 [which case was excluded in the statement (i)],

this restrictsα to either 1< α < min{2, 1
H

} or α = 2 when 1
H

> 2.

3. Statements and discussions of the main results. It is assumed that the
constantsβn,n ≥ 1, involved throughout below is such thatβn → ∞ with
n−1βn → 0 asn → ∞. For any functionh(y), we define

Mh,η( y) = sup{h(u) : |u − y| ≤ η} and mh,η( y) = inf{h(u) : |u − y| ≤ η}.(6)

Also, under the condition (C.2), we shall henceforth restrict to the situation
1 < α ≤ 2 for the reason mentioned above, so that according to our convention
the limit Zα(t) in Proposition 1(ii) becomes	α,H (t) with H = 1/α.

THEOREM 2. Assume that either one of the conditions (C.1) or (C.2) is
satisfied. In addition, assume that ξ1 satisfies Cramér’s condition

lim sup
|u|→∞

∣∣E[
eiuξ1

]∣∣ < 1.

Let, f (y) be such that M|f |,η( y) and Mf 2,η( y)are Lebesgue integrable for some
η > 0 and ∫ ∞

−∞
(
Mf,δ( y) − mf,δ( y)

)
dy → 0 as δ → 0.(7)
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Then the finite-dimensional distributions of the process n−1βn

∑[nt]
k=1 f (βn ×

(γ −1
n Sk + x)) [indexed by (t, x)] converge in distribution to those of

(
∫ ∞
−∞ f (y) dy)L(t,−x).

Note thatL(t,−x) will have the same distribution as that ofL(t, x) only when
theα-stable Lévy motionZα(t) involved in the definition of LFSM is symmetric
around zero (which is always true in the case of FBM, the caseα = 2).

REMARK 1. There are alternative requirements onf (y) that will imply those
stated in Theorem 2. For example, one possibility is to assume that the set of
discontinuity points off (y) is of Lebesgue measure zero, together with the
Lebesgue integrability ofM|f |,η( y). [It is clear that condition (7) is then implied
by the dominated convergence theorem]. Also, as will be indicated later (see
the Remark 7), it is possible to relax the Lebesgue integrability ofMf 2,η( y) to
that of local Lebesgue integrability. Thus the second possibility is to assume the
local Riemann integrability off (y), together with the Lebesgue integrability of
M|f |,η( y). In particular, Theorem 2 holds for the important situation in which
f (y) = I(c,d)( y). (Here the limit will remain the same if the open interval(c, d)

is replaced by the closed interval[c, d] or by a semi-open interval.)

REMARK 2. In the i.i.d. situationSk = ∑k
j=1 ξj , with βn = γn = bn = √

n,
and whenf (y) is assumed to be Riemann integrable such that|f (y)| ≤ B(1 +
|y|−1−c) for someB > 0 andc > 0, Borodin and Ibragimov [(1995), Theorem 2.1,
Chapter IV, page 143, and Theorem 2.2, Chapter IV, page 145] show that the
conclusion of Theorem 2 holds without the Cramér’s condition. Whenf (y)

is as above, we mention, without going into the details, the following partial
extensions: (a) Theorem 2 extends to the situation whereξ1 is nonlattice without
satisfying the Cramér’s condition but only under the restrictionb−1

n βn = O(1),
wherebn is as in (4). [In the important caseβn = γn, this will include the situation
of condition (C.2), as well as that of condition (C.1) whenH − 1/α < 0, but
unfortunately will exclude the caseH − 1/α > 0.] (b) Similarly, Theorem 2
extends to the situation whereξ1 has a lattice distribution whenb−1

n βn → 0 [which
in the caseβn = γn will include the situation of condition (C.1) whenH −1/α < 0,
but not otherwise].

REMARK 3. Regarding the results available in the direction of this pa-
per, Akonom (1993) deals with the situation (of a Brownian motion limit)
where

∑∞
j=0 j |cj | < ∞ with

∑∞
j=0 cj �= 0, E[|ξ1|p] < ∞ for some p > 2,

limu→∞ uτE[eiuξ1] = 0 for someτ > 0 and the distribution ofξ1 has a Lebesgue
density. Then the main result obtained there implies the conclusion of Theorem 2
whenf (y) = I[a,b]( y) andγn = √

n. This situation is a special case of that of
condition (C.2) forα = 2, and Theorem 2 requires only thatξ1 satisfies Cramér’s
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condition and is in the domain of attraction of a normal distribution and that∑∞
j=0 |cj | < ∞ with

∑∞
j=0 cj �= 0. The underlying situation (with a Brownian mo-

tion limit) of Park and Phillips (1999, 2001) is the same as that of Akonom (1993)
but the form off (y) is not restricted tof (y) = I[a,b]( y), however, the (Lipschitz
type) conditions imposed there onf (y) are unfortunately rather strong in addition
to requiring further moment conditions onξ1.

Tyurin and Phillips (1999) consider the situation whereXk is in the truncated
form Xk = ∑k

j=0 cj ξk−j , in addition to the restrictionH − 1/2< 0. In addition to
the underlying assumptions of Akonom (1993) on the distribution ofξ1 indicated
above, it is further required thatE[|ξ1|q ] < ∞ for q > 1

H
. The limiting Gaussian

process involved here will be different from a FBM, but will have similar
properties. (It is easy to see that the results of the present paper hold for the
truncated caseXk = ∑k

j=0 cj ξk−j also with the changes in the limiting forms taken
into account.)

Now, an example given in Borodin and Ibragimov [(1995), Chapter IV,
page 143] shows that the requirement (7) onf (y) in Theorem 2 cannot be avoided
entirely. The next result relaxes that requirement, but assumes conditions stronger
than the Cramér’s condition.

THEOREM 3. Assume that either one of the conditions (C.1) or (C.2) is
satisfied.

(i) Suppose that, for some integer n0, the n0-fold convolution of the distribution
of ξ1 has a nonzero absolutely continuous component. Let f (y) be Lebesgue
integrable such that supy∈R |f (y)| < ∞. Then the conclusion of Theorem 2 holds.

(ii) Suppose that, for some integer n0 > 0,
∫ |∏n0−1

j=0 E[eiug(j)ξj ]|du < ∞
where g(j) = ∑j

i=0 ci and n−1βn × ∑n0−1
k=1 f (βn(γ

−1
n Sk + x)) converges in

probability to 0. Assume further that f (y) and f 2( y) are Lebesgue integrable.
Then the conclusion of Theorem 2 holds.

Note that if
∫ |E[eiuξ1]|pdu < ∞ for some p > 0, then the condition∫ |∏n0−1

j=0 E[eiug(j)ξj ]|du < ∞ for some integern0 > 0 in statement (ii) above
is satisfied.

Note that the requirements onf (y) in the first statement are stronger than
those in the second statement; consider, for instance,f (y) ∼ |y|τ as|y| → 0 with
0 > τ > −1/2. Also, as in Theorem 2 (see Remark 1), the integrability off 2( y)

in the second statement can be relaxed to that of local integrability.
Let us make some remarks regarding the requirement onn−1βn

∑n0−1
k=1 f (βn ×

(γ −1
n Sk + x)) in statement (ii). First, it is redundant whenn0 = 1. Whenx = 0 and

βn = γn, an important case in applications, the requirement is satisfied because the
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quantity reduces ton−1βn

∑n0−1
k=1 f (Sk), which clearly converges in probability

to 0 in view ofn−1βn → 0.
Suppose thatx �= 0. Then the additional condition lima→∞ sup|y|≥a |f (y)| < ∞

is sufficient because, for each 1≤ k < n0, with probability tending to one
βn(γ

−1
n Sk + x) will be supported in a neighborhood of±∞. The same is the case

whenx = 0 andβnγ
−1
n → ∞.

In the remaining casex = 0 and βnγ
−1
n → 0, suppose, for instance, that

f (y) ∼ |y|τ as |y| → 0 with 0 > τ > −1/2. Then with probability tending to
one,n−1βn|f (βnγ

−1
n Sk)| ≤ Cn−1βn|βnγ

−1
n |τ = C(n−1βn)

1+τ (nγ −1
n )τ → 0.

REMARK 4. So far our results are forfn( y) = βnf (βny) based onf (y).
It is possible to extend Theorems 2 and 3 to more generalfn( y) that satisfy
the following conditions: supn

∫ |fn( y)|dy < ∞, supn
1
n

∫ ∞
−∞ |f 2

n ( y)|dy → 0,
limκ→∞ supn

∫
{|y|≥κ} |fn( y)|dy = 0 and, letting

Fn(y) =


∫ y

0
fn(u) du, if y ≥ 0,

−
∫ 0

y
fn(u) du, if y < 0,

there is anF(y) such thatFn(y) → F(y) at all continuity points of F(y).
These conditions are satisfied whenfn( y) = βnf (βny) with F(y) = ∫ ∞

0 f (u) du

if y ≥ 0 and F(y) = ∫ 0
−∞ f (u) du if y < 0, and, in fact, we shall use the

assumptions onf (y) only in the form of the above conditions. Theorem 3(ii)
extends as follows. Assume, for some integern0 > 0,

∫ |E[eiuξ1]|n0 du < ∞
and n−1 ∑n0−1

k=1 fn(γ
−1
n Sk + x) converges in probability to 0. Then, iffn( y)

satisfy the above conditions,n−1 ∑[nt]
k=1 fn(γ

−1
n Sk + x) converges in distribution

to
∫ ∞
−∞ L(t, y − x) dF (y). Similarly, Theorem 3(i) extends, under the additional

assumption sup{n,y} σ−1
n |fn( y)| < ∞ for someσn → ∞ with σn

n
→ 0.

The next result may be viewed as a discrete approximation to the local time of
the LFSM, which we obtain as a by-product to Theorem 3(ii) (whose requirements
are satisfied withn0 = 1). Note that the approximation is inL2, in contrast to
the distributional approximation in Theorems 2 and 3. Note also that in this case
γn = nH .

THEOREM 4. Suppose that f (y) and f 2( y) are Lebesgue integrable. Then,
for each t ,

βn

n

[nt]∑
k=1

f

(
βn

(
	α,H

(
k

n

)
− x

))
→

( ∫ ∞
−∞

f (y) dy

)
L(t, x) in L2.

The next result is a continuous analogue of the preceding result.
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THEOREM 5. Assume that f (y) and f 2( y) are Lebesgue integrable. Then

1

κ1−H

∫ κt

0
f

(
κH

(
	α,H

(
s

κ

)
− x

))
ds →

( ∫ ∞
−∞

f (y) dy

)
L(t, x) in L2

for each t and x as κ → ∞.

As noted in connection with Theorem 3(ii), the Lebesgue integrability off 2( y)

in Theorems 4 and 5 can be relaxed to that of local Lebesgue integrability.

REMARK 5. Note that because the distribution ofnH	α,H (k/n) is the same
as that of	α,H(k), it follows from Theorem 4 that 1

n1−H

∑[nt]
k=1 f (	α,H (k) −

xnH ) converges in distribution to(
∫ ∞
−∞ f (y) dy)L(t, x) as n → ∞. Similarly,

1
κ1−H

∫ κt
0 f (	α,H (s)−xκH )ds converges in distribution to(

∫ ∞
−∞ f (y) dy)L(t, x)

asκ → ∞, in view of Theorem 5.

REMARK 6. One has 1
κ1−H

∫ κt
0 f (κH (	α,H (s/κ) − x)) ds = κH

∫ κt
0 f (κH ×

(	α,H (s) − x)) ds. Whenf (y) = I[0,1)( y) and κH = 1/η, the right-hand side
reduces to1

η

∫ t
0 I[x,x+η)(	α,H (s)) ds.

4. Proofs of the results. The proposition stated next is just a formalization of
the approximation (1), the proof of which is postponed to the next two sections
because it requires many auxiliary results. In this section we derive Theorems 0
and 2–5 as consequences of it. Recall that we let

φε(z) = 1

ε
√

2π
exp

{
− z2

2ε2

}
and φ(z) = 1√

2π
exp

{
− z2

2

}
.

PROPOSITION6. Let fn( y) = βnf (βny). Assume that the conditions of any
one of Theorems 2 or 3 are satisfied. Let Ln(t, x) = 1

n

∑[nt]
k=q fn(γ

−1
n Sk +x), where

q = 1, except under the second part of Theorem 3 in which case q = n0 with n0 as
involved there, and

Ln,ε(t, x) = 1

n

[nt]∑
k=1

∫ ∞
−∞

fn(γ
−1
n Sk + x + zε)φ(z) dz.

Then

lim
ε→0

lim
n→∞ sup

t,x
E

[(
Ln(t, x) − Ln,ε(t, x)

)2] = 0.

We next deal withLn,ε(t, x) through the following series of steps.
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LEMMA 7. For each ε > 0,

sup
t,x

∣∣∣∣∣Ln,ε(t, x) −
( ∫ ∞

−∞
f (z) dz

)
1

n

[nt]∑
k=1

φε(γ
−1
n Sk + x)

∣∣∣∣∣(8)

is bounded by a nonrandom quantity that converges to 0 as n → ∞.

PROOF. For convenience takeε = 1. LetFn(y) = ∫ y
−∞ βnf (βnu) du, and de-

fine F(y) such that F(y) = ∫ ∞
−∞ f (u) du if y ≥ 0 and F(y) = 0

if y < 0. Note that Fn(y) → F(y) at all continuity points ofF(y) and
F(b)− F(a) = 0 if 0 /∈ (a, b]. Now Ln,ε(t, x) takes the form

∫ ∞
−∞( 1

n

∑[nt]
k=1 φ(y −

γ −1
n Sk − x)) dFn( y). The difference between this and∫

{|y|≤ν}

(
1

n

[nt]∑
k=1

φ(y − γ −1
n Sk − x)

)
dFn( y)(9)

is bounded in absolute value byC
∫
{|y|>ν} d|Fn|( y) = C

∫
{|u|>βnν} |f (u)|du.

Define ym,i , i = −m, . . . ,0, . . . ,m such thatym,−m = −ν < ym,−m+1 < · · · <

ym,m−1 < ym,m = ν and supi |ym,i −ym,i−1| ≤ 2ν
m

. Then the difference between (9)
and

m−1∑
i=−m

(
1

n

[nt]∑
k=1

φ(ym,i − γ −1
n Sk − x)

)∫ ym,i+1

ym,i

dFn( y)(10)

is bounded in absolute value byC ν
m

∫
{|y|≤ν} d|Fn|( y) ≤ C ν

m
. Further, the dif-

ference between (10) and
∑m−1

i=−m( 1
n

∑[nt]
k=1 φ(ym,i − γ −1

n Sk − x))
∫ ym,i+1
ym,i dF (y)

is bounded in absolute value byC
∑m−1

i=−m | ∫ ym,i+1
ym,i

d(Fn( y) − F(y))|. Thus,
it follows that (8) is bounded in absolute value by a constant multiple of∫
{|u|>βnν} |f (u)|du + ν

m
+ ∑m−1

i=−m | ∫ ym,i+1
ym,i

d(Fn( y) − F(y))|. Denote this by

Q(ν,m,n). It is clear that limν→∞ limm→∞ limn→∞ Q(ν,m,n) = 0. �

LEMMA 8. For each ε > 0, the finite-dimensional distributions of 1
n

×∑[nt]
k=1 φε(γ

−1
n Sk + x) [indexed by (t, x)] converge in distribution to those of∫ t

0 φε(	α,H (s) + x) ds.

PROOF. For notational convenience, takeε = 1. Also, we takex = 0 for
simplicity so that we consider the processn−1 ∑[nt]

k=1 φ(γ −1
n Sk) indexed only

by t . We now invoke Gikhman and Skorokhod [(1969), Theorem 1, page 485].
According to this result, lettingζn(s) = φ(γ −1

n S[ns]), we need to check that [the
finite-dimensional distributions ofζn(s) being convergent to those of the limit
ζ(s) = φ(	α,H (s)) by Proposition 1]

sup
s,n

E[|ζn(s)|] < ∞, lim
η→0

lim sup
n→∞

sup
|s1−s2|≤η

E[|ζn(s1) − ζn(s2)|] = 0.
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Because limκ→∞ sup|y|>κ φ(y) = 0, it is enough to verify that, for everyδ > 0,

lim
η→0

lim sup
n→∞

sup
|s1−s2|≤η

P
(∣∣γ −1

n S[ns1] − γ −1
n S[ns2]

∣∣ > δ
) = 0.

Note that sup|s1−s2|≤η P (|γ −1
n S[ns1] − γ −1

n S[ns2]| > δ) = sup0<τ≤η P (|γ −1
n ×

S[nτ ]| > δ) by the stationarity of{Xk, k ≥ 1}. (Here the stationarity is used only
for convenience and can be avoided.) Now, Theorems 2.2 and 4.1 in Kasahara
and Maejima (1988), give bounds for sup0<τ≤η P (|γ −1

n S[nτ ]| > δ), respectively,
when 0< α < 2 and whenα = 2 . Using the arguments similar to those used in
Kasahara and Maejima [(1988), Section 5], these bounds converge to zero by first
letting n → ∞ and thenη → 0. This completes the proof.�

The next result is related to Theorem 4.

LEMMA 9. For each ε > 0 and for all t and x, n−1 ∑[nt]
k=1 φε(	α,H ( k

n
)+x) →∫ t

0 φε(	α,H (s) + x) ds in L2.

PROOF. t, x andε being fixed, take for notational simplicityt = 1, x = 0 and
ε = 1. Write n−1 ∑n

k=1 φ(	α,H ( k
n
)) in the form

∫ 1
0 φ(	α,H ( [ns]

n
)) ds. Then the

proof is clear because	α,H( [ns]
n

) − 	α,H(s) converges to 0 in probability [see
Samorodnitsky and Taqqu (1994), Proposition 7.4.3] and because supz φ(z) < ∞.

�

The next result is a continuous analogue of Proposition 6 for the LFSM
situation.

PROPOSITION 10. Suppose that f (y) and f 2( y) are Lebesgue integrable.
Let L∗

κ(t, x) = 1
κ1−H

∫ κt
0 f (κH (	α,H (s/κ) − x)) ds. Further, let Lε(t, x) =

(
∫ ∞
−∞ f (y) dy)

∫ t
0 φε(	α,H (s) − x) ds. Then

lim
ε→0

lim
κ→∞ sup

x,t
E[|L∗

κ(t, x) − Lε(t, x)|2] → 0.

The proof of this result is essentially contained in the proof of Proposition 6 for
the situation of the second part (withn0 = 1) of Theorem 3. The next proposition
will be the only remaining fact required (apart from the proof of Proposition 6) to
complete the proofs of Theorems 0 and 2–5.

PROPOSITION 11. For each t and x,
∫ t
0 φε(	α,H (s) − x) ds → L(t, x) in

L2 as ε ↓ 0, where L(t, x) is the local time of 	α,H(s), that is, satisfies the
requirement (2). In addition, L(t, x) has the representation of Theorem 0, that
is, L(t, x) = 1

2π

∫ ∞
−∞

∫ t
0 eiu(	α,H (s)−x) ds du.
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PROOF. Let ϒε = ∫ t
0 φε(	α,H (s) − x) ds. We first show thatϒε is a Cauchy

sequence inL2. For notational convenience, we restrict for the moment tot = 1
and suppress the occurrence ofx. We need to show thatE[(ϒε1 − ϒε2)

2] → 0 as
(ε1, ε2) ↓ 0. Note that

e−v2/2ε2 = ε√
2π

∫ ∞
−∞

eivue−u2ε2/2 du = ε√
2π

∫ ∞
−∞

e−ivue−u2ε2/2du.

Hence, becauseE[ϒε1ϒε2] = E[∫ 1
0

∫ 1
0 φε1(	α,H (s1))φε2(	α,H (s2)) ds1ds2],

E
[
ϒε1ϒε2

] = 1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

E

[∫ 1

0

∫ 1

0
eiu	α,H (s1)−iv	α,H (s2) ds1ds2

]
(11)

× e−u2ε2
1/2−v2ε2

2/2dudv.

Here the order of integration is interchanged, which is permissible for each fixed
ε1 andε2, as can be seen using the fact

∫ 1
0

∫ 1
0 |E[eiu	α,H (s1)−iv	α,H (s2)]|ds dt ≤ 1.

Now if

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

E

[∫ 1

0

∫ 1

0
eiu	α,H (s1)−iv	α,H (s2) ds1ds2

]
dudv < ∞,(12)

then it is clear from (11) thatE[ϒε1ϒε2] converges to (12) as(ε1, ε2) → 0 by the
dominated convergence theorem. Note that

E

[∫ 1

0

∫ 1

0
eiu	α,H (s1)−iv	α,H (s2) ds1ds2

]
≥ 0.

The same is also true forE[ϒ2
ε1

] and E[ϒ2
ε2

], so thatE[(ϒε1 − ϒε2)
2] → 0

as(ε1, ε2) ↓ 0.
We now verify (12) in a stronger form that will be needed below. Note that, mak-

ing now the occurrence ofx explicit, for theL∗
κ(t, x) defined in Proposition 10, one

can directly check that supκ supx E[(L∗
κ(t, x))2] < ∞ (see Remark 8). Thus, in

view of Proposition 10, it follows that lim supε→0 supx E[( ∫ 1
0 φε(	α,H (s)) ds)2] <

∞. Hence, in view of the identity (11) (withε1 = ε2), it follows by Fatou’s lemma
that

sup
x

1

(2π)2

×
∫ ∞
−∞

∫ ∞
−∞

[∫ 1

0

∫ 1

0
E

[
eiu(	α,H (s1)−x)−iv(	α,H (s2)−x)

]
ds1ds2]dudv(13)

< ∞.

Actually we have shown that (11) converges to (12) because (11) is bounded above
by (12).



WEAK CONVERGENCE TO LOCAL TIMES 1783

Thus, we have established the Cauchy convergence of
∫ t
0 φε(	α,H (s) − x) ds

in L2, which entails the convergence inL2. Denote the limit byL(t, x). In
particular, (13) gives∫ d

c

∫ t

0
φε

(
	α,H(s) − x

)
ds dx →

∫ d

c
L(t, x) dx in L1(14)

for every interval[c, d). It remains to show that the limitL(t, x) is indeed a
local time, that is, (2) holds. It is sufficient to verify that

∫ t
0 I[c,d)(	α,H (s)) ds =∫ d

c L(t, x) dx for every interval[c, d). In view of Remark 6, Proposition 10, in
particular, entails that

1

η

∫ t

0
I[x,x+η)

(
	α,H (s)

)
ds −

∫ t

0
φε

(
	α,H(s) − x

)
ds → 0 in L2

asη → 0 first and thenε → 0, uniformly in x (in the sense of Proposition 10).
Hence,∫ t

0
I[c,d)

(
	α,H(s)

)
ds −

∫ d

c

∫ t

0
φε

(
	α,H(s) − x

)
ds dx → 0 in L2

asε → 0. In view of (14), this completes the proof.�

Now note that Propositions 10 and 11,together with Remark 6, proves
Theorem 0. In the same way Theorems 2 and 3 follow from Propositions 6 and 11
and Lemmas 7 and 8. Thus, it only remains to establish Proposition 6.

5. Auxiliary results for the proof of Proposition 6. We first obtain some
estimates on the behavior of the characteristic function of

S∗
j = γ −1

j

j−1∑
k=0

g(k)ξj−k.(15)

(The reason for consideringS∗
j , which is in the form of a finite-order sum of

independent r.v.s, will become clear in the next section.) Hereg(k) = ∑k
i=0 ci

with ci as in the conditions (C.1) or (C.2). Only the distributional properties
of S∗

j will be required, so that for convenience we takeS∗
j = γ −1

j

∑j−1
k=0 g(k)ξk .

Under the condition (C.1), we havecj = jH−1−1/αR(j) for a slowly varying
R(j) (with

∑∞
i=0 ci = 0 if H − 1/α < 0). For simplicity, we shall restrict to

the situationcj ∼ CjH−1−1/α, j → ∞, for a suitable constantC. Then note
that g(k) = ∑k

i=0 ci ∼ C′kH−1/α, k → ∞, for some constantC′, so that for
convenienceS∗

j can be taken to be of the form [withbj as in (4)]

S∗
j =

j∑
k=1

(
k

j

)H−1/α ξk

bj

.(16)
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Note that in view of (3), there is aδ > 0 such that, lettingψ(v) = E[eivξ1],
|ψ(v)| ≤ e−|v|αG(|v|) for all |v| ≤ δ,(17)

whereG(w) is slowly varying at 0.
In the rest of this section it is assumed, without further mentioning, that either

one ofthe conditions (C.1)or (C.2)is satisfied. Further, the constantbj is as in (4).

LEMMA 12. Let Ĥj (u) be the characteristic function of S∗
j defined in (15).

Then there are constants A > 0, λ > 0, d > 0 and 0 < c < α such that |Ĥj (u)| ≤
Ae−d|u|c for all |u| ≤ λbj and j ≥ 1, where bj is as in (4).

PROOF. It is enough to prove the result for all sufficiently largej , because for
anyj0 > 1,

|Ĥj (u)| ≤ 1 = ed|λbj0|ce−d|λbj0|c ≤ ed|λbj0|ce−d|u|c

for 1≤ j ≤ j0 and|u| ≤ λbj .

In the same way, it is enough to consideru such that |u| ≥ C for some
C > 0. We have |Ĥj (u)| = ∏j

k=1 |ψ(γ −1
j g(k)u)|. Consider the situation of

condition (C.1). Then [taking into account the simplification (16)],|Ĥj (u)| =∏j
k=1 |ψ((k

j
)H−1/α u

bj
)|. Suppose first thatH − 1/α > 0. Then|( k

j
)H−1/α u

bj
| ≤ δ

for all |u| ≤ δbj . Thus, in view of (17),

|Ĥj (u)| ≤ exp

{
−

j∑
k=1

∣∣∣∣(k

j

)H−1/α u

bj

∣∣∣∣αG

((
k

j

)H−1/α |u|
bj

)}
for all |u| ≤ δbj .

Recall thatbα
j � jG(b−1

j ) [the G(u) in (4) and that in (17) being the same]. One

can assume for convenience thatbα
j = jG(b−1

j ). Then the sum in the preceeding
exponent becomes

|u|α 1

j

j∑
k=1

∣∣∣∣(k

j

)H−1/α∣∣∣∣α 1

G(b−1
j )

G

((
k

j

)H−1/α u

bj

)
.(18)

Note that with G(w) being continuous, it is bounded on compacts. Hence,
by Potter’s inequality [see Bingham, Goldie and Teugels (1987), statement (ii)
of Theorem 1.5.6, page 25], for everyδ > 0 there is aB > 0, such that
|G(x)/G(y)| ≤ B max{(x/y)δ, (x/y)−δ} for all x > 0, y > 0. Hence, it fol-
lows easily that for a givenε > 0, there areC > 0 and C1 > 0 such that
infk≥[jε] | 1

G(b−1
j )

G(( k
j
)H−1/α |u|

bj
)| ≥ C1|u|−δ for all sufficiently largej and for all
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|u| ≥ C. Thus, (18) is bounded below, for someC′ > 0, by C′|u|α−δ for all suf-
ficiently largej and for all|u| ≥ C. This proves the result under condition (C.1)
whenH − 1/α > 0.

WhenH − 1/α < 0, note that wheneverk ≥ [jε] for a givenε, one has, for
someC > 0, ( k

j
)H−1/α ≤ C for all sufficiently largej . Hence, essentially the same

arguments used above apply for this case also.
It remains to consider the case under condition (C.2). By assumption

∑∞
i=0 ci �=

0 and
∑∞

i=0 |ci| < ∞, so that for some positive constantsϑ and κ one has
ϑ ≤ |∑k

i=0 ci | ≤ κ for all sufficiently large k. Further, in this caseγ −1
j =

b−1
j (

∑∞
i=0 ci)

−1. Hence, the proof of this case is contained in the above arguments.
This completes the proof of the lemma.�

LEMMA 13. Let Ĥj (u) be the characteristic function of S∗
j defined in (15).

Assume that ξ1satisfies the Cramér’s condition of Theorem 2. Then for any d > 0,
there is a B > 0 and a 0 < ρ < 1 such that sup|u|≥dbj

|Ĥj (u)| ≤ Bρj for all j ≥ 1,
where bj is as in (4).

PROOF. As in Lemma 12, it is enough to prove the statement for all
sufficiently largej . Now recall that the Cramér’s condition is actually equivalent
to sup|z|≥a |ψ(z)| < 1 for all a > 0. First consider the situation under (C.1).
WhenH − 1/α < 0 [and taking into account the simplification (16)], we have
( k
j
)H−1/α ≥ 1 for all 1≤ k ≤ j . Thus,

sup
|u|≥dbj

|Ĥj (u)| = sup
|u|≥dbj

j∏
k=1

∣∣∣∣ψ((
k

j

)H−1/α u

bj

)∣∣∣∣ ≤
(

sup
|z|≥d

|ψ(z)|
)j

.

Now considerH − 1/α > 0. Givenε > 0, there is aC > 0 and aj0 such that
( k
j
)H−1/α ≥ C for all k ≥ [jε] andj ≥ j0. Hence, as before, sup|u|≥dbj

|Ĥj (u)| ≤
(sup|z|≥dC |ψ(z)|)j−[jε], j ≥ j0. Because for someµ > 0, j − [jε] ≥ µj for all
sufficiently largej , this proves the result under (C.1). The proof under (C.2) uses
the same arguments.�

To proceed further we need the following result, contained in Bhattacharya and
Ranga Rao [(1976), proof of Lemma 11.1, page 93].

LEMMA 14. Let µ and ν be finite measures on Rk. Let η be a positive number
and Kη a probability measure on Rk satisfying Kη({x : |x| ≤ η}) = 1. Let h be a
real valued Borel measurable function on Rk such that |Mh,η(x)| and |mh,η(x)|
are integrable with respect to µ and ν [where Mh,η(x) and mh,η(x) are as defined
in (6)]. Then

∫
f d(µ − ν)


≥

∫
mf,ηd(µ − ν) ∗ Kη −

∫
(f − mf,2η) dν,

≤
∫

Mf,ηd(µ − ν) ∗ Kη +
∫

(Mf,2η − f )dν.



1786 P. JEGANATHAN

TheKη above will be chosen such that its characteristic functionK̂η(u) satisfies

|K̂η(u)| ≤ C exp{−(η|u|)1/2}(19)

for all realu, whereC is a constant (independent ofη). This is possible in view
of Bhattacharya and Ranga Rao [(1976), Corollary 10.4, page 88], whereKη is
used extensively as a smoothing device. Next we give some inequalities that will
be used in a rather crucial manner in the next section. For this reason we need to
state the bounds explicitly.

LEMMA 15. Assume that ξ1 satisfies the Cramér’s condition. Let Kη be
the smoothing probability measure of Lemma 14 satisfying (18). Then, for some
0 < ρ < 1, ∫

|Ĥj (u)||K̂η(u)|du ≤ C(1+ η−1ρj )

and ∫ ∣∣e−u2ε2/2 − 1
∣∣|Ĥj (u)||K̂η(u)|du ≤ C(ε2 + η−1ρj ).

PROOF. Let λ > 0, α > c > 0, d > 0 be positive constants involved in
Lemma 12 and let 0< ρ < 1 be as in Lemma 13. Then, recalling the inequality
(19) for |K̂η(u)|,∫

|Ĥj (u)||K̂η(u)|du ≤
∫
{|u|≤λbj }

|Ĥj (u)|du +
∫
{|u|>λbj }

|Ĥj (u)||K̂η|du

≤ C

∫
{|u|≤λbj }

e−d|u|c du + Cρj
∫
{|u|>λbj }

e−(η|u|)1/2
du,

which proves the first part. The second part also follows in the same way using
the inequality|e−u2ε2/2 − 1| ≤ u2ε2/2 over the range{|u| ≤ λbj } and using the

inequality|e−u2ε2/2 − 1| ≤ 2 over the range{|u| > λbj }. �

LEMMA 16. Suppose that, for some integer n0, the n0-fold convolution of the
distribution of ξ1 has a nonzero absolutely continuous component. Let Hj be the
probability distribution S∗

j defined in (15). Then there are measures H ∗
j and H ∗∗

j

such that Hj = H ∗
j + H ∗∗

j , satisfying the following properties:

(i) For every r > 0, there is a constant Lr such that H ∗∗
j (R) ≤ Lrj

−r for all
j ≥ n0.

(ii) Let Ĥ ∗
j be the Fourier transform of H ∗

j . Then there are constants A > 0,
λ > 0, d > 0 and 0 < c < α such that for every j ≥ n0 and for every r > 0,
|Ĥ ∗

j | ≤ Ae−d|u|c + Lrj
−r for all |u| ≤ λbj and for a suitable constant Lr .
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(iii) There are constants B > 0 and 0 < ρ < 1 and an integrable function
g(v) ≥ 0 such that sup|u|≥dbj

|Ĥ ∗
j (u)| ≤ Bg(b−1

j u)ρj for all j ≥ 2n0.

PROOF. The proof is similar to the i.i.d. casej−1/2 ∑j
i=1 ξi [see Prohorov

(1952) and Le Cam (1960), pages 68–72]. We briefly recall the arguments. For
simplicity, we consider the casen0 = 1. First, letting F for the distribution
of ξ1, one writesF = θG1 + (1 − θ)G2, where 0< θ < 1 and G1 and G2

are probability measures such thatG1 is absolutely continuous with respect
to the Lebesgue measure with a Lebesgue density uniformly bounded by a
constant. (In particular, the density ofG1 is square integrable and, hence,
|Ĝ1|2 is also integrable.) This is possible becauseF is not entirely disjoint
from the Lebesgue measure. Then the characteristic functionψF (u) of F has
the corresponding decompositionψF (u) = θψG1(u) + (1 − θ)ψG2(u). Hence,
Ĥj (u) = ∏j

k=1(θψG1(γ
−1
j g(k)u)+ (1− θ)ψG2(γ

−1
j g(k)u)) which can be written

in the form Ĥj (u) = ∑j
l=0

∑
∗l θ

l(1 − θ)j−l
∏j

k=1 ψ∗l(γ
−1
j g(k)u), whereψ∗l is

either ψG1 or ψG2 such thatψG1 occurs in the product
∏j

k=1 ψ∗l(γ
−1
j g(k)u)

exactlyl times, and the sum
∑

∗l is with respect to all such products for a givenl.

Now let I c
j = {l : |l − jθ | > j3/4}. Then H ∗∗

j is the measure corresponding to

the Fourier transform
∑

l∈I c
j

∑
∗l θ

l(1− θ)j−l ∏j
k=1 ψ∗l(γ

−1
j g(k)u). It is clear that

H ∗∗
j (R) is bounded in absolute value by

∑
l∈I c

j

(j
l

)
θl(1 − θ)j−l , which is known

to have the bound stated in statement (i). For statement (ii) use the fact that
|Ĥ ∗

j (u)| ≤ |Ĥj (u)| + H ∗∗
j (R) and then use the bound in statement (i) forH ∗∗

j (R),
together with the bound in Lemma 12 for|Ĥj (u)|.

Proof of statement (iii) uses essentially the same arguments of the i.i.d. case
given in Prohorov (1952) or LeCam (1960) mentioned above, the essential facts
being the Cramér’s condition forG1 and the functiong(v) in statement (iii) taken
to be|Ĝ1(av)|2 for a suitable constanta, which is integrable as indicated earlier.
The necessary modifications needed for the present case being essentially the same
as those used in the proofs of Lemmas 12 and 13, the proof is concluded.�

LEMMA 17. Under the situation of the preceeding lemma, for some 0 < ρ < 1,∫
|Ĥ ∗

j (u)|du ≤ C(1+ ρj )

and ∫ ∣∣e−u2ε2/2 − 1
∣∣|Ĥ ∗

j (u)|du ≤ C(ε2 + ρj )

for all j ≥ 2n0.
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PROOF. Regarding the first statement, according to statements (ii) and (iii) of
Lemma 16, there is a 0< ρ < 1 such that for anyr > 0, there is anLr satisfying∫

|Ĥ ∗
j (u)|du =

∫
{|u|≤λbj }

|Ĥ ∗
j (u)|du +

∫
{|u|≥λbj }

|Ĥ ∗
j (u)|du

≤
∫
{|u|≤λbj }

(
Ae−d|u|c + Lrj

−r )du + Bρj
∫

g(u) du

for all j ≥ 2n0. Here the integrable functiong(u) ≥ 0 is the one occurring in
Lemma 16(iii). Similarly, the second statement follows.�

The next result deals with the situation of the second statement of Theorem 3.

LEMMA 18. Suppose that
∫ |E[eiuξ1]|n0 du < ∞ for some integer n0 > 0.

Then for all j ≥ n0, the conclusions of Lemma 17 hold for Ĥj (u) itself.

PROOF. Because Lemma 16(iii) holds for̂Hj(u) itself for all j ≥ n0 with
g(v) = |E[eivξ1]|n0, the proof follows as in the previous lemma using Lemma 12.

�

6. Proof of Proposition 6. We first prove the result under the conditions of
Theorem 2 (assumed to hold henceforth without further mentioning), which will
then essentially contain the proof under the conditions of Theorem 3. Throughout
below the constantsνn are such that

n−1νn → 0 and ν−1
n βn → 0.

Such a choice ofνn is possible becausen−1βn → 0. Further,ρ will always
stand for a constant with 0< ρ < 1. For the functionfa( y) = f (ay), a > 0, the
identities ∫

Mfa,η/a( y) dy = 1

a

∫
Mf,η( y) dy,

(20) ∫
mfa,η/a( y) dy = 1

a

∫
mf,η( y) dy,

which follow in view ofMfa,η/a( y) = Mf,η(ay) andmfa,η/a( y) = mf,η(ay), will
be invoked repeatedly. In particular, because

∫
M|f |,η( y) dy < ∞ for someη > 0,

lim sup
n→∞

∫
M|fn|,ν−1

n
( y) dy = lim sup

n→∞

∫
M|f |,βnν−1

n
( y) dy ≤ C.(21)

We begin with the following result, where and elsewhere recall thatfn( y) =
βnf (βny).

PROPOSITION19.

sup
x

E[|fn(γ
−1
n Sk + x)|] ≤ C(γnγ

−1
k + νnρ

k)

∫
M|f |,βnν−1

n
( y) dy.
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PROOF. We have, withgn(j) = γ −1
n

∑j
k=0 ck [recall thatγn= nH−1/αR(n)bn],

γ −1
n Sk =

0∑
j=−∞

(
gn(k − j) − gn(1− j)

)
ξj +

k∑
j=1

gn(k − j)ξj = S∗∗
nk + γ −1

n γkS
∗
k ,

whereS∗
k = ∑k

j=1gk(k − j)ξj . Note thatS∗
k andS∗∗

nk are independent. Hence,

E[|fn(γ
−1
n Sk + x)|] = E

[∫
|fn(γ

−1
n γky)|dHk

(
y − γ −1

k γn(x + S∗∗
nk )

)]
=

∫
|fnk|dH∗k,

where Hk is the distribution ofS∗
k , H∗k( y) = Hk(y − γ −1

k γn(x + S∗∗
n,k)) and

fnk( y) = fn(γ
−1
n γky). Noting thatS∗

k is in the form of (15), Lemma 14 (with the
measureυ taken to be identically zero) gives

∫ |fnk|dH∗k ≤ ∫
M|fnk |,ν−1

n γnγ −1
k

×
d(H∗k ∗K

ν−1
n γnγ

−1
k

). The right-hand side is bounded by(
∫

M|fnk |,ν−1
n γnγ −1

k
( y) dy)×

(
∫ |Ĥk(u)||K̂

ν−1
n γnγ −1

k
(u)|du) because for a probability measureP with∫ |P̂ (u)|du < ∞, its densityp(y) satisfies

sup
y

p( y) ≤
∫ ∣∣P̂ (u)

∣∣du.(22)

(H∗k ∗ Kη has a density function.) Now
∫ |Ĥk(u)K̂

ν−1
n γnγ −1

k
(u)|du ≤ C(1 +

ρkνnγ
−1
n γk) according to Lemma 15. Also,

∫
M|fnk |,ν−1

n γnγ −1
k

( y) dy = γnγ
−1
k ×∫

M|f |,βnν−1
n

( y) dy in view of (20). Hence, the proof follows.�

Note that

sup
ε,x

E

[∫ ∞
−∞

|fn(γ
−1
n Sk + x + zε)|φ(z) dz

]
≤ sup

x
E[|fn(γ

−1
n Sk + x)|].(23)

Further, E[|f 2
n (γ −1

n Sk + x)|] = β2
nE[|f 2(βn(γ

−1
n Sk + x))|] and, hence, by

Proposition 19,

sup
x

E[|f 2
n (γ −1

n Sk + x)|] ≤ Cβn(γnγ
−1
k + νnρ

k)

∫
M

f 2,βnν
−1
n

( y) dy.

Now note that n−1 ∑n
k=1(γnγ

−1
k + νnρ

k) ≤ C becauseγk = kHu(k) with
0 < H < 1 andu(k) slowly varying. Thus, by (20) and becausen−1βn → 0,

sup
x

1

n2E

[
n∑

k=1

|f 2
n (γ −1

n Sk + x)|
]

sup
ε,x

1

n2E

[
n∑

k=1

∫ ∞
−∞

|f 2
n (γ −1

n Sk + x + zε)|φ(z) dz

]


→ 0.(24)
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REMARK 7. If we let f (τ)( y) = f (y)I(|y| > τ), then supx βnE[|f (τ)(βn ×
(γ −1

n Sk + x))|] is bounded byC(γnγ
−1
k + νnρ

k)
∫

M|f (τ )|,βnν−1
n

( y) dy, in view of
Proposition 19, where limτ→∞ lim supn→∞

∫
M|f (τ )|,βnν

−1
n

( y) dy = 0 if∫
M|f |,η( y) dy < ∞ for someη > 0. Then without loss of generality,f (y) in

Theorem 2 can be taken to have a compact support; in particular, the integrability
of Mf 2,η( y) can be relaxed to local integrability.

The next lemma will ease the computations to be carried out further on.

LEMMA 20. Let Zk , k ≥ 1, be i.i.d. standard Gaussian random variables
independent of {ξj :−∞ < j < ∞}. Then, for each ε > 0,

sup
ε,t,x

E

[{
1

n

[nt]∑
k=1

(
fn(γ

−1
n Sk + x + Zkε)

−
∫ ∞
−∞

fn(γ
−1
n Sk + x + zε)φ(z) dz

)}2]
→ 0.

PROOF. Define theσ -fields �j = σ(S1, . . . , Sn,Z1, . . . ,Zj ). Because{Zk}
and {Sk} are independent,E[fn(γ

−1
n Sk + x + Zkε)|�k−1] = ∫ ∞

−∞ fn(γ
−1
n Sk +

x + zε)φ(z) dz. The differences1
n
{fn(γ

−1
n Sk + x + Zkε) − E[fn(γ

−1
n Sk + x +

Zkε)|�k−1]} form martingale differences with respect to{�k, k ≥ 1}. Hence, the
expectation in the statement of the lemma is bounded byE[ 1

n2

∑n
k=1

∫ ∞
−∞ f 2

n (γ −1
n ×

Sk + x + zε)φ(z) dz]. The proof follows by (24). �

FINAL ARGUMENTS OF THE PROOF OF PROPOSITION 6. For notational
convenience, and because all the bounds derived below will be independent of
x, we restrict to the casex = 0. In the same way, we restrict tot = 1. In view
of the preceeding Lemma 20, it is enough to show thatE[{ 1

n

∑[nt]
k=1(fn(γ

−1
n Sk) −

fn(γ
−1
n Sk + Zkε))}2] → 0 by letting firstn → ∞ and thenε → 0. Then, in view

of (24), it is enough to show that

1

n2

n∑
j=1

n∑
k=j+1

E
[(

fn(γ
−1
n Sj ) − fn(γ

−1
n Sj + Zjε)

)
(25)

× (
fn(γ

−1
n Sk) − fn(γ

−1
n Sk + Zkε)

)]
converges to 0 by first lettingn → ∞ and thenε → 0. Recall that fork > j,

γ −1
n Sk =

0∑
l=−∞

(
gn(k − l) − gn(1− l)

)
ξl +

j∑
l=1

gn(k − l)ξl +
k∑

l=j+1

gn(k − l)ξl
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with gn(j) = γ −1
n

∑j
k=0 ck andγn = nH−1/αR(n)bn. This is the same as

γ −1
n Sk = S∗∗

nkj + γ −1
n γk−jS

∗
k−j ,

whereS∗
k−j = ∑k−j−1

q=0 gk−j (q)ξk−q . BecauseS∗
k−j andS∗∗

nkj are independent,

E[fn(γ
−1
n Sj )fn(γ

−1
n Sk + Zkε)]

= E

[
fn(γ

−1
n Sj )

∫
fn(γ

−1
n γk−jy) d

(
Hk−j ∗ Gεnkj

)
( y − γ −1

k−j γnS
∗∗
nkj )

]
,

whereHk−j is the distribution ofS∗
k−j , Gσ is Gaussian with mean 0 and variance

σ 2 and

εnkj = εγ −1
k−jγn.

Using similar identities, it follows that (25) can be written in the form

1

n2

n∑
j=1

E

[(
fn(γ

−1
n Sj ) − fn(γ

−1
n Sj + Zjε)

)
(26)

×
n∑

k=j+1

∫
fnkj d

(
H #

k−j − H #
k−j ∗ Gεnkj

)]
,

where we have setfnkj ( y) = fn(γ
−1
n γk−jy) andH #

k−j ( y) = Hk−j ( y − γ −1
k−j ×

γnS
∗∗
nkj ). We first show that, for everyδ > 0, the quantity

1

n2

n∑
j=[nδ]

E

[(
fn(γ

−1
n Sj ) − fn(γ

−1
n Sj + Zjε)

)
(27)

×
n∑

k=j+[jδ]

∫
fnkj d

(
H #

k−j − H #
k−j ∗ Gεnkj

)]

converges to 0, first by lettingn → ∞ and thenε → 0. By takingυ = H #
k−j ,

µ = H #
k−j ∗ Gεnkj

andKη = K
ν−1
n γnγ −1

k−j
in Lemma 14, one gets upper and lower

bounds for ∫
fnkj d

(
H #

k−j ∗ Gεnkj
− H #

k−j

)
.(28)

By looking at these bounds, it is clear that we need to obtain bounds for the
following:∫

M
fnkj ,ν−1

n γnγ −1
k−j

d
(
H #

k−j ∗ Gεnkj
∗ K

ν−1
n γnγ −1

k−j
− H #

k−j ∗ K
ν−1
n γnγ −1

k−j

)
,(29) ∫ (

M
fnkj ,2ν−1

n γnγ −1
k−j

− fnkj

)
dH #

k−j ,(30) ∫ (
fnkj − m

fnkj ,2ν−1
n γnγ

−1
k−j

)
dH #

k−j .(31)
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Regarding (30), we have, again using Lemma 14 withυ = 0 andKη = K
ν−1
n γnγ −1

k−j
,

∫ (
M

fnkj ,2ν−1
n γnγ −1

k−j
− fnkj

)
dH #

k−j

≤
∫ (

M
fnkj ,3ν−1

n γnγ −1
k−j

− m
fnkj ,ν−1

n γnγ −1
k−j

)
d
(
H #

k−j ∗ K
ν−1
n γnγ −1

k−j

)
≤

∫ (
M

fnkj ,3ν−1
n γnγ −1

k−j
( y) − m

fnkj ,3ν−1
n γnγ

−1
k−j

( y)
)
dy

(32)
×

∫
|Ĥk−j (u)|∣∣K̂

ν−1
n γnγ −1

k−j
(u)

∣∣du

≤ Cγnγ
−1
k−j

( ∫ (
M

fn,ν
−1
n

( y) − m
fn,ν

−1
n

( y)
)
dy

)
(1+ ρk−j νnγ

−1
n γk−j )

= C(γnγ
−1
k−j + νnρ

k−j )

∫ (
M

f,βnν−1
n

( y) − m
f,βnν−1

n
( y)

)
dy,

where we have used (22), Lemma 15(i) [S∗
k−j is in the form (15)] and the

identity (20). In the same way, the final bound (32) holds for (31) also. Now
consider (29). Lethk−j ( y) be the Lebesgue density ofH #

k−j ∗ K
ν−1
n γnγ −1

k−j
. Then

∫
M

fnkj ,ν−1
n γnγ −1

k−j
d
(
H #

k−j ∗ Gεnkj
∗ K

ν−1
n γnγ −1

k−j
− H #

k−j ∗ K
ν−1
n γnγ −1

k−j

)
(33)

=
∫

M
fnkj ,ν

−1
n γnγ

−1
k−j

( y)

[∫
hk−j ( y − zεnkj )φ(z) dz − hk−j ( y)

]
dy.

Now [recall thatH #
k−j ( y) = Hk−j ( y − γ −1

k−j γnS
∗∗
nkj )]∣∣∣∣ ∫ hk−j ( y − zεnkj )φ(z) dz − hk−j ( y)

∣∣∣∣
=

∣∣∣∣ ∫ (
e
−u2ε2

nkj /2 − 1
)
e
iu( y−γ

−1
k−j γnS∗∗

nkj )(
Ĥk−j ∗ K̂

ν−1
n γnγ

−1
k−j

)
(u) du

∣∣∣∣
≤

∫ ∣∣e−u2ε2
nkj /2 − 1

∣∣∣∣(Ĥk−j ∗ K̂
ν−1
n γnγ −1

k−j

)
(u)

∣∣du.

Using this and Lemma 15(ii), (33) is bounded in absolute value by( ∫
M|fnkj |,ν−1

n γnγ −1
k−j

( y) dy

)( ∫ ∣∣e−u2ε2
nkj /2 − 1

∣∣∣∣(Ĥk−j ∗ K̂
ν−1
n γnγ −1

k−j

)
(u)

∣∣du

)
≤ C(ε2

nkj + ρk−j νnγ
−1
n γk−j )γnγ

−1
k−j

( ∫
M|f |,βnν−1

n
( y) dy

)
(34)

≤ C(ε2
nkj γnγ

−1
k−j + νnρ

k−j ).
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Thus, summing (32) and (33), (28) is bounded in absolute value by a constant
multiple of (Q(n) + ε2

n,k−j )γnγ
−1
k−j + (Q(n) + 1)νnρ

k−j , where

Q(n) =
∫ (

M
f,βnν−1

n
( y) − m

f,βnν−1
n

( y)
)
dy.

In addition,E[|fn(γ
−1
n Sj ) − fn(γ

−1
n Sj + Zjε)|] ≤ C(γnγ

−1
j + νnρ

j ) by Propo-
sition 19 and (23). Thus, (27) is bounded in absolute value by a constant multiple
of

1

n2

n∑
j=[nδ]

(γnγ
−1
j + νnρ

j )

(35)

×
n∑

k=j+[jδ]

((
Q(n) + ε2

nkj

)
γnγ

−1
k−j + (

Q(n) + 1
)
νnρ

k−j )
.

Now note thatεnkj = εnH (k − j)−Hu(n)(u(k − j))−1, where the slowly varying
u(n) is such thatγn = nHu(n). Whenk ≥ j +[jδ] andj ≥ [nδ], there is a constant
C(δ) depending onδ such thatnH(k − j)−H ≤ C(δ) for all sufficiently largen.
Hence, one can check that1

n2

∑n
j=[nδ] γnγ

−1
j

∑n
k=j+[jδ] ε2

n,k−j γnγ
−1
k−j ≤ C∗(δ)ε2

for some constantC∗(δ). In addition, 1
n2

∑n
j=1γnγ

−1
j

∑n
k=j+1νnρ

k−j → 0,
1
n2

∑n
j=1νnρ

j
∑n

k=j+1γnγ
−1
k−j → 0 and 1

n2

∑n
j=1νnρ

j
∑n

k=j+1νnρ
k−j → 0. (Re-

call thatn−1νn → 0.) Also, Q(n) → 0 by (7). Thus, for eachδ > 0, (27) con-
verges to 0 asn → ∞ andε → 0. Hence, it remains to show that the difference
between (26) and (27) converges to 0, first by lettingn → ∞ and thenδ → 0.
The same arguments used in Proposition 19 show that| ∫ fn(γ

−1
n γk−j y) d(H #

k−j ∗
Gεnkj

−H #
k−j )( y)| is bounded byC(γnγ

−1
k−j + νnρ

k−j ). Hence, it can be seen that

it is enough to show that1
n2

∑[nδ]
j=1γnγ

−1
j

∑n
k=j+1γnγ

−1
k−j and 1

n2

∑n
j=[nδ] γnγ

−1
j ×∑j+[jδ]

k=j+1γnγ
−1
k−j converge to 0, first by lettingn → ∞ and thenδ → 0. This is true

for the first of these because it is bounded by1
n2

∑[nδ]
j=1 γnγ

−1
j

∑n
l=1 γnγ

−1
l . The

same is true for the second one because it can be rewritten as

1

n2

n∑
j=[nδ]

γnγ
−1
j

[jδ]∑
l=1

γnγ
−1
l ∼ C

γ 2
n

n2

n∑
j=[nδ]

γ −1
j [jδ]γ −1

[jδ]

∼ C
δ1−Hγ 2

n

n2

n∑
j=[nδ]

jγ −2
j ∼ Cδ1−H asn → ∞,

for eachδ > 0, where we have used the factjγ −2
j is regularly varying with index

1− 2H > −1. This completes the proof of Proposition 6 under the assumptions of
Theorem 2.
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Now consider the proof under the assumptions of Theorem 3. First, consider
Theorem 3(i). Because supy |f (y)| ≤ C, we have1

n

∑2n0−1
j=1 |fn(γ

−1
n Sj + x)| ≤

Cn0βn

n
, whereβn

n
→ 0. Hence, one can restrict to the sum1

n

∑n
j=2n0

fn(γ
−1
n Sj +x).

Proceeding as in the proof of Proposition 19 and using Lemma 16(i) and the first
part of Lemma 17,for any r > 0, there is anLr such thatE[|fn(γ

−1
n Sk + x)|] is

bounded by ∫
|fn(γ

−1
n γky)|dy

( ∫
|Ĥ ∗

k (u)|du

)
+ CβnLr

kr

≤ Cγnγ
−1
k

∫
|f (y)|dy + CβnLr

kr

for all k ≥ 2n0, whereH ∗
k is as in Lemma 16 corresponding to the distribution

Hk of S∗
k . Hence, (24) (with the sums restricted to 2n0 ≤ k ≤ n) also holds,

because
∫

f 2( y) dy ≤ (supy |f (y)|) ∫ |f (y)|dy. It remains to deal with (26),
where as above, one can restrict the sum toj andk such thatk > j + 2n0 and
j ≥ 2n0. In the same way as above but using the Lemma 17(ii), (28) is bounded
by Cγnγ

−1
k−j (ε

2
nkj + ρk−j ) + CβnLr

(k−j)r
whenk > j + 2n0. Thus, the same arguments

used earlier under the assumptions of Theorem 2 become applicable whenr > 1.
[Now γnγ

−1
k−j ρ

k−j + βnLr

(k−j)r
plays the role of the earlierνnρ

k−j , where only the

factsn−1νn → 0 and
∑n

k=j+1ρk−j < C were used.] This completes the proof of
Proposition 6 under Theorem 3(i).

Regarding the proof under Theorem 3(ii), note that we are considering the sum
1
n

∑n
j=n0

fn(γ
−1
n Sj + x) restricted ton0 ≤ j ≤ n. Here we use the conclusions of

Lemma 18, which hold forHj itself for j ≥ n0. The bound in Proposition 19 now
becomesCγnγ

−1
k

∫ |f (y)|dy and the conclusion (24) (with the sums restricted
to n0 ≤ k ≤ n) also holds. Also, in dealing with (26) one can restrict the sum to
j andk such thatk > j + n0 (andj ≥ n0), because

|E[fn(γ
−1
n Sj + x)fn(γ

−1
n Sk + x)]|

≤ E1/2[f 2
n (γ −1

n Sj + x)]E1/2[f 2
n (γ −1

n Sk + x)]
so that, similar to (24),1

n2

∑n
j=n0

|E[fn(γ
−1
n Sj + x)fn(γ

−1
n Sj+q + x)]| → 0 for

each fixed 1≤ q ≤ n0. Further, as above, (28) is now bounded byCγnγ
−1
k−j (ε

2
nkj +

ρk−j ) whenk > j + n0. Hence, the proof of Proposition 6 is concluded.�

REMARK 8. Under the conditions of Theorem 3(ii), it is implicit in the
preceeding proof that, for every 0< s1 < s2 ≤ 1, supx E[{ 1

n

∑[ns2]
j=[ns1] fn(γ

−1
n ×

Sj + x)}2] is bounded byC
n

∑[ns2]
j=[ns1] γnγ

−1
j (

βn

n

∫
f 2( y) dy + 1

n

∑[ns2]
k=j+1γnγ

−1
k−j ).

Similar bounds hold under Theorem 3(i) and under Theorem 2. One can establish
analogous bounds for supx E[{ 1

n

∑[ns2]
j=[ns1] fn(γ

−1
n Sj + x)}2l] for integersl ≥ 1.
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