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Let (L, <) be a finite distributive lattice, and suppose that the func-
tions f1, f2: L — R are monotone increasing with respect to the partial or-
der <. Given u a probability measure oh, denote byE(f;) the average
of f; over L with respect tqu, i = 1, 2. Then the FKG inequality provides
a condition on the measuye under which the covariance, CQf{, f2) :=
E(f1f2) — E(f1)E(f2), is nonnegative. In this paper we derive a “third-
order” generalization of the FKG inequality: Lét, f> and f3 be nonnega-
tive, monotone increasing functions énand letu be a probability measure
satisfying the same hypotheses as in the classical FKG inequality; then

2E(f1f2f3)
— [E(f1/2E(f3) + E(f1/3)E(f2) + E(fOE(f2/3)]

+E(fDE(2)E(f3)

is nonnegative. This result reduces to the FKG inequality for the case in which
fa=1.

We also establish fourth- and fifth-order generalizations of the FKG
inequality and formulate a conjecture for a generii-order generalization.
For functions and measures dR" we establish these inequalities by
extending the method of diffusion processes. We provide several applications
of the third-order inequality, generalizing earlier applications of the FKG
inequality. Finally, we remark on sanconnections between the theory of
total positivity and the existence of inequalities of FKG-type within the
context of Riemannian manifolds.

1. Introduction. In the realm of probability inequalities, the FKG inequality,
due to Fortuin, Kasteleyn and Ghbwme (1971), now oagpies a position of
fundamental importance because of its simplicity and widespread applicability.
Before we state in detail this remarkable inequality, it is worthwhile to note some
of its many applications.

In statistics, the FKG inequality has appeared in the study of monotonicity prop-
erties of power functions of likelihood ratio test statistics in multivariate analy-
sis, association and dependence properties of random variables, and observational
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studies; see Sarkar (1969), Perlman and Olkin (1980), Eaton (1987), Karlin and
Rinott (1980) and Rosenbaum (1995).

In probability theory and mathematical physics, the FKG inequality has
appeared in the areas of diffusion equations, interacting particle systems, Ising
models, reliability theory and percdian; see Grimmett1999), Herbst and Pitt
(1991), Lebowitz (1972), Liggett (1985), Preston (1976), Simon (1974, 1979) and
Glimm and Jaffe (1987).

In work on total positivity and its connections with the theory of finite reflection
groups and analysis on Lie groups, an analog of the FKG inequality was derived
by Gross and Richards (1995).

In combinatorial theory, the FKG inequality has appeared in work on the
monotonicity of partial orders, Sperner theory, graph theory and Ramsey theory;
see Graham (1982, 1983), Engel (1997), Cameron (1987) and Seymour and Welsh
(1975).

We now state the inequality. Ldt be a finite distributive lattice with partial
ordering <, least upper bound/ and greatest lower bound. A function
f:L— R is called (monotone) increasing if f(x) < f(y) wheneverx < y.

A probability measureg. on L is said to benultivariate totally positive of order 2
(MTPy) if

(1.1) pux vV y)u(x Ay) > px)m(y)

for all x, y € L. In some parts of the literature, an MJ Probability measure is
calledan FKG measure or log-super modular ; we prefer the MTR terminology;, re-
flecting the relationship with the classical theory of total positivity wherein (1.1) is
an abstract formulation of the concept of total positivity of order 2.

For any probability measuye on L and any functionf : L — R, denote by

E(f):=)_ na)f(a)
ael

themean or average of f with respect tqu.

Supposef1 and f» are both increasing (or both decreasing) real-valued
functions onL, and leti be an MTR probability measure oih.. Then the FKG
inequality provides that

(1.2) Cov(f1, f2) :=E(f1f2) — E(fDE(f2) > 0.

In mathematical statistics, it is usual to state the FKG inequality for the
spaceR”. In that setting, for vectors = (x1,...,x,) andy = (y1, ..., y,) in R",
the corresponding partial order is given by y if x; <y; forall j =1,...,n;
the lattice operations andA are

x Vy=(maxxi, y1), ..., max(x,, y,))
and

X /\ y = (mln(-x17 )’1), L ] mm(xm )’n)),
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a function f:R" — R is increasing if f(x) < f(y) wheneverx < y; and
a probability density functionk :R"” — R, or its underlying random vector
(X1, ..., Xp), is said to banultivariate totally positive of order 2 (MTPy) if

(1.3) K(xvy)K(xAny)=K@x)K(y)

for all x,y € R". If the functions f1, f>:R" — R are both increasing or both
decreasing and the expectatiabisf1), E(f2) and E(f1f2), with respect tok,
are finite, then the FKG inequality dR" provides that

[, A0 fatrK (o) d

- ( L. h(x)K(x)dx) : ( L. fz(x)K(x)dx) > 0.

It is well known that the continuous case of the FKG inequality, (1.4), can be
deduced by an approximation argument from the discrete case, (1.2); see Karlin
and Rinott (1980). We also remark that numerous generalizations of (1.2) have
appeared in the literatureee Ahlswede and Daykin (1978), Batty and Bollmann
(1980), Holley (1974), Preston (1974), Kemperman (1977), Edwards (1978) and
Rinott and Saks (1993). These results typically provide conditions leading to
inequalities of the form

(1.4)

k
/ T1 £ 08 (o) - K (x) dx
i=1

k k
- (/Hfi(x)-K(x)dx)(/ngi(x)-K(x)dx) >0
i=1 i=1

for classes of nonnegative functiorfs ..., f; andgas, ..., g.

In this paper we derive generalizations of (1.2) or (1.4) involving alternating
sums with more than two terms. Recall that the covariance between two random
variables is an example of a cumulant (or Ursell function) of those random
variables, so the FKG inequality (1.2) provides an inequality for the simplest
cumulant of the random variablg% and f>. Hence, in a search for “higher-order”
generalizations of (1.2) involving several functiofis f>, ..., itis natural that we
study the higher cumulants.

There are well-known probability distributions for which the FKG inequality
holds but for which the higher cumulants are nonpositive. Indeed, in the case of any
Gaussian distribution, the higher cumulants are identically zero. It is then apparent
that, without additional restrimns on the density functiork, the cumulants
themselves cannot provide direct generalizations of (1.2) [in this regard, we refer
to Percus (1975) and Sylvester (1975) foranthypes of correlation inequalities
for Ursell functions].
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Nevertheless, the algebraic structure of the higher-order cumulants provides
crucial motivation for generalizing the FKG inequality. To explain, recall that the
alternating sum

k3(f1, f2, f3) = E(f1/2/3)
(1.5) — [E(f1f2)E(f3) + E(f1/3)E(f2) + E(fDE(f2/3)]
+ 2E(f1)E(f2)E(f3)

is a cumulant of the random variablég f> and f3 [cf. Speed (1983)]. We define
thethird-order conjugate cumulant

k3(f1, f2. f3) := 2E(f1f2/3)
(1.6) — [E(f1/2E(f3) + E(f1/3)E(f2) + E(f)E(f2/3)]
+E(f)E(f2)E(f3),

which is derived fromkz by “reversing” the order of the absolute value of the
coefficients appearing in (1.5). The genetgh-order conjugate cumulant will

be defined in a similar manner. Our first main result, proven in Section 2, is the
following.

THEOREM 1.1. Let L be a finite distributive lattice, let © be an MTP»
probability measure on L, and let f1, f> and f3 be nonnegative increasing
functionson L. Then

1.7) k3(f1. f2. f3) = 0.

As a consequence of Theorem 1.1, we obtain a lower bound on the cumulant

k3(f1, f2, f3)-

COROLLARY 1.2. Under the same hypothesesas Theorem 1.1,
k3(f1, f2, f3) = —[E(f1/2/3) — E(SOE(f2)E(f3)].

That the inequality (1.7) generalizes the FKG inequality can be seen in three
ways. First, (1.7) reducesto (1.2)ff = 1. Second, (1.7) does not generally reduce
to (1.2) if, say, f3 is the indicator function of a proper subsetof Third, it is
straightforward to verify that (1.7) can be rewritten as

Cov(f1/2, f3) — E(f1) Cov(f2, f3) + Cov(f1f3, f2) >0,

expressing the property that an alternating linear combination of nonnegative
covariances is honnegative. It is also a pleasant surprise that these results hold
under the same hypotheses &nrequired for the classical FKG inequality, so
that the only additional assumptions required are the existence of the various
expectations.
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With Theorem 1.1 in place, it is natural to ask for similar generalizations of the
FKG inequality involving four or more functions. To that end, we shall prove the
following results.

THEOREM 1.3. Let u be an MTP2 probability measure on L and let f;,
i =1,...,5, benonnegative increasing functions on L. Then the fourth- and fifth-
order conjugate cumulants,

Ky = 6E(f1/2/34)
(1.8) — 2[E(f1f2/3)E(fa) + - -1 — [E(f1/2)E(f3fa) + -]
+[E(f12E(R)E(fa) + -1 = E(fOE(f2)E(f3)E(fa)

and
kg = 24E(f1f2f3faf5)
—6[E(f1f2f3fa)E(fs) + -1 —2[E(f1f2f3)E(fafs) + -]

+ 2[E(f12fE(fOE(f5) + - - -1 + [E(f12)E(f3fa)E(f5) + - - -]
—[E(f12E(R)E(f)E(fs) + -1+ E(fOE(2)E(f)E(fa),

are nonnegative.

(1.9)

In the above results, the notation, for examplB( f1 f2)E( f3)E(fa) + ---"is
shorthand notation for the sum over all distinct terms consisting of products of
expectations of the set of functiofigi, ..., f4}, divided into subsets of sizes 2, 1,
and 1. Explicitly,

E(fAf2E(f3)E(f4) +---
=E(f1/2E(f3)E(fa) + E(f1f)E(f2)E(fa) + E(f1fa)E(f2)E(f3)
+E(DE(f2/3)E(f2) + EDE(f2fDE(f3) + E(SOE(2)E(f3f4).

In Section 2 we shall prove Theorem 1.1. Once this is complete, the proof of
Theorem 1.3 is seen to be a consequence of elementary, but lengthy, algebraic
calculations which are easily performed using computer algebra software, for
example, MAPLE. Further, we shall conjecture a generalization of Theorems 1.1
and 1.3 to the case of an arbitrary number of functions.

In Section 3 we apply the method of diffusion processes to provide another
approach to the generalized FKG inequalities. We extend a method due to Herbst
and Pitt (1991) who derived the FKG inequality in their work on diffusion
semigroups which are stochastically monotone and which preserve the class of
positively correlated measures &4. While the methods utilized in Section 2 are
patently algebraic in flavor, the methods used in Section 3 may initially appear to
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be analytic in nature; however, a deeper reading will also reveal the ideas of this
latter section to be as algebraic in characteristic as are those of Section 2.

In Section 4 we approach the problem of proving Theorem 1.1 through the
method of duplicate variables; this approach seems significantly more complex
than in the case of the classical FKG inequality, and we provide explicit details
for the case in whicle = 1. In Section 5 we provide a number of applications,
extending some well-known applications of the classical FKG inequality. Finally,
in Section 6 we remark on connections between the theory of total positivity and
the possible existence of inequalities of FKG-type within the context of weakly
symmetric Riemannian manifolds.

2. Finitedistributivelattices. Let L be a finite distributive lattice with partial
order<, least upper boung and greatest lower bound Recall that every finite
distributive lattice is order-isomorphic to the lattice of subsets of a finite set. Then
there exists a finite set such thatZ = 24, the collection of all subsets of.
Endowed with set inclusion as the partial order, and with union and intersection as
least upper bound and greatest lower bound, respectivelg, 2finite distributive
lattice.

A probability measure. on 24 is said to bemultivariate totally positive of
order 2 (MTP,) if, for all a, b C A,

(2.1) p(aUb)u(anb) > u(a)ub).

A function f:24 — R is called (monotone) increasing if f(a) > f(b) whenever
a,b C A satisfya 2 b. We denote thexpected value of f with respect to the
measures by

E(f):= ) ua) f(a).

aCA

We now establish (1.7).

PrROOF OFTHEOREM 1.1. Our argument follows that of den Hollander and
Keane (1986). Without loss of generality, we assume that24 for some finite
set A. If the cardinality of 2 is 1, that is,A = @, then (1.7) holds trivially;
therefore we may suppose thatis nonempty.

Let us first assume that(a) > 0 for alla € A. Choose and fixB, an arbitrarily
chosen subset oA. For anya C B, define

(2.2) pp@ = ) u@ub)
bCA\B

and, for any functiory : 24 — R, define

1
(2.3) fela):=—— %" u@Ub)faub).

lu’B(a) bgA\B
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As observed by den Hollander and Keane (1986), it is cleaptpas the marginal
probability measure on the latticé 2also, fz(a) is the conditional expectation
of f, givena C B. It can be shown [cf. den Hollander and Keane (1986), page 171]
thatu g is MTP,, and thatfp is increasing iff is increasing [see Eaton (1987) or
Karlin and Rinott (1980) for similar results in the caserd.

For any functiorg : 22 — R, we define

Ep(g) =) np(a)g(a).
aCB
In the sequel we shall need the double expectation theorem: Fa& any,
(2.4) E(f)= ) w@f@ =) upla)fs@)=Ep(fp).
aCA aCB

In words, the expected value gf equals the expected value of its conditional
expectations.

To establish (1.7) it suffices, as observed by den Hollander and Keane (1986) in
the case of the FKG inequality, to assume tBat A \ {z}, wherez € A is chosen
arbitrarily; this amounts to a proof by induction on the length of maximal chains
in the lattice 2'. Using the shorthand notatiofaz to denote( f;)p, i =1, 2, 3, we
claim that

2Ep((f1f2f3)B)
(2.5) — [Es((f1f2)B f38) + Ep((f1/3) B f28) + EB(f18(f2/3)B)]
+Ep(f18 f28 f38) = 0.
By (2.2) and (2.3) we have

(2.6) wp(a) = u(a) + pn(a U{z})
and
(2.7) fela) = (n(@) f(a) + plaUiz) faUiz))
ug(a)
fora C B. By (2.7) we have
1e(@>(frf2f3)p(a)
(2.8) = g (@)?[u(a) f1(a) f2(a) fa(a)

+ n(aU{z}) frla U {z}) fa(a U {z}) fala U {z})].
Further, for{i, j, k} = {1, 2, 3},
we(@°3(fi f)p(@) fip(@)
(2.9) = up(@)p(a) fi(a) fjla) + nlaU{z}) filaU{z}) fj(a U{z})]
X [p(a) fi(a) + n(a U{z}) fia U {z})]
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and

15(a)® fip(a) f25(a) f3p (@)
(2.10)

3
= [[In(@) fi(@) + pla U {z}) fi(a U {z)].

i=1
Collecting together (2.8)—(2.10) and performing elementary algebraic simplifica-
tions with the aid of (2.6) and (2.7), we obtain

ns@>(2(f1f2/3)8(@)
—[(f1/2)B(a) f3p(a) + (f1f3)B(a) f2B(a) + f1B(a)(f2f3)B(a)]
(2.11) + f1(a) f2p(a) f3p(a)}
= p(a)p(aU{z})
x [(fala U {z}) — fi(@))P1p(a) + fi(a U {z})P2p(a)],
where
®1p(a) = p(a)(f2(a U{z}) f3(a U {(z}) — fa(a) f3(a))
(2.12) + ua U {(z})) fa(@)(f2(a U {z}) — f2(a))
+ u(a U {z}) fa(a)(faa U {z}) — fa(a))
and

®2p(a) = (n(a U{z}) + un(a))

x (f2(a U{z}) — fa(@))(f3(a U {z}) — fa(a)).

Since eacty; is nonnegative and increasing, it follows that (2.12) and (2.13) are
sums of products of nonnegative terms; hence (2.11) is nonnegative.
Next we divide both sides of (2.11) Iy (@)% and sum over att € B. We have

> up@ (frf2f3)s(@) =Ep((fLf2/3)8) =E(f1f2/3),

aCB
the latter equality following from thedouble expectation theorem (2.4). For
{i, j,k} ={1, 2, 3}, we have

> us@(fi f) (@) fig(@) =Eg((f; f;) 8 feB);

aCB

(2.13)

and also
> ws(a) fis(a) f25(a) f3p(a) = Ep(f15 f28 f38)-

aCB

Collecting these identities together arpdying the nonnegativity of (2.11), we
obtain (2.5).
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Since B was chosen arbitrarily, we may sé&t = @ in (2.5). By (2.2)
and (2.3) we havéy(fig) = E(fi), Ea((fi fj)a fre) = E(fi f))E(fi), Where
{i, j,k} = {1,2,3}, and alsoEg( fiz f2e f30) = E(fD)E(f2)E(f3). Then (2.5)
reducesto (1.7).

Finally, the case in whicly is not everywhere positive is resolved as in the case
of the FKG inequality [see den Hollandand Keane (1986), page 172]. That is,
we can carry through the above arguments omgeand the f;p are defined on
the sef{a € B: up(a) # 0}; this is done in any way which ensures that g are
increasing on 2, and the actual choice is immaterial since all we need is that each
fig 1s increasing on the support pfs. O

REMARK 2.1. (i) The assumption that the functiony, f> and f3 are

nonnegative is essential; in particular, we cannot avoid this assumption by adding
a constant to each function, fe§(f1, f2, f3) is not invariant under such shifts.
A referee has noted that without the positivity assumptiax ) can be made
arbitrarily negatively large relative to other moments, and this would violate the
inequality for f;(x) =x,i=1,2, 3.

(if) Consider the range of values of positive coefficientsc, andcs such that

c1E(f1f2/3) — c2lE(f12)E(f3) + E(f1/3)E(f2) + E(f)E(f2/3)]
+ c3E(fO)E(f2)E(f3) >0

for all nonnegative increasing function§, f» and f3. For simplicity, let us
work with functions onR2. In order to make comparison with Theorem 1.1, we
obviously need to impose the restriction

c1—3c2+c3=0.
Without loss of generality, we may assume= 1. By settingf3 = 1 we obtain
(c1 —DE(f1/2) — 2—c3m)E(fD)E(f2) > 0.

In order to maintain positive coefficients, we must impose the additional restriction
c1>1.

Forj=1223, leta;,b; € R and let f; be the indicator function of the set
{(u,v) e R?:u > a;,v > b;}. Denote the underlying random vector by, Y);
by choosing suitable distributions f@X, Y) it can be shown that the condition
c1 > 1 is not sufficient to ensure thag(fl, f2, f3) > 0. For instance, suppose
a1 < ap <azandb; < b, < bz. DenotingP (X >a;,Y > b;) by m;, we obtain

k3(f1, f2, f3) = c1m3 — (2mom3 + m173) + camimons
=3[ (1 — 72) (24 (c1 — 3)71) + (c1 — 2)(1 — 71)].
Forci > 1 we then have
K5(f1, f2, f3) = w3(1 — 1) (1 — 2712).



1518 D. ST. P. RICHARDS

For suitable(X, Y) it is possible to attain this lower bound; moreover, the bound
can be negative. Therefore the restriction> 1 is not sufficient to ensure
nonnegativity ofc5( f1, f2, f3) for all nonnegative increasing;. By choosing the

f; from among the class of indicator functions of the type above, we can deduce
thatcq > 2 is sufficient. We will return to this theme in Section 6.

Returning to the general context, a close inspection of the proof of Theorem 1.1
shows that we have also obtained a collection of lower bounds(6r /> f3).

COROLLARY 2.2. Let u bean MTP, measure on 24 and let f1, f» and f3
be nonnegative increasing functions on 24. For any B C A, there holds the lower
bound

2E(f1f2/3) = Ep((f1/2) B f38) + EB((f1/3)B f2B)

(2.14)
+Eg(f18(f2f3)8) — Eg(f1B f2B f3B)-

REMARK 2.3. Inthe case of the FKG inequality, that is, for the case in which
f3 =1, the left-hand side of (2.5) reduces to

(2.15) Eg((f1/2)B) —Eg(f1g f2) = E(f1f2) — Eg(f1s f2B)-

In addition to establishing the FKG inedity den Hollander and Keane [(1986),
Theorem 4(b)] establish the sharper inequality that (2.15) is a decreasing
function of B € 24. This raises the issue of whether the left-hand side of (2.5)
satisfies similar monotonicity propersie Even for the simplest lattices, such
monotonicity properties appear difficult to discern. In particular, as the following
counterexample shows, the left-hand side of (2.5) is not generally monotonically
decreasing irB.

Suppose tha# = {w, z}, a set with two distinct elements. The corresponding
lattice is 2! = {@, {w}, {z}, {w, z}}. Define a probability measurg on 24
by: u(¢) = 1/2, n({w}) = n({z}) = 1/8 and u({w, z}) = 1/4; then it is
straightforward to verify thap is MTP».. Define three nonnegative increasing
functions f1, f> and f3 on 24 by the substitutions

ai’ ifa:@,
_Jai+Bi, if a ={w},
fila) = o + Vi, if a ={z},
a; + Bi +yi + 6, if a ={w,z},

where o;, B;,vi,6; = 0,i = 1,2, 3. If we denote byg(B) the left-hand side
of (2.5), then for the case in whiclia1, az, a3) = (81, 82, 83) = (1,2, 3),
(v1, 2, ¥3) = (4,5, 6) and (81, 82, 863) = (0.1,0.2, 0.3), a straightforward calcu-
lation (carried out using MAPLE) reveals thgt(@) — g({w}) < 0. On the
other hand, for the case in whieh = 8, =y, =36; =i, i = 1,2, 3, we have
g(@) —g({w}) > 0.
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REMARK 2.4. Before we turn to the proof of Theorem 1.3, let us review the
algebraic calculations appearing in the proof of Theorem 1.1. In (2.6) and (2.7),
introduce the notatiom; = f;(a U {z}), v; = fi(a), i = 1,2,3; and letw; =
w(a U {z}) and w2 = u(a) be nonnegative weights. Withh = (u1, u2, u3) and
v = (v1, v2, v3) as variables, define the polynomials

P ; v) == (w1 + ©2)*(wru1uzuz + wav1v2v3),
P21)W; v) = (01 + w2)[(w1u1u2 + w2v1V2) (W1U3 + W2V3)
+ (w1u1u3 + w2v1v3) (W12 + W2V2)
+ (w1uzusz + wovav3) (wiug + wov1)],
P11 u; v) := (wiu1 + w2v1) (w1u2 + w2v2) (w13 + W2V3).
Also define

O (u; v) :=2p@E)(u; v) — pe,1y(U; v) + pa,1,1@; v),

which is precisely the left-hand side of (2.11). Then the nonnegativity of (2.11)
is equivalent to the nonnegativity b (u; v) under the restrictions that; >

v; > 0,i=1,2 3. Equivalently, to establish (2.5), we only have to show that
the polynomial® (« + v; v) is nonnegative under the restrictioms> 0, v; > 0,

i =1, 2, 3. However, the package MAPLE produces the stronger result that, in the
monomial expansion ab (u + v; v), all the coefficients appearing are nonnegative;
in fact, MAPLE calculates the monomial expansioniof: + v; v) to be

® (1 4 v; V) = W2W(2v1V2V3 + V1V2U3 + VIURVZ 4 UTV2VZ)

+ w105(v1V2V3 4 VIV2U3 + VIURV3 4 UIV2V3).

Now it becomes clear that generalizations of Theorem 1.1 can be established in
a similar manner. Indeed, any conjectured generalization involwirfgnctions

f1, ..., fmw Will be valid if, with u = (u1,...,u,) andv = (v1,...,vy,), the
coefficients in the monomial expansion of the corresponding polynoinial+

v;v) are all nonnegative. This is the approach we adopt to establish the
nonnegativity of the fourth- and fifth-order conjugate cumulants.

PROOF OFTHEOREM 1.3. To show that (1.8) is nonnegative, we follow the
same approach as in the case of Theorem 1.1. To initiate the proof by induction, it
is straightforward to verify that the result is valid for the case in whichk @.

Now we turn to the inductive hypothesis for nonemptyIn the case of four
increasing functionsf;, i = 1, 2, 3, 4, the claim analogous to (2.5) is that, for
anyB C A,

6E((frfofafa)s) — 2[Ep((f1faf3)B fag) + -]
(2.16) —[Es((frf)s(fafa)p) + -]
+ [Eg((f1/2) B fap faB) + - - - | + Eg(f1B f28 f3B fas) > O.
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Proceeding as in Remark 2.4, we apply MAPLE to verify that all coefficients
in the monomial expansion of the corresponding polynondidk + v; v) are
nonnegative. Once this has been done, the remainder of the proof follows the
arguments given in the latter part of the proof of Theorem 1.1.

To prove that (1.9) is nonnegative, we begin with the claim that

24Eg((frfofafafs)B) — 2[Ep((f1f2fafa) B foB) + -]
— [Ep((frf2f3)B(fafs)B) + -]
(2.17) — [Es((f1f2/3)B fap f5B) + - -]
+[Ep((f1f2)B(fafa)B fop) + -]
+ [Eg((f1f2) B f3B fas f5B) + - | — EB(f1B f28 f38 faB f58) = O

for any B C A. Next we construct the corresponding polynombglz; v), apply
MAPLE to verify the nonnegativity of all coefficients in the monomial expansion
of ®(u + v; v), and then the remainder of the proof is as befoig.

To formulate a conjecture for the casemincreasing functions, we need some
preliminaries from the theory of partitions [see Macdonald (1995)].

A partition A = (A1, A2, ...) IS a sequence of nonnegative integers withe
A2 > ---. Thepartsof A are the nonzerd; ; theweightof Lis |A| ;== A1+ Ao+ --;
and thdength of A, denoted by (1), is the number of parts of.

Given a partitior., for eachi = 1, 2, ..., let 1} denote the cardinality of the set
{j:rj =i}. Theni] > A, > ---, and the partition” = (1], 15, ...) is called the
partition conjugateto A. Itis not difficult to verify that(A’)’ = 1 and that] =1(%).

Form e N, m > 2, let §,, denote the symmetric group on symbols. For
any permutatiorr € &,, and any vecton = (uy, ..., u,) € R™, definet - u :=
(1), -- -, Uz(m)), the standard action @,, onRR™.

Let 11, ..., fn be functions on the latticé and letu be a probability measure
on L. For any partitiom = (A1, ..., A,,) of weightm, define

1) Aj
Polfe o fi) =] E( I fm...ﬂ_,._ﬁk),

j=1 \k=1

where expectations are with respect to the meaguré/e denote byD()) the
set of allt € &,, which give rise tadistinct permutations?; (t - (f1, ..., fm)) Of
P.(f1, ..., fm). Then our conjecture for amth-order generalization of the FKG
inequality is the following:

CONJECTURE 2.5. Let u be an MTP, probability measure on the finite
distributivelattice L, and let f1, ..., f,, be nonnegativeincreasing functionson L.
Then
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(i) Thereexistsa set of nonzero constants {c; € Z: || = m} such that

Pu(fro-osf)i= D Y. Pl (fr...os fw)

Al=m teD®)

IS nonnegative.

(i) For eachm > 3, there exists a constant d,,, such that
(2.18) Po(f1yeees -1 D =dpy Pru—1(f1, .- -s fin-1)-

(i) If fj=1forall j =1,...,m,then P, (1,...,1) =0, equivalently,
(2.19) >~ cardD(3))c;, =0.

[A|=m

For generai:, themth-order cumulant of a set of random variabfgs. . ., f, is

Km(f1 -5 fm)
(2.20)
=Y DO - Y 2l (fr )
[X]=m teD())

and we define the:th-order conjugate cumulant

Kr/n(fl’ T fm)
(2.21)
= ) (DI - DD Pur - (fua-es )
[A|=m teD(})

Form = 2,3,4,5, the conjecture is valid if we choose f@t,, the conjugate
cumulantc/,. For these values ofi, the coefficients; = (—1)®~1qu/) — 1)1,
|A| = m, in the expansion ok,,(f1...., fm) are all nonzero and satisfy (2.19).
Also, it can be verified that, fon = 3, 4, 5, thexk,, satisfy (2.18) withd,, = m — 2.
In light of Theorems 1.1 and 1.3, all the preceding calculations provide evidence
for the general conjecture.

Form > 6, it appears that the conjugate cumulants do not satisfy (2.19). In fact,
it appears to us that),(1,...,1) > 0 for allm > 6.

3. Diffusion processes. Once we have a generalization of the FKG inequality
within the context of finite distributive lattices, we can transfer that result to the
context of functions and measuresRhusing standard approximation procedures
[see Karlin and Rinott (1980)]. In this section we give a direct approach, using
the method of diffusion processes, to our generalizations of the FKG inequalities
on R”". This approach is based on the ideas of Herbst and Pitt (1991) and we first
present some preliminary material, all of which is abstracted from Herbst and Pitt
(1991).

We denote byC(R") the space of real-valued continuous functionskh
Further, we define”,(R") = {f € C(R") ! || flloo < o0} and denote by";°(R")
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the space of functiong which have bounded continuous derivatives of all orders.
We also denote b the space of functiong € C, (R"™) which are increasing.

A probability measurex on R" is said to bepositively correlated, or
associated, if

/fl(x)fz(x)dM(X)Z/ f1(X)dM(X)-/ Sfa(x)du(x)
Rn R R

for all f1, fo» € M. We denote by the collection of all probability measures
which are positively correlated.

Let {P,:t > 0} = {P(t; x,dy):t > 0} be a Markov transition semigroup of
probability measures oR”. Assume thaf{ P;:r > 0} is Feller-continuous; that
is, the operator#®;, defined by

PS@= [ FOIPUsx.dy).

map the spac€, (R") into itself. The semigroupp; :¢+ > 0} is calledmonotonic,
or is said to leaveM invariant, if, for all r > 0, P, f € M wheneverf € M. The
semigroup{ P; : t > 0} also acts on measures by

WP, (A) = /Rnu(dx)P(t;x,A)E/Rn /R La(Y)(dx) P(t: x, dy).

wherel,(-) denotes the indicator function of the measurabledsetquivalently,
forany f € C,(R"), the measurg P, is defined by

/f(X)dMPz(X)=/ / FONdpE) P x. dy).
Rn Rn Rn

If wP; € # for all + > 0 whenevem € £, then we shall say thdtP; : ¢+ > 0}
preserves positive correlations. Thus{ P; : t > 0} preserves positive correlations if

(3.1) wPi(f1f2) — (WP fO) (P f2) = 0

forallpue P, t>0andf1, foe M.
The (strong) infinitesimal generator G of { P, :¢t > 0} is the linear operator on
Cp(R™) given by

(3.2) Gl = lim 2oL =/
e—0+ &€

where the convergence is uniform.xin The domainD (G) of G is the class of all
functions f for which the limit exists.

For eachi =1, ...,n, denote byo; the partial derivativeg/ox;, with respect
to x;, theith coordinate of the vector.

Let a(x) = (a; ;j(x)), x € R", be a symmetric positive semidefinite matrix-
valued function onR" and letb(x) = (b;(x)) be a vector field orR". Denote
by G the differential operator

(3.3) Gf(x):=% Y ai;j(x)3d; f(x)+ Y bj(x)d; f(x)

i,j=1 j=1
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with domain®D (G) ={f € C;°(R"):Gf € Cp(R™M)}.

Following Herbst and Pitt (1991), we cdlP;:r > 0} a diffusion semigroup
with diffusion coefficients a(x) andb(x) if D(G) € D(G) andGf = G f for
all f e D(G). We will assume throughout tha generates {P;:¢t > 0} in the
sense that there exists a unique diffusion semigi@p: > 0} corresponding to
given coefficients:(x) andb(x); a sufficient condition under whict generates
{P; .t = 0} is given by Herbst and Pitt [(1991), (1.3)] [cf. Chen and Wang (1993)].

Applying the semigroup propert®,. = P; P, and (3.2), it is straightforward
to show that, for anyf € D(G),

Poye f(x) — Py f(x)

34) P f) = lim —GP,f(x) = P,Gf(x),
as e—0+ e

with the limit holding uniformly inx.
For f1, f» € CL(R"), we shall use the notation

(3.5) T1(f1 f2)(x) = Y a; j(x)d; f1(x) d; f2(x),

i,j=1

x € R"; this operator is also known as tbarré du champ operator [cf. Hu (2000)].
For f1, f> € D(G), itis straightforward to verify that

(3.6) Ti(f1, f2(x) =G(f1/2)(x) — 1()G(f2)(x) — f2(0)G (f1) (),

so thatl'; can be viewed as measuring the extent to which the ope€atisra
derivation.

By combining the results of Herbst and Pitt (1991) and Chen and Wang (1993),
we obtain the following criterion for monotonicity of the semigroup : ¢ > 0}.

THEOREM 3.1 [Herbst and Pitt (1991) and Chen and Wang (1993Jhe
semigroup { P, : t > 0} ismonotonic if and only if
(i) foralli, j=1,...,n,a;;(x) dependsonly onx; and x;, and

(i) forall j=1,...,n,b;(x) >b;(y) whenever x > y withx; = y;.

A necessary and sufficient condition for preservation of positive correlations is
the following result of Herbst and Pitt [(1991), Theorem 1.3].

THEOREM 3.2 [Herbst and Pitt (1991)]. The semigroup { P; : t > 0} preserves
positive correlationsif and only if

(i) {P;:t > 0} ismonotonic, and
(i) a;j(x)>0forall xeR",i,j=1,...,n.
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Theorem 3.1 can be viewed as providing conditions under which the semigroup
{P; .t > 0} preserves “second-order” correlations. In the sequel we show, general-
izing (3.1), how{ P, :t > O} preserves certain third-order correlations. The follow-
ing result is motivated by Herbst andi{it991), notably their Proposition 4.1, and
the proof below is along the lines developed by them.

PrRoOPOSITION 3.3. Suppose that the diffusion semigroup {P;:t > 0} is
monotonic, that

(3.7) T'1(f1, f2)(x) >0
for all x e R" and for all smooth f1, f> € M, and that a; ; € M for all i, j =1,
...,n.Then
2P, (f1f2f3)(x) — [P:(f1./2)(x) P; f3(x)
(3.8) + Pi(f1f3) (x) Py f2(x) + P; f1(x) Pi(f2f3)(x)]

+ Py f1(xX) Py f2(x) Py f3(x) = O

for all nonnegative smooth f1, f2, fa € M and all x € R”.

PrROOF Since the class of smooth functions is denseMnin the topology
of bounded locally uniform convergence, it suffices to prove (3.8) for the case in
which f1, f2, fae MNCPR").
Now fix > 0 and define the function
h(s) =2Ps(Pi—s f1- Pi—s f2- Pr—s f3)(x)
— [Ps(Pi—s f1- Pi—s f2)(x) - P; f3(x)
(3.9) + Ps(Pr—s f1- Pi—s f3)(x) - Py f2(x)
+ P fi(x) - Ps(Pr—s f2 - Pz—sz)(x)]
+ P f1(x) - P f2a(x) - Pt f3(x),

0<s <t. Observe thak(0) =0 and
h(t) = 2P, (f1f2/3)(x)
— [P (f1f2)(x) - P, f3(x)

+ Pi(f1f3)(x) - P f2(x) + P, f1(x) - Pi(f213)(x)]
+ P f1(x) - Py fa(x) - Py f3(x).

Thus, to establish (3.8), we need only show tiat) > 0 for all s € (0, ).

(3.10)
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We now apply (3.4) repeatedly to (3.9) to differentidte Suppressing the
notational dependence of all functions on the argumemnte obtain
h/(s) = 2[PsG(Pz—sfl‘ Pi_sfo-Pi_sf3) — Pi(GP_sf1- P f2- P [3)
—Py(P—sf1-GP—sf2- Pr—sf3) — Ps(Pr—s f1- Pi—s f2- GPz—sz)]
—[P\G(P—s f1- Pi=s 2)
— Ps(GPi—sf1- Pr—s f2) — Py(Pr—s f1- GPz—sfz)]Pth
— [PsG(Pi—s f1- Pi—s f3)
— Ps(GPi—sf1- Pr—s f3) — Py(Pr—s f1- GPz—sz)]Ptfz
- [PSG(Pt—sz P f3)
— Py(GPi—sf2- Pi—sf3) — Ps(Pi—s f2- GP,_s f3)] P: f1.
Equivalently, denoting®,_; f; by g;, i = 1, 2, 3, what we have shown is that
W (s) = 2[PsG(g18283) — Ps(8283Gg1) — Ps(8183Gg2) — Ps(8182Gg3)]
— [PsG(g182) — Ps(82Gg1) — Ps(81Gg2)1Psg3
— [PsG(8183) — Ps(83Gg1) — Ps(81Gg3)1Psg2
— [PsG(g283) — Ps(83Gg2) — Ps(82Gg3)1Psg1.
Using the definition of"1(:, -) in (3.5), we have
I (s) = 2Ps[G(818283) — 8283Gg1 — 8183G g2 — 8182G g3l
(3.11) — [PsT1(81, 82) - Psg3
+ PT'1(g1. g3) - Psg2 + PsT1(g2. 83) - Psg1].

For{i, j, k} ={1,2, 3}, we express each terfAI'1(g;, g;) - Psgi in (3.11) in the
form

PsT'1(gi, &5) - Ps&k
= Py(T'1(gi. &j) - 8k) — [Ps(T1(gi, &) - 8&) — PsT'1(gi, &) - Ps&k ]

and then we obtain

h'(s) = PsT1(g1. 82, g3) + [ Ps(T'1(g1. £2) - 3) — PsT1(g1, 82) - Pygs]
(3.12) + [Ps(T1(g1. g3) - g2) — PsT'1(81, g3) - Psg2]

+ [Ps(T1(g2. g3) - 81) — PsT1(82, g3) - Psg1].

where

I'1(g1, 82, 83) := 2[G(g18283) — 8283G 81 — 8183G g2 — 182G g3l
(3.13) — [g3T1(g1, g2) + g2l"1(g1, &3) + g1I"1(82, 3)]

= 2G(g18283) — 81G(8283) — 2G(g183) — 83G(8182)-
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By a direct calculation using (3.3) and (3.5), we obtain from (3.13) the identity

n
I'1(g1, 82,83) = 81 Z a;,j0;820;83

i,j=1
n n
(3.14) +g2 Y aij0ig1djg3+g3 Y. aij0ig1djg2
ij=1 i,j=1

= g1I"1(g2, g3) + g2I'1(g1, g3) + g3l'1(g1, g2)-

Since f1, f» and f3 are nonnegative, then so arg g» andgs. By the assumptions
that{ P; .+ > 0} is monotonic and that (3.7) holds, we find that M N C°(R"),
i=1,23,andl'1(gr, g) >0, 1<k <1 < 3; thereforel"1(g1, g2, g3) > 0.

Since eachg; € M, then d;g; > 0 for all i =1,...,n. By assumption,
eacha; ; € M. Therefore it follows from (3.5) that, for any pair of smooth
gk, 81 € M, T'1(gxk, g1) 1S a nonnegative linear combination of elementsAof
hencd1(g;, gj) € M. By Proposition 4.1 of Herbst and Pitt (1991), the semigroup
{P,:t > 0} is known to preserve positive correlations; therefore each term
Ps(T'1(gi. gj) - &) — PsT'1(gi, g;) - Psgk is nonnegative, establishing that (3.12)
is a decomposition of’(s) into nonnegative terms. This proves théts) > 0,

s € (0, 1), from which we conclude that(s) > 0. O

ReEMARK 3.4. (i) Consider the case in whicky = 1 in the foregoing proof.
Then the termsP(I"1(gi, g;) - gx) — PsI"1(gi., gj) - Psgr are identically zero, so
that no monotonicity conditions on the ; are required. Then we recover a result
of Herbst and Pitt [(1991), Proposition 4.1].

(i) By analogous arguments we can extend some results of Wang and Yan
(1994) on positive correlations for diffusion processeaatimensional tori.

(ii) Results similar to Poposition 3.3 have played a prominent role in the study
of functional inequalities, for example, log-Sobolev inequalities; see Hu (2000). In
work now in progress, we will study extensions of those inequalities by means of
generalizations of Proposition 3.3.

As a consequence of Proposition 3.3, we now obtain an analog of Theorem 1.1
for functions onRR”; here again, we follow arguments given by Herbst and Pitt
[(1991), Corollary 1.7] in their proof of the FKG inequality.

COROLLARY 3.5. Suppose that u(dx) = exp(y(x))dx is a probability
measure on R”, where ¢ € C2(R") satisfies the properties that v (x) > —oo and
0; 0jy¥(x) >0for all i # j and for all x e R". If f1, f> and f3 are nonnegative
functionsin M such that the various expectations exist, then Ké( f1, f2, f3) = 0.
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PrROOF Construct the diffusion proce$#; :+ > 0} with infinitesimal genera-
tor

n n
G=2_ 07+ 090,
j=1 j=1

corresponding to (3.3) withy; ; = 26; ; andb; = 9;y. It is well known that
the procesg P, :t > 0} is monotonic [by Theorem 3.1, this is equivalent to the
assumption thad; 9;v(x) > 0 for all x andi # j]. Also, I'1(f1, f2) > 0 for

all smooth f1, f> € M and theq; ;, being constants, clearly are elementspof
Applying Proposgion 3.3, we deuce that (3.8) holds. Letting— oo in (3.8) and
noting thatP, f — E(f), almost surely, we obtain (1.7) 0

It also is clear how to extend Proposition 3.3 to the case of four or more
functions. We have found the algebraic calculations to be more extensive,
indicating that an alternative approach is needed to resolve the case of an arbitrary
number of functions. Nevertheless, the strategy is the same, and we illustrate it by
sketching the details for the case of four functions. Supposefthat., f4 € M
are nonnegative and smooth. koe R", defineg; = P, f;,i=1,...,4 and

h(s) = 6P;(g1828384)
— 2[Ps(g18283) - P fa+ Ps(g18284) - P, f3
+ P(g18384) - Pr f2 + Ps(g2g384) - P: f1]

— [Ps(g182) - Ps(g3g4) + Ps(g183) - Ps(g284) + Ps(g184) - Ps(g283)]
+[Ps(g182) - Prf3- Pifa+ Ps(g183) - Pif2- P fa

+ Ps(g184) - Pi f2- P f3+ Py(g283) - Prf1- Py fa

+ Py(8284) - P f1- Pi fa+ Ps(g384) - P f1- P, f2]
+ Pif1- Pif2- P f3- P fa,

0 < s <t, where, as usual, we have suppressed all notational dependence of
functions onx. Define

I'1(g1, 82, 83, 84)
= g1821'1(g3, g4) + g1831"1(g2, g4) + g1841'1(g2, g3)
+ g2831"1(81, g4) + g284T'1(g1, g3) + g3gal'1(g1. &2),

and denotd"1(g2, £3, g4) by I'1({g1. ..., g4} \ {g1}), and so on. For & s < ¢,
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a lengthy, but straightforward, calculation leads to the result

h'(s) = PsT1(g1. 82. 83, 84)

4
+2 3 [Py(g; - Tallgn -, gl \ (g;D)
j=1

— Pogj- PiT1({ge, ..., g4l \ {g; D]

+ > [Po(gigj-T1({g1. ..., ga} \ {gi- &)
1<i<j<4

— Ps(gigj) - PsT1({g1. . ... g4} \ {gi. &j))]

+ Y Pgi-Pgj-PTi({g1..... 84} \ {gi. &j})-

1<i<j<4

Now we apply the same arguments which concluded the proof of Proposition 3.3.
Then the above expression is seen to be a resolutidri(ef into nonnegative
terms; hence, under the hypotheses of Propositioni3(8, > 0, 0< s < ¢, and
thereforei(r) > h(0) = 0. Finally, we argue as in Corollary 3.5 to deduge> 0.

It is interesting to compare the techniques applied in Sections 2 and 3. On the
one hand, the lattice formulation in Section 2 required no analytical considerations;
however, the algebraic manipulations were sufficiently complicated that we found
it necessary to use the MAPLE package to decompose expressions as sums of
nonnegative terms. On the other hand, in the present section, analytical machinery
was needed but the algebraic calculations appeared to be simpler and we made no
use of the MAPLE package.

4. Duplicate variables. Another approach to establishing the classical FKG
inequality onRR” is by way of the method of duplicate variables; see Cartier
(1974) and Glimm and Jaffe (1987). Therefore it is natural to search for a proof
of Theorem 1.1 using this method. Fer= 1, we have such a proof; however,
the inductive step seems difficult and we have not been able to find it. To
demonstrate the difficulties inherent in the inductive step, we now establish the
case in whichh = 1.

Here, the functionsfi, f» and f3 are nonnegative and increasing Bnand
we wish to show that the conjugate cumulagt f1, f2, f3) is nonnegative. By
duplicating variables we have

K4 f1, for fa) = / 1y, x2, x3) dj(x1) d i (x2) de (x3),
R3



HIGHER-ORDER INEQUALITIES 1529

where
I(x1, x2, x3)
= 2f1(x1) fa(x1) f3(x1)
— [f1(x1) f2(x1) f3(x2) + f1(x1) f2(x2) f3(x1) + f1(x2) f2(x1) f3(x1)]
+ f1(x1) f2(x2) f3(x3).
Define

J(x1,x2,x3) = Y I(T-(x1,x2,x3));
€G3

then, by a symmetry argument, we obtain

(i S F = 5, [ I 0c1 5239 dpen) dpx2) dia )
With the help of MAPLE we find that
J(x1,x2,x3) = f3(x1)(f1(x3) — f1(x1))(f2(x3) — f2a(x1))
+ fi(x3)(f2(x3) — f2(x1))(f3(x3) — f3(x1))
+ f2(x0) (f1(x3) — f1(x1))(f3(x3) — f3(x1))
+ f3(xD) (f1(x2) — fi(x)(f2(x2) — fa(x1))
+ i) (f2(x2) — f2(x1))(f3(x2) — f3(x1))
4.1 + f2(x0) (f1(x2) — fi(x1))(f3(x2) — f3(x1))
+ fi(x3) (f2(x3) — f2(x2))(f3(x3) — f3(x2))
+ f3(x2) (f1(x3) — f1(x2))(f2(x3) — f2(x2))
+ f2(x3) (f1(x3) — f1(x2))(f3(x3) — f3(x2))
+ (f1(x3) — f1(x2))(f2(x2) — f2(x1))(f3(x3) — f3(x2))
+ (f1(x3) — f1(x1))(f2(x3) — f2(x2))(f3(x3) — f3(x2))
+ (f1(x3) — f1(x2))(f2(x3) — f2(x2))(f3(x2) — f3(x1)).

Since f1, f> and f3 are nonnegative and increasing, we deduce immediately that
J (x1, x2, x3) > 0 on the “fundamental’ chambér; < x2 < x3}. It then follows by
symmetry that/(x1, x2, x3) > 0 on every Weyl chambelte; (1) < x:2) < X¢(3)},
T € G3. By taking limits as(x1, x2, x3) goes to a boundarfy; (1) < x;(2) < x:3)},
T € G3, we find that/ (x1, x2, x3) remains nonnegative on every wall of a chamber.
Thereforex;(f1, f2, f3) = 0.

To carry out the inductive step toward higher dimensions requires a method for
handling functions of the fornd in (4.1); unfortunately, we have not been able to
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develop such a technigue. More importantly, our usage of the terminology “Weyl
chamber,” “wall” and “fundamental chamber” is not accidental, for we believe
that inequalities of FKG-type exist within the context of arbitrary finite reflection
groups; see Gross and Richards (1995).

5. Applications. Any generalization of the FKG inequality has the potential
for vast numbers of applications. In this section we provide a few applications
and point the reader to others. We begin with generalizations of some applications
given by Seymour and Welsh (1975).

5.1. Generalized inequalities for Bernstein polynomials. For f € CI[0, 1], the
Bernstein polynomial off is the polynomial defined of®, 1] by

By f )= Y f/m ()@,
k=0

Generalizing Theorem 2.6 of Seymour and Welsh (1975), we have the following
result.

PrRoPOSITIONS.1. If f1, fo and f3 are nonnegative increasing functions
on [0, 1], then their Bernstein polynomials satisfy

2By (f1/2/3)(x)
— [Ba(f1f2)(x) By f3(x)
+ B, (f1f3)(x) By f2(x) 4 By f1(x) By (f2.f3) (x)]
+ By f1(x) By f2(x) By f3(x) > 0
for all x € [0, 1].

(5.1)

PROOF Let A be a set of: elements and let € [0, 1]. Define a probability
measurg. on the lattice 2 by

M(a) — Cxcarda)(l _ x)n—carda)’

a € 24, where car¢z) denotes the cardinality of and ¢ is the normalizing
constant; it is well known that satisfies the MTRcondition (2.1). Next we define

fi(a) = f(carda)/n),

j=1,2,3,a €24 Then the functlongfj are nonnegative and increasing oh 2
On applying Theorem 1.1 to the probability measureand the functlonsfj,
j=1,2,3,weobtain (5.1). O

By arguing along similar lines, inequalities for Bernstein polynomials for four
and five functions can be obtained through application of Theorem 1.3.
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5.2. Inequalities for log-convex Sequenc&c Recall that a sequence of real
numberdag, ..., a,} is calledlog-convexif ak <ag_iai41forallk=1,....,n -1
For any sequenc{eco, ..., a,}, we will use the notation

({ouc}) Z 7%

The following result extends Theorem 3.2 of Seymour and Welsh (1975), which
itself is a generalization of a classical inequality of Tchebycheff.

PROPOSITION 5.2. Suppose that {ao, ..., a,} is a positive, log-convex se-
guencewith ({ax}) = 1. Suppose also that the sequences{aq, ..., @, }, {Bo, - .., Bn}
and {yo, ..., y»} areincreasing and nonnegative. Then

2({aro Beyi}) — ({arar Bic}) ({ax vk })
(5.2) — ({aroryi ) HawBr}) — ({arau}) ({ar B yve})
+ ({axar}) ({arBi}) {aryi}) = 0.

PrROOF The proof of this result is similar to the proof of the corresponding
result given by Seymour and Welsh (1975). Define the sequence

bk=ak/<Z),

k=0,...,n.Since the sequencés} and{1/(} )} are log-convex, then so {#;}.
LetA ={1,...,n} and defing.: 24 — R by

u(a) = bcarc{a),

a € 24, Itis shown by Seymour and Welsh (1975), thasatisfies (2.1).
Define f1, fo, f3:24 — R by

fila) = CQcarda), f2la) = ,Bcarcta), f3la) = Ycarda)»

a €24. Then the functiong’; are nonnegative and increasing ch ®n applying
Theorem 1.1 to the probability measure proportionaktand the functionsf;,
Jj =1,2,3, we obtain the desired result]

5.3. A generalization of Kleitman'slemma. A collectionC of subsets of a set
Ais closed aboveif a € C anda C b imply b € C. Similarly, C is closed below if
aceCanda2>bimplybeC.

Suppose that is a finite set of cardinalityt, and letU andL be collections of
subsets ofA such thatU is closed above and is closed below. Then Kleitman
(1966) proved the remarkable inequality,

(5.3) 2'cardU N L) <cardU)cardL).

The following result generalizes this inequality; see Seymour and Welsh [(1975),
Theorem 4.2].
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PROPOSITIONS.3. Let A beafiniteset of cardinalityn, andlet U1, Uz, and L
be collections of subsets of A. Supposethat U; and U, are closed aboveand L is
closed below. Then

22" card Uy N Up) — 22" cardU; N UL N L)

+ 2" (cardUy N Up) card L)
(5.4)
+ cardUy N L) cardUz) + cardU1) cardUz N L))

— 2" cardUy) cardUy) — cardU1) cardU») card L) > 0.
PROOF Let u be the uniform distribution on“) that is, i(a) = 1/2" for

all a € 24, Let f1 and f» be the characteristic functions of the séts and Us,
respectively; that is, fof =1, 2,

l, ifaEUj,
Ji@O=10 " ifagu,

Also let f3 denote the characteristic function bf, the complement of.. Then
f1, fo and 1— f3 are nonnegative increasing functions. Then (5.4) is obtained by
applying Theorem 1.1 to the measwrand the functiong, f» and 1— f3. O

For the case in whicl/; = U is closed above antl, = 24, the inequality (5.4)
reduces to (5.3).

5.4. Inequalities for matrix functions.

DEFINITION 5.4. LetR = (R(i, j)) be ann x n real matrix. Then
() R satisfies theriangle property if

(5.5) R@, j)R(k, k) = R(i,k)R(k, J)
foralli <k < jandallj <k <i[see Barrett and Feinsilver (1981)];

(i) R isnonnegativeif R(i, j) is nonnegative for all and;

(i) R represents a discrete probability distribution if R is nonnegative and
Yii—aRG ) =1

(iv) Risincreasingif R(i, j) is monotone increasing inand inj.

For anyn x n matrix R = R(i, j) representing a discrete probability distribution
and any: x n matrix F = (F (i, j), we denote iR F’) by Eg(F). Because

tr(RF) =Y > RG, )HFG,J),

i=1j=1
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the notatioriEg (F) for tr(R F') is consistent with the notation for expectation with
respect to the discrete probability distribution represented by the entries of the
matrix R.

Given twon x n matricesFy = (f1(i, j)) and Fo = (f2(i, j)), recall that the
Hadamard product of F1 and F» is the matrixF1 o Fo = (f1(i, j) f2(i, J)).

Now we have the following result.

PROPOSITION5.5. Let R be an n x n matrix which represents a discrete
probability distribution and satisfies the triangle property. If F1 = (f1(i, j)),
F> = (f2(@i, j)) and F3 = (f3(i, j)) are nonnegative increasing n x n matrices,
then

2ER(Fro Fo0 F3) — [Eg(Fy o F2)Eg(F3)

(5.6) +Eg(F10 F3)ER(F2) + Eg(F1)ER(F20 F3)]
+ Er(F)ER(F2)ER(F3) > 0.

In particular,

(5.7) Eg(F1o F2) > Er(F1)ER(F2).

PROOF Let A =1{1,...,n}, so thatA x A is the set of pairs of positive
integers ranging from 1 through Equip A x A with the partial order given by
@, j) < (k,)if i <jandk <I; this is the same partial ordering utilized in the
study of the FKG inequality on Euclidean space. For paits (i, j) andg = (k,[)
in A x A, we definep v g andp A ¢ in the usual component-wise manner;

pVq=(maxi,k), maxj,1)), p A g = (min(i, k), min(j,1)).

It is straightforward to check that the triangle property (5.5) is equivalent to the
MTP, condition with equality:

R(pV q@)R(p Ag)=R(p)R(q)

for all p,g € A x A. Therefore, any matrixR which represents a discrete
distribution and satisfies the triangle condition corresponds to arphgfidbability
distribution onA x A. This observation is the crux of the proof, for we can now
apply Theorem 1.1 to nonnegative increasing matrix functions to deduce (5.6).
Finally, (5.7) is the special case of (5.6) in whigk(i, j)=1. O

We now turn to inequalities for rank and determinant functions of positive-
definite functions.

Let M denote a fixed x n positive-semidefinite matrid. Given an index set
aCA={1,...,n}, we denote by [a] the submatrix of\f appearing in the rows
and columns labelled by the elements of thessdtor anya, b C A, it is a result
of Lundquist and Barrett (1996) that

(5.8) rankM[a U b] + rankM|[a N b] <rankM|[a] + rankM[b].
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For fixedr > 0, define the probability measugeon 24 by
tn—rankM[a]

ZaCA tn—rankM[a]’

u(a) =

a € 24; the measur@ can be viewed as a generating function for the ranks of the
submatriced/[a], a C A.

It follows from (5.8) thatu satisfies the MTRcondition (1.1) on the lattice’2
By applying Theorem 1.1 to the measweand nonnegative increasing functions
fi» j =1,2,3, we obtain various positivity results. We leave it to the reader to
work out special cases, for example, the case in whictythare defined in terms
of the characteristic functions of subsets dfthat are closed above or below, as
necessary.

Other examples arise by specifying tlfie to be functions analogous to those
chosen by Seymour and Welsh (1975) in the proof of their Theorem 5.10. More
generally, we may consider the context of matroid theory considered by Seymour
and Welsh (1975) and deduce by application of Theorem 1.1 higher-order total
positivity properties of the rank-generating function of a matroid.

To derive determinantal inequalities, suppose Mas a fixed positive-definite
symmetricn x n matrix. We recall the generalized Hadamard-Fischer inequality

(5.9) detM[a U b]detM[a N b] < detM[a]detM[b];
see Horn and Johnson [(1985), page 485]. For fixed0, define the probability
measure
detM[a]™!
Y acadetM o]~ ’

u(a) =

a € 24. Theny satisfies the MTR condition (1.1) on the lattice’2 On applying
Theorem 1.1 to various choices of the functiofis we obtain determinantal
inequalities.

For example, supposg (a) = tr M[a], the trace oM [a]; fo(a) = Amin(M[a]),
the smallest eigenvalue df[a]; and f3(a) = 1/Amax(M|a]), the inverse of the
largest eigenvalue a¥f[a]. Then it is a consequence of the fundameirtellusion
principle describing the interlacing properties of eigenvalues of submatrices of
Hermitian matrices [Horn and Johns¢i©85), Theorem 4.15, page 185] that
thesef; are all increasing functions on the latticé.2Therefore we may obtain
eigenvalue inequalities by application of Theorem 1.1. As a special case, by
applying the FKG inequality to the function$% and f3, we obtain the inequality

B _t Amin(M[a])
(5 cevrtar) (5 aewia2o2ileh )

aCA aCA

L -~ 1
z(ZdetM[a] xm.n<M[aD)(ZdetM[“] xmax<M[aD>'

aCA aCcA
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5.5. Monotonicity properties of partial orders. Suppose thatlas, ..., an,
b1, ...,by) is a uniformly distributed random permutation &,.,, the set of
permutations om: + n symbols. The permutation is to be viewed as the actual
ranking of tennis skills of playews, ..., a,, b1, ..., b,. We suppose that a player
x always loses to a player in a match ifx < y. In a contest between teams
A={a1,...,a,} and B = {bs, ..., b,}, suppose that there is a partial order
between certairu’s and between certaif’s, for example,a; < a2, a1 < as,
by < by, ..., but no information about relative rankings between anandb;.
Such a situation arises if, to date, there have been numerous intrateam matches
resulting, for example, ia4 losing toaz, a1 losing toas, b» losing tob1, and so on,
but no interteam matches. We denotely:1 < b1|®) the conditional probability
thatb, defeatsz; given the partial orde®.

Following numerous matches between members ofitaad B teams, suppose
the result has been a victory f@ in every case. Thus we now have information
that thea’s have so far lost each match to this. This induces a new partial order,
®' =0 U ", where®” consists of inequalities of the foray < b; for some
collection ofi andj. We denote byP (a1 < b1|®’) the conditional probability that
b1 defeatsi; given the information ir®’.

Graham, Yao and Yao (1980) [see Graham (1982, 1983)] proved that

(5.10) P(a1 < b1|®') = P(a1 < b1]©),

and Shepp (1980) later gave another proof using the FKG inequality. As observed
by Shepp, the additional knowledge witf that a number ofi's severally have

lost to a B-team member provides the basis for us to infer that Akteam is
jointly inferior to the B-team. Therefore it is natural to expect a higher probability
conditional on®’, than conditional or®, thata; loses tob1 and (5.10) confirms

this expectation.

Shepp (1980) constructed a suitable finite distributive lattice, a nonnegative
MTP> measurex and two decreasing indicator functions and g. Then he
deduced (5.10) by an application of the FKG inequality. Along the same lines,
we obtain generalizations of (5.10) using Shepp’s Mteasure by constructing
three or more decreasing indicator functiofysand applying Theorem 1.1 or 1.3
to the functions 1- f;. As an example, we state a result which follows from
Theorem 1.1.

PROPOSITIONS.6. Let Ag bethesubset of S,,, for which A and B havethe
complete order:

Ag={ar<---<ap}Ni{by<--- <b,}.

Supposethat Ay, ..., A4 are subsets of S,,1,,, each of which is an intersection of
subsets of theforma; < b;. For any A € &,,1,,, define
P(AgNAzNA
T(A) = (AogN Ay ).
P(AoN Ag)
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Then

21 (A1N A2 N A3)
— [7(A1N A2)m (A3) + m(A1N A3)(A2) + (A1) (A2N A3)]
+ (A1) (A2)7 (A3)
—2[n(A1N Ap) — (A1) (A2) + (A1 N A3)
— (A7 (A3) +m(A2N Ag) — m(A2)m(A3)] < 0.

By similar arguments, we can also generalize related results of Shepp (1980)
and the XYZ conjecture [Shepp (1982)].

5.6. Cumulants inequalities for probability distributions. Our initial motiva-
tion for investigating the higher-order inequalities of FKG-type was to generalize
numerous correlation inequalities well known for MpIBrobability distributions
in mathematical statistics; see Eaton (1987) and Karlin and Rinott (1980). We shall
leave it to the reader to deduce from Theorems 1.1 and 1.3 bounds on the third-,
fourth-, and fifth-order cumulants of those probability distributions.

The basis for much of Section 4 of Karlin and Rinott (1980) is a special case of
the following result.

COROLLARY 5.7. Let ¢ and ¢ be MTP, functions on R” and define

Jo)¥(x) f(x)dx
E =
) Jo()¥(x)dx

for any function f for which the integrals converge. If f;, j =1,2,3, are
nonnegative increasing functionson R”, then «4( f1, f2, f3) > 0.

The proof of this result follows immediately from the generalized third-order
FKG inequality once we note that the probability measure which is proportional to
e(x)Y(x)dx, x € R", is an MTR measure. As applications of this result we can
then deduce higher-order probability inequalities for any MTéhdom vector
generalizing, for example, Example 4.1 of Karlin and Rinott (1980). In closing
this section we provide, as a generalization of Proposition 4.1 of Karlin and Rinott
(1980), a higher-order log-concavity property of exchangeable random variables.

PROPOSITIONS.8. LetX1,..., X, beexchangeablerandomvariableshaving
ajoint MTP, probability density function ¢. For a € R, define cg(a) = 1 and

Cm(a)=P(XlSa5"'5Xm Sa)5
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1<m <n.Then
2Cm+2(a) _ 3Cm+1(a) cm(a)
cm-1(a) cm-1(a) cp—1(a)
em(@?® G[cmma) _em@)? ] <0,
cm—1(a)3 cm—1(a)  cm—1(a)?

(5.11)

m=1....,n—2.

PrROOE Forx € R", define

L if x1,...,xm-1<a,
v = { 0, otherwise.
It is well known thaty is MTP,. Fork =1, 2, 3, define
S if xpyr—1=<a,
filx) = { 0, otherwise.

Then the functionsf;, f> and f3 are decreasing. Moreovel(fy) = cu(a)/
cm-1(a), k = 1,2,3; E(f1f2) = E(f1f3) = E(f2/3) = cm+1(a)/cm—1(a); and
E(f1/2/3) = cm+2(a)/cm-1(a).

Now we apply Corollary 5.7 to the functions-1 f1, 1 — f» and 1— f3.
Simplifying the resulting expression, we obtain (5.110]

By applying Propositin 5.8, we can obtain generzditions of other examples
given by Karlin and Rinott [(1980), Section 4].

6. Remarks on total positivity and inequalities of FKG-type. In the
development of inequalities of FKG-type, it will be instructive to study the case of

indicator functions ofR2. In what follows, for any: € R, we use the notation
1, t>a,
0, t<a,

1a(1) ={

for the indicator function of the intervéd, co).
A prototypical increasing functiory on R? is an indicator function of a
“northeast” regionfa, co) x [b, 00), so thatf is of the form

1, u>a,v=>b,

0, otherwise,

for somea, b € R. Let us consider the case of two such functiofjgu, v) =
L) 1p;(v), (u,v) € R?, wherea;,bj € R, j =1,2. In establishing the FKG
inequality for these functions we may assume, by symmetry, dhat a>. We

denote by(X1, X2) the random vector corresponding to the density funcikon
Suppose thab; < bo. Then

Efi=P(X1>a1,X2>b1) <1

(6.) Flu,v) = L) I() = {
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and
Efifo=Efo=P(X1>ap X2>bp) > 0.
Therefore

CoVv(f1, f2) = Ef1f2 — (EfD(Ef2) = Ef2 — (Ef1)(Ef2)
=(Ef2)(1—-Ef1) >0.
Next suppose thdt; > b,. Then

CoVv(f1, f2) = Ef1f2 — (Efu)(Ef2)
= P(X1>az, X2 > b1)
— P(X1>a1,X2>b1)P(X1>az, Xo> b))

(6.2)
= P(X1>a1,X2>b1)[1—- P(X1> a1, Xo> by)]

P(X1>a1,X2>by) P(X1>a1, Xo>by)
P(X1>a2 X2>b2) P(X1>a2, X2>b1)l

The first term in (6.2) clearly is nonnegative, so it remains to establish nonnegativ-
ity of the second term. To that end, we write

‘ P(X1>a1,X2>by) P(X1>a1,X2>bj)

6.3) P(X1> a2, X2>bz) P(X1>az, X2>b1)
- B S 1oy ) Ip, (VK (u,v)dudv [ 1y, (u)Ip, (V)K (u, v) dudv

[ Ly ) Iy (WK (u, v) dudv [ Ly () Ip, () K (u, v) du dv
By two applications of the basic composition formula [Karlin (1968), page 17],
once inu and once irv, we see that (6.3) reduces to

Loy (u1) Loy (u2) | | Ip,(v1)  Ip,(v2)
ff ]

Loy(ua) Iy (u2) [ | 1py(v1)  Ipy(v2)
u1<up v1<v2

(6.4)
’K(ul, v1)) K(ui, v2)

K(u2,v1) K(uz,v2)

durdvidusdvr.

The determinant def,, (x;)) is well known to be nonnegative if; < x> and
a1 < ap; indeed, the set of function§l,,, I,,:a1 < a2} is an example of a
weak Tchebycheff system [cf. Karlin (1968), Chapter 1]. Therefore the first two
determinants in (6.4) are nonnegative on the redion< uz, v1 < v2}. Since
K is TPy, then the third determinant also is nonnegative on the same region. Hence
Cov(f1(X1, X2), f2(X1, X2)) > 0.

Next suppose thaf; and f> are functions ofR” of the form

(65) fj (X1, ..., x) = Iaj,l(xl)laj,z(XZ) T Iajv,, (xn),
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for j = 1,2. We assume, by induction, that the FKG inequality holds for all
functions of the above form for all dimensions upie- 1. Thus, we have

(66) f] (xla s xn) = g] (-xla s xn—l)llljvn (xn)7

Wheregj (X1, ..., Xp-1) = Iajvl(xl) s Iajvn,l(xn—l)a j=12,and

Cov(g1(X1, ..., Xn-1), g2(X1, ..., Xpn—1)) = 0.

Using the standard method based upon conditional expectations, we now complete
the inductive step; we underscore that this inductive step is well known and we
provide details only for the sake of completeness. DenotingtRy. . x, ,|x,
expectation with respect to the probability distribution of the random variables
X1,...,X,_1 conditional onX,, it follows from (6.6) and the law of total
probability that

j=1

Since(X1, ..., X,) is MTPy, then(Xy, ..., X,,_1)|X, is also MTR [see Sarkar
(1969) and Karlin and Rinott (1980)]. Therefore, by inductive hypothesis,

Ex,...x, 11,8182 > (Exq...x, 11%,81) (EXq.... X, 11X, 82)>
and then it follows from (6.7) that

Ef1f2 > Ex, y1(Xp)¥2(Xy),

where

wj (xp) = Iaj,n (xn)EXl ..... Xy 11 Xn=x,8j (X1,...,Xn-1),

Jj=1,2. Since(Xy, ..., X,)|X, is MTP, andg; is increasing, then [cf. Sarkar
(1969) and Karlin and Rinott (1980), page 484, Theorem 4.1] the function
Ex, .. X, 1|1Xa=x,8j (X1, ..., X,—1) isincreasing inx,; hencey; andy, are both
increasing, so thaky1y» > Evr1 Evro. Therefore we obtain

Efi1f2 > Eyivyo > EynEvy, = Ef1Ef,

and the proof of the FKG inequality for functions of the type (6.5) is complete.

Having established the FKG inequality (1.2) for all indicator functions of the
form (6.5), we observe that the functiongfy, f2) — Cow(f1, f2) is bilinear.
Hence (1.2) holds for all functiong and f, on R” of the form

fat,ox) =Y e [ L, (1)),

i=1 j=1
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(x1,...,xy) € R" wherer e Nandc; > 0,i =1,...,r. Denoting byM (R") the
set of positive Borel measures &%, it then follows by approximation arguments
that the FKG inequality (1.2) holds for all functiorfs and f> of the form

(6.8) f(x1, ... x) =fRn []1L;xpdviar, ....ap.
j=1

(x1,...,xy) € R" wherev € M (R").

It is well known that the set of functions of type (6.8) is a proper subset of
the class of increasing functions @®* and contains all cumulative distribution
functions onR".

Turning to the third-order FKG inequality in Theorem 1.1, we can also
establish that result for the class of functions (6.1). Suppose that we have three
indicator functions f; (u, v) = Iq; (u)ij(v), (u,v) e R?, j =1 2,3. To establish
Theorem 1.1 forfy, f> and f3, we may assume, by symmetry, that< as < as.

Then the proof requires that we resolve six cases, each corresponding to an
ordering ofby, b, andbs. In what follows, we shall denot& (X1 > a;, X2 > b))

by pi;.
CASE1.b1 <bp <b3. Inthiscasef;f; = f; fori < j. Therefore
K3 = 2p33— [p22033+ P33p22 + P11033] + P11022033
= (2— p10(1 — p22) 33,
which, clearly, is nonnegative.
CASE 2.b1 <b3z <by. Here, we have
K3 = 2p32 — [p22p33+ P33p22 + P11032] + P11022033

= (2— p11)(p32 — P33022)-
By the FKG inequality,o32 — p33022 = E(f3f2) — E(f3)E(f2) > 0; therefore

k5> 0.
CASE 3. by < b1 <b3. Inthis case, we have
K3 = 2p33— [p21033+ p33022 + P11P33] + P11022033

= p33[1 — p21+ (1 — p11)(1 — p22)],
which, clearly, is nonnegative.

CASE4.by < b3z <by. Here,

k3= 2p31— [p21033+ p31p22 + P11033] + P11022033

= (1 - p22)(p31 — P33P11) + P31 — P21P33-

By the FKG inequality, bottps1 — p33p11 = E(f3/1) — E(f3)E(/1) and p31 —
p33021 = E(f3f2f1) — E(f3)E(f2f1) are nonnegative. Therefokg > 0.
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CASES. b3 < b1 <by. Inthiscase, we have

k3 = 2p32 — [p22p33+ P31022 + P11P32] + P11022033
= (1 — p11)(p32 — p33022) + P32 — P31022.

By the FKG inequality, bottpsz — p33p22 = E(f3/2) — E(f3)E(f2) and p32 —
p31p22 = E(f1f2f3) — E(f3f1)E(f2) are nonnegative. Therefokg > 0.

CASE6. b3 < by <b;. Inthis case, we have

kg =2p31 — [p21033+ 31022 + P11032] + 11022033
= (1 - p22)(p31 — p33p11) + P33(1 — p21) + P11(P33 — P32).

By the FKG inequality,o31 — p33011 = E(f3/1) — E(f3)E(f1) > 0. Also, since
1- f2>0, p33— p32=E(f3) — E(f2f3) =Ef3(1— f2) = 0. Thereforec; > 0.

Having resolved the case in which tife are indicator functions, we apply the
multilinearity of the functionak f1, f2, f3) — x5(f1, f2, f3), and an approxima-
tion argument, to deduce nonnegativitygf f1, f2, f3) forall f; of the class (6.8)
with n = 2.

In the case okj, we have carried out the case-by-case analysis (consisting of
24 cases); as regardg, we unhesitatingly entrust the analysis (of all 120 cases)
to the reader.

Even in the case of the classical FKG inequality, the method of indicator
functions appears to be new. The technique has the obvious drawback that it yields
the classical FKG inequality only for a proper subset of the class of all increasing
functions, and that too by way of a case-by-case analysis. However, the method
has the advantage that it points the way toward generalizations of that inequality;
indeed, the method of indicator functions is the means by which we first discovered
instances of the nonnegativity of.

In developing the method of indicator functions, the appearance of the Binet—
Cauchy formula is noteworthy. To explain, we first remark that in a previous paper,
Gross and Richards (1995) developed a Binet—Cauchy formula in the context of
finite reflection groups and obtained an analog of the FKG inequality for one
particular reflection group. We speculdt@at analogs of those inequalities exist
in any context in which Binet—Cauchy formulas are available, including those of
Karlin and Rinott (1988).

A general context in which formulas of Binet—Cauchy type arise is given by
Selberg (1956) in a fundamental paper laying the groundwork for the general
theory of what is now known aselberg's trace formula. Let S denote a
Riemannian space, with local coordinatés. . ., /" and positive-definite metric

ds?=>"g;dr'ar,
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where the functiong;; are analytic int, ..., . We assume that we have a
locally compact groufs of isometries ofS, with a transitive action. A function
K:S x S — Cispoint-pair invariant if K(gx, gy) =K (x,y) forall x,y € S and

g € G. One of the basic problems considered by Selberg (1956) is the analysis of
the spectral theory of the integral operator

fHLwaﬂw@,

wheredy denotes the invariant measure $derived from the metrids2 and f is
a suitable function.

LetT" denote a discrete subgroup@fwhich acts properly and discontinuously
on S. Denote by® the fundamental domain @f. With U(d) denoting the group
of unitaryd x d matrices, lety :T" — U(d) be a unitary representation bf Let
F be a complex, vector-valued function érsuch that, for alk € S andM €T,
F(Mx) = x(M)F(x). Thentis a readily established, but important, result that

ke = [ KxnF(dy
where
(6.9) Ky, y) =) x(M)K(x, My);
MeT
see Selberg [(1956), page 59]. Formally, there exists an eigenfunction expansion
of K:
Ky(x.y) =Y ciF;(x)Fi(y)*,

where thec; are constants, thé&; are eigenfunctions of a class of differential
operators invariant under the action 6f and F;(y)* is the transpose of the
complex conjugate of;(y). What is of interest to us here is that the functip
possesses properties of the determinant function [defined by Gross and Richards
(1995)] for finite reflection groups. Indeed, it follows from (6.9) that

Ky (x, My) =K, (x, ) x (M~

forallx, y € S, M € T'; this property generalizes the familiar sign-change behavior
of the classical determinants under the interchange of rows or columns. The
function K, also satisfies a generalized Binet—-Cauchy formul& land L are
point-pair invariant functions, and

Q@J%=AK@JﬂOJMt

then Q is point-pair invariant and

QX(X’ )’) :AKX(X’I)LX(Z’y)d[
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We conjecture that inequalities of FKG-type exist in this context. Owing to the
potential for applications in multivariate statistical analysis, of special interest for
us will be the case in which is the space of positive-definite symmetric matrices.
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