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We consider the symmetric exclusion procggst > 0} on{0, 1}Zd. We
fix a patterns := {n: YA n(i) > k}, whereA is a finite subset dZ4 andk is
an integer, and we consider the problem of establishing sharp estimates for
the hitting time ofA. We present a novel argument based on monotonicity
which helps in some cases to obtain sharp tail asymptotics fiera simple
way. Also, we characterize the trajector{gs, s < ¢t} conditioned or{t > ¢}.

1. Introduction. We consider the symmetric simple exclusion process (SSEP)
on Z%, where particles are indistinguishable. The state spa€e:is {n:n(i) €
{0,1} for i € Z¢} and a graphical construction of the process is as follows. To
bonds of the cubic lattic&?, we associate independent Poisson processes of in-
tensity 1, at whose time realizations the contents of the corresponding adjacent
sites are exchanged. We fix a local patte¢rC 2 that depends ofw(i):i € A},
whereA is a finite subset af¢, and we consider the problem of establishing sharp
estimates for the hitting time o4, 7 :=inf{z : n;, € A}. For a physical motivation,
see, for instance, [1]. The SSEP is a nonirreducible Markov process on an un-
countable state space with the following special properties (enounced in greater
generality than SSEP).

1. There is a partial order on the state sp@c¢say~<.

2. The generator of the dynamics, is monotone, that i/ preserves increasing
functions for any > 0.

3. There is an invariant probability measwrevhich satisfies the FKG inequality.

4. The pattern of interest4, is increasing, that i € A and& < n imply that
n € A.

5. The dualt* of £ in L2(v) is monotone.

A simple consequence of properties 1-5 is the existence of a limit (see,
e.g., [1], (2.7))

(1.1) A= —timoo % log(Py (T > 1)).
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However, to obtain estimates sharper than (1.1), in the context of particle
systems satisfying 1-5 and in the casie positive, is a more intricate matter. For
this purpose, it is useful to study the regularity of generalized principal Dirichlet
eigenfunctions, that is, probability measuresiith support inA¢, satisfying, for
everygp in the domain of£, denoted byD(£), andg| 4 = 0,

(1.2) f(£¢ +A@)du =0,

Measures satisfying (1.2) are also called quasi-stationary measures, since if we
draw an initial configuration from any such measure, then, for any time0,

the law of , conditioned on{r > ¢} is time-ivariant. We denote b¥; () the

law of this conditioned process at timewith initial probability measurer. We

recall some works relevant to our context. First, some quasi-stationary measures
are obtained as limits of linear combination{@f(v), r > 0} (see Theorem 1 of [2]

and Theorem 2.4 of [1]). Assume that such a limitis absolutely continuous

with respect tov, and call its density := du/dv. When.L* generates a Markov
process, lep* be its corresponding quasi-stationary measure and assume it has a
densityu™* :=du*/dv. In [1], Corollary 2.8 and its proof, we have the following
general fact.

FacT 1.1. Assume that given in (1.1) is positive and, u* € L?(v) for
p > 2. Then, for any > 0,

~ Py(t > 1)
(13) qu—H(V, l))) < m <
with
uu*dv

dv = ——
g Juu*dv

- dvy .
and H(v,v) = / |Og<—> dv < o0.
dv
In the symmetric case, the results are stronger (see [2] or [3], Corollary 2.5).

FacT 1.2. If £ is a self-adjoint Markov generator oh?(v), A > 0 and
u € L%(v), then

P dv)?
L4y fim DE=D _Judn)™ e int {
t—o0 eXp(—At)  [u2dv feD(L)

—[fLfdv
=0l

Now, a key step in the proof of the regularity of quasi-stationary measures is to
obtain uniform estimates fdiT; (v), r > 0}. In other words, we look for measures
v andv such that, for any > 0,

v=<T;(v) <V (M < v means that/ fdu< / fdv for all increasingf)
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and withdv/dv anddv/dv regular enough (see, e.g., [2] and [3]). In Section 2,
we present a simple method to obtain such uniform stochastic bounds. Roughly,
the main idea is to bound the principal eigenfunctier-which satisfies onA¢
that £ () /u is constant—by aimplefunction ¢ on which we impose a weaker
assumption, namely that(yr) /v is increasing om. We first apply this method,
in Section 3.3, to the SSEP &f and the pattern4; := {:1(0) = 1}. In this
context,& < n when&(i) < n(i) Vi € Z%. Also, we recall that the SSEP has a
one-parameter family of ergodic invariant measytgs p < [0, 1]}, wherev, is a
product of Bernoulli measures of densjty

Thus, our first application is a key result of [3].

PropPosSITION1.3. Consider the SSEP in dimensign= 5, with pattern;.

For any densityp €10, 1[, there is a sequencfy;,i € Z%} and a probability
densityy with o; < p for all i € Z¢,

P (o) e

(1.5) ieZ4\{0} p
' 1 @ 1—p\1®
v =5 a-n0) ] (5 2F)
iezd\{0} PP
(Z is a normalizing constafpsuch that ifdv, := ¥ dv,, then for anyr > 0,
(1.6) Vg < Ti(vp) < vp.

A corollary of Proposition 1.3 (see [3], Lemma 2.3) is the existence of=
lim;— 400 Tt (v,) as a strong limit inLZ(vp), that is,dT;(v,)/dv, converges in
L?(v,) todu,/dv,. This u, is a quasi-stationary measure and is referred to as a
Yaglom limit

As a second illustration, we treat, in Section 3.4, the pattein= {n:n(0) =
n(0) =1}, where 0is a neighbor of the origin 0. However, for technical reasons,
we need to have an intensity rate between 0 dddr@er than 2 — 1.

PROPOSITION1.4. Let T,ﬁ(vp) be the law at time of the SSEP modified
by letting B be the intensity rate betwegi®, 0') and conditioned ont > ¢}
with initial measurev,,. If the dimension? > 5 and 8 > 24 — 1, then stochastic
estimates of typ€l.6) hold.

REMARK 1.5. To explain the reason for speeding up the intensity of bond
(0,0, we need to unravel a key technical assumption. The above mentioned
functionyr, which mimics the Dirichlet eigenfunction, is associated with a Markov
process that never entessand has a formal generator

L) — <p£(w).

Ly (p) = 7
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A handy assumption oty is that it is monotone. This fails to be the case for
SSEP withoA2 = {n:7(0) = n(0') = 1}. In other words, there is no coupling

of two trajectories(n., ¢.) governed by.Ly, with g < no, where the order is
preserved in time. Indeed, considex n with n(0") = n(0') =1, where G is a
neighbor of 0 different from‘Qandz (0”) = 1 =1—¢(0'). For the configuration,

the rate intensity associated witld, 0”) is null, whereas it is positive in the
configuratior; . Thus, if the first time realization of the Poisson process associated
with (0,0”) in ¢ occurs before realizations of the processes associated with the
other bonds adjacent td' 0then the order is destroyed. We show that speeding up
the intensity of the process associated wah0') enables us to build a monotone
coupling.

Our method can also be used to prove regularity of invariant measures. Thus, our
final application, in Section 3.5, is to study the regularity of invariant measures for
the symmetric exclusion dynamics with birth and death of particles at the origin.
For simplicity, we consider the process where the neighbors of the origin can die
with positive ratez and be born with positive rate The invariant measures were
studied in [6]. We obtain here a new characterization.

PrROPOSITION1.6. Whend > 5, there is a stationary measuyegb, for any

p €10, 1] such that
®vai < u‘/’)b < ®v&i and
i £0 )
(1.7) l . l .
14 CopPi(Ho <00y = 2 =P - P 275
pl—a o 1l—0p
whereP; (Hg < 00) is the probability that a symmetric random walk starting at
sitei hits the origin C,y, is a positive constant depending@andb, and®); .o va;

denotes a product Bernoulli measure of densjtyt sitei of Z¢ \ {0}.

REMARK 1.7. This implies by the arguments of [2] thai” is equivalent to
v, and tha‘rdu‘,;b/dvp isin L?(v,) for any integerp whend > 5.

The problems we consider in Sections 4 and 5 are inspired by works on
conditional Brownian motion (see, e.g., [4], Theorems 1 and 2, [12], Theorem 3
and [10]). We assume the following hypotheses.

HYPOTHESES(#). The generatort is self-adjoint inL2(v). The Yaglom
limit w :=1lim,_ 1 T;(v) exists with a corresponding> 0 for which(1.1)holds
Moreover u := du/dv € L?(v), u is a simple eigenfunction fox, u is positive
v-a.s. and

(1.8)

dT;(v) L?(v)
—_— —> Uu.
dv
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Hypothesesg#) were proved in [3] for SSEP in dimensiadr> 5 with A1. For
the pattern4,, although the convergence in (1.8) is a corollary of Proposition 1.4,
the uniqueness of in L?(v,) is open.

PROPOSITION1.8. AssumegJ#f).

(i) Foreveryf, g e L?(v), we have
(1.9) im Evl/ (1008 Lie-1] =ffdufgdu.

t—00 P,(t>1)

(i) For any measurer with dn/dv € L?(v), we have the weak?(v)
convergence

Ti(m) =3 .

Finally, letd i = u?dv/ [u?dv and let{ P, n € Q} be the law of the Markov
process, reversible ih2(2), formally generated om¢ by

 Lup) — 9L W)
- u

We have the following characterization of trajectorie$in> ¢}.

Ly

(see definition in Section 5)

PROPOSITION 1.9. Assume(#). Let ¢t — a, be an increasing positive
function such thatim;_, oo a; = lim;_, o (t — a;) = co. For anyr > 0, the law of
{Na,+s, s € [0, r]}, conditioned on{r > ¢} with initial measurev, converges to the
restriction to the time interval0, r] of [ P} dji(n) (convergence in the topology
induced by duality against bounded measurable funcj}ions

2. The monotone method. We consider a finite state spadé with partial
order <. We recall that a dynamics is monotone when its evolution semigroup
preserves increasing functions or, equivalently, when there is a coupling of two
paths(n,, ¢;) such that ifpg < o, thenP(n, < ¢, Vit > 0) = 1.

Let {P,(-),n € X} be a Markov process oX and let.L be the corresponding
infinitesimal generator.

LEMMA 2.1. Let A C X and t = inf{r:n, € A}. Assume that there is a
function v satisfying(i) v is positive onA¢ and |4 = 0O, (ii) ¥ is decreasing
on A€, (iii) L(¥)/y is increasing onA¢, (iv) the following Markov generator
on A¢ is monotone

LOP9) — L)

2.1 L =
(2.1) v () "

Thenn — P,(t > t)/¥(n) is increasing
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ProOF If {c(a,b),a,b € X} are the rates associated wiihy then after a
simple computation,

¥ (b)

VaeA®  Lyfl@=)Y ca, b)m(f(b) — f(@)
(2-2) beX
=Y ca, b)M(f(b) — f@).
= ¥ (@)
Thus,Ly, generates a Markov process 4fi. By definition, for anyp| 4 =0,
Tope L £L
kW) ( Lo+ <w>¢)
(23) ! exp(tl 4c L) (Vo) ’ LY
AC 4
frnd ]]. c gC I .
v exp(““’( ‘/’+1//))(p

If {P,;[’(-), n € A} corresponds te€y,, then (2.3) and the Feynmann—Kac formula
give, forn ¢ A,

J o) Y (n)Lesr d Py :/@(ﬂt)]lr>t exp(/o[ %(ns)ds> dP,;/f

)
2.4) v
= [omexd( [ 7<ns)ds)dP,;”.
Thus, fore = 1/,

P,(t>1) 1 L Ly
2.5 U = =2 (my)ds |dPY.
(25) e / v exp(/o e S) :

From (2.5), the lemma is proved using (ii)—(iv)J

We state a related result. Assume thatgenerates an irreducible Markov
process orX and letv be a positive probability ot¢. Denote by.L* the dual of
£ in L?(v). Note that.L* is not necessarily a Markov generator [sin&(1) # 0]
and that by the Perron—Frobenius theorem (see, e.g., [11], Theorem 9.34), there is
u > 0 with £*(u) = 0.

LEMMA 2.2. Assume there is a functiofy satisfying (i) ¢ is positive
(i) L*(¥) /¢ is increasing andjii) the following Markov generator is monotane
_ L) —eL7W)

m .

Thenu /v is increasing Similarly, if we assume)’ positive L*(v') /¢’ decreas-
ing and.L,,, monotonethen we obtain thai /v’ is decreasing

(2.6) Ly (@) :
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PrRoOOF We callp = u/y and look for the equation solved lpy

L5(pV) L*Y
——— =0 = <L +
v v (@) v

Note also thap is the principal eigenfunction ot + L*(v)/v . By the Perron—
Frobenius theorem and the Feynmann—Kac formula,

o = lim exp(( £y + "C;‘”))un)

= lim / exp(/ot OC:/;W (n5) ds) dpy.

By hypotheses (ii) and (iii), we obtain thatis increasing.
With the same reasoning,

L t LY v
v _tll)mm/exp(/o —W (ns)ds)dPn

is decreasing sincg*(y') /v is decreasing. [

2.7)

¢ =0.

(2.8)

3. Three applications. We consider three applications of the lemmas of
Section 2. In Section 3.1, we introduce three particle systems. In proving
Propositions 1.3, 1.4 and 1.6, the first step, carried out in Section 3.2, is to
approximate these particle systems by finite-dimensional irreducible dynamics.
The second step is to verify the hypotheses of Lemma 2.1 or 2.2 in each of our
three cases. This is carried out, respectively, in Sections 3.3-3.5.

3.1. Models. First, we consider SSEP amwith the generator acting on local
functions as

Lsew) =Y > (9T n) — o)),
ieZd j~i
wherei ~ j means thatii — j1| +--- + |ig — ja| = 1, and
THn(j)=nG),  T"nG)=n(j) andfork#i,j, T nk)=n(k).

It is well known (][9], Theorem 3.9 and Example 3.1(d)) that generates a Feller
process and that the following set is a core of continuous functions:

D= {(p: Z Vi(<p)<oo}

iezd
whereV;(¢) = sufle(m) — @) :1n(j) =§() ¥V j#i}.

It is also well known that for any < [0, 1], £,. extends to a self-adjoint operator
onL?(v,) (see, e.g., Section 2 of [13]).
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Second, to treat, := {n:n(0) = n(0') = 1}, where Ois a given neighbor of 0,
we need to modify the intensity between the béne: (0, 0'). Thus, we consider
the generator

(3.1) Lop=Lsep+B—-D(@oT? —p)  withf>2d -1

Note that.L is still self-adjoint inLZ(vp), foranyp €10, 1.

Finally, we consider SSEP with birth and death of particles at neighbors of
the origin. Thus, the state space @& := {5(i) € {0,1},i € Z¢ \ {0}} and if
No := {i € Z¢:i ~ 0}, then the generatat,;, reads as

Lap =Y (9T — 1))

e¢ Nox{0}

+ 3 (antk) +b(L— n(k)) (@(oxn) — @),

k~0

(3.2)

whereoy, is the spin flip at sité, oxn(k) = 1 — n(k) andogn(j) = n(j) for j £k.

3.2. Approximation by irreducible dynamicsLet A, := [—n,n]¢ and A4 C
Q, :={0,1}*. For a subset/ c Z¢, we denote byFy theo-field generated by
{n@i),i e U}. We set, forp on Q,,,

(3.3) L 9 = Ey,[Lsep|Fa,] and Ly :=E, [Lpo|Fa,]-
Forg on Q¥ := {0, 1}A\(%, we set

(34) 062};090 = Evp [oCab(m}vAn\{O}]-

An easy computation gives

LiLom = > (e(T"n) — o)

i~

i,j€An
(3.5)
doj
+ Y 00 [T o) — o).
i€d A, L

where 0A, :={i € A,:3j ¢ A, withj ~ i} andn(G) = |{j ¢ A,:j ~ i}l
A similar formula holds forﬂé’”. It follows easily from their definition that;,”

and OCg’p are (v,|a,)-reversible ore2,. We state next the irreducibility property,
although the immediate proof is omitted.

LEMMA 3.1. The generatorc))” is irreducible ong2?.
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The dual of.£);” in L%(Q%, v,) is obtained after the simple computation

a
L) ) = Lof )+ (1= n0) (12 fabn) ~ b )
k~0 —p
(3.6) bl o)
+n (=L = ar o)),

where £ is the same expression a&,” in (3.5) but the sum ovei ~ j is
restricted ta, j € A, \ {0}.

Let 7, (v,) be the law at time of the process generated by eithef,” or £”

conditioned or{r > ¢} with initial measurey,.

LEmmMA 3.2. Let{v,} and{v,} be two sequences of measures converging
respectivelyto v andv.

(i) Assumey, < T/'(v,) < v, for all n. Then T;*(v,) converges weakly
to 7;(v,) and

v=<Ti(vp) <V.

(i) Let u, be the unique positive principal eigenfunction @f/;”)* with
Jundv, = 1. Note that(L];")*u, = 0anddu, = u, dv, is invariant for £,”.
Assume that for alk, ¥, = dv,/dv, is positive and decreasinfresp v, =
dv,/dv, is positive and increasifguch thats, /v, is increasingresp u, /v, iS
decreasiny Assume also that, andv, satisfy the FKG inequalityThen there
is a subsequencg} such thatdu,, := u,, dv, converges weakly tdu,, an
invariant measure fok£,;, with

V<[lUp<V.

PrROOF. (i) We drop the subscriptse or g from the generators to unify their
treatment. The stopped generatorbnL™* := 1 4. L™* is bounded o1f2,, and it
is obvious that

VoeDN{pla=0L ¥YneQ Lo =5 LoM).

Thus, by a theorem of Trotter and Kurtz (see [9], Chapter |, Theorem 2.12), we
have, for any > 0,

n—oo

37) P >n=eT"@am "X e T@a)m) = Pyt > 1).
Note now that}"(v,) is absolutely continuous with respectitgp and

th"(vp) (77) _ eXQtﬂAc£"’p)1Ac(n) _ P,;l’p(‘lf > 1)

3.8 = .
(3.8) dv, pr’p(r > 1) P,?p"o(r > 1)

Thus, by (3.7), (3.8) and dominated convergerit&u,) converges weakly
to 7; (v,) and point (i) follows easily.
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(i) Since u, /Y, is increasing, we have by the FKG inequality that for any
increasing functiomnp,

(3.9) /(pdun_/go—dv >/godv / dv, /godvn,

so thatu, > v,. Similarly, we obtain thaj, < v,. Where as the spac®* is
compact, there is a subsequereg} such thatu,, converges to a measure,.
Now, for any functionp € D, L£];”¢ converges tal,,¢ € D. Thus, forp € D,

k—
0= / L7 (@) dpt, =X / Lap(@)dit,.

Thus, [ L4 (@) din, = 0 andu, is an invariant measure faf,;, with v < p, < v.
O

3.3. Proof of Propositiori..3. The upper bound; (v,) < v, is simple. Indeed,
by observing that) — P,(t > t) is decreasing and by using the FKG inequality,
we get, for any increasing,

f«pdﬂ(vp) /w(n)P (r > 1) dv, (1) <f<pdvp

fbp(

We now prove the lower bound, < 7;(v,). First, notice that we are committing
now an abuse of notation withk, since the monotonicity is only meant of.
Henceforth, by < v, for © andv with support inA¢, we mean that for any
increasing onA®, [@du < [@dv.

By Lemma 3.2, we need to establish two points: (a) for any integerd: > 0,
v, <T/(v,) and (b) thatv,, tends tov,. Moreover, for (a), it is enough to show
that

n,p
n > By @>1 is increasing omA¢  wherey, = T
Y () dv,o
Indeed, note that o the probability measure,, satisfies Holley’s condition
(see [9], Theorem 2.9, page 75) which implies thasatisfies the FKG inequality.
Thus, for any increasing functian on A€,

" . P,;l"o(t >1)
[vatron = [om P )

PP (t>1)
> [ pdv / 1 dv, () =/90d£n-
/ ") PR (T >1)
Now, we set

1 ;
(3.10) V() 1= (1= 1(0) [T »",

ieAn\{0}
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whereZ, is a constant such théty, dv, = 1. Also, set
O(i(n) — PVin '
PYin +1—p
Note that (a) follows when the hypotheses of Lemma 2.1 are satisfied, whereas (b)
follows as soon as for all site’sai(") — a;, with > (1 — ozl-/,o)z < 400.

We focus now on the four hypotheses of Lemma 2.1. Whereasg; thare
chosen smaller than 1, is decreasing. Moreover, a simple computation shows
that .£,,,, obtained by.L;.” as in Lemma 2.1, generates a monotone exclusion
process since the intensity rate of any b@nd) depends only om (i) andn(j).
Thus, it remains to show that}.” () /¥, is increasing.

Before specifying th¢y;, i € Z?}, we need some notation. Henceforth, we write
L, for L5’ andy; for y; ,. For eachi € Z4, let {X (i, 1), ¢ > O} be a symmetric
simple random walk trajectory startingiatve denote byP; the average over such
trajectory. Let

(3.12) Ho=inf{r:X(,1)=0} and H,=inf{r:X(,1) € A}}.

It is well known that fori ~ 0, P;(Hg < o0) < 1/2 ford > 3 (see, e.g., [5]) and
thatP; (Hp < H,) increases t®; (Hg < o0). Finally, note that — P;(Hg < H,) is
harmonic outside O [see, e.g., (3.16)]. LebB a neighbor of 0 and fare A, \ {0},
set

(3.11)

1 1
3.13 = whereCy = .
3.13) 7 1+ C4P;(Ho < Hy) 4= 1 " 2Py (Hg < o0)
Note that the correspondimd”)—given through (3.11)—is
o = P
! 1+ 11— p)CyP;(Ho < H,

(3.14) (1—-p)CyPi(Ho < Hy)

n—00 1Y

— o

T 1+ (1 — p)CaPi(Ho < +00)’
Thus, (b) follows as soon gs; ]P’l?(Ho < +00) < 400, thatis, ford > 5 (see [2]).

PROOF THATV := L, v, /¥, IS INCREASING. Fork € A, \ {0} andn(k) =0
we show thatV (o) > V(1). We denoteny := {j € A, \ {0}:j ~ k}, N0 =
{j € M:n(j) =0} and Nkl =1{j € A, \ {O}:n(j) = 1}. We treat the cases
ke A, \{0A,, M}, k € A, andk € Ny separately.

Casel. ke A, \ {0A,, No}. We assume (k) =0:

Viokn) — Vi = Z((ﬁf—nm -1)- Z<<ﬁ>n(j) -1)

POANNZ: Tk \NYi

() (5 5)

jeN? jent

(3.15)
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Note thati — 1/y; is harmonic ak, so that

1 N,
(3.16) 1M
jeNM Vi Yk
Thus,
vern-va= 3 (Z+2%) -2z 0
jeNkO k J
(3.17)

. 1
since forx >0, x + — > 2.
X

Case2. k € 9A,,. Note that for any,

k 1—
dcr—vp(n) = g2nt-1 with k := (_,0) and
dv, 0

k
o™y, 1-25(k)
n_y n( )

Vn
Thus, forn with n(k) =0,

vom-va- 2 () (2)")

JENNA, Yk Vi

(3.18)

(3.19) . .
+n<k>f<(— - 1) ) — D).
Yk K

If we extendn outsideA,, by 1 and recall thay; =1 for j ¢ A,, we can replace
the sum overV;, N A, by a sum overy; with an additional term-n (k) (1 — ;).

Thus,
A 1=-n() n(j)
Ve -V =Y ((ﬁ) - (ﬁ) )

jed Nk Vi
(3.20)
K

(- m(yk v 1).

The same argument as in Case 1 implies that the sum.&v& nonnegative and
it is enough to have

1 1 1 1
(3:21) 422120 e —3_(1__),
Yk K Ve K K

which is always true for any €10, 1[, sincey; < 1.
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Case3. k € My. Note that forn ¢ A,
0, if n(k) =1,

3.22 750, () = { )
(.22 VD= gy, i n =0,

Thus, forn(k) =0,
(3.23) V(o*n —V(n) = ( > ﬁ—|=/vko|) —-1- ( y—k.—|=ka1|>-
jeu\/,? Yk jeekal /

Now, whereas — P;(Hg < H,) is harmonic (and & A; by definition),

1 Ne|+1
(3.24) 3 1ty =MEL
jem Vi Yk
Thus, for our choice o€,
1+ Cy
3.25 Vel —v(n) > —2>0.
( ) (™) (n) = 1+ C Py (Ho < H,) = ]

3.4. Proof of Proposition1.4 Most of the arguments in the proof of
Proposition 1.4 follow those in Section 3.3. A new difficulty arises from the fact
that monotonicity of€,, is not trivial anymore.

As in Section 3.3, we first need some notations to specify{the € Z%}. We
denote byP; the average ovelX (i, t), t > 0}, a symmetric simple random walk
trajectory starting at. Let

(3.26) Hjpoy=inf{r:X(i,1) €{0,0}} and H,=inf{t:X(,1) € AS}.

We show in the Appendix that far~ 0, i # 0, P; (Hjp,0y < 00) < 1/2 ford > 4.
As P;(Hyo,0y < H,) increases t@®; (Hy oy < o0), we choose: large enough so
thatP; (Hypo,0y < Hy) <1/2. Thus,

1
Co:= sup >0,
keNo\[0) 1 — 2Pk (H{0,0) < 00)
so that for allk € M \ {0},
1+C
(3.27) +C2 -2
1+ C2Pr(Hyo,0y < Hn)
We choose
1
Viezd  yi= and
1+ CoPi(Hyo,0y < Hy)
(3.28)

Yu(m) = 1) [T 9.

ieA,
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Finally, note that — P; (Ho 0y < H,) is harmonic outsid¢0, 0’} and that with
Yo =y, We haveT v, = .

Define OCZ”’ = L5 + (B — 1)(T? — 1). We are now ready for the following
proof.

PROOF THATV := QC’;’p(wn)/wn IS INCREASING. In the case wherk is not

a neighbor of 0 or of Q thenV (o*n) — V(1) has the same expression as in Case
1 or 2 of Section 3.3. We do not repeat the computations.

Casel. k € Mo\ {0'}. SetwN*:={j:j~k,j¢({0,0}}, and forn ¢ A and
n(k) =0,

vo
Vet =V =S+ ﬂ{n(0)=0,n(0’)=0}<ﬁ - 1)

(3.29)
Vi
~ L ©@=0n@)=1) = 1{n<0>=1,n<0)=0}(% - 1)
with
N\ 1))
(330)  Si= > ((ﬁ) _1) ¥ ((ﬁ> —1),
jENk* Yk jEe/Vk* J/]

Note that by harmonicity

11 M +1
(3.31) > L /i b
jENk* yj VO’ yk

Now, if we se'[,/vkO ={jeN:n()=0} and,/\/k1 ={j e Ny :n(j)=1},and use
(3.31), the expressios), of (3.30) has the lower bound

Vj Yk Yk
Sk = Z y—]—lJVkO|—<— Z _~+|Nk*|+1_y_o/)

jeNkO jeNkO J

(3.32)

=y <ﬁ+ﬁ)—2|dvk°|+ﬁ—1zﬁ—l.

o Vi j Yo Yo
k
Now, in the event{n(0) = 1, n(0') =0}, (3.29) and (3.32) yield
(3.33) Viekn — vy = X —1- (ﬁ_1> —0.
Yo Yo

In the even{n(0) =0, n(0') = 1}, we have

Viekn —vip =X —2>0
Yo

(3.34) 14C
. 2
since >2 by (3.27
1+ CoPr(Hpo,0y < Hy) — by (327}
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Finally, in {n(0) = 0, n(0') = 0}, we have

(3.35) Viekn —vy = & — 1+
/ Yk Yo

Y0

—-2>0.

Case2. k € {0,0}. We assumé = 0 andn(0) = n(0") =0:

k y \'7" 1
Vet —vip= Y ((—) —1)+<0—|avof|)

JENG Yo
n(j) n(j)
@39 (G -G )
jeng N JeNS Yi
Vj Y0 Y0
=3 L3 =3 =4 M- ML
jend 70 etV jeny

Condition (3.27) implies that; > 2y for j € Ny U Ny. Thus,

aany VO TV Z 2N - 1AD1 = (31451 - 1451 — 514
> [N+ 3N — 3AN) + 146D = 0. 0

PROOF THAT Ly, IS MONOTONE. We describe an order-preserving coupling
between two trajectorigg;, 75;) for t > 0, whenng > 19. We run the two dynamics
with the same family of Poisson processes up to the first time there is a mismatch
at 0 or 0. Assume that this happens at the stopping tifnend thaty; (0) = 1=
1—177(0). UnderLy, , the rate for bringing) particles from any site oy to 0’ is
null. Let{7; o 07,i € My \ {0}} be the exponential times associated with the bonds
of 0’ in 5 after timeT. Note that if7j7 (i) = 1 for thei neighbor of 0, then the
intensity rate ofi, 0') is yp/y; < 1. Thus,

ai=YiriH) R <2d -1
i~0 Vi
i#0
Let z, be an exponential time of paramefer « independent of the other times.
We associate to the bormdof n at timeT the exponential time of parametér

(3.38) Ty 1= Min(t4, {7 0 07,1 € Ny \ {0}, 7ir (i) = 1}).

We associate to the boridof 77 an independent copy af,, but sincenr (0) =

nr(0) = 0, this has no effect. All remaining bonds in the two trajectories share

the same Poisson processes. Now, ik t,, then there is a mismatch at 0 and

NT+1+ > 1T+17,+. and we restart the same construction, with 0 drek@hanging

roles. On the other hand, if, < t,, then the mismatch at 0 and @anishes,

NT+t+ > NT+1,+, and we proceed with the same Poisson processes on all bonds.
O
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3.5. Proof of Proposition1.6. We rely here on Lemmas 2.2 and 3.2, with
£ =L)". We define

(3.39) vum=— T[] »".
" ie A, \{0}
whereZ, is a constant such thaty, dv, = 1 and

1

3.40 = ,
( ) i 1+ CupPi(Ho < Hy)

where Hy and H,, are defined in (3.12), and, , is a constant that will be fixed
later. We remark that

D f=Ef (15 =) o= ),

k~0
where.£ is the Markov generator

(

(341) Lf=Lof+) (1- n(k)) (o"f )+t ——= ("f ).

k~0

Thus, as observed in [6],dfp = b(1— p), then(£2;f)* is a Markov generator and
v, IS an invariant measure (reversiblerit= b).

Sincey is a product function£, is a monotone generator. Indeed, the intensity
rate of (i, j) depends only om(i) andn(j), whereas the rate of spin flip at site
depends only on (k). Thus, to prove the lower bound in (1.7), we are left to show
the following proof.

PROOF THAT V := (L;")*¥,/¥n 1S INCREASING. We takek € A, \ {0}
with (k) = 0 and we show thaV (¢¥n) — V(1) > 0. The case wherg is not
a neighbor of 0 is similar to Cases 1 or 2 in the proof of Proposition 1.3. Assume
k ~ 0. RewritingV, we need

: b(l—p) 1
Zﬁ+|avk1|+(( p)——a)
Vi p

j GN,? Vk

(3.42)

> Z —+|,Afk|+<1 yk—b)

By definingyo = 1/(1+ C,_5), we obtain thak +— 1/y is harmonic outside 0 and
we obtain the sufficient condition

1-p1
(3.43) b(—p— +1) —a(1+
P Yk 1-

Vk) >1—&
Yo



HITTING TIME IN THE SSEP 3317

For the upper bound in (1.7), we replagg with

1 T
(3.44) v, () = 7 T »".
" ieA,\{0)

where Z, is a constant such thafy, dv, = 1. It is easy to check that the

correspondingi; = (py, %)/(oy, * + 1 — p) produces the relationship in (1.7).

In this case, the corresponding potentidl should be decreasing. By the same
argument used above, we obtain the sufficient condition

1 1—
(3.45) a<1+L—>—b< 'Oyk+l)zl—ﬁ.
1-—pw P Yo

Now, if we sets =b(1 — p)/(ap), (3.43) and (3.45) read

h) Yk CupPr(Ho > Hy)
3.46 (——1)( +—b)z— .
(3.48) Vi “T% 1+ CqPr(Ho < Hy)
and

1 CupPr(Ho > Hy)
3.47 <——1) b+ yda) > ——= .
(3:47) e )OO = T B (Ho < Hy)

Thus, for anya andb positive, we can tak€’, ;, large enough so that (3.46) and
(3.47) hold. O

4. Proof of Proposition 1.8. DefineS; = 1 4c expt14cL]. Let us first note
that (ii) is a simple consequence of (i). Indeed, ¢et dn/dv and let f be
in L2(v):

[Sifdm _ [Sifdm Pyt >1)

P.(t>1) Py(t>1) ff,gdv

_ Eulg(mo) f (1) 1e>4] (Eu[g(mmm])—l oo [ fdp[gdp
B Py(t>1) Py(t>1) fegdun
Now, to prove (i), we first set

S8
P,(t>1)

and we need to show thaf, converges taH in the weakL?(v) topology. We
actually show that this convergence holds.f(v), which is equivalent to the two
facts

4.1) lim /HtHdv=/H2dv
t—>o0
and

4.2) lim /thdv:/szv.

—00

H, and H:u/gdu,
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We begin by proving (4.1). Since is a simple eigenfunction il2(v), S; () =
e *u v-a.s. and, by symmetry,

[ed

P, (r
my

=ﬁ</gdu)2 =3 /uzdv</gdu>2=/H2dv.

In the last step, we used (1.4). Thus, (4.1) is established.
In order now to prove (4.2), we rewrite

Jfedu

/H,Hdv:/ufz(g)dv P,(t > 1)

/gS,(u)dv

/szv: [8S2gdv _ fg_@,gdv (/ Sigdv)?
Py(r>1)2  ([S;gdv)2 Py(t >1)?’

Since

|| fS[gdU / d
t—00 P,(T > 1) sat:

we are left to show that
. Sogd
(4.3) lim M:/uzdv.
=00 ([ S;gdv)?

Denote by(I,).cr the spectral projections of in LZA. We know thafll, = I for
x > —A. Thus, by the spectral theorem,

(4.4) / gSugdv = / 2% d(g. Tg),
(—00,—A]

where {-,-) in the scalar product inL2(v). Now, we have the orthogonal
decomposition

-\ = S u
g=(guu+¢  withu= Tl (- l2= 1 1lz2e))-

By assumption¢), A is a simple eigenvalue fa€. This implies that rangél_; —
I1_,-) = sparu). Indeed, since the spectrum &f is bounded from above, we
have that rang@l_, — I[1_,-) C D(£), so that Theorem 5 on page 265 of [7]
applies andp = I1_,-(¢). In particular,¢, := I1_,_1/,,¢, converges tap in
L2(v). Define

gn = (&, u)u + ¢n.

Since{g,, Iy g,) = (¢n, [y e,) for x < —1 and

(gn> TIosgn) — (gn TL_s-&n) = (gn &n) — (@n> 0n) = (g, 1),
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we have
/(\ )L] 21x d<gn’ xgn> _ e—ZIA.(g’ 12)2
0. —
(4.5)
— 22‘)(d<(pn’ x(pn>:0(e—2l)\).
(—00,—A—1/n]
Similarly,
f?,gndv =/ e d(L e, T, g,)
(00,—2]
(4.6) = e d(Lpe, Mygy) + e (g, )i, Lue)
(00,—A—1/n]
= e_)‘tM + O(e_)“t).
llull2

By (4.4), (4.5) and (4.6), we have that (4.3) holds if we replaosith g, and
therefore (1.9) holds fog,,. To complete the proof, we are left to show that

[fSigdv [ fSigndv| _

4.7) im, sup P,(t>1t) Py(t>1)

n—oo t

However,

[£Sigdv [ fSigadv
P,(t>1) P,(t>1)

_ [ —®)Si fldv
P,(t>1)

1 _
<—F7S —
XTI I1S: fll2llgn — gll2

—At
< P c
The proof is concluded after recalling that

—\t

lgn —gll2— 0 and supﬁ 00 (by Fact 1.2.
T >

||f||2||gn gll2-

5. The process P*. In this section, we study the law of the whole path
nio..] = (ns)sefo.r) under the conditional distributio®, (-|t > ¢), in the limit as
t tends to infinity. Consider the stochastic process

u(no)u(n,)e "
[u?dv Tt

Let #; be theo-field o {n, :s € [0, ¢]}. Note that, for O< s < ¢,

Z[=

M(HO)e)\ Loy o= $)L

EZIF) == 5

u(ng) = Zs, v-a.s,
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so that(Z;);>o is a positive martingale unde?, with E,[Z;] = 1 for anyr > 0.
Thus, for anyr > 0, a probability measur* can be defined off; by

dp*
dP, |

=Z;.

Let di = u?dv/ [u?dv. For g € L?(2) and t > s > 0, we have, using
reversibility,

At S
E'lgnl = [ g ziap = [ <" HuSiwg) = [ gan

[u?dv
and
" 1
E"[g(n)|Fs] = Z—Ev[ng(nz)I?s]
(5.1) ’ _
. 1 ektu(n0)1r>ss )\(t_s)St—s(ug)(ns)
= ZsfMT —s(ug)(ns) = w(1s) ,

where equalities are intendét-a.s. Therefore, undetf“, the canonical process
n, is stationary with marginal layt and the transition probabilities are given by

At

c u _ e__
(5.2) VEeA Eglg()]l = M(E)S;(gu)(%‘)-

By the same argumentin (5.1), the associated Markov faffily & € 2} is given
on A€ by

1
W&‘) Eg[1r (’I[O,t])”(ﬂz)emﬂ{r>t}]’

wherel is a measurable set of paths depending only on tim¢8, ir]. Observe,
finally, that P* is reversible, that is, it is invariant by time reversal.

5.1. Proof of Proposition1.9. Let ¢ = ¢(no,) be a bounded measurable
function. By reversibility and the Markov property,

EU(@(n[a,,a[—l—r])lf > t)
_ Ev(‘ﬂ(n[a,,a,+r]]l{t>t}))

P,(t>1)
_ Ev(Pno(T > at)(p(n[o,r])]l{t>r}Pnr (t>t—a;—r))
h P,(t>1)
_ dT,, (v) dTi—a,—r(v)
- E[ 98 (g0 <nr><p(n[o,r])1{,>r}]ﬂ<r)
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with
P, P, t—a; —
B(t) = (t >a;)Py(t > a;—r)
P,(t>1)

_ P (t>a) e M Pyut>t—a —r)

B e *  P(t>1) e~ M—ar—r ’
Now, recalling (1.4),

t—00 e—kr

Also, by the Cauchy—Schwarz inequality, if we g&t, n) = (dT;(v)/dv)(n), then

dTa[( ) dT—a,—r( )
‘/( dvl) (no) 4 - v (nr)—u(T)O)M(77r)>90(77[o,,])]l{,>,}dpv

< |<p|oo(/ \f (ars o) — uno)lu(ny) d P,

+/ f(t—ar— 1) —u(nr>|u<no>dpu)
(5.5)

< |<p|oo((fu2<nr>dpuf \f @r. 10) —M(no)lzdpu)l/z

1/2
4 ( [waoar, [15a-a—rn- u(nr>|2dPU) )

< lelocllull2(l f(ar, ) —ulz + 1 f & —ar =7, ) —ull2).

This last expression goes to Osaends to infinity. Thus, gathering (5.4) and (5.5),
we obtain

Ey(@(na,.a+r1)|T > 1)

e)\r

=g Ev[M(770)14(nr)]l{t>r}(p(n[0,r])]W = E"(¢(n0,1))-

REMARK 5.1. By using arguments as those in Section 4, we can show that,
for

0<a;<b;<t with lim ay = lim (b;—a;): lim (t—b;):oo,
1—>00 1—00 1—00

the pathsjg, 4+ andnp, »,+- decouple with respect tB, (-|t > t) ast — oo,
that is,

Jim - Euo (nta.actr) ¥ (1o b+r1) 1T > 1] = E* (@ (n10.1)) E* (¥ (m10.11))
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for ¢, v bounded and measurable. In particular, the following generalization
of (1.9) holds:

(5.6) lim Evlf (14,8 (b, ) Liz>1)] =/fd/lfgd,&.

1—00 P,(t>1)

REMARK 5.2. Concerning the asymptotics at the boundarnof], we have
the following result. For > 0, the distribution of{n,, s € [0, r]} with respect to
P, (-]t > t) converges to the restriction to the time interi@lr] of P = i Pg’ du,
while the distribution of{ny, s € [r — r, t]} with respect toP, (|t > t) converges
to the time reversal of the restriction to the time interi@lr-] of P/j‘ =/ Pg’ du.
Indeed, by reversibility, the two statements above are equivalent, so we prove only
the first one. The argument is identical to that in Proposition 1.9¢Fek (no,,1)
bounded and measurable, we have

Ev[(p(n[o,r])]l{f>r}P;7r (t>t—r)]
P,(t>1)

th_r(v)( :|Pv(77>t—r)
dv 1 Pyt >1)

Eu[fp(ﬂ[o,r])lf > t] =

=K, (p(n[O,r])]l{f>r}

~

— 00

— Ev[¢(n[0,r])1{r>r}u(nr)e)tr] = EZ[@(U[OJ])]-
APPENDIX

We show in this appendix that, with the notation of Section 3 4isfa neighbor
of 0,k £ 0, then in dimensiong > 4,
Py (Hjo,01 < 00) < 3, whereH, =inf{n > 0:S, € A},
whereA c Z¢ and{S,, n € N} is a random walk. First, note that
P (Hjo,0} < 00) < Pr(Hp < 00) + Pr(Hy < 00).

We will show that ()P (Hy < o0) < Pr(Hp < 00) and that (ii)Px (Hp < o0) <
Po(Hp < o0). Assume (i) and (ii) hold. IR is the number of returns to the origin,
we have the classical equality

= %f[]lf] (Where we recall thao[R] = > Po(S, = 0)).

n=2

Po(Hp < 00)

Finally, we conclude, using the computation in [8], tliaf R] < 0.25 ford > 4.
Now, we show (i). To each path starting frdmand touching Q we associate a
path starting fromk and touching 0. LetS,,, n € N} be a path withSp = &, let

_ —
v=inf{n >0:S, — S,_1 =00}
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and note thatHy > v. Define{S),n € N} as follows: if v = oo, then S, = §,

for all n; otherwise, letS, = S, for n <v and S, = S, 41 — (f)() for n > v. Let
Hy = inf{n:S, = 0}. Note that if Hy < oo, then §,_1 = 0. Thus,(S,, S;) is
a coupling whereHy < Hy, and where each marginal is a random walk. Thus,
(i) holds. )

Now, point (ii). We couples,, with a pathS,, starting at 0 and such thatSf, =0,
then §n+1 = 0. Fori, j two sites that are neighbors of O, IBf ; be the rotation

with center 0 which send& ontoo_f'. Let X be a uniform choice of a site ing,
and define

S1=Xo and forn>1, Sn+1= Xo+ Ri xo(Sn)-

This definition ensures tha{'@n,nﬁ N} has independent increments uniformly
in Mo and such that if,, = 0, thenS,, .1 = 0. Thus, (i) follows easily.
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