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Consider a sequenceé;, = Z;"zocjék_j, k>1, wherec;, j >0, is a
sequence of constants afiff —oo < j < oo, is a sequence of independent
identically distributed (i.i.d.) random variables (r.v.s) belonging to the domain
of attraction of a strictly stable law with index @ o« < 2. Let S, =
Z’J‘.:l X j. Under suitable conditions on the constansit is known that
for a suitable normalizing constam,, the partial sum proces;z,,—ls[m]
converges in distribution to a linear fractional stable motion (indexed by
a and H, 0 < H < 1). A fractional ARIMA process with possibly heavy
tailed innovations is a special case of the proc&gs In this paper it is
established that the process®g, Y1) £ (B, (v, 1St + x)) converges in
distribution to (/%% f(»)dy)L(t, —x), whereL(z, x) is the local time of
the linear fractional stable motion, for a wide class of functigiis) that
includes the indicator functions of bounded intervals of the real line. Here
Bn — oo such tham—lﬁ,, — 0. The only further condition that is assumed
on the distribution of4 is that either it satisfies the Cramér’s condition or has
a nonzero absolutely continuous component. The results have motivation in
large sample inference for certain nonlinear time series models.

1. Introduction. Consider a sequendg, —oo < j < oo, of independent
identically distributed (i.i.d.) random variables (r.v.s) belonging to the domain of
attraction of a strictly stable law with indexf« < 2. DefineX; = Z?io cibi—j,
wherec;, j > 0, is a sequence of real numbers. Sgt= Z’jzl Xj, k>1.Then
under suitable conditions on the constanjsit is known that for a suitable
0 < H <1 and for a suitable slowly varying functiorn(n), the finite-dimensional
distributions of the proces{aHu(n))—ls[m] converge in distribution to those of a
linear fractional stable motion (LFSM). See, for example, Kasahara and Maejima
(1988). Wherw = 2, the LFSM reduces to the fractional Brownian motion (FBM),
and whenH = 1/«, it is taken to be the:-stable Lévy motion. (Definitions of the
preceding processes are recalled in Section 2.)

Now, for simplicity, let y, = n"u(n). Let the constantgs, be such that
B, — oo with n=18,, — 0. In this paper it is established that the finite-dimensional

distributions of the process 8, >\"} (B, (v, 1Sk + x)) (indexed byr andx)
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converge in distribution to those ()ﬂ'fooo f(y)dy)L(t,—x), whereL(z, x) is the
local time of the LFSM, for a wide class of functiond y) that, in particular,
includes the indicator funions of bounded intervals. (Ehonly further condition
that will be assumed on the distribution&fis that either it satisfies the Cramér’s
condition or has a nonzero absolutely continuous component.)

For the particular situation where the limit gf 5, is a Brownian motion or
a FBM, some partial results in some form are available in Akonom (1993), Park
and Phillips (1999, 2001) and Tyurin andilps (1999), where the motivation is
an interesting development of a large sample theory in some time series models
that have functions of the forrfi(Sx) occurring as regressions. The present paper
has the same motivation.

Major works for the i.i.d. situatios; = Z’jzlg,- that are related to the approach
of the present paper include Skorokhod and Slobodenjuk (1970) and Ibragimov
(1984, 1985). The approach of Ibragimov (1984, 1985) [a thorough account of
which is presented in the book by Borodin and Ibragimov (1995)] does not rely
on the moment conditions and hence, implicitly on the restriction of the Brownian
motion limit, of the earlier approach of Skorokhod and Slobodenjuk (1970) but
mainly on the requirement of the attraction E’]‘-lej to stable laws. This
approach is based on the representation

n

B v -1 1¢ -1 * (1 —iuy s\ 7

Sy B S0 =3 o= [ (23 e S L da,

=] = —oo\"
where f,(y) = B, f(B,y) and ﬁ,(u) is the Fourier transform off,,(y). The
conditions sought (in the i.i.d. case) are naturally through the Fourier transform
ﬁ,(u) which in certain situations are then transformed in termg,0f) and/or on
the distribution of;.

The approach of the present paper involves the approximation that the difference

12 12 roo .
O =Y Leso-=Y / oy IS+ 200 ()dz— 0 inL2
=1 R

asn — oo first and there — 0, whereg (z) = \/% exp{—é}. The approximating

quantity% DI AR o fn(yn—lsk +z8)¢ (z) dz can be handled relatively easily. This
approach has some advantages, especially for the situation of the present paper,
for instance, the required conditions for establishing the approximation (1) can be
viewed directly througty;, ( v) and the distribution of; themselves.

In Section 2 we recall the definition of the LFSM, state a result on the
existence of its local time and also recall a result on the weak convergence of
the process, 1S,,). Section 3 contains the statements and the discussions of the
main results, and Section 4 contains the proofs of them as consequences of (1).
Section 5 contains auxiliary results for establishing the approximation (1). The
proof of (1) constitutes Section 6.
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NOTATION. The constants,,, 8, and the functionsf(y) and f,(y) =
Bn f (Bny) are exclusively used in the sense they are used above. Simiiérlyis
used in the sense of (1) abovg,in the sense of (4), an¥d;, ,( y) andm, ,(y) in
the sense of (6). We let

8.1 = ——exp| = |
ee= e 2m P 262

[so thate(z) = ¢1(2)]. K stands for the Fourier transform of the measire

I4(-) stands for the indicator function of the sétandR stands for the real line.
Convergence i 2 has the usual meaning of the convergence in mean-square. The
notation C stands for a generic constant that may take different values even at
different places of the same proof.

2. Preliminaries. Let{Z,(t),r € R}, 0 <« < 2 be anx-stable Lévy motion.
This meansZ,(¢) has stationary independent increments having a strictly
a-stable distribution, that is, fos < ¢, Z,() — Z,(s) has the characteristic
function exg—(t — s)[u|*(1 + iB sign(u) tan(%*))}, where|g| < 1 with 8 =0
whena = 1. (Note that this definition of striet-stability for the case = 1 differs
from the usual one in that we take the shift parameter to be 0.) Wheg, Z, (¢)
becomes th8rownian motion with variance 2.

A process{A, u(t),t > 0} is called a LFSM with Hurst parametei,
O0< H < 1,ifitis given by

0
Ao =a [ (=)= = (=) 7, (dw)

—00
t

ta / t — w1 =Yz, (du),
0

where Z, () is ana-stable Lévy motion as above aadis a nonzero constant.
Whena = 2, the LFSM reduces to the FBM. See Samorodnitsky and Taqqu (1994)
and Maejima (1989) for the details of LFSM.

We make the convention that in the cd$e= 1/, the LFSM{A p (), > 0}
is taken to bg Z, (), t > 0}. It is important to note, however, that in this case the
restriction O< H < 1is equivalentto that of ¥ o < 2.

Let {¢(#),t = 0} be a real valued measurable process. Then a measurable
process{L(z,x),t > 0,x € R} is said to be docal time of {¢(¢),t > 0} if for
eachr > 0,

@) /Ot Ta(g(s))ds = /ZHA(X)L(t,X)dx for all Borel subseti of R

with probability one. Without loss of generality we taka, () to be measur-
able.] For the symmetric LFSM, the existencelat, x) is known, see Kéno and
Maejima (1991). For the general LFSM, we have the following result. [It may be
noted that when & « < 1, the local time for{Z, ()} does not exist; the case

1 <« < 2is covered by the next result.]
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THEOREMO. For aLFSM {A, g(t),t >0} withO<a<2and0< H <1,
thereisalocal time L(¢, x) suchthat for eachr and x,

1
lim —

'
I Ag gH(S))ds=L(t, x inLZ2.
110 77/(; [x,x-i—fl)( ,H( )) ( )

Inaddition, L(, x) hastherepresentation L(z, x) = o [0 [§ e/ Pt &)= g dy.

~2r

Next we recall the result on the weak convergence of the partial sum
processSy,;). Recall that;, —oo < j < oo, is a sequence of i.i.d. r.v.s belonging to
the domain of attraction of a strictly stable law with index @ < 2. For the later
purpose we mention that this, in particular, means for @l some neighborhood
of O,

o . . T .
3) E[e"a]= {exp{ —|ul G(|u|)<1+zf5 S|gn(u)tan(7))}, if o #£1,
exp{—{u|G (Jul)}, if =1,
with || < 1, whereG (u) is slowly varying ast — 0. In addition, if one lets
4) b7l=influ>0:u*Gu)=n"1},

then b, is of the formn/*h(n) for some slowly varyingi(n); in fact, b
nG(b;Y). [For the details of these facts, see, e.g., Bingham, Goldie and Teugels
(1987), page 344.]

Now recall that;, j =0, 1, ..., is a sequence of real numbers such that 1,
andX; = Zjio cjér— ;. We impose the following (mutually exclusive) conditions:

(C.1)
(5) cj=j171YeR()  with H#1/a,0< H <1,

whereR(j) is slowly varying at infinity, and
o
> ¢j=0  whenH —1/a <O0.
j=0
(C.2)

o0

> ejlf < oo for somer suchthatO< 7 <o, <1

j=0

and

o0
ZC]' #0.
=0
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Throughout what follows we let, with,, as in (4),

n"=Y“Rmn)b,,  if the condition (C.1) is satisfied,
_ 00
Yn = ( 3 c{,-)b,,, if the condition (C.2) is satisfied.
j=0

Becauseb, = n'/®h(n), one hasn~Y*R(n)b, = n"u(n) for a slowly vary-
ingu(n).

The following result is taken from Kasahara and Maejima [(1988), Theo-
rems 5.1-5.3], but see also the references given there, especially Astrauskas
(1983).

PrRoOPOSITION 1. (i) Assume that the condition (C.1) is satisfied. Then the
finite-dimensional distributions of the process yn—ls[n,] convergein distribution to
those of the LFSM process Ay (t), H # 1/a.

(i) Assume that the condition (C.2) is satisfied. Then the finite-dimensional
distributions of the process y, 1S, converge in distribution to those of the
a-stable Lévy motion Z, (7).

Note that the statement (ii) of this result holds for the entire rangexO< 2,
but our interest is only on the range<la < 2 because, as was mentioned earlier,
the local time forZ, (¢) does not exist when @ o« < 1. So in the situation of (5)
with H —1/a <0 buth’-io cj # 0 [which case was excluded in the statement (i)],

this restrictsx to either 1< o« < min{2, 1} ora = 2 when+ > 2.

3. Statements and discussions of the main results. It is assumed that the
constantsg,,n > 1, involved throughout below is such th#&, — oo with
n—1B, — 0 asn — oo. For any functior( y), we define

(6) My ,(y)=suph(u):lu—y|l<n} and my,(y)=inf{hu):|u—y| <n}.

Also, under the corition (C.2), we shall henceforth restrict to the situation
1 < o < 2 for the reason mentioned above, so that according to our convention
the limit Z, (¢) in Proposition 1(ii) becomea, y (1) with H =1/a.

THEOREM 2. Assume that either one of the conditions (C.1) or (C.2) is
satisfied. In addition, assume that &; satisfies Cramér’s condition
lim sup |E[e™1]] < 1.

|ul—o00

Let, f(y) besuchthat M,y ,(y) and M2 ,(y)are Lebesgue integrable for some
n > 0and

(7) /_OO (My5(y) —myss(y))dy—0  ass— 0.
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Then the finite-dimensional distributions of the process n=18, >V} £ (B, x
(yn—lsk + x)) [indexed by (¢,x)] converge in distribution to those of

([ F(Mdy)L(t, —x).

Note thatL(z, —x) will have the same distribution as that bfz, x) only when
the o-stable Lévy motiorZ, () involved in the definition of LFSM is symmetric
around zero (which is always true in the case of FBM, the aase?).

REMARK 1. There are alternative requirementsony) that will imply those
stated in Theorem 2. For example, one possibility is to assume that the set of
discontinuity points of f(y) is of Lebesgue measure zero, together with the
Lebesgue integrability o#/| ¢ ,(y). [It is clear that condition (7) is then implied
by the dominated convergence theorem]. Also, as will be indicated later (see
the Remark 7), it is possible to relax the Lebesgue integrability7ot , (y) to
that of local Lebesgue integrability. Thus the second possibility is to assume the
local Riemann integrability off ( y), together with the Lebesgue integrability of
M, s ,(y). In particular, Theorem 2 holds for the important situation in which
F(y) = I¢,a)(y). (Here the limit will remain the same if the open interval d)
is replaced by the closed intenval d] or by a semi-open interval.)

REMARK 2. In the i.i.d. situationS; = >>%_; &;, with B, =y, = b, = V/n,
and whenf (y) is assumed to be Riemann integrable such tliay)| < B(1 +
ly|~17¢) for someB > 0 andc > 0, Borodin and Ibragimov [(1995), Theorem 2.1,
Chapter IV, page 143, and Theorem 2.2, Chapter 1V, page 145] show that the
conclusion of Theorem 2 holds without the Cramér’s condition. Wiféry)
is as above, we mention, without going into the details, the following partial
extensions: (a) Theorem 2 extends to the situation where nonlattice without
satisfying the Cramér's condition but only under the restrictigrg, = 0(1),
whereb,, is as in (4). [In the important cagh = y,, this will include the situation
of condition (C.2), as well as that of condition (C.1) whéh— 1/a < 0, but
unfortunately will exclude the cas# — 1/a > 0.] (b) Similarly, Theorem 2
extends to the situation whegghas a lattice distribution whelrylﬂn — 0 [which
in the case8,, = y,, will include the situation of condition (C.1) whei — 1/« < O,
but not otherwise].

REMARK 3. Regarding the results available in the direction of this pa-
per, Akonom (1993) deals with the situation (of a Brownian motion limit)
where 3% g jlc;l < oo with 3% gc; # 0, E[[£1]7] < oo for somep > 2,
lim,_ oo u® E[¢*61] = 0 for somer > 0 and the distribution of; has a Lebesgue
density. Then the main result obtained there implies the conclusion of Theorem 2
when f(y) = Ij4.»(y) andy, = /n. This situation is a special case of that of
condition (C.2) fora = 2, and Theorem 2 requires only thatsatisfies Cramér’s
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condition and is in the domain of attraction of a normal distribution and that
Y 220lejl < cowith 3724 ¢; # 0. The underlying situation (with a Brownian mo-
tion limit) of Park and Phillips (1999, 2001) is the same as that of Akonom (1993)
but the form off (y) is not restricted tof (y) = Ij4.51(y), however, the (Lipschitz
type) conditions imposed there g¢if y) are unfortunately rather strong in addition
to requiring further moment conditions gm.

Tyurin and Phillips (1999) cormder the situation wher&; is in the truncated
form X; = ¥°%_yc;&-;, in addition to the restrictiod/ — 1/2 < 0. In addition to
the underlying assumptions of Akonom (1993) on the distributioéy afdicated
above, it is further required thad[|£1|7] < oo for g > % The limiting Gaussian
process involved here will be different from a FBM, but will have similar
properties. (It is easy to see that the results of the present paper hold for the
truncated cas&; = Z’;ZO cj&r—; also with the changes in the limiting forms taken
into account.)

Now, an example given in Borodin and Ibragimov [(1995), Chapter 1V,
page 143] shows that the requirement (7)fary) in Theorem 2 cannot be avoided
entirely. The next result relaxes that requirement, but assumes conditions stronger
than the Cramér’s condition.

THEOREM 3. Assume that either one of the conditions (C.1) or (C.2) is
satisfied.

(i) Supposethat, for someinteger ng, the ng-fold convolution of the distribution
of & has a nonzero absolutely continuous component. Let f(y) be Lebesgue
integrable such that sup,c | f (¥)| < co. Then the conclusion of Theorem2 holds.

(i) Suppose that, for some integer ng > 0, [|1‘[’;°:_01E[e"“g(/)§f]ldu < o0

where g(j) = Z{ZOC,- and n=18, x Zzoz_ll f(Bu(y, 1Sk + x)) converges in

probability to 0. Assume further that f(y) and f2(y) are Lebesgue integrable.
Then the conclusion of Theorem 2 holds.

Note that if [ |E[e!"é1]|Pdu < oo for some p > 0, then the condition
[l]‘[;fo:_olE[e"”g(f)‘?/]ldu < oo for some integerng > 0 in statement (ii) above
is satisfied.
Note that the requirements of\(y) in the first statement are stronger than
those in the second statement; consider, for instafice) ~ |y|* as|y| — 0 with
0>t > —1/2. Also, as in Theorem 2 (see Remark 1), the integrability &fy)
in the second statement can be relaxed to that of local integrability.
Let us make some remarks regarding the requirementdf, sz’:—ll f(B, x
(yn—lsk + x)) in statement (ii). First, it is redundant wheg= 1. Whenx = 0 and
Bn = va, @an important case in applications, the requirement is satisfied because the
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quantity reduces ta—18, sz’:‘llf(sk), which clearly converges in probability
to 0 in view ofn =18, — 0.

Suppose that £ 0. Then the additional condition lign, o SURy>¢ [ f (3] <00
is sufficient because, for each<d k < ng, with probability tending to one
ﬁn(yn—lsk + x) will be supported in a neighborhood @&fc. The same is the case
whenx =0 andg,y, ! — oo.

In the remaining case = 0 and 8,y, 1 — 0, suppose, for instance, that
f(y) ~|y|* as|y| — 0 with 0> t > —1/2. Then with probability tending to

one,n 18,1 f Buy, 1S < Cn 1841wy, YT = C(n 1B, (ny, 1T — 0.

REMARK 4. So far our results are fof,,(y) = 8, f(8,y) based onf(y).
It is possible to extend Theorems 2 and 3 to more gengré)) that satisfy

the following conditions: supf | f,(y)dy < oo, sup, X /% | f2(y)ldy — O,
lim,— 00 SUR, f{mz:c} | fn(y)|dy =0 and, letting

/y fo(m)du, if y>0,
Fn=1" 4

—/ fn(w)du, if y<O,
y

there is anF(y) such thatF,(y) — F(y) at all continuity points of F(y).
These conditions are satisfied Whéf( y) = B, f (B,y) with F(y) = [5° f () du
if y>0and F(y) = ffoo fw)du if y <0, and, in fact, we shall use the
assumptions ory'(y) only in the form of the above conditions. Theorem 3(ii)
extends as follows. Assume, for some integgr> 0, [|E[ei”51]|”0 du < oo

and n=137 " £, (3718, + x) converges in probability to 0. Then, if; ()
satisfy the above conditions; > Y} £, (v, 1S + x) converges in distribution
to /%0, L(t,y — x)dF(y). Similarly, Theorem 3(i) extends, under the additional
assumption sup ,, oY f(y)| < oo for somes,, — oo with o — 0.

The next result may be viewed as a discrete approximation to the local time of
the LFSM, which we obtain as a by-product to Theorem 3(ii) (whose requirements
are satisfied withig = 1). Note that the approximation is in?, in contrast to
the distributional approximation in Theorems 2 and 3. Note also that in this case

Yo =ntl.

THEOREM 4. Supposethat f(y) and f2(y) are Lebesgue integrable. Then,
for eachz,

%gf@”(j\“ﬂ(%)_x))—’(/_O;f(y)dy)L(t,x) inL2.

The next result is a continuous analogue of the preceding result.
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THEOREMS5. Assumethat f(y) and f2(y) are Lebesgueintegrable. Then

Kl%H/OthQH<Aa’H<£> —x))ds—) </_O; f(y)a’y)L(t,x) inL2

for each r and x as« — oo.

As noted in connection with Theorem 3(ii), the Lebesgue integrabilitggfy)
in Theorems 4 and 5 can be relaxed to that of local Lebesgue integrability.

REMARK 5. Note that because the distribution/df A, (k/n) is the same
as that of Ag 4 (k), it follows from Theorem 4 that, S f (Mg (k) —
xnfl) converges in distribution t6 [0, f(y)dy)L(t,x) asn — oco. Similarly,
KlEH I f(Ag 1 (s)—xk!)ds converges in distribution to/°0_ f(y)dy)L(t, x)
ask — oo, in view of Theorem 5.

REMARK 6. One hasy [§" f(c! (Aa,u(s/k) — x))ds =™ [§" f(c™ x
(Ag. 1 (s) — x))ds. When f(y) =Tj0,1)(y) and« = 1/n, the right-hand side
reduces to% o Tz xtn) (Mg () ds.

4. Proofsof theresults. The proposition stated next is just a formalization of
the approximation (1), the proof of which is postponed to the next two sections
because it requires many auxiliary results. In this section we derive Theorems 0
and 2-5 as consequences of it. Recall that we let

2

1 z
¢)€(Z) = 8\/% exp{ - E

} and ¢(z)= \/%exp{ — 1—22}

PROPOSITIONG. Let f,(y) =B, f(Bny). Assume that the conditions of any
one of Theorems2 or 3 aresatisfied. Let L,, (¢, x) = Z,[c’i]q (v, LSk +x), where
q = 1, except under the second part of Theorem 3 in which case ¢ = ng with ng as

involved there, and
l [nt] o0
-1
Ln,s(tax)=_Z/ fn(yn Sk +X+ZS)¢(Z)dZ-
=1/
Then

lim_lim SupE[(L,(t,x) — Ln,e(t,x))z] =0.

e—>0n—>00 4 y

We next deal withL,, . (¢, x) through the following series of steps.
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LEMMA 7. For eache >0,

1["1]
®) suan,ea,x)—( / f(z)dz) Zmy,, Si + )

t,x

is bounded by a honrandom quantity that convergesto Oasn — oo.

PROOF.  For convenience take= 1. Let F,(y) = [~ o, Buf (Batt) du, and de-
fine F(y) such that F(y) = (% fw)du if y >0 and F(y) =
if y < 0. Note that F,,(y) — F(y) at all continuity points of F(y) and
F(b)— F(a) =01if0 ¢ (a, b]. Now L, . (z, x) takes the formy>_ (2 1" ¢(y —
yn—lsk —x))dF,(y). The difference between this and

[nt]
9) / (—Z(ﬁ(y—yn_lsk —X)) dF,(y)
Iyl=vi \ (21
is bounded in absolute value Wf{\ylw} d|F,|(y) = Cf{\u\>;3nv} | f(u)|du.
Define y, i, i = —m,...,0,...,m such thaty,, -y = —v < ypy—m+1 < - <

Ymm—1 < Ym.m = v and sup|ym.i — ym.i—1| < % Then the difference between (9)
and

m—1 [nt] i
(10) Z ( Z¢(ynzz Vn_lSk_x)> /iyA +1an(y)

i=—m
is bounded in absolute value by - f\>|<v d|F,|(y) < C.. Further, the dif-
ference between (10) arg” 1 (2 1" & (ymi — 1Sk — X)) [ dF ()

ym,i
is bounded in absolute value by Y " _m|fy'"'+ld(Fn(y) — F(y))|. Thus,
it follows that (8) is bounded in absolute value by a constant multiple of
St gy | £ @ du + 2+ Y72 | [mi+1d(F,(y) — F(y))|. Denote this by
Q(v,m,n). Itis clearthat lim_ o lim,;,_ 5 liM,_o O(v,m,n) =0. O

LEMMA 8. For each ¢ > 0, the finite-dimensional distributions of %
Z["’] ¢: (v, 1Sk + x) [indexed by (z,x)] converge in distribution to those of

JE e (A, 1 (s) + x)ds.

PROOF For notational convenience, take= 1. Also, we takex = O for
simplicity so that we consider the proce;sz;1 Z[’” ¢(yn—1Sk) indexed only
by t. We now invoke Gikhman and Skorokhod [(1969), Theorem 1, page 485].
According to this result, letting, (s) = ¢>()/,,_1S[ns]), we need to check that [the
finite-dimensional distributions of,(s) being convergent to those of the limit
£(s) = ¢ (Ay u(s)) by Proposition 1]
S;L:ZDE[Ié“n(S)I] < 00, lim limsup sup E[|¢n(s1) — ¢a(s2)[1=0.

N0 n—o0 |s1—s|<n
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Because lim_, o sy, ¢ (y) = 0, itis enough to verify that, for evey> 0,

lim limsup sup P (|, Sisy — ¥ “Siusy]| > 8) = 0.

1—=0 n—>00" |s;—s5|<n
Note that sup, i<, P(¥y *Sinsil — Vi SSinsatl > 8) = SURy_, <, P(ly,; t x
Sinryl > 6) by the stationarity of X, kK > 1}. (Here the stationarity is used only
for convenience and can be avoided.) Now, Theorems 2.2 and 4.1 in Kasahara
and Maejima (1988), give bounds for gsup_, P(ly, S0l > 8), respectively,
when O< o < 2 and wherw = 2 . Using the arguments similar to those used in
Kasahara and Maejima [(1988), Section 5], these bounds converge to zero by first
lettingn — oo and therny — 0. This completes the proof.[]

The next result is related to Theorem 4.

LEMMA 9. Foreache>0andforal|tandx,n—lz,[{”:’]l%(AmH(%)_,_x)_)
J§ be(Aa i (s) +x)ds in L2

PROOF 1, x ande being fixed, take for notational simplicity= 1, x =0 and
e =1. Write n =1 Y0_; ¢(Aq (X)) in the form fg ¢ (Aq, 1 (%)) ds. Then the
proof is clear becausﬁa,H(@) — Ay, m(s) converges to O in probability [see

Samorodnitsky and Taqqu (1994), Proposition 7.4.3] and because &)p< oco.
]

The next result is a continuous analogue of Proposition 6 for the LFSM
situation.

PROPOSITION10. Suppose that f(y) and f2(y) are Lebesgue integrable.
Let Li(t.x) = 27 [§' f(c" (Ao, (s/k) — x))ds. Further, let Le(t,x) =
(/2% F(3)dY) [o e (Mg 1 (s) — x)ds. Then

lim lim SUPET|L(t, x) — Le(t, x)[?] — O.
x,t

e—>0Kk—>00

The proof of this result is essentially contained in the proof of Proposition 6 for
the situation of the second part (witlg = 1) of Theorem 3. The next proposition
will be the only remaining fact required (apart from the proof of Proposition 6) to
complete the proofs of Theorems 0 and 2-5.

ProrPoOsSITION11. For each r and x, fé ¢e (Ao, (s) — x)ds — L(t,x) in
L? as ¢ 1 0, where L(z, x) is the local time of Ay g(s), that is, satisfies the
requirement (2). In addition, L(z, x) has the representation of Theorem 0, that
is, L(t,x) = % [, JE et Barn®=2) gy dy.
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PrROOF Let T, fo @e (A, 1 (s) — x)ds. We first show that(, is a Cauchy
sequence irL.2. For notational convenience, we restrict for the moment:tol
and suppress the occurrencexole need to show thaf[(Y,, — ng) ]— 0as
(1, €2) | 0. Note that

2 2
eV /22 _ zvu e ! 2 /2d —

\/E JZ
Hence, becausg[ Y, Y¢,]1 = E[ /g fol ey (Ao, 1 (51)) e, (A, H (52)) ds1ds2],

1 (> [= Y b Go—ivAgn (52)
BT )= g [ [ B ) et dssase

22,5 22
x e UWEL/27VE/2 gy dy.

—zvu e ! 82/2d

(11)

Here the order of integration is interchanged, which is permissible for each fixed
1 andeo, as can be seen using the fg@:tfol |E[e/#Dati5D=1vA0 i (52)]| ds dt < 1.
Now if

1 00 oo 1 ,r1 . :
)2 )2/ / E|:/ / et ha ()= Aa 1 (52) dsldsz} dudv < o0,
T —00 J—00 0 Jo

then it is clear from (11) thaE[Y,, Y¢,] converges to (12) ag@1, 2) — 0 by the
dominated convergence theorem. Note that

1,1
0 JO -

The same is also true foE[YZ] and E[YZ], so thatE[(Ys;, — Y¢,)?] — O
as(e1,e2) | 0.

We now verify (12) in a stronger form that will be needed below. Note that, mak-
ing now the occurrence afexplicit, for theL; (¢, x) defined in Proposition 10, one
can directly check that sysup, E[(L} (1, x))?] < oo (see Remark 8). Thus, in
view of Proposition 10, it follows that lim sup, o sup, E[( fy ¢¢ (A, 1(5)) ds)?] <
0. Hence, in view of the identity (11) (witkhy = &2), it follows by Fatou’s lemma
that

P22

o0 o0 1,1 . .
(13) x/ / [/ / E[elu(Aa,H(Sl)_X)_lU(Aa,H(SZ)_X)]dsldsz] du dv
—00 J—00 0 JO

Actually we have shown that (11) converges to (12) because (11) is bounded above
by (12).
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Thus, we have established the Cauchy convergen(fé@f(z\a H(s) — x)ds
in L2, which entails the convergence Ir?. Denote the limit byL(z, x).
particular, (13) gives

d d
(14) /c /()t(f’s(Aa,H(S)—X)dsdx—)/c L(t,x)dx inL!

for every interval(c, d). It remains to show that the limiL(z, x) is indeed a
local time, that is, (2) holds. It is sufficient to verify thff I 4)(Ag u(s)) ds =
fch(t,x)dx for every intervallc, d). In view of Remark 6, Proposition 10, in
particular, entails that

1 , .
;/{; Iie st (Ae, 1 (8)) ds — /0 ¢e(Ag H(s) —x)ds — 0 inL?

asn — 0 first and there — 0, uniformly inx (in the sense of Proposition 10).
Hence,

d
/: Tie.ay(Aa, 1 (s)) ds —/; /: ¢e(Ag m(s) —x)dsdx — 0 inL2

ase — 0. In view of (14), this completes the proofl]

Now note that Propositions 10 and 1thgether with Remark 6, proves
Theorem 0. In the same way Theorems 2 and 3 follow from Propositions 6 and 11
and Lemmas 7 and 8. Thus, it only remains to establish Proposition 6.

5. Auxiliary results for the proof of Proposition 6. We first obtain some
estimates on the behavior of the characteristic function of

j—1
(15) Si=y;t Y gk)Ej &

k=0
(The reason for consndenn@* which is in the form of a finite-order sum of
independent r.v.s, will become clear in the next section.) Hegke = Z _0Ci
with ¢; as in the conditions (C.1) or (C.2). Only the dlstrlbutlonal properties
of S* will be required, so that for convenience we ta3'§e 73 Z g(k)ék
Under the condition (C.1), we hawg = j7-1-Y2R(j) for a sIowa varying
R(j) (with >25c; =0 if H —1/a < 0). For simplicity, we shall restrict to
the situationc; ~ CjH#=17%« j — oo, for a suitable constanf. Then note
that g(k) = fozoci ~ C'kH-Y* k — oo, for some constant’, so that for
conveniences; can be taken to be of the form [withy as in (4)]

J k H-1/a gk
16 St = - =,
(18) / ,;<J> bj
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Note that in view of (3), there is &> 0 such that, lettings(v) = E[e'V51],
a7 [y ()| <e PFGID forall ju| <6,

whereG (w) is slowly varying at 0.
In the rest of this section it is assumed, without further mentioning, that either
one ofthe conditions (C.1)or (C.2)is satisfied. Further, the constant; is as in (4).

LEMMA 12. Let ﬁj (1) be the characteristic function of S;.‘ defined in (15).
Then there are constants A > 0, A > 0,d > 0 and O < ¢ < « such that |ﬁj(u)| <
Ae~du for all |u| < Ab; and j > 1,whereb; isasin (4).

PROOF. Itis enough to prove the result for all sufficiently largebecause for
any jo>1,
|H;(u)] < 1= e? il g=dWbil" < od13bjol" p=dlul’
for1<j < joandlu| <Ab;.

In the same way, it is enough to considersuch thatju| > C for some
C > 0. We have|H )| = 1‘[k 1|w(y] g(k)u)| Consider the situation of
condition (C.1). Then [taking into account the simplification (16H, )| =
l_[k:1|1ﬁ((j)H 1/“lj‘j)|. Suppose first thal — 1/« > 0. Then|(j)H 1/"‘lj‘j| <$

for all |u| < éb;. Thus, in view of (17),
o ((k)H—l/Ollu|)}
G| - —
J bj

for all |u| <6b;.

J
|Hj(u)] sexp{ -
k=

(k)H—l/Ol u
11\J bj

Recall thatb"‘ “jG(b; b [the G (&) in (4) and that in (17) being the same]. One
can assume for convenience tlbgt_ JjG(®; 1. Then the sum in the preceeding
1

exponent becomes
k H-1/a 1 k H-1/a u
(18) |M|a—.z (‘) 1 G((T) —>
J G(b;) J bj

Note that with G(w) being continuous, it is bounded on compacts. Hence,
by Potter’'s inequality [see Bingham, Goldie and Teugels (1987), statement (ii)
of Theorem 1.5.6, page 25], for eved/> O there is aB > 0, such that
|G (x)/G(y)| < BmaxX(x/y)%, (x/y)~%} for all x > 0, y > 0. Hence, it fol-
lows easily that for a giverr > 0, there areC > 0 and C; > 0 such that
infisjer | = G (4 kyH~1/a ‘”‘)| > C1|u|~? for all sufficiently largej and for all

G(b 1y
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lu| > C. Thus, (18) is bounded below, for sorgé > 0, by C’|u|*~¢ for all suf-
ficiently large j and for all|u| > C. This proves the result under condition (C.1)
whenH — 1/a > 0.

WhenH — 1/a < 0, note that whenever > [j¢] for a givene, one has, for
someC > 0, ( kyH-1/e < C for all sufficiently largej. Hence, essentially the same
arguments used above apply for this case also.

It remains to consider the case under condition (C.2). By assumpjjdgc; #

0 and }_72y|ci| < oo, so that for some positive constantsand « one has
U< |Zk ocil <« for all sufficiently largek. Further, in this case/j_1 =

b (Zl 20Ci)~ 1 Hence, the proof of this case is contained in the above arguments.
ThIS completes the proof of the lemmall

LEMMA 13. Let ﬁj(u) be the characteristic function of S;f defined in (15).
Assume that &; satisfies the Cramer’s condition of Theorem 2. Then for any d > 0,
thereisaB >0anda0< p < 1suchthatsupu‘>db |H (u)| < Bp/ forall j > 1,
whereb; isasin (4).

PROOF As in Lemma 12, it is enough to prove the statement for all
sufficiently largej. Now recall that the Cramér’s condition is actually equivalent
to sup, s, ¥ (2)| <1 for all a > 0. First consider the situation under (C.1).

When H — 1/a < 0 [and taking into account the simplification (16)], we have
(%)H—l/“ >1forall1<k < j.Thus,
~ J Ay J
sup 17,01 = sup [T[w((5) )| =(swpwean)
lul>db; lul>dbj i—1 J b; Iz1>d

Now considerd — 1/a > 0. Givene > 0, there is aC > 0 and ajo such that
(% )H Ve > ¢ forall k > [je] andj > jo. Hence, as before, SUR-ab; |H w)] <
(suﬂz\zdc ¥ ()])/ "€, j > jo. Because for somg > 0, j — [je] > uj for all

sufficiently largej, this proves the result under (C.1). The proof under (C.2) uses
the same arguments]

To proceed further we need the following result, contained in Bhattacharya and
Ranga Rao [(1976), proof of Lemma 11.1, page 93].

LEMMA 14. Let i and v befinite measureson R. Let  be a positive number
and K, a probability measure on RF satisfying K ({xix|<n}) =1.Leth bea
real valued Borel measurable function on R¥ such that | My, ,(x)| and |my, , (x)]
areintegrable with respect to .« and v [where M), ,,(x) and m, ,,(x) are as defined
in (6)]. Then

> [ mpnde =Ky = [(f=mpzpav,

/fd(u—v)
S'/Mf,nd(,u—v)*Kn+/(Mf,2,7—f)dv.
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The K, above will be chosen such that its characteristic funckigtu) satisfies
(19) K@) < Cexp{—(nlul)*/?)

for all realu, whereC is a constant (independent gf. This is possible in view

of Bhattacharya and Ranga Rao [(1976), Corollary 10.4, page 88], wheis

used extensively as a smoothing device. Next we give some inequalities that will
be used in a rather crucial manner in the next section. For this reason we need to
state the bounds explicitly.

LEMMA 15. Assume that £; satisfies the Cramér’s condition. Let K, be
the smoothing probability measure of Lemma 14 satisfying (18). Then, for some
O<p<l],

[ 1 @IIR @l du = c@+ 4o
and

2.2 ~ ~ _ R
f|e 12 |7, )| Ry )] du < C(e2 + 5~1p7).

PROOF Let A > 0,0 > ¢ > 0,d > 0 be positive constants involved in
Lemma 12 and let & p < 1 be as in Lemma 13. Then, recalling the inequality
(19) for | Ky (u)l,

[ 1 @IR i < [ A wldut [ 1A @IR,ldu

[u] < {lu|>rb

<C e~ gy + Cp’ / e_(”'“')l/2 du,
{lul=<Abj} {lu|>Ab;}

which proves the first part. The second part also follows in the same way using

the inequalityle=**¢"/2 — 1] < u®2/2 over the rangé|u| < Ab;} and using the

inequality|e—“2“?2/2 — 1| <2 overthe rang¢lu| > Ab;}. O

LEMMA 16. Supposethat, for some integer ng, the ng-fold convolution of the
distribution of £; has a nonzero absolutely continuous component. Let H; be the
probability distribution S* defined in (15). Then there are measures H; ¥ and H; o
suchthat H; = H; 4 H; i , satisfying the following properties:

(i) For everyr >0, thereisaconstant L, suchthat H;*(R) < L, ;" for all
J = no.

(i) Let ﬁ/* be the Fourier transformof H7. Then there are constants A > 0,
A>0,d>0and 0 < c <« such that for every j > ng and for every r > 0,
|ﬁj.‘| < Ae~dul" [, j=" for all |u| < Ab; and for a suitable constant L, .
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(iif) There are constants B > 0 and 0 < p < 1 and an integrable function
g(v) = 0 such that sup, - qp, |H ()| < Bg(bjflu)pf for all j > 2no.

PROOF  The proof is similar to the i.i.d. casg™¥2¥"/_, & [see Prohorov
(1952) and Le Cam (1960), pages 68—72]. We briefly recall the arguments. For
simplicity, we consider the casey = 1. First, letting F for the distribution
of &1, one writesF = 60G1 + (1 — 0)G2, where 0< 6 <1 and Gy and G2
are probability measures such th@y is absolutely continuous with respect
to the Lebesgue measure with a Lebesgue density uniformly bounded by a
constant. (In particular, the density @, is square integrable and, hence,
|G1|? is also integrable.) This is possible becauseis not entirely disjoint
from the Lebesgue measure. Then the characteristic fundgtiofa) of F has
the corresponding decompositiahg (1) = 0y, (1) + (1 — 0)¥g,(u). Hence,

Hj () =TTi_1 06, (v g(ou) + (1= 0)¥6,(y; *g(k)u)) which can be written

in the form H;(u) = Y}_g >, 0/ L — 6)/ 7' TTi_, lﬁ*l(yj_lg(k)u), wherev,, is

either g, or ¥, such thatyg, occurs in the producﬂ,i:1 w*l(yj‘lg(k)u)
exactly/ times, and the surl_,; is with respect to all such products for a givien

Now let [¢ = {i:|l — j6| > j3*). Then H}* is the measure corresponding to
the Fourier transfomZ,e,jq >0 A—0)"T_, w*l(yi‘lg(k)u). It is clear that
H7*(R) is bounded in absolute value Wzg;‘ (J)6' (1 — 0)/~, which is known

to have the bound stated in statement (i). For statement (ii) use the fact that
|H?(u)| <|Hj()|+ H*(R) and then use the bound in statement (i) £t (R),
together with the bound in Lemma 12 fidd; (u)|.

Proof of statement (iii) uses essentially the same arguments of the i.i.d. case
given in Prohorov (1952) or LeCam (1960) mentioned above, the essential facts
being the Cramér’s condition fa¥1 and the functiorg (v) in statement (iii) taken
to be|(A}1(av)|2 for a suitable constant, which is integrable as indicated earlier.
The necessary modifications needed for the present case being essentially the same
as those used in the proofs of Lemmas 12 and 13, the proof is concluded.

LEMMA 17. Under thesituation of the preceedinglemma, for some0 < p < 1,
[ 18 @lau<ca+ph
and
[ €72 1)1} )l du < € €2 4 )

for all j > 2no.
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PrROOF Regarding the first statement, aoding to statemets (ii) and (iii) of
Lemma 16, there is a @ p < 1 such that for any > 0, there is arL, satisfying

J1tdn= [ e [0

< / (Ae= " 4 L, j~")du + Bp’ / gu)du
{lul=<Ab,}

for all j > 2ng. Here the integrable functiog(z) > 0 is the one occurring in
Lemma 16(iii). Similarly, the second statement follow§l

The next result deals with the situation of the second statement of Theorem 3.

LEMMA 18. Suppose that [|E[e!“51]]"0du < oo for ‘some integer ng > 0.
Then for all j > ng, the conclusions of Lemma 17 hold for H () itself.

PROOF Because Lemma 16(iii) holds f(ﬂ (u) itself for all j > ng with
g(v) = |E[¢'V51]]"0, the proof follows as in the previous lemma using Lemma 12.
O

6. Proof of Proposition 6. We first prove the result under the conditions of
Theorem 2 (assumed to hold henceforth without further mentioning), which will
then essentially contain the proof under the conditions of Theorem 3. Throughout
below the constants, are such that

nty, >0 and v, ﬂn—>0

Such a choice ofy, is possible because=1g8, — 0. Further,p will always
stand for a constant with 8 p < 1. For the functionf,(y) = f(ay), a > 0, the
identities

1
/Mfa,n/a(y)dy= —/Mf,n(y)dy,

a

(20) 1
/mfa,n/a(y)dy= ;/mm(y)dy,

which follow in view of Mz, ,/a(y) = My, (ay) andm g, p/a(y) =m ¢y (ay), will
be invoked repeatedly. In particular, becayis¥| 7| ,(y) dy < oo for somen > 0,

(21)lim sup [ Mz, £ v

We begin with the following result, where and elsewhere recall haty) =

PrROPOSITION19.

SUPELLf, (St + 011 = COmp o 0mp®) [ My 5 a0y,
X

~1(y)dy =Ilim sup M -1(y)dy <C.
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PROOF  We have, withg, (j) = 71 ] _, cx [recall thaty, = n =R (n)b,),

0

k
vitSk= > (gnlk— ) —gn(X— N)Ej+ Y gnlk — )E; = Six + v Sy
j=—OO j:l

whereS; = Z’;Zl grk(k — j)&;. Note thatS; andS,; are independent. Hence,
B0 e+ = B[ [ 105 el di(y = v e+ 50) |

- / | foukl dHo,

where Hy is the distribution ofS{, Hu(y) = Hi(y — v Tva(x + S5%)) and
Jax(¥) = fn(yn_lyky). Noting thatS; is in the form of (15), Lemma 14 (with the
measurev taken to be identically zero) gives| fox | d Hix < flenk"U;lynyk—l X
d(HiC * Kv;iynykfl). The right-hand side is bounded bﬁ/M‘fnkLU;lynykfl( y)dy) x
(f |Hk(“)”Ku;1y,,yk—1(“)| du) because for a probability measur® with

[1P(u)|du < oo, its densityp( y) satisfies
(22) supp(y) = [ |PGw)du.
.

(Hy * K, has a density function.) Novyp|ﬁk(u)k\1};lynykfl(u)|du <C1+

p*v, v, tye) according to Lemma 15. Alsq, Mip vty (D) dy = Va¥i t X
[M‘f| ﬁnvfl(y)dy in view of (20). Hence, the proof follows.]

Note that
(23) supE[ i |fn<y;1sk+x+ze>|¢<z>dz]ssupE[|fn<y;1Sk+x>|].

Further, E[| f2(y, 1Sk + x)I1 = BZE[f2(Bu(v, 1Sk + x))I] and, hence, by
Proposition 19,

SUPELL 207, XS+ 011 = Chuy 4 0ap™) [ M2y a()dy.
X

Now note thatn Y 0_;(yay, L + vap®) < C becausey, = k" u(k) with
0 < H < 1 andu(k) slowly varying. Thus, by (20) and because'g, — 0,

1 n
Sup-—E [ SO S + x)l}
k=1 — 0.

(24)
1 [

sup;E[} j / L£2(, LSy +x+z£)|¢>(z)a’z}

& k=1""%°
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REMARK 7. If we let f@(y) = f(I(y| > 1), then sup B, E[| f (B, x
(yn—lsk + x))|] is bounded b)C(y,,yk_1 + v, p%) fle(T)lvﬁnUnfl(y) dy, in view of
Proposition 19, where lig, o lim sug,%oo[M‘f(T)"ﬁnv};l(y) dy = 0 |if
I Mf.,(y)dy < oo for somen > 0. Then without loss of generality;(y) in
Theorem 2 can be taken to have a compact support; in particular, the integrability
of M2, (y) can be relaxed to local integrability.

The next lemma will ease the computations to be carried out further on.

LEMMA 20. Let Z;, k > 1, bei.i.d. standard Gaussian random variables
independent of {£;: —oo < j < oo}. Then, for each e > 0,

[nt]
SUpE H - > (fn(yn_lSk +x + Zie)

e,t,x k=1
o 2
- / fn()/n_lsk +x +18)¢(z)d2)} j| — 0.

ProoF.  Define theo-fields F j = o (S1,..., Sy, Z1, ..., Z;). Becauseg Z}
and {S;} are independentE[ f, (v, 1Sk + x + Zke)|F k-1 = [ fu (v, LSk +
X + z&)¢(2) dz. The differencest{ f, (v, 1Sk + x + Zie) — E[fu(yy 1Sk + x +
Zre)|F r—1]} form martingale differences with respect{{o,, k > 1}. Hence, the

expectation in the statement of the lemma is boundeﬂ[lgl% i) fnz(yn‘l X
Sk + x + z&)¢ (z) dz]. The proof follows by (24). [J

FINAL ARGUMENTS OF THE PROOF OF PROPOSITION 6. For notational
convenience, and because all the bounds derived below will be independent of
x, We restrict to the case = 0. In the same way, we restrict to= 1. In view

of the preceeding Lemma 20, it is enough to show BEE Y1) (£, (718K —
fn(yn_lsk + Zre))}2] — 0 by letting firstn — oo and there — 0. Then, in view
of (24), it is enough to show that

1 n n
_ZZ Z E[(fn(yn_lsj)_fn(yn_lsj+Zj8))
(25) "=k

X (o 180 — S LSk + Zie))]

converges to 0 by first letting — oo and there — 0. Recall that fok > j,
0 k

J
VilSi= > (gnk =D —ga(L=D)& + > gnlk =D&+ Y gulk —DE

I=—00 =1 I=j+1
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with g, (j) = v, 1 3/_g ek andy, = n# =Y« R(n)b,. This is the same as
Vi 'Sk =Sit v - Si_
whereS;_; = Zg;é_lgk_j (9)ék—q- Becauses;_; andS ;' are independent,

nkj
ELL A ) fur Sk + Zie)]

= E[fm,;lsj) / Fa Vi i3 d(Hij % Gy ) (3 = v VnSJZﬂ}
whereH;_; is the distribution ofS,j_j, G, is Gaussian with mean 0 and variance
o?and
Enkj = eyk__lj V-
Using similar identities, it follows that (25) can be written in the form

1 n
DD E[(fn(yn‘lSj) — IS+ Zje))
(26) i

n
x ). /fnk,-d(H,f_‘,- —H;f_‘,- *Gsnkj):|’
k=j+1

where we have sef.;(y) = fu (v, ty—;y) and H;f_‘,-(y) = Hi_j(y — ka; X
¥YnSpr;)- We first show that, for ever§ > 0, the quantity

1 n
2 2 E[(fn(yn_lSj)—ann_leJ“Zig))
(27) n j=I[nd]

n

# #
X /fnkj d(Hk—j - Hk—j * Genkj):|
k=j+[jé]

converges to O, first by letting — oo and thens — 0. By takingv = H,f‘_j,
U= H,f‘_j * G, and K, = Kv—ly -1 in Lemma 14, one gets upper and lower

n Yn¥rg—j
bounds for
28) / fug d(HE % Gy — HEE ).

By looking at these bounds, it is clear that we need to obtain bounds for the
following:

# #
(29) / M ity A % Gy x K L~ He jxK

' Vi) vi }’kilj ) ’
. #
(30) f (M.fnk_f,zv;lynyki;i — fukj) dHE,

(31) f(fnk/ =Myt t ) AHE .

Yi—j
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Regarding (30), we have, again using Lemma 14 with 0 andk,, = K, - -~
n J

#
/(ankj,zv;lynykjlj - fnkj)de_j

<

#
- / (ankjs:’)‘);lynyk:lj m.fnk_iv”;lynykijji) d(Hk_] * KUil

n yn)/,f_lj)
= /( Sukjs 3Vn YnVi—j -t (y) fnkj’3Vn_anVk_,lj(y)) dy

(32)
X_/|Hk—j(”)||Kv,71ynyk__1,(”)|du
< Cynyk__lj< / (M, () =m, -1()) dy)(l + 0 vy )

= COomyy ) (M s () =y () dy,

where we have used (22), Lemma 15(8121‘/. is in the form (15)] and the
identity (20). In the same way, the final bound (32) holds for (31) also. Now

consider (29). Lek,—;(y) be the Lebesgue densr[yﬂf# * K - PR Then
k—j
/ank/ Vn Vnyk /d(Hk J *Gsnk/ V Vi / Hk J KV;lyny/:_J}')
(33)

e f e (= 26 #(@) dz = iy () | dy
Now [recall thatH}_;(y) = Hi—;(y — v vaSii;)]
‘fhk_m—zenkj>¢<z>dz—hk_j<y>‘

‘/ —u enk/ ) u(y—y_ ,Vn nk])(Hk j *K ,1 )(u)du

Vn Vk j
- / le™ /2 1) |(Hi, * Evglynykilj)(u)| du.

Using this and Lemma 15(ii), (33) is bounded in absolute value by

(/ ‘fnkﬂ Yy )/n}’k -t (y)dy)< / |€ ¢ enk//z 1||(Hk J *K _l 1/)(M)|dl/t>

(34) <C(ehy +pk_jvnyn_1yk_j)ynyk__lj</lel,ﬁnvn—l(y)dy)

< CEh vyl +vap* ™).



WEAK CONVERGENCE TO LOCAL TIMES 1793

Thus, summing (32) and (33), (28) is bounded in absolute value by a constant
multiple of (Q(n) + &2 ,_ )yva¥;; + (Q() + Dv,p*~7, where

Omy= | My 1(y) —my g -a())dy
S-Bn

In addition, E{| f, (v, 1S)) — fa (v 1Sj + Zje)l] < cmyj—l +v,p/) by Propo-
sition 19 and (23). Thus, (27) is bounded in absolute value by a constant multiple
of

n
2 Z (VnV]'_1+Vnp])
Jj=lns]

(35)

n

XY (M) + &5 vyl + (@) + vt ).

k=j+[jé]
Now note thate,; = en (k — j)~Hu(n)(uk — j))~1, where the slowly varying
u(n) is suchthay, = nu(n). Whenk > j+[js] and;j > [nd], there is a constant
C(8) depending or$ such that:” (k — j)= < C(8) for all suff|C|entIy Iargen
Hence, one can check thé;(Z [(n5] yny] Zk i+Ljs) € ,fk JYnYi_ j < C*(a)e
for some cgnstanf*(a). In addition, < = Z/:l y,%y] Zk:]+1 ””P -J = 0,
LY v SR vy > 0andL Y vupd SR g vk ) — 0. (Re-
call thatn~1v, — 0.) Also, Q(n) — 0 by (7). Thus, for each > 0, (27) con-
verges to 0 ag — oo ande — 0. Hence, it remains to show that the difference

between (26) and (27) converges to 0, first by letting> oo and thens — O
The same arguments usedin Proposmon 19 show th#t(y,,” Ly i) d(Hk j*

Ge,; — Hy_ ;) (y)| is bounded byC (v, yk_/- + v, p*=7). Hence, it can be seen that
8] ‘ - -

itis enough to show thab, Y0 v,y P 0 g vy and L s vyt X

Zfﬁ’ﬂ YaVi_ J converge to O, first by letting — oo and ther§ — 0. Th|s is true

for the first of these because it is boundedj@yg[/”‘s]l YnVj 121 1YV 1 The
same is true for the second one because it can be rewritten as

[jé] 2 n
V 1. -1
Z Yn¥; me, ~C Y v sy
né .
] [nd] j=I[nd]
81 Hyn . 1-H
~C ij ~C$ asn — oo,
Jj=I[nd]

for eachs > 0, where we have used the fa_;‘(;tj‘2 is regularly varying with index
1—2H > —1. This completes the proof of Proposition 6 under the assumptions of
Theorem 2.
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Now consider the proof under the assumptions of Theorem 3. First, consider
Theorem 3(i). Because sppf(y)| < C, we have 22”0 1|fn(yn‘1S +x)| <

Cnobu wherefr — 0. Hence, one can restrict to the s%@j:% Fuy LS+ ).
Proceeding as in the proof of Proposition 19 and using Lemma 16(i) and the first
part of Lemma 17for any r > 0, there is arL, such thatE[|fn(yn‘1Sk + x)|]is

bounded by
= CB,L,
[1notvonas( [ 1 wia)+ <2

< Cyayt f |f(»dy + C”;:,“

for all k > 2no, where H;f is as in Lemma 16 corresponding to the distribution
H; of §;. Hence, (24) (with the sums restricted tag2< k < n) also holds,
because/ f2(y)dy < (sug,lf(y)|)[|f(y)|a’y. It remains to deal with (26),
where as above, one can restrict the sunj tandk such thatk > j 4+ 2ng and

j = 2ng. In the same way as above but using the Lemma 17(ii), (28) is bounded
by Cyny (% + p*=9) + Cﬁ"L)’ whenk > j + 2ng. Thus, the same arguments
used earlier under the assumptions of Theorem 2 become applicable-wh&n

[Now ynyk__ljpk I+ (k”L’ plays the role of the earlier, p*~/, where only the

factsn~tv, — 0 andeZJHp —J < C were used.] This completes the proof of
Proposition 6 under Theorem 3(i).

Regarding the proof under Theorem 3(ii), note that we are considering the sum
1 Z/ —no fn(yn—lsj + x) restricted toig < j < n. Here we use the conclusions of
Lemma 18, which hold for; itself for j > nq. The bound in Proposition 19 now

becomes(?y,,yk‘lf | f(y)|dy and the conclusion (24) (with the sums restricted
to ng < k < n) also holds. Also, in dealing with (26) one can restrict the sum to
j andk such thak > j + ng (andj > ng), because

\ELfu (v, S + %) fu (7 Sk + 2011
< EYV2[£2(y, 718, + 0)1EY2Lf2 (0,718 + x)]

so that, similar to (24).5 >1_, [ELfu (v, 1S + ) fu (1S4 + 1)1l — O for
each fixed X g < nq. Further, as above, (28) is now boundedy, y, ](s
p*=7y whenk > j + ng. Hence, the proof of Proposition 6 is concluded]

nk]

REMARK 8. Under the conditions of Theorem 3(ii) it is implicit in the
preceeding proof that, for every sy < 52 < 1, sug E[{1 Z["SZ] falya X

[ns1]
S; + x)}?] is bounded b)£ Z]nsasl] YnYj (% ffz(y) dy + 3 Z][(nsi]_Fl YnVi— ])
Similar bounds hold under Theorem 3(i) and under Theorem 2. One can establish
analogous bounds for spg ({2 Z["SZ 2y Jn (v 1S+ x)}?] for integers! > 1.
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