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TIME CHANGES OF SYMMETRIC DIFFUSIONS
AND FELLER MEASURES

BY MASATOSHI FUKUSHIMA,L PING HE AND JANGANG Y ING?
Kansai University, SHUFE and Fudan University

We extend the classical Douglas integral, which expresses the Dirichlet
integral of a harmonic function on the unit disk in terms of its value on
boundary, to the case of conservative symmetric diffusion in terms of Feller
measure, by using the approach of time change of Markov processes.

1. Introduction. In the present work, we are concerned with a formula that
goes back to Douglas [6]:

(11 1 fD IVHf(0)2dx = / (F(&) — fOD)2 UE. ) dé dn,

dDx3D\d

whereH f denotes the harmonic function on the planar unit dskith boundary
value f andU (¢, n) = Wﬁs{s—))' _

In 1962, Doob [4] extended ?ormula (1.1) to the case whberés a general
Green space anglD is its Martin boundary by adopting the Naim kernel@s
Fukushima [8] identified the Naim kernel with the Feller kernel soon after and then
utilized the resulting formula (1.1) as a basis to describe all possible symmetric
Markovian extensions of the absorbing Brownian motion on a bounded Euclidean
domain [9]. The Feller kernel was introduced by Feller [7] for the minimal
Markov process on a countable state space for the purpose of describing all
possible boundary conditions on some ideal boundaries. A common feature of
the mentioned approaches is that we are only given a minimal processan
priori and we try to capture its Markovian extensions including the construction of
intrinsic boundaries.

Since the sixties, investigations of Markov processes and associated Dirichlet
forms have been developed considerably and we can now take the following
different but much more stochastic view of the formula (1.1). What is given in
advance is the reflecting Brownian motidh on D and we consider its time-
changed process on d D with respect to a local time ofD. The left-hand side
of (1.1) is the Dirichlet form fory (the trace of the Dirichlet form fok), while the
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right-hand side is its specific Beurling—Deny representation. Equation (1.1) tells us
thatY is of pure jump and that its jumping mechanism, namely, the Lévy system,
is governed by the Feller kernél which can be easily and intrinsically defined
depending only on the absorbing Brownian mot¥p on D.

This viewpoint allows us to extend the formula (1.1) with great generality.
Indeed, we consider in this paper a general symmetric diffusion procesith
a general state spade and its time-changed proce¥son an arbitrary closed
subsetF of E. We show in Section 5 that the jumping measure and the killing
measure folr can be identified with the Feller measureand the supplementary
Feller measuré/, respectively, introduced in Section 2, depending only on the
absorbed proceség onG =E \ F.

The organization of the present paper is as follows. In Section 2, we consider a
conservative Borel right process which is symmetric with respect toafinite
measuren on a general state spaé Let F be a closed subset & and let
X be the process o = E \ F obtained fromX by killing on its hitting
time of F. We introduce a notion of the energy functioriad; for each pair of
X -almost excessive functions @n, a variant of the concept described by Meyer
(see [13]). By means af g, we can readily define the Feller measur&i, dn)

(a bi-measure orF x F), the supplementary Feller measurédé) (a measure

on F informally called an escape measure) and the Feller keviigl n) when

the Poisson kernel exists. In Example 2.1, we exhibit explicit expressions of these
guantities for the case that is thed-dimensional Brownian motiord(> 3) and

F is the(d — 1)-dimensional compact smooth hypersurface.

From Section 3 on, we assume thatis a diffusion, namely, its sample paths
are continuous. In Section 3, we focus our attention on excursions of the sample
paths of X away from the closed sef, and we identify the Feller measure
and supplementary Feller measure with the expectations of certain homogeneous
random measures generated by the endpoints of excursions. We make use of a
description of the joint distribution of endpoints of excursions previously studied
by Hsu [14] for reflecting Brownian motion on a smooth domain.

From Section 4 on, we further assume ti¥tis associated with a regular
Dirichlet space(E,m, ¥, &) (without loss of generality owing to the transfer
method). In Section 4, we first prove thd& always admits an admissible
measureu in the sense that charges no set of zero capacity and possesses
full quasisupportF. We then show, by applying a general reduction theorem
formulated in the final section (Section 8), that the time-changed process
of X with respect to the positive continuous additive functional with Revuz
measurg: can be restricted outside sorie andY -polar set to be a Hunt process.
This reduction enables us to use a general theorem [11] directly to express the
jumping measure and the killing measure in the Beuring—Deny representation of
the Dirichlet form forY by means of the Lévy system &f

By making use of the results in Sections 3 and 4, we prove in Section 5 the
stated main assertion (Theorem 5.1) that the jumping measure and the Kkilling
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measure for the time-changed proc&sare identical to the Feller measure and
the supplementary Feller measure, respectively. Theorem 5.1 tells us that the trace
Dirichlet form €(Hf, Hf) always dominates the generalized Douglas integral
with the Feller measure. By assuming thaiG) is finite, we prove in Section 6
that they are identical under the condition that the energy meaguyyesio not
charge the sef for any u € ¥. This condition is satisfied when the energy
measures are absolutely continuous with respest fthe densities are so-called
square field operatois(u)] andm (F) = 0. We also characterize this condition in
terms of the notion of the reflected Dirichlet space of the pag& oh the seiG
formulated by Silverstein [19, 20] and Chen [3]. In the course of the proof, we
make full use of several results in [11] to recover and extend the method in [4] and
[8] for computing the Dirichlet norm of the classical harmonic function.

In Section 7, we apply the obtained results to the reflecting Brownian motion on
the closure of a bounded Lipschitz domadinc R¢ associated with the Dirichlet
spaceH (D). In this case, the relative boundatp is known to be identical with
the Martin boundary oD, so that Doob’s representation of (1.1) is recovered by
the present approach.

In Section 8, we formulate a general theorem of reduction of a right process to
a Hunt process properly associated with a regular Dirichlet form.

2. Feller measure U, supplementary Feller measure V and Feller kernel.
Let E be a Lusin topological space and tetbe ao -finite positive Borel measure
OnE. LetX = (X;, P*) be a conservative Borel right Markov processiowhich
is m-symmetric in the sense that its transition functipp satisfies

[ pire gman = [ £ pecom@n  Viges*.
Fix a closed seF and putG := F¢. Denote byr the hitting time ofF . Let
pP(x,A):=P*(X, €A, t<T), xeG, ACG,

be the transition function oXs, the absorbed process &f on G, which is
obtained by killingX on leavingG. Then X is symmetric with respect to the
measureng = 1 - m [11]. The resolvent oK s is denoted b)RS.

A measurable functiom on G is said to bex-excessive forXs if for every
x eq,

u(x) =0, e plu(x) tux), 10,

If the above properties hold fomg-a.e. x € G, then u is said to be
a-almost-excessive. A 0-excessive (resp. 0-almost-excessive) function is simply
called excessive (resp. almost excessive). Let us denot&sbthe totality of
X-almost-excessive functions dai finite mg-a.e. and letu, v),,, denote the
integral ofuv with the measure:.
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LEMMA 2.1. Foranyu,v € 4g,

1
(2.1) = pru,v),,,

is nondecreasingast | 0. If moreover v is pQ-invariant in the sense that pQv = v,
t > 0, then (2.1)isindependent of ¢ > 0.

PROOFE We set
e(t)=(u— p?u, v)mG.
Then, forz, s > 0,

<e(r) +e(s),

mg —

e(t+s)=e(t) + (p,ou - p,O_H,u, v)mG =e(t)+ (u— pgu, p,ov)

the last inguality being repiced by equality ib is pP-invariant. O
Let us define thenergy functional of u, v € 85 by
1 0
(2.2) LG(M’U):ItT(]) ;(u —ptu,v)nm-

We note thatLs (u, v) is nothing but the value of the energy functional of the
excessive measune- mg and the excessive function for X in the sense of
Dellacherie-Meyer and Getoor whéfy; is transient and - m is purely excessive
([23], Proposition 3.6). We also have the formula

(2.3) Lgu,v)= lm o(u —aRgu,v)
a—>00

mg

as an increasing limit because, by the Fubini theorem,

o0
(2.4) alu — aRgu, v) —/0 e (1)) Hu — p,o/au, v)mtht.

mg
Fora > 0, let H* be thex-order hitting measure faF, that is,
HYx, B) = E*(e™*T1p3(X7); T <), x€G,BeB(E).

Let H% be denoted by7 and letH*(x, -) be carried byF, sinceF is closed. It is
easy to see that, for anye 8(F)", HY f is a-excessive foX .
We also consider the function a@n defined by

(2.5) q(x)=PX(T =00) (=1— H1l(x)), x €G.

Theng is not only excessive foK g, but aISOp,O—invariant.
We now let, forf, g € bB(F)™,

(2.6) U(f®g)=Lg(Hf Hg), V(f)=Lg(Hf q).

We call U the Feller measure for F with respect ton because it is a bimeasure
in the sense tha’ (I ® I¢) is a (possibly infinite) measure iB € B(F) [resp.
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C € B(F)] for each fixedC (resp.B). MeasureV is a (possibly infinite) measure
on F and is called thesupplementary Feller measure or, more informally, the
escape measurefor F. We see in Section 4 thét is ao -finite measure o x F
off the diagonal and that is ao -finite measure oi¥'.

Forua > 0, we also define the-order Feller measurg&, for F by

(2.7) Ue(f @) =a(Hf, H) o fr8€bB(F)T.
LEMMA 2.2. Theformulaefor f, g € bB(F)" are

8) UG @9 = lim TEMETS(T <1, f(Xp),

(2.9) U(f®g) = lim Us(f ®g).

PROOF  The first formula follows from
PY(T <t, f(Xp)) =Hf(x) — pPHf(x),  x€G.
The second formula is a consequence of (2.3)HAd = Hf — aRSHf. O

The notionU goes back to Feller [7], who introduced a versionlbby (2.9)
and utilized it to describe possiboundary conditions for a minimal Markov
process on a countable state space.

The supplementary Feller meastfehas more specific properties:

LEmmMA 2.3. ()Foranytr >0, « >0,
(2.10) V()= %Eq'mG(T <t f(X7)), febB(F)T,

(211) V(f):a<Haf’q>mG7 f€b°{B(F)+

@iy fm(G) <oo,thenV =0.
(i) 1fm(G) <ocoand P*(T < o0) > Ofor m-a.e.x € G, then P*(T <o0) =1
for g.e. x € G.

PROOFE Part (i) follows fromp,0 invariance ofg, Lemma 2.1 and (2.4). If
m(G) is finite, then the right-hand side of (2.10) tends to zero-asco and we
get (ii). Part (iii) follows from (i) and (ii). O

When the hitting measut® (x, -) has a suitable density with respect to a certain
measureu on F, then the Feller measuré has also a density with respect to
u x . In the rest of this section, we assume that there existfinite measure
@ on F and a finite-valued functiorK (x, &), x € G, & € F, strictly positive
(mg x p)-a.e. such that

(2.12) H(x,B) :/ K(x,E)u(de)  VBe B(F)formg-a.exeq,
B
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and K (-, &) is Xg-almost excessive for ever§y € F. The function K¢ (x) =
K (x, &) is called aPoisson kernel with respect tqu.
We put

(2.13) UE, n) =LK, K", & neF,

which is called &€ller kernel with respect tqu.
In fact, if we define thex-order Poisson kernel by

(2.14) Ko(x, &) =K(x,8) —aROK5(x), x€G, E€F,
and thex-order Feller kernel by

(2.15) Uo(&,m) =a(K5, K", .. & neF,

then, by (2.3),

(2.16) UG = lim U6, m), & neF

and we get from (2.9) that
U(d§,dn) =U (&, nu(d§)u(dn).

ExXAMPLE 2.1 (Brownian motion and a compact hypersurface). Xdte the
standard Brownian motion di¢ with d > 3. Let S be aC® compact hypersurface
so thatG = R \ S is the union of the interior domai; and the exterior
domainD,. The absorbed Brownian motidtfy; has the transition density

PO, y) =n(t,x —y) — EX[n(t = T, X7 — y); T <1],

1 |x|2
n(t,x) = 7(27‘[[)d/2 eX%—y),

whereT is the hitting time ofS by X. Densitypf’(x, y), x,ye€ D; (respx,y €
D.) is the fundamental solution of the heat equation

oul(t, 1
u;t *) = EAxu(t,x), t >0, x e D; (respx € D,),

with the Dirichlet boundary condition

(2.17)

(2.18)

u(,x)=0, xes.
Denote byo the surface measure ¢h Then we can get the expressions
PX(T €ds, X7 €d&€) = g(s, x,&)ds o (d§)

with
19p9x,

(2.19) g x =28 o p ey,
2 8nf§
19p9%x,

(2.20) g x )= E) o p ey,

2 8n§
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where ng and ng denote the inward normal and outward normaléat S,
respectively. A proof of (2.19) was given in [1], page 262. We give a similar proof
of (2.20) for completeness.
We extend a smooth functignon S to D, by
h(y)=EY(h(XT); T < 00), y € D,.

It can be seen that is a harmonic function oD, vanishing atco and hence
the first derivative of: are bounded oD, [see the paragraph below (2.25)]. On
the other hand, we can see from (2.17) that, for éch0 anda > 0, there are
positive constant€'1, C» such that
apQ(x,
(2.21) ‘W‘ < Crexp(—Calx — y|?),
Yk

O<t<T,1<k<d, |x—y|>a.

For largeR > 0, we putDX = {x € D, :|x| < R} and denote its outer boundary
by X . For a fixedx € DX, we have by Green’s formula

9
2/ ps(x y)h( Ydo (y)

- /DR(—EAypSu,y))h(y)dy

1 apdx,y) dh(y)
2 ony ny

By the above observatlons, the last two integrals vanisR as oco. Substituting
(2.18) into the resulting equality and integratingsirwe arrive at

h()da(y)+2/ 2 )= do ().

0
f / 18ps (x y)h(y)da(y) h(x) — pPh(x) = E*(h(X,); T <1),

proving (2.20).
Accordingly, the Poisson kernel and theorder Poisson kernel with respect to
o admit the expressions

K(x.8) =/ g(s.x.6) ds,
(2.22) 0

o0
Ka(x,5)=/ e “g(s,x,8)ds, xeG, £€8.
0
Thea-order Feller kernel, (¢, n) is the sum ofU (¢, n) andU¢ (&, i), where

Usem=a [ KEOKI)dx,

US(E, 1) :oe/De K: ()K" (x)dx, E,neSs.
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From (2.19), (2.20) and (2.22), we can get, gon €adD, & #n,

i —a; (E 77)
Ui =7 [ a-eenTEED el
vse =7 [ a-en 8e(§nf)

By lettingx — oo, we are led to the following expressions of the Feller kernel:

_ L eaneEm AL

@29) U =g [ 5 +al angamg 0 TP
10K (&, 10K (&,

(224) U= RED  2IKEW

2 8nf§ 2 8n§ ’

We consider the special case tSat g, the sphere of radiuR centered at the
origin. The Poisson kernel with respect to the surface measig¢hen expressed
as

1 R2—|x)? x| <R, ne X
‘ ’ x| < ) n R
Q4R |x—nld
2.25 Kx,n) =
( ) (x,m) 1 |x|2—R2
QdR' g |x| > R, n € Xpg,

where2; denotes the area of the unit spher&®ih Note that, forD, = {|x| > R}
and a continuous functiofi on Xg,

(Hf)(x) = fz K@ mfmdom.  xeD,

is the unique harmonic function dp, taking valuef on X and vanishing ato.
By (2.24), we obtain an explicit expression of the Feller kernel:

2
(2.26) U(E,n)=9—dls—n|—d, EneXg, E#£17.

We can also obtain an explicit expression of the supplementary Feller mea-
sureV. By virtue of the above observatioH,1(x) = ‘i, 22 x € D,, and conse-
quently we get from (2.10) and (2.20) that

V(d§) =v(§)o(d$)

1 R\ ap9(x, £,
v = 27/0 as /{x|>R}<1_ IXI"‘2> ng dx. § € Zg.

The integral on the right-hand side converges in view of (2.21). This expression
shows thaw (&) is actually a positive constant, say,independent of so that

(2.27) V(d§) =voo(d§), d§ € B(ZR).

with




3146 M. FUKUSHIMA, P. HE AND J. YING

Some computations similar to those above were carried out in [17] for a certain
Markov process and also in [8] and [14] for diffusions on an interior Euclidean
domain.

3. Endpointsof excursionsand U and V. In the sequel, we further assume
thatX is a diffusion, namely, all of its sample paths are continuoufoto). For
anyw € 2, we define

J(w) = {t € [0, 00) : X;(w) € G},

which is open and consists of all of excursions away frBrof the sample path
of w.
We set, forr > 0,

R(@) =inf(t,c0)NJ  =inf{s >1: X, € F}, inf & = oo,
and, fort > 0,
L(t) =sud0,r)NJ =sup0<s <t:X;€eF}, supz = 0.

Clearly R(t) =T o 6; + ¢ and for anys,t > 0, R(¢) o s + s = R(t + s). By
continuity of paths Xz € F if R(t) <ooandXy ) € FonT <t. The process
X1 Stays onF until X hits F again and is adapted, bitz ) is not adapted in
general.

Fort > 0, we introduce the time reversal operator ay

rio(s)=w( —s),

sothatX; or; = X;—,, s €[0, £].
SinceX is m-symmetric and conservative, we have

(3.1) E™(Y or,) = E™(Y)

for any #;-measurable random varialie(cf. [11], Lemma 4.1.2).
We can see that

L(t)ortIt—T, XL([)OFZ‘=XI—L([)OVI=XT

onT <t.

LEmMmA 3.1. Fort > 0,let 1 C[0,¢], I2 C [¢, c0) be nonempty intervalsand
let A, B € B(F). Then

Pm(L(t) e, X €A, X €G,R(t)elr, Xgy) € B)
(3.2)

=/ P (T et—11,X7r € A)P(T € b —t, X1 € B)m(dx).
G
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In particular,
P"(L(t)el1,Xru €A, X, €G, Xgry) € B, R(t) < 0)

(3.3)

=/ P (Tet—1,Xr € AH(x, B)m(dx).

G

Furthermore,

Pm(L(t) ISR XL(,) €A X, eqG, R(l‘) = OO)
(3.4)

:/ PY(T et — I, X7 € A)g(x)m(dx).
G

Proor Clearly{L(t) € I, X11) € A} € F;. SinceR(t) =T o 6; +t, by the
Markov property and (3.1), we have
P"(L(t)eI1, X1y €A, X, € G, R(t) € I, Xg() € B)
= Em(L(t) €, Xrp) €A, PX’(XO eG,XreB, Tel— t))
= E"[(Lz(en. x,oeap (X1)) o]
=E"[¢p(Xo);: Xr €A, T et — 1],

where ¢(x) = 1g(x)P*(Xr € B,T € I — t). This completes the proof of
(3.2) and (3.3). Equation (3.4) follows from (3.3)J

Denote by the set of all left endpoints of open (excursion) intervals/in
We note fors > 0 thats € I if and only if R(s—) < R(s) and that, in this case,
R(s—) =s. Itis convenient to add an extra pointto E and let

Xoo = A.

For any subsef of E, we write Sp for SU A.
For any nonnegative measurable functidnon Fa x Fa, let us consider a
random measure(V¥, -) defined by

(3.5) K(V, dt) = > W (XR(s—), XR(s))es (D),
O<s: R(s—)<R(s)

whereg; is the point mass at By the above note, the random measuraay also
be written as

k(Wdty= Y W(Xy, Xg(s)es(dr).
O<s:sel

Any function f on F is extended toF, by setting f(A) = 0. By this
convention, f ® g denotes the function oFp x Fa defined byW(x, y) =
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Fg(y) for f,g € BL(F). We further let (f ® Ia)(x,y) = f(x)Ia(y).
Obviously, we have, forf, g € B4 (F),

36) «k(f®gdn= > F(XRrs-)8(Xrs))es (@),
O<s:R(s—)<R(s)<oo

B7)  k(f®Irdy= Y f(Xreo)es@dr).
O<s: R(s—)<o0
R(s)=00

For later reference, we introduce the last exit time frBrdefined by
(3.8) Sr=suft>0:X; € F}, supg =0.
Thens = Sg > 0ifand only if R(s—) < 0o, R(s) = oo and accordingly
K(f ® I, dt) = f(Xs,-)esp(dr).

LEMMA 3.2. The random measure « (¥, ) is homogeneous for any W e
£+(FA X FA).

PROOFE  SinceR(s) o6, +u = R(u + s), we haveX g(s) o 6, = X p(u+s) and

K (W, dt) o6, = > F(XR(uts—)> XRuts))€s(d1)
u<s+u: R(u+s—)<R(u+s)

= Z F(XR(s—), XR(s))€s(dt +u)
u<s:R(s—)<R(s)
=k (V,dt +u) Il

THEOREM3.1. Let f, g€ B, (F). Then
E"c(f®g,0,0))=tU(f®¢g), E"k(f ®1Ia,(0,0))=1V(f), t>0.

PROOF Forn>1,letD, :={tyy=(k—1)/2":k> 1} and I, x = [ty .x—1,
thy) fork > 1.
For 0 < s, we observe thaR(s—) < R(s) and (R(s—), R(s)) N D, # @ if
and only if R(s—) = L(ty.x) € Inx, Xy, € G @and R(s) = R(t,x) for a unique
k depending om.
Therefore, by the monotone convergence theorem and using (3.3) and (2.8), we
get

E"k(f ®g,(0,1))

=E" > f(Xr—)8(Xr(5)
O<s<t: R(s—)<R(s)<+o0

=mE"™ > f(XL0)8(XR0) HLGw0EL £, Xy, €6 R 1) <00)

kity k<t
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=lim Y E" f(XL000)8 (X Rt0s0) HLGw el k. Xy, , €6 R 1y ) <00)

kitg k<t

= lim > /GEX(TE(0,2_”],f(XT))Hg(x)mG(dx)

kitg k<t
- |i£n[2"z]/GEX(T € (0,27, f(X7))Hg(x)mg (dx)

=tU(f ®8).

where[2"¢] is the largest integer dominated bYr 2
In the same way, from (3.4) and (2.10) we get

E"k(f ® Ia, (0.1))
=E" > F(XLes)

O<s<t,R(s—)<00,R(s)=00

=lim Y E" f (X000 LGl X, , €6, Rty 0)=00)

k:ty k<t

—lim Y /GE"(TG(0,2_"],f(XT))q(x)mc;(dx)

k:ty k<t

=Iirrln[2"t]/GEx(T € (0,27, £(X1))g(x)mg(dx)
=1V (f). O

4. Admissible measureand time changed processY. We still work with an
m-symmetric conservative diffusion proceson E. Let (&, ¥) be the associated
Dirichlet form onL2(E; m).

By virtue of the transfer method (see [16, 10]), we can and shall assume without
loss of generality that the Dirichlet spa¢g, m, ¥, &) is regular andX is an
associated strong Markov processimwith continuous sample paths with infinite
lifetime. By the regularity we mean thdt is a locally compact separable metric
spacemn is a positive Radon measure &nwith full support and tha# N Co(E) is
dense in¥ and inCo(E). HereCo(E) denotes the space of continuous functions
on E with compact support. The capacity associated with this Dirichlet form is
denoted by Cap. A sl with Cap(N) is called arg-polar set. The phras&tg.e.”
will mean “except for ar€-polar set.”

A quasisupport of a Borel measure is a smallest quasiclosed set outside of which
the measure vanishes. It is unique up to&he.e. equivalence.

LEMMA 4.1. For a closed set F C E with CapF) > 0, there exists a
nontrivial positive Radon measure ;« on E such that i charges no &-polar set,
w(E \ F) =0 and the quasisupport of . coincideswith F, &-g.e.



3150 M. FUKUSHIMA, P. HE AND J. YING

PROOF As in the preceding sections, we denotelbyhe hitting time ofF.
Take arm-integrable strictly positive functiog on E and set

w(B)=P¥"(X7 € B,T <), BeB(E).

Clearly w(E \ F) =0 andu is a nontrivial positive Radon measure charging
no set of zero capacity. If a quasicontinuous functipre # vanishesu-a.e.,
then E€™(e~T f(X1)) =0 which implies that the quasi-continuous function
E'(e~T f(X71)) vanishesn-a.e. Hencef = 0 &-g.e. onF since the&-g.e. point

of F is regular forF, and we can conclude on account of [11], Theorem 4.6.2, that
F is aquasisupportagi. O

We call a measurg admissiblefor the closed seF if it possesses the properties
stated in Lemma 4.1 and its topological support SupqualsF. The following
sufficient condition for a measuge to be admissible foFr can be shown in the
same way as in the proof of Lemma 4.1 (see also [11], Problem 4.6.1).

LEMMA 4.2. Let F beaclosed set with Cap F) > 0. If there existsa o -finite
measure u with Supgu] = F such that F admits a Poisson kernel with respect to
 inthe sense of Section 2, then  isadmissible for F.

From now on, we consider a closed sEtwith CapF) > 0. We fix an
admissible measure for /. Thenu is a smooth measure. Lét) be the PCAF
(positive continuous additive functional) with Revuz measurand letF be its
support, namely,

F={xeE:P*(Ry=0)=1},
where
Ry =inf{t > 0:¢(t) > 0}.

ThenF is a quasisupport gf (cf. [11], Theorem 5.1.5) and, hence, by choosing
the exceptional set fap appropriately, we may assume that

(4.1) F CF, Cap(F \ F)=0.
Let T = (1;) be the right-continuous inverse ¢f
4.2 T, =inf{s:p(s) > 1}, inf & = oo.
We set
(4.3) Y, =X, t <, wherel = ¢ (o).

ThenY = (Y;,¢, P¥),_ is aright process on the state spacevith lifetime ¢,
which is called a time change &f or the time-changed process (cf. [18]). We add
a cemeten to F and define

YZ‘=A5 tZZ’?
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so that the time-changed processs a right process o' = F U A. We also
note that

(4.4) Y_=X, €F, 1<,

owing to the continuity of the sample path ©f

In general, the procesg = (Y;, ¢, P*), g is not a Hunt process. It could
happen that,_ € F \ F andY may not be quasi-left continuous either. By making
use of a general reduction theorem formulated in Section 8, however, we can show
that the restriction of’ to the outside of a suitable exceptional set is actually a
Hunt process.

To this end, we recall some basic facts about the time-changed prBo@ss
F shown in [11], Theorem 6.2. .1. ProceBsis u-symmetric and the associated
Dirichlet form [denoted by(8 )] on L3(F, 1) is regular. Furthermorey is
properly associated witké, ¥) in the sense thap,u is an &-quasicontinuous
version of Tyu for anyu € L2(F; ), wherep, (resp. T,) denotes the transition
function of Y [resp. theL? semigroup associated witl, £)].

Itis also clear from the preceding definition of the p&thhat the left limitY;_
exists inF for all + > 0. Hence all the conditions in Theorem 8.1 are satisfied by
the time-changed proce¥sand we are led to the next theorem #orThe capacity
on F associated withi€, ¥) is denoted byCap. A setV C F with Cap(N) =0 is
called ané-polar set.

THEOREM4.1. Thereexistsa Borel subset F of F such that
(4.5) F\ F is&-polar and &-polar,

F is Y-invariant and the restriction Y| of the time-changed process Y to Fisa
Hunt process properly associated with &.

By the general theorem, Theorem 8.1, we know only that theFsetF is
&-polar. However, therf \ Fis é- -polar by virtue of [11], Lemma 6.2.5. Hence
F\F:(F\F)+(F\F)

is &-polar as well in view of (4.1).

Finally we notice that the Dirichlet formé, ) admits the following descrip-
tion. Denote byF, the extended Dirichlet space @f and take any: € ¥, to be
&-quasicontinuous. Then, due to (4.1) and [11], Theorem 6.2.1,

F ={feL?F;p: f=u p-a.e.onF for someu € %},
4.6) .
&(f, f)=E6(Hu, Hu), feF, f=up-ae.onF, uef,
whereHu is defined by

Hu(x)=E*(u(X7); T < 00), x€E.
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5. ldentification of jumping and killing measures of Y with U and V.
For simplicity, the restriction of the time-changed procésdo the setF of
Theorem 4.1 is again denoted By ThenY is a Hunt process off U A properly
associated with the regular Dirichlet for(&, £) on L2(F; x) and F \ F is not
only &€-polar, but als€-polar.

Since the Dirichlet forr‘r(é,vfﬁ) onL2(F;p)is regular, it admivts the Beurling—
Deny decomposition; for an§-quasicontinuous functiong g € ¥,

§f.9)=E9fg) + /F M= () ~g0) . ay
(5.1)
+ [ r@geok),
F

where &© is a symmetric form with a strong local property,is a symmetric
positive Radon measure dn x F off the diagonald andk is a positive Radon
measure orF. Measures/ andk are called thgumping measure and thekilling
measure for the Dirichlet form(&, ), respectively.

SinceY is a Hunt process properly associated wigh ¥ ), we can use directly
the general result of [11], Section 5.3, to describandk in terms of the Lévy
system ofY. Let (N (x, dy), ¥) be a Lévy system of . More preciselyN (x, dy)
is akernel onNFa, B(Fp)) with N(x,{x}) =0, x € F, andy = ¢ (¢) is a PCAF
of Y such that, for any € B8+ (Fa x Fa) vanishing on the diagonal,

E¥ (Z W(Y,_, YS)>
s<t

(5.2) t
=Ex(/0 /ﬁAN(YS,dy)\II(YS,y)dW(s)), xeF.

Let v be the Revuz measure ¢fwith respecttd’. Then, by [11], Theorem 5.3.1,
(5.3) J(dx,dy) = ING, dy)v(dx), k(dx) = N(x, A)v(dx).

By the Revuz correspondence, we have, for ény 81 (Fa x Fa) vanishing
on the diagonal,

/ W (x, y)J(dx,dy) =lim iE“ > W (Yo, YOI p(Yy)
Fxixd ’ 110 2t COE

O<s<t
(5.4) . »
=(:{|I—>mOO§EM Z e \IJ(YZ‘_,Y;)I}}(YZ‘),
O<t<oo
1
/V W(x, Ak(dx) =lim ZEF 3" W(¥,_, A)IA(Yy)
F nNO 1 O<s<r
(5.5) -

= lim «E* Y e WY, A)Ia(Y)).
o— 00
O<t<oo
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THEOREMb5.1. Wehave
(56) J>3U onFxF\d, U=0 on(FxF\d)\(F x F),
(5.7) k=V onF, V=0 onF\F.

Furthermore, if there exists a sequence of finite X-excessive measures m;,
increasingto m, then J = 3U andk = V.

PROOF. Itis known thatR, = T, whereT is the hitting time of the suppoft
of ¢. Hence

Ty =iNfls 19 (s) > p()) =inf{s > 1:¢p(s —1) 06, >0} =T 06, +1.
SinceF \ F is &-polar, we have
P (T=T)=1, g-q.ex € E,
and hence
(5.8) Ty = R(1) Vit >0, P*-a.e.foré-q.e.x € E.

For any¥ € 81 (F x F) vanishing on the diagonal, we have from (5.4), (4.4)
and (5.8),

2/ W(x, I (dx.dy) = lim «E* S e Y, _ Y)Y,
g YOV @, dy) = Jim > Yi— YOI (Y))

O<t<oo

= lim «E" 3 e (Xq_, Xo ) I3(X7,)
O<t<oo

= lim aE"(Z,),
a—>0
where
Za= ), e POU(Xpoo) XR0)):

O<t<oo
R(t)<oo

Sinceu is the Revuz measure ¢fwith respect to the conservative symmetric
processX, we have from [11], Theorem 5.1.3, and [18], (32.6), that

aEM(Zy) :oe}Em (/s EX“(ZO,)cM)(u)) :oe}Em /s Sy 006, de(u)
s 0 N 0

1 N
_ a_Em/ Z e_a(¢(t+“)_¢(u))\p(XR(H—u—)’ XR(+uy) A (u)
s 0

O<r<oo
R(t+u)<oo

1 s
:a—Em/ e“"’(")d(j)(u) Z e‘“"b(t)‘lf(XR(z—),XR(z))
0

§ U<t<oo
R(t)<oo
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1 s
=—Em( > e_aqb(t)qj(XR(z—),XR(t))/ 1{¢>u}(u)d€“¢(")),
0

§ R(t)<o0

1
= _Em< Z e_(w(t)qj(XR(z—)’ XR(t)) : (ead)(wt) - 1))

§ R(1) <00
1

:E(Ia_+lo—}_)’

where

Iy =E" ) (1—6_“‘]5(”)‘1’(?(1%0—)’XR(z))},

L O<r<s
R(t)<oo

I =E" ). e_ad)(t)qj(XR(t—)vXR(I))(ead)(S)_1)i|’
Ls<t<0o0
R(t)<oo

and they both are nonnegative. In other words, we have
1
2|, . wdJ=lim =, +1)),
FxF\d a—>00 g

as an increasing limit. By the monotone convergence theorem, we arrive at the
inequality

1 .
2|, . YdJ>-lm I,/
FxF\d § =00

1
:_Em[ Z lIl(XR(t_),XR(,))]

§ O<t<s
R(t)<oo

(5.9)

Here we note that we can insert conditip(x) > 0 in the summand of, because
thisis true forr > T while ¢ (T") = 0 but the path can not be the left end point of an
excursion at timel’ because g.e. point df is regular for itself. By Theorem 3.1,
(5.6) holds. The proof of (5.7) is similar.

Assume now the existence of finike-excessive measurés,, } increasing ton.
This assumption is trivially satisfied whem(E) < co. Choose any nonnegative
function ¥ vanishing ond such thatfﬁxﬁ\d WdJ < oo. We let, for anyu > 0,

Sou= Y. e POU(Xri—), XR())>

u<t<oo
R(t)<oo

so thatl} = E™(Z4.5(e*?® — 1)). It can be easily verified thak, ; - e*¢®) =
Y,00 6.
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Take a truncation functiopy (x) =x A N, x € R, and set
Io_:n,N =E" (XN(EO[,S : ea¢(s)) - XN(Z(){,S))’

which then increases tfj when we letN 1 co and them 1 co. Sincem,, is a
finite excessive measure, we have

IF, v = E™(EX (4 (Z00) — E™ (X8 (Za.s)
< E"(xN(Za,0) — E™ (XN (Za,s))
= E"(xN(Za,0) — XN (Za.s))
= E"(24.0— Zasi N > Ta.0) + E™(N — Z4.0; 200> N > Zq.5)
< E" (24,0~ Zas)

= Em< Z e_a¢(s)\P(XR(,_),XR(,))).

O<t<s
R(t)<oo, ¢()>0

The last expectation in the above is finite in view of (5.9) and (5.10).
It follows that

IJ+IIn,NSEm< > ‘IJ(XRU—)’XR(z)))-

O<t<s
R(t)<oo
Therefore we have
2 WdJ=li 11— lim lim 1+
ﬁxl}\d _aﬂ:noo;( o + Irr;ﬂ I]U] oc,n,N)

(5.10)
1
< —Em< E lIJ(XR(,_),XR(;))).

§ O<t<s
R(t)<oo

Inequalities (5.9) and (5.10) give an equality

1
2 WdJ==E" W (X ooy, X .
Y ; (OZ (XR(-) R(z)))
<t<s
R(t)<oo

By substitutingl = f ® g for any f, g € Co(F) with disjoint support in the above
equality, we get the desired identity by virtue of Theorem 3.1. The prodf foiV/
is similar. O

COROLLARY 5.1. Suppose that m is finite and the hitting measure has the
Poisson kernel K (x, &), x € G, & € F with respect to a o-finite measure . with
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Supu] = F. Then u is admissible and the associated time-changed process Y
(with a possible g.e. modification of its state space F) has asits Lévy system

(5.11) (UE mudn), 1),

where U is the Feller kernel defined by (2.13)in terms of K and ¢ denotes the
nonrandom PCAF v (r) =t of Y.

PROOF Measureu is admissible by Lemma 4.2. By Theorem 5.1,

J(dg, dn) =10 nudsudn  onFx F\d

andyu is the Revuz measure of the PCAFBf Y. Hence, it suffices to show that
the value of the right-hand side of (5.2) depends only on the funati@nd the
jumping measurg for g.e.x and that it does not depend on the special choice
of N andv that express/ as in (5.3). This can been readily seen from known
formulae ([11], (5.1.12) and (5.1.14)) on the Revuz correspondence of the PCAF
and the smooth measurel]

6. Trace Dirichlet form and Douglasintegral with Feller measure. In the
preceding two sections, we proved the following: K&t m, ¥, &) be a regular
Dirichlet space and leX be an associated conservative diffusion proces& on
Any function in the extended Dirichlet spa@ is taken to beg-quasicontinuous.
Let F be a closed subset &f with Cap(F) > 0, let u be an admissible measure
for F with Supgu] = F, let ¢ be a PCAF ofX with Revuz measurg and let
Y be a time-changed processXfby means ofp. Process is u-symmetric and
its Dirichlet form onL2(F; i) is denoted by&, ) which is also called theace
Dirichlet formof &€ on F. In fact, in view of (4.6) and [11], Lemma 6.2.5, we have

F =Folr NLA(F; ),
(6.1) y
&(f, f)=&6(Hu, Hu), f=ulp, ue.

Furthermore we have obtained in Theorem 5.1 that, for aye F,

édﬂ)2§”U@X+%ﬁymjf@%—f@»%ﬂm—gO»UWde
(6.2)
+ [ sy,
F

the representation of the trace Dirichlet fofirin terms of the Feller measufé
and the supplementary Feller measuratroduced in Section 2. In particular, the
first integral on the right-hand side is called theuglas integral with the Feller
measurd/.

The Feller measur® and the supplementary Feller measurare completely
determined by the absorbed (minimal) proc&gs of X on the setG = X \ F,
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while the local tern€© in the above decomposition is determined by the behavior
of X on the setF'. On the other hand, the value of the Dirichlet fofitu, u) for

u € ¥, is known to be equal to half of the total mass of the energy measyre

of u. Therefore we may expect that

(6.3) O ) =3y (F),  f=ulr, ueF,.

We do not prove this, but more specifically, we show in this section that if
) (F) vanishes for any € %, then the trace Dirichlet form equals the Douglas
integral with the Feller measure under the assumptiorvitiat) is finite.

To this end, we first show the domination of the trace Dirichlet form by
the Douglas integral under the setting thiat m, £, &) is a regular irreducible
Dirichlet space anK is an associated Hunt process BnWe do not assume that
X is of continuous sample paths, but we assumeXhiatconservative. We further
assume that

(6.4) m(G) < o0, CapF) > 0.
We note that (6.4) and the irreducibility 6fimply that
(6.5) PY(T <o0) =1, ge xegq,

because therP*(T < oo) > 0 for g.e.x € E by [11], Theorem 4.6.6, and
Lemma 2.3 applies.
Foranyu € ¥, , = . N L°°(E; m), its energy measure,) is defined by

(6.6) /Ef(X)Mu)(dX) =28 (uf,u) — EW?, f), feFNCo(E).
The energy measure uniquely extends to ary¥, and it holds that
(6.7) Eu,u)=3uw(E), ue.
Let
FO={ueF:u=0q.e.onF}.

Then(¥F°, &) is aregular Dirichlet space di?(G; m) which is associated with the
absorbed processs ([11], Theorem 4.4.3). Recall thaﬁg denotes the resolvent
operator forX . Since

RI1(x)=1-E*Ee T)<1, g.e.xegG,

by (6.5), we see thatF°, &) is transient by virtue of [11], Lemma 1.6.5, and
moreover, the extended Dirichlet spa§§ of 9 admits the expression

FOl={ueF,:u=0q.e.onF)
due to [11], Theorem 4.4.4.
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Denote bySéo)(G) the space of positive Radon measures of finite 0-order

energy integral with respect (dfeo, &€).Ifve Séo)(G), then there exists a unique
R% e #2 called the 0-order potential ofsuch that

(6.8) &(R%, v) :/ vdv, veF NCoG).
G

Equation (6.7) extends to any quasicontinuous funotien‘f‘eo.
We write (f, g)¢ = [; fg¢dm. We know from [11], Theorem 1.5.4, that if a

nonnegative measurable functighon G satisfies that f, R8+f)G < 0o, then
Ry, f e ¥ and

(6.9) E(RY,.f,v) = (f, v)G, ve Fl.
We know further from [11], Theorem 4.6.5, thHt € ¥, for anyu € ¥, and
(6.10) E€(Hu,v)=0 VveF.

We prepare a lemma which generalizes the methods of computing the Dirichlet
norms of classical harmonic functions employed in [4] and [8].

LEMMA 6.1. Foranyu € %, let
w = Hu? — (Hu)? (€ ).

Then

(6.11) we ?eob and w=R% for v=pwmuwlc.
Furthermore,

(6.12) i (G) = lim_a(H*1, w)g.

PROOF  Since#, ; is an algebra and = 0 g.e. onF, we have thaty € 7.2,
From (6.6) and (6.10), we have, for agfiye # N Co(D)(C F9),

Ew, f)=—E((Hu)?, f)

= 26(Hu - f. Hu) — €(Hw?, f) = | £y,
arriving at (6.11).
SinceH1=1 g.e. onG by (6.5), we have
1- H*1=aRy, H*1
and hence H* 1, R8+H“1)G < 00. Accordingly, for anyv Séo)(G), from (6.8)
and (6.9) we get
a(H*1, R%)G = E(@RY, H*1, R%) = (@RJ, H*1,v) = (1 — H*1,v) 1 v(G).
Hence (6.12) follows from (6.11).]
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THEOREMG6.1. Foranyu € ¥,

(6.13) pn©) = [ (w® — un)?U dg. dn.

FxF

PrRoOOF This follows from (6.12) and the identity in [8], (15),

a(H*1, w)g +o¢/ Hu(x)—u(E))ZHa(x,dS)m(dx)

(
(6.14) Fxe

:/ (u(S) — M(n))zUot(dgv d’])7
FxF

which can be easily verified.OJ
Theorem 6.1 combined with (6.7) leads to the following.

COROLLARY 6.1. Supposethat
(6.15) wu (F)=0 Yu € ¥,.

Then, for any u € %,

(6.16) B(Hu,Hu)f%/F F(M(S)—u(n))zU(dS,dn).

X

We emphasize that condition (6.15) is satisfied if the energy measurasof
absolutely continuous with respectitq that is,a carré du champ operatod” (u, u)
exists for anyy € £ andm(F) =0.

We can now state the main theorem of this section.

THEOREM 6.2. Let (E,m, ¥, 8) be a regular irreducible Dirichlet space
whose associated Markov process on E is a conservative diffusion. For a closed
set F C E and its complement G, we assume condition (6.4). We further assume
condition (6.15) for the energy measures associated with &. Then, for any u €
L*(F, p) N F,

(6.17) §(Hu Hw =} [ (u®) —utm)’Uds.dn).

PrROOE By (6.1) and (6.2), we already have the converse inequality to (6.16).
]

We may view Theorem 6.2 from a quite different angle. The Dirichlet form
(F,8&) on L%(E;m) is in a sense an extension of the absorbed Dirichlet space
(}‘0, &)on LZ(G; m). What kind of extension are we dealing with under condition
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(6.15)? This question can be answered in terms of the notion of the reflected
Dirichlet space initially formulated by Silverstein [19, 20] and finally by Chen [3].
We continue to consider a regular irreducible Dirichlet spéEem, ¥, &)
associated with a conservative diffusiahon E and we assume condition (6.4)
for a closed seF C E and its complemeng.
Let (£¢", &"") be theL? reflected Dirichlet space (in the sense of [3]) relative
to the regular Dirichlet spaceF ?, &) on L2(G; m) associated with the absorbed
processXg.

THEOREM6.3. Condition (6.15)is equivalent to
6.18) FlgcF  cw.v)=6%wulg.vlg), wveF.
PROOF By (6.10) and the preceding description of the spafe we have,
foranyu € ¥,
(6.19) wuo=u— Hue FL, &(u, u) = &(uo, uo) + &(Hu, Hu).
We further know from (6.7) that condition (6.15) is equivalent to
(6.20) E(Hu, Hu) = 3pumuy(G)  Vue¥,.

Let G, be relatively compact open sets increasingGaand let L; be the
equilibrium measures of the 0-order equilibrium potentiglsfor the setsGy
relative to the extended Dirichlet spa(cﬁeo, &):

e €F). 0<er <1 e =10nGr,  Elex.v) = (v, Ly)g. vE F, .
We then have

6.21)  pun(G) = lim (Hw?) — (Hw? Li)g,  u€ Fop.
k—o00
In fact, using the notation in Lemma 6.1 we see that

(w, Lg)g = &(w, ex) = (ex, V)G,

which tends ag — oo t0 v(G) = u(Hw) (G). By comparing the combination of
(6.19), (6.20) and (6.21) with Definition 3.1 in [3] of the? reflected Dirichlet
space, we get the equivalence of (6.15) and (6.18).

Takeda ([22], Theorem 3.3) showed that itfereflected Dirichlet space is the
maximum Silverstein extension ¥ °, &) in a specific semiorder. WheF?, &)
is the Dirichlet space of the absorbing Brownian motion on an arbitrary bounded
domainD, }“aref equalsH (D), which has been described [9] in terms of the Feller
kernel on the Martin boundary (see also the next section). In view of Theorem 6.3,
we thus see that the Dirichlet spag, &) satisfying condition (6.15) corresponds
to a member of the clas3; of [9], Section 8, in this special case.
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7. Application to reflecting Brownian motion on a Lipschitz domain. Let
D be a bounded Lipschitz domain Bf with 4 > 2 and letD = D U 3D be its
closure. As is well known [2, 15 D (resp.D) can then be identified with the
Martin boundaryM of D (resp. the Martin spacP U M) and M consists only of
the minimal boundary points. In what follows, we regard the relative bourtdary
also as the Martin boundary @ under this identification.

Denote a Martin kernel bX (x, &), x € D, & € 3D. By the Martin represen-
tation theorem [5], any positive harmonic functibron D can be expressed as
the integral of the Martin kernel against a unique positive Radon measw®on
called theMartin representing measure of /2 correspondingto K. We letu be the
Martin representing measure of the constant harmonic function 1 corresponding
to K:

(7.1) 1= [ Keou@s. xeD.
oD
We now consider the space
(7.2) F=HYD), E(u,v) = %/ Vu - Vvdsx, u,ve HY(D),
D

which can be regarded as a strongly local regular Dirichlet spad& ) [rather
than L2(D)] and hence there exists an associated conservative diffusion process
X =(X;, P*) .poON D uniquely up to the g.e. equivalence ([11], Example 4.5.3).
We fix such a procesk and call it areflecting Brownian motion on D.

Let T be the hitting time oB D on X and letH (x, -) be the hitting distribution
of X onaD:

H(x,B)=P*(Xr € B,T <o), xeD, BeB(@®D).

LEMMA 7.1. Thehitting distribution H (x, -) of X and the measure w in (7.1)
arerelated by

H(x,B):/ K (x,&)u(dé) VB e B(@D)forqge xeD.
B
PROOF LetXp bethe absorbed processXbbtained by killingX attimeT .
Thus,Xp = (X;, P*, ¢P) with lifetime ¢ ? given by
(7.3) P =T.

By virtue of [11], Theorem 4.4.3Xp, is associated with the part of the Dirichlet
form (7.2) on the open sd?, namely

(7.4) Fp = H3(D), 8D(u,v):%/ Vu - Vudsx, u,v € HY(D).
D

Since the absorbing Brownian motion @h (the standard Brownian motion on
RR? killed upon leaving the seb) is also associated with the Dirichlet form (7.4)
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([11], Example 4.4.1), we see that = (X,, P*, ¢P) coincides in law with the
absorbing Brownian motion op for g.e. starting point € D.

According to Doob’s description of the structure of Brownian motion on the
Martin space ([5], page 727), we therefore have that

(7.5) P*(X;p_ € B) :/ K(x,&)u(dé) VB e B(@D)forg.e xeD.
B
The lemma follows from (7.3) and (7.5)

Since the Martin kerneK (x, £) is harmonic inx € D, it is excessive with
respect to the absorbing Brownian motionBrmand consequently almost excessive
with respect taX p for eaché € dD. Therefore Lemma 7.1 means that the Martin
kernel K (x, &) is a Poisson kernel with respect toin the sense of Section 2.
Hence, by defining the Feller kernel as (2.13) in terms of the present Martin kernel,
we have the expression of the Feller measure

(7.6) Ud§,dn) =UE, mu(d&)uldn).

We also see by Lemma 4.2 thatis an admissible measure fap in the sense
of Section 4.

On the other hand, we can see from (7.2) and (6.6) that the energy maagure
of u € ¥, admits the expression

(7.7) [ (dx) = [Vul?(x) dx,

which does not charge the bounda®. Hence all the conditions of Theorem 6.2
are satisfied foF" = 9 D.

THEOREM7.1. (i) The measure u on d D defined by (7.1)is admissible with
respect to the form (7.2) in the sense of Section 4.
(i) For any &-quasicontinuousu € L2(dD; ) N %,

(7.8)  €(Hu, Hu)=1 /a o (0® = un)?UE Dr@ .

where Hu(x) = EX(u(X7); T < 00),x € D, and U (g, n) is the Feller kernel
defined in terms of the Martin kernel K.

(iii) Let Y be the time-changed process of X by means of PCAF with Revuz
measure p. Then Y is recurrent and of pure jump. In addition, Y admits as its

Lévy system
(7.9) (UE. muldn),t),

where r denotes the nonrandom PCAF ¢ () = of Y.
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(iv) Let (F,&) be the Dirichlet space on L2(dD, ) of the time-changed
processY. Then

Fo {f € L20D; ) :/w MUGENO
(7.10) i

X U, mu(dE)u(dn) < oo},

(7.11) &(f. =13 f (fE) — F)UE Mude)udn),  fefF.

dDx0D

PrROOF  Part (ii) follows from Theorem 6.2 and (7.6). Part (iii) follows from
(i) and Corollary 5.1. As for (iv), the inclusiorr in (7.10) and identity (7.11)
are clear from (ii) and (6.1). Suppose that a functjobelongs to the space that
appears in the right-hand side of (7.10). By virtue of [4], Theorem 3.1, we then
have the expression of the functiarix) = Hf2(x) — (Hf (x))?,

w(x) =RY_IV(Hf)?(x), xeD,

whereR? denotes the resolvent operator of the absorbing Brownian motidn. on
Hence by setting7*1(x) = [, Ko (x, ) (d§) by the kernel defined in (2.13),
we easily see that

/ IV(Hf)(x)[?dx = lim a(H*1, w)p.
D o—>00

From identity (6.14) we see that the right-hand side of the above equality is
dominated by

f (f&) — F)? UE, mudé)ndn) < oo,
dDxdD
proving thatH f € Hel(D) (see [11], Example 1.6.1) and consequerftly . [

Equations (7.8) and (7.10) recover the Douglas integral description of the space
of harmonic functions with finite Dirichlet integrals in [4] (but with the Feller
kernel instead of the Naim kernel) for the present specific Martin space (cf. [8]).

8. Reduction to Hunt processes. This section is devoted to the proof of the
following general reduction theorem especially applicable to the time changed
process in Section 4.

THEOREM 8.1. Let (E,m,¥,€&) be a regular Dirichlet space and let
X = (X;, P*) be a right process over a subset £1 C E with CapE \ E1) = 0.
We assume that X is properly associated with & in the sense that p;u is an
&-quasicontinuous version of T;u for any u € L2(X; m), where p; (resp. T}) is
the transition function of X [resp. the L? semigroup associated with (€, F)]. We
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further assume that the left limit X;_ exists in Ex for every t > 0. Then there
exists a Borel set E> C Eq suchthat Cap(E \ E2) =0, E> is X-invariant and the
restriction X|g, of X to E» isa Hunt process properly associated with &.

We prepare two lemmas.

LEmMA 8.1. (i) For anopenset A C E of finite capacity, the function
pa(x) =E*(exp ™),  xe€E,

is an &-quasicontinuous version of the 1-equilibrium potential e4 € F of A. Here
o 4 denotesthe hitting time of the process X for the set A.

@i) If {A,} is a decreasing sequence of open subsets of E with
lim,, CapA,,) = 0, then

. 1 _ _
nll_)moo P, (x)=0 for &-g.e. x € E1.

PROOF (i) It is known thatpi is a version ofe4 (cf. [11], Lemma 4.2.1).
Sincep,pi is an &-quasicontinuous version dfe 4, we get the result by letting
t] 0.

(i) Since&(ea,.ea,) | 0asn — oo, (ii) follows from (i). O

LEMMA 8.2. For any set N C E1 with Cap(N) = 0, there exists a Borel set
E’ C E1\ N suchthat CapE \ E’) =0and E’ is X-invariant:
P*(X,eE\foralt>0, X;,_eE\forals>0)=1,
forall x € E'.
PrROOF There is a decreasing sequence of open dgtincluding the set
(E\ E1) UN suchthatlim_ ., CapA,) = 0. Lemma 8.1 then implies that
P*(X; or X;_ € By forsomer >0) =0 Vx e Eq\ Ny,

where Bp = (), A, [D (E \ E1) U N] and N; is some subset of; with
CapNg) =0.

Next we find a decreasing sequence of open s€isD Bp U N1 with
lim,_ CVaQA;Z) =0 and letB; =, A,,. Repeating the same argument, we can
find an increasing sequence of Borel subg@g of zero &-capacity containing
(E\ E1) UN such that

P*(X;or X,_ € B, forsomet >0) =0 forallx € E\ B,11.

PutB =J, B,. ThenE’ = E \ B satisfies the desired properties]
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PROOF OFTHEOREM 8.1. From Lemma 8.1, we can see as in the proof of

[11], Lemma 4.2.2, that for an§-quasicontinuous functiom on E,
pP* (IirTn uXy)=u(X;_)Vt > O) =1, &-g.e.x € Eq.
t' 1t

Choose a countable subfami@sy of £ N Co(E) which is dense inCo(E) and
denote byQ™ the set of all positive rational numbers. Since the functiens for
s € QT, f e Cy are &-quasicontinuous, we can find a sétwith Cap(N) = 0
such that the above identity holds for eack: p, f, s € 0", f € C1 and for all
x € E1\ N. We then use Lemma 8.2 to get a Borel 8etC E; \ N such thatE,
is X-invariant and CagE \ E2) = 0. SinceX|g, is a right process o> and

P"(Iirp Py f(X0) = py f(Xi) Vi > 0) _1
't

for all x € E; and for anys € O, f € C1, we can also prove th&|g, is quasi-
left continuous on0, co) in exactly the same manner as in the proof in [11],
Lemma 7.2.5, completing the proof th¥tr, is a Hunt process of,. [
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