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LARGE DEVIATION ASYMPTOTICS FOR
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In the standard formulation of the occupancy problem one considers the
distribution of r balls in n cells, with each ball assigned independently to
a given cell with probability 1/n. Although closed form expressions can be
given for the distribution of various interesting quantities (such as the fraction
of cells that contain a given number of balls), these expressions are often
of limited practical use. Approximations provide an attractive alternative,
and in the present paper we consider a large deviation approximation as
r and n tend to infinity. In order to analyze the problem we first consider
a dynamical model, where the balls are placed in the cells sequentially and
“time” corresponds to the number of balls that have already been thrown.
A complete large deviation analysis of this “process level” problem is carried
out, and the rate function for the original problem is then obtained via
the contraction principle. The variational problem that characterizes this
rate function is analyzed, and a fairly complete and explicit solution is
obtained. The minimizing trajectories and minimal cost are identified up to
two constants, and the constants are characterized as the unique solution to an
elementary fixed point problem. These results are then used to solve a number
of interesting problems, including an overflow problem and the partial coupon
collector’s problem.

1. Introduction. Urn occupancy problems center on the distribution ofr balls
in n cells, typically with each ball independently assigned to a given cell with
probability 1/n. The literature on the general topic is enormous. See, for example,
[9, 19, 20] and the references therein.

There are many different questions one can pose. For example, it may be that
one is interested in the distribution of(�0,�1, . . . ), where �i is the number
of cells containing exactlyi balls after all r balls have been thrown. In the
classical occupancy problem [9, 14, 20], one is interested only in the distribution
of unoccupied urns�0. In other cases, one might be interested in the (random)
number of balls required to fill all cells to a given level, or the number required
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so that a given fraction are filled to that level—the so called coupon collector’s
or dixie cup problem. In biology the inverse problem of estimating the number of
balls thrown from the number of occupied cells also arises and is used to estimate
species abundance [17]. Related applications in biology appear in [2, 3], and an
application in computer science appears in [21].

Another related problem of interest is theoverflow problem, in which the
urns are supposed to have a finite capacityC, and the number of balls that
overflow is the random variable of interest. Ramakrishna and Mukhopadhyay [24]
describes an application in computer science concerned with memory access,
and [12] considers an application to optical switches. In [12] one is concerned with
dimensioning the number of wavelength converters so as to reduce the probability
of packet loss across the switch to an acceptable level. In [12] any-color-to-any-
color converters are considered. However, by extending the results proved here to
the case where the balls have distinct colors, dimensioning in the case where we
have many-to-one color converters can be carried out and the blocking probability
of the output estimated.

A wide range of results have been proved for the occupancy problem by
using “exact” approaches. For example, combinatorial methods are used in [9,
14, 20], and methods that utilize generating functions are discussed in [20].
The implementation of these results, however, can be difficult. For example,
in applying the combinatorial results one must compute the difference between
large quantities that appear inthe inclusion–exclusion formula for the probability
that a given fraction of cells are occupied. An analogous difficulty occurs with
techniques based on moment generating functions, since one must invert the
generating function itself.

Asymptotic methods provide an attractive alternative to both of these ap-
proaches. One reason is that they often offer good approximations with only
a modest computational effort. A second, perhaps more important reason, is that
superior qualitative insights can often be obtained. Indeed, a range of asymptotic
results have already been obtained for these problems (see, e.g., [18]). The first
large deviations principle (LDP) for urn problems that we are aware of was es-
tablished in [28] for the special case of the classical occupancy problem. This re-
sult was applied in [21] to a boolean satisfiability problem in computer science.
Reference [6], which appeared while the present paper was under review, proves
a LDP for the infinite-dimensional occupancy measures associated with occupancy
processes. The present paper focuses on finite-dimensional occupancy measures in
which urn occupancies above a given level are not distinguished. In this finite case,
we are able to provide a concise large deviations proof along with explicit, insight-
ful and computable expressions for the rate functions and for the large deviations
extremals. The rate function for the occupancy model after all the balls have been
thrown is shown to have a simple and fairly explicit rate function, which can be
defined in terms of relative entropy with respect to the Poisson distribution. Many
different problems can be solved in this framework simply by changing the set
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over which the rate function is minimized. We also give sample path results for the
evolution of the urn occupancies toward a particular event. In principle, the explicit
form of the minimizing trajectories for sample path results should enable accurate
empirical estimates of unlikely events using importance sampling; see [7, 22].

Let �a� denote the integer part of a scalara. With n cells available and
a total of r = �βn� balls to be thrown (withβ > 0), we consider the large
deviation asymptotics asn → ∞. The precise statement is as follows. Fix
a positive integerI . Then with �n

i (β) equal to the fraction of cells contain-
ing i balls, we characterize the large deviation asymptotics of the random vectors
{(�n

0(β),�n
1(β), . . . ,�n

I (β)), n = 1,2, . . . } as n → ∞. A direct analysis of this
problem is difficult, and, in fact, it turns out to be simpler to first “lift” the problem
to the level of a sample path large deviation problem, and then use the contrac-
tion principle to reduce to the original finite-dimensional problem. A “time” vari-
ablex is introduced into the problem, where�nx� balls have been thrown at timex,
and�n

i (x) is equal to the fraction of cells containingi balls at this time. We then
follow a standard program: the large deviation properties of this Markov process
are analyzed, the rate functionJ on path space is obtained, and the rate function
for the occupancy at timeβ is then characterized as the solution to a variational
problem involvingJ .

Although the program is standard, there are several very interesting features,
both qualitative and technical, which distinguish this large deviation problem.
We first describe some of the attractive qualitative features. Typically, one has a
rate function on path space of the formJ (φ) = ∫

L(φ(x), φ̇(x)) dx, where the
nonnegative functionL(γ, ξ) is jointly lower semi-continuous and convex inξ for
each fixedγ . The large deviation properties of the process at timeβ are then found
by solving a variational problem of the form

inf{J (φ) :φ(β) = ω},
where ω is given and where there will also be constraints on the initial
conditionφ(0). In general, this problem does not have an explicit, closed form
solution. One exception to this rule is the extraordinarily simple situation where
L(γ, ξ) does not depend on the state variableγ . In this case, Jensen’s inequality
implies that the minimizing trajectory is a straight line, and so the variational
problem is actually finite dimensional. Another exception is the case of large
deviation asymptotics of a small noise linear stochastic differential equation.
In this case the variational problem takes the form of the classical linear quadratic
regulator, and the explicit solution is well known from the theory of deterministic
optimal control. However, in this case there is no need to “lift” the problem to the
sample path level, since the distribution of the diffusion at any time is Gaussian
with explicitly calculable mean and covariance. Other exceptions occur in large
deviation problems from queuing theory, but in these problems the variational
integrand is “sectionally” independent ofγ , and one can show that the minimizing
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trajectories are the concatenation of a finite number of straight line segments (see,
e.g., [1] and the references therein).

For the occupancy problem the variational integrand has a complicated state
dependence [see (2.2)], reflecting the complicated dependence of the transition
probabilities (in the process level version) on the state. Nonetheless, the rate
function possesses a great deal of structure that can be heavily exploited. For
example, the functionJ turns out to be strictly convex on path space, and so
all local minimizers in the variational problem are actually global minimizers.
Perhaps even more surprising is the fact that explicit solutions to the Euler–
Lagrange equations can be constructed, and as a consequence, the variational
problem can be more-or-less solved explicitly (see the Appendix). Both of these
properties follow from the fact that the variational integrandL can be defined in
terms of the famousrelative entropy function (or divergence).

A technical novelty of the problem is the singular behavior of the transition
probabilities of the underlying Markov process. Since only cells containingj balls
can become cells withj +1, it is clear that the transition probability corresponding
to such an event scales linearly with�n

j (x), and in particular, that it vanishes at
the boundary of the state space, when�n

j (x) = 0. This poses no difficulty for
the large deviations upper bound, but is an obstacle for the lower bound. (Some
results that address lower bounds when rates go to zero include Chapter 8 of [26],
which treats processes with “flat” boundaries, and recent general results in [27].)
For the occupancy model, existing results provide a lower bound for open sets of
trajectories that do not touch the boundary, because away from the boundaries the
set {ξ :L(�, ξ) < ∞} is independent of�. To deal with more general open sets
we use a perturbation argument. We first show, using the strict convexity ofJ and
properties of the zero cost paths, that it is enough to prove large deviation lower
bounds for open neighborhoods of trajectories that stay away from the boundary
for all positive times. (Note that this still allows the trajectory tostart on the
boundary.) Loosely speaking, to prove the lower bound for sets of this type it is
enough to show that givena > 0, there isb > 0 such that the probability that the
process is at least distanceb from the boundary by timeb is bounded below by
exp−na. It turns out that these bounds can be easily established by exploiting an
explicit representation for such probabilities that was proved in [11].

An outline of the paper is as follows. Section 2 states the main results of
the paper. In the first part of Section 2 we construct the underlying stochastic
process model, and state the corresponding sample path level LDP, as well as
the LDP for the terminal distribution. The proof of the sample path LDP is
given in the following section, although in Section 2 an additional heuristic
argument for the form of the local rate function based on Sanov’s theorem is
provided. In the second part of Section 2, the terminal distribution rate function
is characterized and explicit expressions for the sample path minimizers are
presented. These constitute more-or-less complete solutions to the corresponding
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calculus of variations problem. The detailed proofs of these latter results are
deferred to the Appendix.

Section 3 gives a proof of the sample path LDP. The solutions to the variational
problem are exemplified in Section 4, where we show how specific questions
regarding the occupancy problem can be answered. In particular, we work out the
asymptotics for a number of examples, including an overflow problem and a partial
coupon collection problem. Generalizations to our results are also described.

2. Main results.

2.1. Statement of the LDP. In this section we formulate the problem of
interest and state the LDP. The proof will be given in Section 3. As noted in
the Introduction, our focus is the asymptotic behavior of the occupancy problem.
If n denotes the total number of cells, then to have a nontrivial limit, the number
of balls placed in the cells should scale linearly withn. We will place�βn� balls
in the cells, whereβ ∈ (0,∞) is a fixed parameter and�a� denotes the integer part
of a.

As will be seen in the sequel, the large deviation asymptotics of the occu-
pancy should be treated by first lifting the problem to the level of sample path
large deviations, and then using the contraction principle to reduce to the orig-
inal problem. To do this, we introduce a “time” variablex that ranges from 0
to β. At time x, one should imagine that�nx� balls have been thrown. Thus,
the occupancy process will be piecewise constant over intervals of the form
[i/n, i/n + 1/n). With this scaling of time, large deviation asymptotics can be
obtained if we scale space by a factor of 1/n. Thus, we define therandom occu-
pancy process �n(x)

.= (�n
0(x), . . . ,�n

I (x),�n
I+(x)) by letting�n

i (x), i = 0, . . . , I

denote 1/n times the number of cells with exactlyi balls at timex, and let-
ting �n

I+(x) be 1/n times the number of cells with more thanI balls at timex.
Note that�n takes values in the set of probability vectors onI + 2 points:
SI

.= {γ ∈ R
I+2 :γj ≥ 0,0 ≤ j ≤ I + 1 and

∑I+1
j=0γj = 1}.

The process{�n(i/n), i = 0,1, . . .} is obviously Markovian. It will be conve-
nient to work with the following “dynamical system” representation:

�n

(
i + 1

n

)
= �n

(
i

n

)
+ 1

n
bi

(
�n

(
i

n

))
,

where the independent and identically distributed random vector fields{bi(·),
i = 0,1, . . .} have distributions

P {bi(γ ) = v} =
{

γj , if v = ej+1 − ej , 0≤ j ≤ I ,

γI+1, if v = 0.

Hereej represents the vector inRI+2 whosej th element is unity and for which
all other elements are zero. The occupancy after�βn� balls have been thrown can
then be represented byn�n(β).

As we have discussed, the large deviations behavior of�n(β) will be deduced
from that of the process�n(·). In order to state the large deviation asymptotics
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precisely, we should clarify the space in which�n(·) takes values and the topology
used on that space. As usual for processes with jumps of this sort, we use the
Skorokhod spaceD([0, β] :RI+2) together with the Skorokhod topology [5],
Chapter 4. However, the large deviations properties of{�n} are the same as
for the processes{�̄n}, where�̄n is defined to be the piecewise linear process
which agrees with�n at times of the formi/n. For readers unfamiliar with the
Skorokhod space and associated topology, the identical large deviations results
hold for �̄n, save that the space of continuous functions and the sup norm topology
are used instead.

To complete the statement of the LDP for{�n} we need some additional nota-
tion. A vector of (deterministic)occupancy rates θ(x) = (θ0(x), . . . , θI (x),θI+(x))

is a measurable mapping from[0, β] to SI . Intuitively these rates represent the
rate at which balls flow into urns of a given occupancy level. Associated with
each such vector of rates is the corresponding deterministicoccupancy func-
tion γ (x) = (γ0(x), . . . , γI (x), γI+(x)), which is defined by the initial condi-
tion γ (0) and the differential equationṡγ0(x) = −θ0(x), γ̇j (x) = θj−1(x) − θj (x)

for j = 1, . . . , I , and γ̇I+(x) = θI (x). These equations reflect the idea that the
fraction of urns containingi balls increases as balls enter(i − 1)-occupied urns,
and decreases as balls enteri-occupied urns. Defining the matrix

M =




−1 0 0 · · · 0
1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
. . .

0 · · · 1 −1 0
0 · · · 0 1 0




,(2.1)

we can write γ̇ (x) = Mθ(x) for all x ∈ [0, β]. Conversely, given a differen-
tiable occupancy functionγ , the corresponding rates are uniquely determined
by γ̇ (x) = Mθ(x) and the normalization

∑I
i=0 θi(x) + θI+(x) = 1. We will

also be interested in thecumulative occupancy function ψ with components
ψi(x) =∑i

j=0 γi(x). Inspecting the cumulative sums of the rows ofM shows that

ψ̇i = −θi for i = 0, . . . , I . As more balls are thrown, the fraction of urns contain-
ing i or fewer balls can only decrease, and the rate of decrease is the rate at which
balls enteri-occupied urns. We will say thatγ is avalid occupancy function ifγ is
absolutely continuous, ifγ (x) is a probability vector for allx ∈ [0, β], and if its
associatedθ(x) is a probability vector for almost allx ∈ [0, β]. Note that the func-
tionsψ , γ andθ are interchangeable, in the sense that each can be derived from
any of the others [givenγ (0) in the case ofθ ]. Thus, we say thatθ andψ are valid
if the associatedγ is valid. The following lemma gives a direct characterization of
validity in terms ofψ .

LEMMA 2.1. A vector of I + 1 continuous functions ψ , each of which maps
[0, β] to [0,1], is a valid cumulative occupancy path if and only if:
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(a) ψi(x) ≥ ψi−1(x),

(b) ψi(x) ≥ ψi(y),

(c)
∑I

k=0(ψk(x) − ψk(y)) ≤ y − x,

for each 0 ≤ i ≤ I and 0 ≤ x < y ≤ β.

SKETCH OF THE PROOF. In the forward direction, the first condition plus the
boundψI (x) ≤ 1 ensure thatγ (x) is a probability distribution. The second and
third conditions together imply thatψ is Lipschitz continuous with constant 1
and, hence, absolutely continuous. This implies the absolute continuity ofγ .
Sinceψ̇ = −θ , the third condition ensures thatθ is almost always a probability
distribution. The reverse direction proceeds similarly.�

Given γ, θ ∈ SI , let D(θ‖γ ) denote relative entropy ofθ with respect toγ .
Thus,

D(θ‖γ )
.=

I+1∑
i=0

θi log(θi/γi),

with the understanding thatθi log(θi/γi)
.= 0 wheneverθi = 0, and thatθi log(θi/

γi)
.= ∞ if θi > 0 and γi = 0. If γ (x) is a valid occupancy function with

corresponding occupancy ratesθ(x), then we set

J (γ ) =
∫ β

0
D
(
θ(x)‖γ (x)

)
dx.(2.2)

In all other cases setJ (γ ) = ∞.

THEOREM 2.2. Suppose that the sequence of initial conditions {�n(0),

n = 1,2, . . .} is deterministic and that it converges to α ∈ SI as n → ∞. Then the
sequence of processes {�n,n = 1,2, . . .} satisfies the LDP with rate function J .
In other words, for any measurable set A of trajectories, we have the large
deviation lower bound

lim inf
n→∞

1

n
logP {�n ∈ A} ≥ − inf{J (γ ) :γ ∈ A◦, γ (0) = α}

and the large deviation upper bound

lim sup
1

n
logP {�n ∈ A} ≤ − inf{J (γ ) :γ ∈ Ā, γ (0) = α},

and, moreover, for any compact set of initial conditions K and C < ∞, the set

{γ :J (γ ) ≤ C,γ (0) ∈ K}
is compact.
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The proof of this result is provided in Section 3. However, a formal justification
for the form of the rate function is as follows. Letδ > 0 be a small time increment.
Owing to the fact that�n varies slowly when compared to{bi(γ )}, one expects

P

(
�n(δ) − �n(0)

δ
≈ η

∣∣∣�n(0) = γ

)
≈ P

(
1

nδ

�nδ�−1∑
j=0

bj (γ ) ≈ η

)
,

where the symbol “≈” inside the probability means that the indicated quantities
are within a small fixed constantε > 0 of each other. Suppose that we interpretγ

as a probability measure on{e0, . . . , eI+1}, and let {Yj } be independent and
identically distributed (i.i.d.) with distributionγ . Then the sequence of i.i.d.
random vectors{bj (γ )} can be realized by setting

bj (γ ) =
{

ei+1 − ei

0

}
⇐⇒ Yj =

{
ei

eI+1

}
,

that is,

bj (γ ) = MYj .

By Sanov’s theorem, for any probability vectorθ ∈ SI ,

P

(
1

nδ

�nδ�−1∑
j=0

Yj ≈ θ

)
≈ exp−nδD(θ‖γ ).

Thus,

P

(
�n(δ) − �n(0)

δ
≈ Mθ

∣∣∣�n(0) = γ

)
≈ exp−nδD(θ‖γ ).

Approximating an arbitrary trajectory by a piecewise linear trajectory with nearly
equal cost and using the Markov property, one expects

P
(
�n ≈ γ |�n(0) = α

)≈ exp−n

∫ β

0
D
(
θ(t)‖γ (t)

)
dt,

whereθ andγ are related bẏγ = Mθ , γ (0) = α. Thus, the rate function on path
space should beJ (γ ).

The zero cost trajectories are of course the law of large numbers limits, and can
easily be computed. For example, ifα = (1,0, . . . ) (so all cells are initially empty)
and i ≤ I , thenJ (γ ) = 0 implies thatγi(t) = e−t t i/i!. In other words,γ (t) is
the Poisson distribution with meant , save that all mass corresponding toi > I is
collected together into the stateI + 1. Throughout this paper we will denote the
Poisson distribution with meant by P (t), wherePi (t) = e−t t i/i!.

We are primarily interested in the distribution of�n(β). The contraction princi-
ple (e.g., [11], Theorem 1.3.2) implies the following variational representation for
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the rate function for{�n(β), n = 1,2, . . .}. Let A(α,ω,β) denote the set of valid
occupancy pathsγ on [0, β] satisfyingγ (0) = α andγ (β) = ω.

COROLLARY 2.3. Suppose that the sequence of initial conditions {�n(0),

n = 1,2, . . .} is deterministic and that it converges to α as n → ∞. Then the se-
quence of random vectors {�n(β), n = 1,2, . . .} satisfies the LDP with the convex
rate function

J(ω) = inf{J (γ ) :γ ∈ A(α,ω,β)}.
REMARK 2.1. Using the explicit formula forJ(ω) stated in Theorem 2.7 and

the convexity of relative entropy in its first argument, it follows thatJ is, in fact,
strictly convex.

REMARK 2.2. It is sometimes useful to show that the large deviation lower
bound holds for sets with no interior relative to the ambient space. Such bounds can
often be proved for processes, such as ours, that take values in a discrete lattice.
An example would be a setA ⊂ {γ ∈ SI :γI+ = 0}, for which the minimizing
trajectories must be polynomial extremals (defined after Theorem 2.6). Although
we do not need such results in the present paper, it is worth observing that lower
bounds of this kind can be proved.

2.2. Characterization of the terminal rate function and minimizing paths. The
results of this section were obtained using calculus of variations techniques,
the details of which are given in the Appendix. The presentation begins with
the case in which all urns are initially empty because it appears in many
applications and because it is a building block for the general case. In each case,
first we give a characterization ofJ(ω) as a minimal relative entropy, which may
be computed explicitly in this form. We then give an explicit functional form for
the sample path minimizer. The function form constain parameters determined by
the solutions to fixed point equations.

Before stating these theorems, it is helpful to specify the domain over which
J(ω) is finite. We define an endpoint constraint to be a triple(α,ω,β), whereα,
ω ∈ SI are the initial and terminal occupancies, and whereβ > 0 is the number
of balls thrown per urn. We assume without loss thatα0 > 0, that is, that some
fraction of urns are initially empty, and we denote the index set of positive initial
occupancies byK = {k :αk > 0}. Since we do not distinguish between urns having
more thanI balls, we can always suppose that no urns initially have more than
I + 1 balls, and denote the last element ofα by αI+1. The last element ofω is
denotedωI+, signifying that it collects all urns with occupancy greater than or
equal toI + 1.

DEFINITION 2.1. A endpoint constraint(α,ω,β) is feasible if the corre-
sponding set of valid occupancy pathsA(α,ω,β) is nonempty.
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LEMMA 2.4. An endpoint constraint (α,ω,β) is feasible if and only if

i∑
j=0

αj ≥
i∑

j=0

ωj, i = 0, . . . , I (monotonicity)(2.3)

and
I∑

i=0

iωi + (I + 1)ωI+ ≤
I+1∑
k=0

kαk + β (conservation).(2.4)

This lemma is proved in the Appendix. Condition (2.3) relates to the fact that
theψi(x) must decrease monotonically and (2.4) to a conservation constraint for
the number of balls thrown. The right-hand side of the inequality equals the initial
number of balls per urn, plus the additional balls per urn thrown up to timeβ,
while the left-hand side is a lower bound on the number of balls per urn at timeβ.

In the treatment of general initial conditions, the following further definition
will be useful.

DEFINITION 2.2. A set of feasible constraints(α,ω,β) is irreducible if the
monotonicity conditions (2.3) hold with strict inequality for alli < I . Otherwise,
the constraints are termed reducible.

For a reducible set of constraints, leti be the first index such that
∑i

k=0αk =∑i
k=0 ωk . This condition can only be met if no balls are ever thrown into

i-occupied urns, and it follows that urns which initially containi balls or less
will always containi balls or less. Thus, these urns may be treated in isolation
from the urns containing more thani balls. Furthermore, by subtractingi +1 balls
from each urn in this latter set, we obtain another occupancy problem in standard
form, that is, withα0 > 0. Continuing in this way, a given problem with constraints
(α,ω,β) may be divided into a finite number of isolated, irreducible subproblems.
It is only necessary therefore to treat problems with irreducible constraints, and
wherever necessary we suppose this to be the case.

2.2.1. Empty initial conditions. An important special case of the initial
constraint is when all urns are initially empty, that is,α0 = 1 andαi = 0 for i > 0.
We abuse notation and denote this case byα = 1.

Define the setF(1,ω,β) to be the set of distributionsπ on the nonnegative
integers satisfyingπi = ωi for i = 0, . . . , I and the constraint

∞∑
i=0

iπi = β.

In the empty case, the conditions for feasibility of(1,ω,β) reduce to
∑I

i=0 iωi +
(I + 1)ωI+ ≤ β, from which it follows that the setF is nonempty if and only
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if (1,ω,β) is feasible. As we now discuss, the infimum of the rate functionJ

over pathsA(1,ω,β) can be represented as an infimum of a relative entropy over
distributions inF(1,ω,β).

THEOREM 2.5 (Terminal rate function, empty case).Given the initial con-
dition α = 1, the rate function J(ω) :SI → R

+ defined in Corollary 2.3 may be
determined as

J(ω) = min
π∈F(1,ω,β)

D
(
π‖P (β)

)
if (1,ω,β) is feasible, and is otherwise infinite. The minimizing argument
π∗ ∈ F(1,ω,β) is unique.

The above expression is of interest in its own right. Moreover, the optimal
solution π∗ can be computed explicitly. Using Lagrange multipliers, one can
show, in fact, that the solution takes the formπ∗

i = CPi (ρβ) for i > I

for some constantsC ≥ 0 and ρ > 0 that we refer to as twist parameters.
Here ρ is related to the Lagrange multiplier for the conservation constraint∑∞

i=0 iπ∗
i = β, while C is a normalization constant ensuring that

∑∞
i=0 π∗

i = 1.
These two constraints may be solved to determineρ and C. If we have the
strict equality

∑I
i=0 iωi + (I + 1)ωI+ = β, there are just enough balls to meet

the terminal constraints and we may replaceI by I + 1 if necessary to ensure
thatωI+ = 1−∑I

i=0 ωi = 0. In this case, it turns out thatF(1,ω,β) has only one
element; we then haveC = 0, and we may takeρ = 1. Otherwise, we defineρ to
be the unique positive root of the equation

ρβ −∑I
i=0 iPi (ρβ)

1−∑I
i=0 Pi (ρβ)

= β −∑I
i=0 iωi

1−∑I
i=0 ωi

.(2.5)

Because of the strict inequality in the conservation condition (2.4), the right-hand
side of the last equation is strictly greater thanI + 1. The left-hand side of the
equation is the conditional meanE[Y |Y > I ] of a Poisson random variableY
with meanρβ. As a function ofρ, this conditional mean is a strictly monotonic
and continuous map from(0,∞) to (I +1,∞) and, hence, the equation has exactly
one positive root.C is given by

C = 1−∑I
i=0 ωi

1−∑I
i=0 Pi (ρβ)

= β −∑I
i=0 iωi

ρβ −∑I
i=0 iPi (ρβ)

.(2.6)

Evaluating the relative entropy ofπ∗ andP (β), the rate function of�n(β) can
be expressed as

J(ω) =
I∑

i=0

ωi log
ωi

Pi (β)
+
(

1−
I∑

i=0

ωi

)(
logC + (1− ρ)β

)
(2.7)

+
(
β −

I∑
i=0

iωi

)
logρ.
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The next theorem shows that the least cost pathγ ∗ satisfyingJ (γ ∗) = J(ω) can
also be expressed explicitly in terms of the twist parametersC andρ. The least cost
path is of interest for a number of reasons. First of all, the proof of Theorem 2.5
is obtained by evaluating (2.2), using the explicit form ofγ ∗. In a similar way,
the least cost paths may be used as a tool in other problems of interest, such as
for determining the rate function of�n(β) whenβ is random. Second, the least
cost path provides insight into the expected behavior of occupancy experiments,
conditioned on the occurrence of a rare event. Third, they allow empirical
estimation of rare event probabilities by change-of-measure importance sampling.
A key step in proving the minimality of the proposed least cost path is to show that
the path satisfies the Euler–Lagrange equations (defined in the Appendix).

THEOREM2.6 (Globally minimizing path, empty case).Suppose that (1,ω,β)

are feasible constraints with empty initial conditions. The infimum of J (γ ) over
A(1,ω,β) is achieved on the occupancy path γ ∈ A(1,ω,β) defined by

γ0(x) = Ce−ρx +
I∑

k=0

(
ωk − CPk(ρβ)

)(
1− x

β

)k

,(2.8)

γi(x) = xi

i! (−1)iγ
(i)
0 (x), 1 ≤ i ≤ I,(2.9)

γI+(x) = 1−
I∑

i=0

γi(x),

where ρ > 0 and C ≥ 0 are twist parameters associated with the constraints.
In addition, γ satisfies the Euler–Lagrange equations.

Note that the entire pathγ (x) is completely determined by the empty compo-
nentγ0(x) and its derivatives. In particular, the componentsγi(x) are the terms in
the Taylor expansion ofγ0(x) aboutx, γ0(x + y) = γ0(x) + yγ

(1)
0 (x) + · · · eval-

uated at time 0, that is, withy = −x. Note thatγ0(x) is the sum of a polynomial
and a single exponential term, so that the Taylor expansion always exists. When
C = 0, there is no exponential term, and we say thatγ is apolynomial extremal.
Otherwise,C > 0, we have anexponential extremal.

2.2.2. General initial conditions. Occupancy problems with general initial
conditions may be thought of as a coupled set of problems with empty initial
conditions. In particular, we consider the set of urns initially containingk balls
to form a class. The evolution of excess balls (beyondk) entering urns of this
class may be denoted by occupancy functions of the formγk,j (t) representing
the fraction of balls initially havingk urns which havek + j urns at timet . The
fraction of urns containingi balls in the overall system is obtained by summing
contributions from all subproblem components withk + j = i.
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As in the empty case, the rate functionJ(ω) can be expressed as the solution to
a minimization problem. LetS∞ denote the set of distributions on the nonnegative
integers, and letSn∞ denote the set ofn-tuples of such distributions. Recall that
K is set of indicesk such thatαk > 0. We will denote an element ofS|K |∞ by
π = {π(0), . . . , π(k), . . . , π(K)}, where for anyk ∈ K a component distribution is
denotedπ(k) = {πk,0, πk,1, . . . }, and it is understood that the correspondingπ(k) is
omitted ifαk = 0. Finally, letF(α,β,ω) be the set ofπ ∈ S

|K |∞ which satisfies the
terminal constraints

ωi = ∑
k≤i,k∈K

αkπk,i−k for all 0 ≤ i ≤ I,(2.10)

along with the conservation constraint

∑
k∈K

αk

∞∑
j=0

jπk,j = β.(2.11)

As in the empty case, it may be established thatF is nonempty if and only if
(α,ω,β) is feasible.

THEOREM 2.7 (Terminal rate function, general case).The rate function
J(ω) :SI → R

+ defined in Corollary 2.3may be expressed

J(ω) = min
π∈F(α,ω,β)

∑
k∈K

αkD
(
π(k)‖P (β)

)

whenever (α,β,ω) are feasible, and is infinite otherwise. The minimizing argument
π∗ ∈ F(α,ω,β) is unique.

As discussed above, we may suppose the constraints are irreducible, and then,
as shown in the Appendix, Lagrange multipliers will always exist for this problem.
When we have strict inequality in the conservation condition (2.4) (the exponential
case), the solution takes the form

π∗
k,j =

{
CkPj (ρβ)Wk+j , k ∈ K, k + j ≤ I ,

CkPj (ρβ), k ∈ K, k + j > I .

In the case of equality in (2.4) (the polynomial case), the corresponding form is

π∗
k,j =

{
DkPj (β)Wk+j , k ∈ K, j + k ≤ I ,

0, k + j > I .

As for empty initial conditions,ρ may be associated with the conservation
condition. TheWi correspond to the terminal constraintsωi , and theCk,Dk

are normalization constants. The constantsCk , ρ, Wi and Di can all be
computed numerically using Lagrangian methods for constrained optimization
(see, e.g., [4]). Given these constants, the optimizing trajectoryγ (t) may be
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constructed explicitly. This construction may be most simply expressed in terms
of the minimizing trajectories in the empty case. Fork ∈ K , denote the mean
of π∗

(k) by βk = ∑∞
j=0 jπ∗

k,j , and define the terminal conditionω(k) ∈ SI−k by
ωk,j = π∗

k,j , for j = 0, . . . , I − k. Then the constraints(1,ω(k), βk) are feasible
constraints, and Theorem 2.6 determines the associated least cost paths, which
we denoteγ(k) = {γk,j (x)}. The least cost paths for the subproblems combine to
form the overall least cost path.

THEOREM 2.8 (Globally minimizing path, general case).For irreducible

feasible constraints (α,ω,β), let π∗ ∈ S
|K |∞ be the unique minimizing distribution

in Theorem 2.7, and let the functions γk,j : [0, βk] → [0,1] be the minimizing
paths corresponding to the subproblems (1,ω(k), βk). The infimum of J (γ ) over
A(α,ω,β) is achieved on the occupancy path γ ∈ A(α,ω,β) defined by

γi(x) =
i∑

k=0

αkγk,i−k(xβk/β), i = 0, . . . , I,

γI+(x) = 1−
I∑

i=0

γi(x).

In addition, γ satisfies the Euler–Lagrange equations.

3. Proof of Theorem 2.2. The purpose of this section is to prove the main
large deviations result. We recall the processes and notation defined at the
beginning of Section 2.

For ζ ∈ R
I+2 andγ ∈ SI , define

H̄ (γ, ζ ) = log
(
E
[
exp

(
ζ · bi(γ )

)])
,

where “·” denotes inner product. Since the support ofbi(γ ) is bounded uniformly
in i and γ , there exists a functionh :R → R such thatH̄ (γ, ζ ) ≤ h(|ζ |) for
all ζ and γ . Also, since the distribution ofbi(γ ) is weakly continuous inγ ,
H̄ (γ, ζ ) is jointly continuous. It follows from [10], Theorem 4.1, that the sequence
{�n,n = 1,2, . . .} satisfies a large deviation upper bound with a rate functionJ̄ ,
which we now define. Let̄L be the Legendre–Fenchel transform ofH̄ (γ, ζ ) in ζ :

L̄(γ, η) = sup
ζ∈RI+2

[ζ · η − H̄ (γ, ζ )].

If γ (x),0 ≤ x ≤ β is an absolutely continuous function that takes values inSI ,
then

J̄ (γ ) =
∫ β

0
L̄
(
γ (x), γ̇ (x)

)
dx.

If γ is not absolutely continuous, then̄J (γ ) = ∞. ([10] assumes that the vector
fieldsbi(γ ) are defined for allγ ∈ R

I+2. It is easy to check that we can extend the
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definition to this set with the bound̄H(γ, ζ ) ≤ h(|ζ |) and the continuity ofH̄ (γ, ζ )

preserved. However, if the process�n starts inSI , then it stays inSI , and so the
exact form of the extension has no effect on the rate function.)

We recall the definition of the matrixM given in (2.1). To complete the proof
of the upper bound we must show thatJ̄ = J , whereJ is defined as in (2.2). This
will hold if we can show thatL̄(γ, η) is finite only whenη = Mθ for a unique
probability vectorθ , and that in this case

L̄(γ,Mθ) = D(θ‖γ ).

It is well known thatL̄(γ, η) is finite if and only ifη is in the convex hull of the
support ofbi(γ ) (see, e.g., [11], Lemma 6.2.3(d)). Therefore ifL̄(γ, η) < ∞, then
η can be written as a convex combination of the form

θ0(e1 − e0) + · · · + θI (eI+1 − eI ),

whereθj ≥ 0 and
∑I

j=0 θj ≤ 1. Since the vectors{(ej+1 − ej ), j = 0,1, . . . , I }
are linearly independent, these values are unique. SettingθI+1 = 1 − ∑I

j=0 θj ,
we haveη = Mθ for a unique probability vectorθ . Now assume thatη takes this
form. Then

L̄(γ,Mθ) = sup
ζ∈RI+2

[
ζ · Mθ − log

(
E
[
exp

(
ζ · bi(γ )

)])]

= sup
ζ∈RI+2

[
MT ζ · θ − log

([
I∑

j=0

γj exp(ζj+1 − ζj )

]
+ γI+1

)]

= sup
ζ∈RI+2

[
I∑

j=0

(ζj+1 − ζj )θj − log

([
I∑

j=0

γj exp(ζj+1 − ζj )

]
+ γI+1

)]
.

Given any valuesµ0, . . . ,µI+1, we can defineζ0, . . . , ζI+1 recursively by
ζ0 = −µI+1 and ζj+1 − ζj = µj − µI+1. With these definitions, it is apparent
that the last display is equal to

sup
µ∈RI+2

[
I∑

j=0

µjθj − µI+1(1− θI+1) − log

([
I∑

j=0

γj exp(µj − µI+1)

]
+ γI+1

)]

= sup
µ∈RI+2

[
I∑

j=0

µjθj − µI+1(1− θI+1) + µI+1 − log

(
I+1∑
j=0

γj expµj

)]

= sup
µ∈RI+2

[
I+1∑
j=0

µjθj − log

(
I+1∑
j=0

γj expµj

)]
.

According to the Donsker–Varadhan variational formula for relative entropy
(e.g., [11], Lemma 1.4.3(a)), the last display equalsD(θ‖γ ), thereby completing
the proof of the upper bound.
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We turn now to the proof of the lower bound. In this proof we will assume
thatγ0(0) > 0. Sinceγ0 is always nonincreasing,γ0(0) = 0 implies thatγ0(x) = 0
for all x and, therefore, under this condition the first component plays no
significant role. A proof analogous to the one given below applies whenγ0(0) = 0,
where the role ofγ0(0) here is played by the first positive component ofγ (0).

Let P�n(0) [resp. E�n(0)] denote probability (resp. expected value) given
a deterministic initial occupancy�n(0). To prove the large deviation lower bound,
it suffices to show that given anyε > 0 andδ > 0, there isη > 0 such that for any
initial occupancies satisfying|�n(0) − γ (0)| < η,

lim inf
n→∞

1

n
logP�n(0)

(
sup

0≤x≤β

|�n(x) − γ (x)| < δ

)
≥ −J (γ ) − ε.(3.1)

Of course this inequality is trivial ifJ (γ ) = ∞, and so we assume thatJ (γ ) < ∞.
As we have remarked, a source of difficulty is the singular behavior of the

transition rates of the process when�n is near the boundary ofSI . We first show
that this can be avoided at all times savex = 0. To do this, we show that for
any a > 0, there existb > 0, K ∈ N and an occupancy functiony such that
y(0) = γ (0), sup0≤x≤β |y(x)−γ (x)| < a, yj (x) > bxK for all j = 0,1, . . . , I, I+
and 0< x ≤ β, and such that

J (y) ≤ J (γ ).

Consider the zero cost trajectory defined by

ż(x) = Mz(x), z(0) = γ (0).

We have the following expression forzj whenj ≤ I :

zj (x) =
[ j∑

k=0

γk(0)x(j−k)/(j − k)!
]
e−x.(3.2)

It is easy to check from this explicit formula thatzj (x) > b̄xK for some
b̄ > 0, K = I , and all j = 0,1, . . . , I, I+ and 0< x ≤ β. For ρ ∈ (0,1), let
yρ = ρz + (1− ρ)γ . Thenyρ is the occupancy function that corresponds to the
rateρz + (1− ρ)θ . Using the joint convexity of relative entropy in both variables
([11], Lemma 1.4.3(b)) and the fact thatD(z‖z) = 0, we have

J (yρ) =
∫ β

0
D
(
ρz(x) + (1− ρ)θ(x)‖ρz(x) + (1− ρ)γ (x)

)
dx

≤ ρ

∫ β

0
D
(
z(x)‖z(x)

)
dx + (1− ρ)

∫ β

0
D
(
θ(x)‖γ (x)

)
dx

= (1− ρ)J (γ ).

All required properties are then obtained by lettingy = yρ for suitably small
ρ ∈ (0,1).
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It follows that in proving the lower bound, we can assume without loss of
generality that for some fixed constantsb > 0 andK ∈ N, γi(x) ≥ bxK for all
x ∈ [0, β]. We now return to the proof of the lower bound. Our first objective is
to show that the process can be moved into a small neighborhood ofγ (τ ) (for
τ > 0 small) with sufficiently high probability. Givenτ ∈ (0, β], σ > 0, andε > 0,
define

h(γ ) =
{

0, |γ − γ (τ )| < σ/2,

2ε, else.

Forn large enough that|γ (�nτ�/n)−γ (τ )| ≤ σ/2 (and independent ofτ ∈ (0, β]),
we have the inequality

P�n(0)

(|�n(�nτ�/n) − γ (�nτ�/n)| < σ
)+ e−2nε

≥ P�n(0)

(|�n(�nτ�/n) − γ (τ )| < σ/2
)+ e−2nε

≥ E�n(0)

(
exp−nh

(
�n(�nτ�/n)

))
.

We next exploit a representation for exponential integrals that will give us an
explicit lower bound on the last quantity. Consider a process�̄n(x) constructed as
follows. The process dynamics are of the same general structure as those of�n,
save thatbi(�

n(i/n)) is replaced by a sequenceb̄n
i :

�̄n

(
i + 1

n

)
= �̄n

(
i

n

)
+ 1

n
b̄n
i , �̄n(0) = �n(0).

Furthermore, the distribution of̄bn
i is allowed to depend in any measurable way

upon the set of values{�̄n(j/n),0 ≤ j ≤ i}. Let µγ denote the distribution
of bi(γ ), and (without explicitly exhibiting all the dependencies) letµ̄n

i denote
the (random) distribution of̄bn

i , given{�̄n(j/n),0 ≤ j ≤ i}. We letĒ�n(0) denote
expectation on the space that supports these processes. It follows from [11],
Theorem 4.3.1, that

−1

n
logE�n(0)

(
exp−nh

(
�n

(�nτ�
n

)))

= inf Ē�n(0)

[
h

(
�̄n

(�nτ�
n

))
+ 1

n

�nτ�−1∑
i=1

D
(
µ̄n

i ‖µ�̄n(i/n)

)]
,

where the infimum is over all such processes�̄n(x). In order to obtain a lower
bound, we now simply insert a particular choice for the random variablesb̄n

i .
We can writeγ (τ ) − γ (0) = Mvτ for some probability vectorv. Define a
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process̄bn
i as follows:

b̄n
i =




ej − ej−1, if

⌊ j−1∑
k=0

vkτn

⌋
≤ i ≤

⌊ j∑
k=0

vkτn

⌋
− 1, for 0≤ j ≤ I ,

0, if

⌊
I∑

k=0

vkτn

⌋
≤ i ≤ �τn� − 1.

In other words,b̄n
i defines a deterministic, discrete time approximation to

the continuous time occupancy rate process that usese0 − e1 for an amount of
time v0τ , e1 − e2 for an amount of timev1τ and so on. This continuous time
process will move the occupancy process fromγ (0) to γ (τ ) at timeτ . If ej −ej−1
is used at the discrete time stepi, then sincēµn

i concentrates its mass onej −ej−1,
the cost is

D
(
µ̄n

i ‖µ�̄n(i/n)

)= log
(

1

�̄n
j−1(i/n)

)
= − log

(
�̄n

j−1

(
i

n

))
.(3.3)

The process�̄n(i/n) possesses important monotonicity and convergence
properties. Sincē�n

j−1((i + 1)/n) − �̄n
j−1(i/n) = −1/n for �∑j−1

k=0 vkτn� ≤ i ≤
�∑j

k=0vkτn� − 1,

�̄n
j−1

(
i

n

)
↓ �̄n

j−1

(
1

n

⌊ j∑
k=0

vkτn

⌋)

as i ↑ �∑j
k=0 vkτn�. In addition, because the(j − 1)st component is never

modified wheni ≥ �∑j
k=0 vkτn�, it follows that

�̄n
j−1

(
1

n

⌊
j∑

k=0

vkτn

⌋)
→ γj−1(τ )

as n → ∞ and η → 0. Furthermore, as observed previously, (3.2) implies the
existence ofb > 0 andK ∈ N such thatγj (τ ) ≥ bτK for j = 0, . . . I . Thus, at any
given time stepi we have a strictly positive lower bound on the relevant component
of �̄n, which in turn provides a strictly finite upper bound on the corresponding
relative entropy cost. Indeed, it follows from (3.3) andγj (τ ) ≥ bτK that for all
sufficiently largen and smallη > 0, there areC1,C2 < ∞ (and independent ofτ )
such that whenever|�n(0) − γ (0)| < η, for all i,

D
(
µ̄n

i ‖µ�̄n(i/n)

)≤ C1[− logτK ] ≤ −C2 logτ.

In addition, asn → ∞ andη → 0,

�̄n

(
1

n
�τn�

)
→ γ (τ ).
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By the Lebesgue dominated convergence theorem, for all sufficiently largen and
sufficiently smallη > 0, |�n(0) − γ (0)| < η implies

−1

n
logE�n(0)

(
exp−nh

(
�n

(�nτ�
n

)))
≤ −C2τ logτ.

We now chooseτ > 0 so that−C2τ logτ ≤ ε/2. Choosingτ > 0 smaller if
need be, we can also guarantee that|�n(x) − γ (x)| ≤ δ for all x ∈ [0, τ ] w.p.1
if |�n(0) − γ (0)| < η and η > 0 is sufficiently small. The following bound is
therefore valid for the givenτ > 0: for anyσ > 0 and all sufficiently smallη > 0,
|�n(0) − γ (0)| < η implies

lim inf
n→∞

1

n
logP�n(0)

(∣∣∣∣�n

(�nτ�
n

)
− γ

(�nτ�
n

)∣∣∣∣< σ,

sup
x∈[0,τ ]

|�n(x) − γ (x)| < δ

)
≥ −ε

2
.

Note that the asymptotic lower bound on the normalized log of the probability is
independent ofσ > 0. To obtain the lower bound for allx ∈ [0, β], we will use the
Markov property and an existing lower bound for paths which avoid that boundary.
This latter lower bound will hold uniformly in a neighborhood of the initial
conditionγ (τ ). Since we do not know a priori how small this neighborhood must
be, it is important that the lower bound in the last display should be independent
of σ > 0.

Now chooseζ ∈ (0, δ] such thatγ (x) is at least distance 2ζ from the boundary
of SI for all x ∈ [τ,β]. Recall that when considered as a function ofγ , the
distribution of bi(γ ) is continuous in the weak topology, and moreover that
the support of this distribution is independent ofγ so long asγi > 0 for all
i ∈ {0,1, . . . , I + 1} (i.e., γ ∈ S◦

I , where S◦
I denotes interior relative to the

smallest affine space that containsSI ). It then follows from Proposition 6.6.1
of [11] (see also the discussion on [11], page 165, regarding uniformity) that
{�n,n = 1,2, . . .} satisfies the following uniform large deviations lower bound:
given anyε > 0 andζ > 0 defined above, there isσ > 0 such that as long as
|�n(�nτ�/n) − γ (�nτ�/n)| < σ ,

lim inf
n→∞

1

n
logP�n(�nτ�/n),�nτ�/n

(
sup

τ≤x≤β

|�n(x) − γ (x)| < ζ

)
≥ −J (γ ) − ε

2
,

where P�n(�nτ�/n),�nτ�/n denotes probability given the occupancy levels
�n(�nτ�/n) at time�nτ�/n. Proposition 6.6.1 of [11] assumes Condition 6.3.2.
It is worth noting that in the present setting this condition holds with the particu-
larly simple choiceβ̃ = γ (using the notation of [11]).

The lower bound (3.1) now follows by the Markov property and the last two
displays. The proof thatJ has compact level sets is as in [10], and therefore
omitted.
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4. Examples and extensions. In this section we apply the results of the
previous sections to three different occupancy problems. We show how the
parameters of interest may be computed numerically and plot the solutions to
the associated calculus of variations problems. In Section 4.4 we list some other
asymptotic problems of interest which can be solved by relatively straightforward
generalizations of the results presented in this paper.

In the calculus of variations problems solved in Section 2, precise initial and
terminal points were always given. In typical applications, one is interested in the
minimum value of the rate function over a constraint set. When the constraint set
is sufficiently simple, such problems may still be solved easily using the tools
provided in Section 2.2. The three problems of this section are of this type.

Suppose that the event of interest is that the random endpoint�n(β) should
lie in a terminal constraint set�. To apply the LDP for{�n(β)} established by
Corollary 2.3, one must compute exponents of the form

J(�) = inf
ω∈�

J(ω).

Using Theorem 2.7, we can write

J(�) = inf
ω∈�

inf
π∈F(α,ω,β)

K∑
k=0

αkD
(
π(k)‖P (β)

)
(4.1)

= inf
π∈F(α,�,β)

K∑
k=0

αkD
(
π(k)‖P (β)

)
,

where we have abused notation to defineF(α,�,β) =⋃
ω∈� F(α,ω,β).

In many cases, for example, when the terminal set� is convex and defined
by linear constraints, the exponentJ can be computed directly from (4.1) using
Lagrange multipliers. That is, one solves minimization problems of the type given
in Theorem 2.7, but with the endpoint constraints (2.10) replaced by constraints
defining �. This is the approach used in the second and third example below.
We do not prove that appropriate Lagrange multipliers always exist; if needed,
existence may be established using methods similar to those used in the Appendix
for the case� = {ω}. Because of the convexity of relative entropy in (4.1), a local
minimum is always a global minimum over convex sets. Hence, in any particular
scenario with convex�, it is sufficient to establish a local minimum by numerically
computing a set of Lagrange multipliers.

An alternative approach for computingJ(�) could be to return to the sample
path level and usenatural boundary conditions on the extremal curves (see [25]).

A set � with interior �◦ and closure�̄ is a J-continuity set if and only
if inf ω∈�◦ J(ω) = infω∈�̄ J(ω). For such sets the large deviations lower and
upper bounds coincide so that− lim 1/n logP (�n(β) ∈ �) = infω∈� J(ω). It may
readily be verified in each of the following examples that the event of interest is a
J-continuity set.
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4.1. The classical occupancy problem. In the classical occupancy problem,
the urns are initially empty and one only distinguishes between empty and
occupied urns, or in other words,I = 0. The associated large deviations problem
was solved using a sample path approach in [28]; we show here how this case may
be obtained with our results. We might be interested in the probability of having an
unusually large number of empty urns�n

0(β) > ω0 > e−β , or an unusually small
number of empty urns�n

0(β) < ω0 < e−β . In either case, the calculus of variation
problem is that in whichγ0(β) = ω0. From (2.6), it is immediate thatC = 1/ρ and

γ0(x) = 1

ρ
e−ρx + 1− 1

ρ
.

Using (2.5), we find thatρ is determined by the unique nonnegative solution to

ρ(1− ω0) = 1− e−βρ.

Finally, (2.7) provides a simple expression forJ(ω) in terms ofω0, β, C andρ.
In addition, our analysis gives the sample paths for the higher occupancies,

conditioned on an unusual number of empty urns, namely,γi(x) = Pi (ρx)/ρ for
i > 0. Figure 1 depicts the first five occupancy levels as a function of balls per urn

FIG. 1. Cumulative urn occupancies ψ0 through ψ5 for the classical occupancy problem, including
unconstrained paths (dashed curves) and constrained paths (solid curves).
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thrownx. In this example, the terminal fraction of empty urnsω0 = 0.15 is three
times larger than the expected valueP0(3.0) = 0.05.

4.2. The overflow problem. In the overflow problem an urn is considered full
when it reaches a finite capacityI > 0. Once an urn has been filled, successive
balls thrown to that urn fall to the floor. For specificity, we consider the problem of
determining the probability that an unusually large number of balls end up on the
floor, and assume the empty initial conditionsα0 = 1.

The problem can be handled using urns of infinite capacity in the following
way. The number of balls that would have fallen on the floor in a finite capacity
system is the number of balls in urns with occupancy greater thanI , minusI times
the number of such urns. Whenr balls have been thrown, the random number of
overflowing ballsw(r) is thus

w(r) = r − n�1(r/n) − 2n�2(r/n) − · · · − In�I (r/n) − In�I+(r/n)

or, since�I+ = 1−∑I
i=0 �i ,

w(r) = r − nI + n

I∑
i=0

(I − i)�i(r/n).

In order to compute

JO(η,β)
.= − lim

n

1

n
logP

(
w(βn)

n
> η

)
,

we therefore consider sample paths which satisfy the end constraint
I∑

i=0

(I − i)γi (β) ≥ η + I − β
.= ζ.(4.2)

Note thatζ can be interpreted as the average spare capacity per urn, which must
satisfy the bounds[I − β]+ ≤ ζ < I , and that the average overflow satisfies
[β − I ]+ ≤ η < β. Assuming thatη (andζ ) is larger than would be expected in
the zero cost case, the minimum large deviations exponent will be achieved with
equality in the constraint (4.2). Assuming thatη > 0, we are in the exponential
case, and the large deviations exponentJO(η,β) will be given by minimizing the
divergence betweenπ andP (β), under the linear equality constraints

∞∑
i=0

πi = 1,

∞∑
i=0

iπi = β and
I∑

i=0

(I − i)πi = ζ.(4.3)

We introduce the Lagrangian

L(π;y, z, λ) =
∞∑
i=0

πi log
πi

Pi (β)
+ y

(
1−

∞∑
i=0

πi

)

+ z

(
β −

∞∑
i=0

iπi

)
+ λ

(
ζ −

I∑
i=0

(I − i)πi

)
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with Lagrange multipliersy, z and λ. On differentiating, it follows that the
minimizing distributionπ∗ should satisfy the conditions

logπ∗
i = logPi (β) − 1+ y + iz + (I − i)+λ.

In terms of variablesC,ρ andν, we may write

π∗
i = CPi (ρβ) for i ≥ I

and

π∗
i = CPi (ρβ)νI−i for i ≤ I.

The distribution is conditionally Poissonρβ/ν for i ≤ I and conditionally
Poissonρβ for i ≥ I . For convenience, we introduce the notation

QI (ρ)
.=

∞∑
i=I

Pi(ρβ) = 1

ρβ

∞∑
i=I+1

iPi (ρβ),

RI (ρ, ν)
.= νI e−ρβ(1−1/ν)

I−1∑
i=0

Pi

(
ρβ

ν

)

= νI+1

ρβ
e−ρβ(1−1/ν)

I∑
i=1

iPi

(
ρβ

ν

)
.

Sinceπ∗ must satisfy the three linear constraints (4.3), the constantsC, ρ andν

must solve the equations

C
(
RI (ρ, ν) + QI (ρ)

)= 1,

C

(
ρβ

ν
RI (ρ, ν) + ρβQI (ρ)

)
= β,

C

(
IPI (ρβ) +

(
I − ρβ

ν

)
RI (ρ, ν)

)
= ζ.

There can be at most one positive triple(C,ρ, ν) satisfying these equations, since
each such triple identifies a local minimum ofD(π‖P (β)) for π in a convex set,
and there can be only one such minimum. The equations can be solved numerically
in a number of ways to obtainC, ρ andν. For example, from the first constraint,
C can be expressedC = (RI +QI )

−1. Substituting this expression into the second
and third constraints, we obtain the equations

(ρ/ν − 1)RI (ρ, ν) + (ρ − 1)QI (ρ) = 0,

(I − ρβ/ν − ζ )RI (ρ, ν) − ζQI (ρ) + IPI (ρβ) = 0.

Each equation implicitly defines a curveν as a function ofρ, and the intersection
of the two curves gives the desired(ρ, ν). We note that larger than expected values
of ζ will lead toν > ρ > 1, while smaller than expected values ofζ giveν < ρ < 1.
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The large deviations exponent for the overflow problem may then be expressed

JO(η,β) = D
(
π∗‖P (β)

)
=

∞∑
i=0

π∗
i log

(
Ceβ−ρβρiν(I−i)+)

= logC + β(1− ρ) + β logρ + ζ logν.

4.3. Partial coupon collection, with initial conditions. In the coupon collec-
tor’s problem, the urns represent then types of coupons that are required to form a
complete collection. The placement of a ball in a given urn corresponds to choos-
ing a new coupon at random, and the problem is to see how many coupons must
be collected beforeI +1 complete sets are obtained. This event corresponds to the
constraintωi = 0, i ≤ I .

In this section we solve a generalization of this problem. Beginning from
nonempty initial conditions (a collection already in progress), we collectβn

additional coupons with the goal of obtaining more thanI coupons of as many
types as possible. We want to determine how likely it is that number of types for
which we have collectedI or fewer coupons is less thanξn.

In terms of the urn problems we have considered, we are given initial
occupanciesα and wish to compute

JC(α,β, ξ)
.= − lim

n

1

n
logP

(
I∑

i=0

�n
i (β) < ξ

)
,

where

ξ <

K∑
k=0

αk

I−k∑
i=0

Pi(β)

is an unusually small number of low occupancy urns.
The exponentJC will be given by computingJ(ω) as defined in Theo-

rem 2.7 subject to the conservation constraint (2.11), replacing the terminal condi-
tions (2.10) with the single constraint

K∑
k=0

αk

I−k∑
j=0

πk,j = ξ,

whereK ≤ I since any sets which are initially complete may be left out of the
problem. After constructing a Lagrangian and differentiating, we find that the
minimizing solution must be of the form

ωk,j = π∗
k,j =

{
CkPj (ρβ)W, j + k ≤ I ,

CkPj (ρβ), j + k > I .
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As in the previous example, the unknown constants may be determined by
substituting the given form of the solution into the constraint equations, and
solving the resulting system of equations. In terms of these constants, the large
deviations exponent may be expressed

JC(α,β, ξ) = β(1− ρ + logρ) + ξ logW +
K∑

k=0

αk logCk.

Figure 2 depicts several cumulative occupancy curvesψi for a particular example.
Suppose that there aren=100 types of coupons to collect, and the goal is to collect
at least four coupons of as many types as possible (i.e.,I = 3). Initially, one is
given a single coupon of 30 types and pairs of coupons of a further 20 types,
corresponding to the initial conditionsα = [0.5 0.3 0.2]. In the zero-cost solution
(dashed lines),ψ3(2.0) ≈ 0.71. Hence, after collecting 200 additional coupons
at random (β = 2), one would expect to have 4 or more coupons for only about
29 types. To compute the likelihood that we have at least 4 coupons for more than
45 types, we takeξ = 0.55, which gives a large deviations exponentJC ≈ 0.18

FIG. 2. Cumulative urn occupancies ψ0 through ψ5, for a partial coupon collectors problem,
including unconstrained paths (dashed curves) and constrained paths (solid curves).
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and a probability of about 10−8. The corresponding constrained occupancy curves
are depicted by solid lines in Figure 2.

4.4. Extensions. There are a number of variations of the basic occupancy
problem which can be solved by fairly straightforward generalizations of the
results of this paper, but which we will only mention briefly. These include the
following problems:

(i) a random number of balls are thrown,
(ii) balls have a probabilityp of not entering any urn,
(iii) balls enter different subsets of urns with differing probabilities,
(iv) an event of interest may occur at any time in the interval(0, β], rather than

just at timeβ.

Some comments are in order. A particular example of (i) appeared in [13],
where the number of balls thrown,r , was binomially distributed with parameters
0 < a < 1 andn. An urn model proposed by [16] is of type (ii). Here, the goal is
to determine the distribution of the number of targets hit whenr shots are fired
at n targets, and when the probability of missing the target isp. In problem (iii)
there areK > 1 urn classes with a fractionαk, k = 1,2, . . . ,K of urns in each
class. Urns enter classk with a fixed probabilitypk but then enter any urn within
that class with uniform probability. Similaranalysis to that for nonempty initial
conditions can be applied to this problem. For an example of type (iv), suppose
that an infinite sequence of balls is thrown inton initially empty urns, and that one
would like to know the probability that the number of urns containing exactly one
ball ever exceedsn/2. The probability of this occurringafter βn balls have been
thrown can be bounded above by the probability that the number of empty and
singly occupied urns exceedsn/2 when exactlyβn balls have been thrown. This
computation fits into the framework of a partial coupon collectors problem, and the
probability can be made negligible from the point of view of large deviations by
takingβ sufficiently large. The remaining possibility, that the event occursbefore
βn balls have been thrown, is then a problem of type (iv). The associated calculus
of variations problem is to find the lowest cost occupancy curve on(0, β] among
all curves withγ1(x) > 0.5 for somex ∈ (0, β].

APPENDIX

Analysis of the calculus of variations problem. The Appendix is dedicated
to proving the calculus of variations results given in Section 2.2. Recall that
these results provide explicit representations for the terminal rate functionJ(ω)

defined in Corollary 2.3, and for the minimizing occupancy functionsγ ∗ satisfying
J(ω) = J (γ ∗).

In the first step of the proof, we characterize a set of extremal occupancy
paths, that is, paths which satisfy the Euler–Lagrange equations. For all feasible
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terminal conditions of the form(1,ω,β), Theorem A.1 shows that occupancy
paths of the form given in Theorem 2.6 are extremals and that paths of this
form can be constructed to meet any feasible constraints of the form(1,ω,β).
Likewise, Lemma A.6 and Theorem A.11 show that occupancy paths of the form
given in Theorem 2.8 are extremals, and such paths can be constructed to meet
all general feasible conditions(α,ω,β). The special form of the extremals is
used in Theorem A.5 and Theorem A.13 to show that the extremals have the
costs given in Theorem 2.5 and Theorem 2.7, respectively. Ifγ̄ is the extremal
occupancy path constructed for given constraints(α,ω,β), we thus have the upper
boundJ(ω) ≤ J (γ̄ ). The assertion in Theorem 2.5 and Theorem 2.7 that the
minimum relative entropy is achieved by a unique distributionπ∗ is established in
Lemma A.6. The final step needed to prove Theorems 2.5–2.8 is the lower bound
J(ω) ≥ J (γ̄ ). This bound is proved in Theorem A.14, using the Euler–Lagrange
equations together with properties of the relative entropy.

A.1. Preliminaries.

A.1.1. Proof of Lemma 2.4. Recall that the lemma states that endpoint
constraints(α,ω,β) are feasible if and only if

i∑
j=0

αj ≥
i∑

j=0

ωj, i = 0, . . . , I (monotonicity)(A.1)

and
I∑

i=0

iωi + (I + 1)ωI+ ≤
I+1∑
i=0

iαi + β (conservation).(A.2)

PROOF OF LEMMA 2.4. If a valid occupancy curveγ : [0, β] → SI meets
the initial and terminal constraintsα and ω, then property (b) of Lemma 2.1
implies (A.1) and property (c) implies (A.2) since

I∑
i=0

(
i∑

j=0

αj −
i∑

j=0

ωj

)
=

I∑
j=0

(I + 1− j)(αj − ωj)

(A.3)

= (I + 1)(ωI+ − αI+1) +
I∑

j=0

j (ωj − αj ).

On the other hand, given the constraints (A.1) and (A.2), one can show that the
linear functions

γi(x) = αi + (ωi − αi)
x

β
, i = 0, . . . , I,

γI+(x) = 1−
I∑

i=0

γi(x) = αI+1 + (ωI+ − αI+1)
x

β
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satisfy the constraints and the conditions of Lemma 2.1. Properties (a) and (b) are
immediate, and property (c) will be established by showing that−∑I

i=0 ψ̇i ≤ 1.
Indeed, −β

∑I
i=0 ψ̇i is equal to the left-hand side of (A.3) and, therefore,

−∑I
i=0 ψ̇i ≤ 1 follows from (A.2). �

A.1.2. Euler–Lagrange equations. Given the numerous descriptions of occu-
pancy processes and rates (ψ,γ, θ, γ̇ , ψ̇ , etc.), it is convenient to abuse notation.
Thus, for example, we will write bothJ (γ ) andJ (ψ), with the understanding that
the fundamental object of interest is the occupancy functionγ , and thatJ (ψ) is
merelyJ (γ ) whenψ is the cumulative occupancy process that corresponds toγ .
Also, sinceψ̇i = −θi for i = 0, . . . , I , we can define the local rate function (which
is usually written as a function ofψ andψ̇) as a function ofψ andθ , and represent
the overall cost of a cumulative occupancy trajectoryψ as an integral of the form

J (ψ) =
∫ β

0
L
(
ψ(x), θ(x)

)
dx.

Because the balls are thrown uniformly and randomly into the urns, the expected
rate for balls to enter urns of occupancyi is γi = ψi − ψi−1. As discussed in
Section 2, the cost of a deviation of a given pathψ from its expected behavior at a
given instant is given by the rate function

L(ψ, θ) = D(θ‖γ )

=
I∑

i=0

θi log
θi

γi

+ θI+ log
θI+
γI+

=
I∑

i=0

θi log
θi

ψi − ψi−1
+
(

1−
I∑

i=0

θi

)
log

(1−∑I
i=0 θi)

1− ψI

.

The rate function is defined to be infinity if the curve is not a cumulative occupancy
function.

The calculus of variations problem is to find the pathψ having least cost among
all paths satisfying given initial conditions and endpoint constraints, and to find
the cost of such aminimal path. As illustrated in the examples in Section 4, the
results extend to cases where the terminal point (or the initial point) are required
to lie in a given constraint set.

DEFINITION A.1. An occupancy path defined on[0, β] is said to be an
extremal if it satisfies the Euler–Lagrange equations [8],

∂L

∂ψi

(
ψ(x), θ(x)

)= − d

dx

{
∂L

∂θi

(
ψ(x), θ(x)

)}

for all i ∈ {0, . . . , I }, x ∈ (0, β).
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Although the Euler–Lagrange equations are neither necessary nor sufficient
conditions for minimality in general, extremals do turn out to be minimal in many
cases. In the following sections we will construct a family of extremal paths
for the cost function given above, and show that the extremal paths are, in fact,
globally minimal.

In the case at hand, the Euler–Lagrange equations are given by

− θi

ψi − ψi−1
+ θi+1

ψi+1 − ψi

= d

dx

{
− log

θi

ψi − ψi−1
+ log

θI+
1− ψI

}
,(A.4)

for i = 0, . . . , I − 1, and by

− θI

ψI − ψI−1
+ θI+

1− ψI

= d

dx

{
− log

θI

ψI − ψI−1
+ log

θI+
1− ψI

}
.(A.5)

In the case when we have equality in the conservation constraint (2.4), and by
takingI +1 to beI if necessary, we have that

∑I
i=0 ωi = 1. Such cases of equality

are referred to as the polynomial case. When this holds, every valid occupancy path
must haveψI (x) = 1 and, therefore,θI (x) = θI+(x) = 0. For all such occupancy
paths, the rate functionL(ψ, θ) then reduces to

L(ψ, θ) =
I−1∑
i=0

θi log
θi

ψi − ψi−1
.(A.6)

The Euler–Lagrange equations pertinent to the problem of minimizing this
restricted set of occupancy paths are just

− θi

ψi − ψi−1
+ θi+1

ψi+1 − ψi

= d

dx

{
− log

θi

ψi − ψi−1

}
,(A.7)

for i = 0, . . . , I − 1.

A.2. Characterization of the extremals under empty initial conditions.
In this section we consider the simplest and most important case, in which the
urns are all initially empty,α0 = 1. Recall that to each feasible endpoint constraint,
(1,ω,β) correspond to twist parametersC ≥ 0, ρ > 0 which satisfy the equations

I∑
i=0

ωi +
∞∑

i=I+1

CPi (ρβ) = 1,

I∑
i=0

iωi +
∞∑

i=I+1

iCPi (ρβ) = β.

THEOREM A.1. Suppose that (1,ω,β) are feasible terminal constraints, and
that ρ and C are the corresponding twist parameters. Then the set of functions γ
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defined by

ψ0(x) = Ce−ρx +
I∑

k=0

(
ωk − CPk(ρβ)

)(
1− x

β

)k

,(A.8)

γi(x) = xi

i! (−1)iψ
(i)
0 (x), 0≤ i ≤ I,(A.9)

γI+(x) = 1−
I∑

i=0

γi(x),

are extremals on [0, β] which satisfy the terminal constraints along with the initial
constraint ψ0(0) = 1.

Recall that in the special caseC = 0, the first component of the extremal is
simply theI th order polynomial

ψ0(x) =
I∑

k=0

ωk

(
1− x

β

)k

.(A.10)

We refer to such paths aspolynomial extremals, and to extremals withC > 0 as
exponential extremals.

The following definition and lemma are useful in the proof of the above theorem.

DEFINITION A.2. A nonnegative functionϕ is completely monotone on an
interval[a, b] if it is infinitely differentiable on[a, b] with

(−1)iϕ(i)(x) ≥ 0 for all x ∈ [a, b] andi > 0.(A.11)

This definition is based on the one pertaining to Bernstein’s theorem, which
characterizes Laplace transforms, see [15]. However, our definition differs in that
it considers only a finite interval[a, b].

LEMMA A.2. The function ψ0(x) given in (A.8) is completely monotone
on [0, β]. Moreover, the inequality in (A.11) is strict for x ∈ [0, β) and
i = 0, . . . , I . In the case C > 0, this can be strengthened to all i = 0,1, . . . .

PROOF. Clearly, ψ0(x) is infinitely differentiable. Now suppose first that
C > 0. Theith derivative ofψ0 is

(−1)iψ
(i)
0 (x) = ρiCe−ρx +

I∑
k=i

(
ωk − CPk(ρβ)

)
β−i k!

(k − i)!
(

1− x

β

)k−i

for i = 0, . . . , I , and

(−1)iψ
(i)
0 (x) = ρiCe−ρx(A.12)

for i > I .
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It is clear thata(x)
.= (−1)I+1ψ

(I+1)
0 (x) is completely monotone on[0,∞).

Moreover,(−1)ia(i)(x) > 0, x ∈ [0,∞), i = 0,1, . . . . We deduce thatϕ(x) =
(−1)Iψ

(I)
0 (x) must be monotonically strictly decreasing, and that

ϕ(β) = (−1)Iψ
(I)
0 (β)

= ρICe−ρβ +
(
ωI − Ce−ρβ (ρβ)I

I !
)
β−I I !

=
(

βI

I !
)−1

ωI ≥ 0,

so thatϕ(x) > 0 on [0, β). It follows thatϕ(x) is completely monotone on[0, β]
and that the derivative constraint is strict on[0, β). Proceeding inductively toI −1
and beyond, we arrive at the lemma.

In the polynomial caseC = 0 the argument proceeds similarly on noting that

(−1)Iψ
(I)
0 (x) =

(
βI

I !
)−1

ωI > 0 for all x ∈ [0, β]. �

PROOF OF THEOREM A.1. The terminal constraints can be verified imme-
diately by inspection. The initial constraints follow from the construction ofC

in (2.6), since

ψ0(0) = C

(
1−

I∑
i=0

Pi (ρβ)

)
+

I∑
i=0

ωi = 1.

A similar computation also using (2.6) shows thatψ
(1)
0 (0) = −1, a fact that we

will need shortly.
To establish that the given functions are valid occupancy curves, it is useful to

introduce the infinite sequence of functionsγi and correspondingψi obtained by
extending (A.9) to alli:

γi(x) = xi

i! (−1)iψ
(i)
0 (x), i = 0,1, . . . , I, I + 1, . . . .(A.13)

As the sum of an exponential and a polynomial,ψ0 has a Taylor series
representation of unlimited radius about any pointx. Then ψ0(0) − ψ0(x) =∑∞

i=1
(−x)i

i! ψ
(i)
0 (x), and thus,

∞∑
i=0

γi(x) =
∞∑
i=0

(−x)i

i! ψ
(i)
0 (x) = ψ0(0) = 1.

Since, by Lemma A.2, theγi are nonnegative on[0, β], we have{γi(x)} ∈ S∞ for
all x in that interval. It follows from (A.13) that for alli ≥ 0, the rate of decrease
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of each cumulative occupancy is

θi(x) = −ψ̇i(x)

= −
i∑

k=0

γ̇k(x)

(A.14)

=
i∑

k=1

− xk−1

(k − 1)!(−1)kψ
(k)
0 (x) +

i∑
k=0

xk

k! (−1)k+1ψ
(k+1)
0 (x)

= xi

i! (−1)i+1ψ
(i+1)
0 (x) ≥ 0

for x ∈ [0, β]. Forming the Taylor series representation ofψ
(1)
0 aboutx, it follows

from (A.14) that
∞∑
i=0

θi(x) =
∞∑
i=0

−ψ̇i(x) = −ψ
(1)
0 (0) = 1.

The infinite sequence of functions can thus be thought of as a valid infinite-
dimensional occupancy path on[0, β]. Conditions (a) and (b) of Lemma 2.1 are
immediate from the expressions forγi andψ̇i in terms ofψ(i)

0 , and condition (c)
follows by integrating the inequality

I∑
i=0

θi(x) ≤ 1

over an arbitrary subinterval of[0, β]. Thus, the finite-dimensional occupancy path
γ is valid.

Finally, we must show that the given curves solve the Euler–Lagrange
differential equations in(0, β). We begin with the exponential caseC > 0. The
I+ terms satisfy the simple expressions

θI+(x) = 1+
I∑

i=0

ψ̇i(x) =
∞∑

i=I+1

−ψ̇i(x) = ρC

∞∑
i=I+1

Pi(ρx),

1− ψI (x) =
∞∑

i=I+1

γi(x) = C

∞∑
i=I+1

Pi(ρx),

where the first display usesθ = −ψ̇ and equations (A.12) and (A.14), and the
second uses (A.12) and (A.13). Then the ratioθI+(x)/(1−ψI (x)) = ρ is constant,
and the corresponding terms drop out of the right-hand side of (A.4) and (A.5).

From the expressions forγi(x) and ψ̇i(x) given in (A.13) and (A.14), it
follows that

θi(x)

γi(x)
= −ψ

(i+1)
0 (x)

ψ
(i)
0 (x)

, x ∈ (0, β), i ≥ 0.(A.15)
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Then

d

dx

{
− log

θi

γi

}
= −ψ

(i+2)
0

ψ
(i+1)
0

+ ψ
(i+1)
0

ψ
(i)
0

= θi+1

γi+1
− θi

γi

, x ∈ (0, β),(A.16)

verifying (A.4). Likewise, to verify (A.5), we apply (A.16) withi = I , using the
substitution−ψ

(I+2)
0 /ψ

(I+1)
0 = ρ obtained from (A.12).

In the polynomial caseC = 0, note that (A.15) holds fori = 0, . . . , I , so
that (A.16) implies (A.7). �

A.2.1. Interpretation of the twist parameter ρ. For an exponential extremal
the twist parameterρ may be interpreted as follows. The expected rate for balls to
enter urns with more thanI balls is equal to the proportion of such urns, namely,
1− ψI . The twist parameterρ is then a multiplicative factor applied to 1− ψI to
give the actual rate at which balls enter these urns. Thus, ifρ > 1, balls unusually
pile into high-occupancy urns, while ifρ < 1, they instead concentrate on the low-
occupancy urns. The occupancy distribution of the high-occupancy urns remains
Poisson but with a modified parameter.

The infinite sequence of occupancy functions introduced in the proof just
given is a useful construct. Operations which are technically difficult in infinite
dimensions may nevertheless be carried outformally on the infinite sequence of
functions, giving insight in to the solution for the finite-dimensional system.

The next two lemmas compute the cost of extremal curves in a general form
which will also apply to the nonempty case of the next section. The conditions
of the lemmas are satisfied by the exponential and polynomial extremals of
Theorem A.1, as can be readily verified.

LEMMA A.3. Suppose that ψ0 is completely monotone on [0, β] with

(−1)iψ
(i)
0 (x) = Cρie−ρx for i > I,

for some I ≥ 0,C > 0,and ρ > 0. Further suppose that {γ0, γ1, . . .} are an infinite
sequence of nonnegative functions on [0, β] satisfying

∞∑
i=0

γi(x) = 1,

∞∑
i=0

iγi(x) ≤ B0,

∞∑
i=0

−ψ̇i(x) = 1, −ψ̇i(x) = γi(x)
−ψ

(i+1)
0 (x)

ψ
(i)
0 (x)

,

for all x ∈ [0, β] and some constant B0 < ∞. Let γ denote the vector of functions
{γ0, . . . , γI , γI+}, where γI+ = 1−∑I

i=0 γi . Then the cost J (γ ) is given by

J (γ ) = β +
∞∑
i=0

[
γi(β) log

∣∣ψ(i)
0 (β)

∣∣− γi(0) log
∣∣ψ(i)

0 (0)
∣∣].(A.17)



2798 P. DUPUIS, C. NUZMAN AND P. WHITING

PROOF. For all i > I andx ∈ [0, β], we haveψ(i+1)
0 /ψ

(i)
0 = −ρ. Therefore,

usingθ = −ψ̇ with (A.12) and (A.13), it follows that

θI+ = 1−
I∑

i=0

−ψ̇i =
∞∑

i=I+1

−ψ̇i = ρ

∞∑
i=I+1

γi = ρ(1− ψI ).

Then for eachx ∈ [0, β], the cost functionL can be interpreted as an infinite-
dimensional cost functionL∞. Indeed, since−ψ̇i/γi = −ψ

(i+1)
0 /ψ

(i)
0 = ρ for

i > I and(1+∑I
i=0 ψ̇i)/(1− ψI ) = ρ,

L(ψ, ψ̇) =
I∑

i=0

(−ψ̇i) log
(−ψ̇i )

ψi − ψi−1

+ (1+ ψ̇0 + · · · + ψ̇I ) log
(1+ ψ̇0 + · · · + ψ̇I )

1− ψI

=
∞∑
i=0

(−ψ̇i) log
(−ψ̇i )

ψi − ψi−1
≡ L∞(ψ, ψ̇).

Note that sinceL∞(ψ, ψ̇) can be interpreted as a relative entropy, we always have
L∞(ψ, ψ̇) ≥ 0. The total costJ (γ ) may be computed by integratingL∞. Note

that |∑i ψ̇i(x)| = 1, x ∈ [0, β] and that givenε > 0, log−ψ
(i+1)
0 (x)/ψ

(i)
0 (x) are

uniformly bounded forx ∈ [ε,β − ε]. By the monotone convergence theorem

J (γ ) = lim
ε↓0

∫ β−ε

ε

∞∑
i=0

−ψ̇i (x) log
−ψ

(i+1)
0 (x)

ψ
(i)
0 (x)

dx.

Using our convention thatψ−1(x) = 0, the integral on the right may be written as∫ β−ε

ε

∞∑
i=0

−ψ̇i (x) log
∣∣ψ(i+1)

0 (x)
∣∣dx +

∫ β−ε

ε

∞∑
i=0

ψ̇i(x) log
∣∣ψ(i)

0 (x)
∣∣dx

(A.18)

=
∞∑
i=0

∫ β−ε

ε

(
ψ̇i(x) − ψ̇i−1(x)

)
log

∣∣ψ(i)
0 (x)

∣∣.
The above expression is valid as long as the left and right series in the first
line converge. But this follows from the finite mean condition on{γi}(x) since,
for i > I ,

−ψ̇i(x) log
∣∣ψ(i)

0 (x)
∣∣= ργi(x)[logC + i logρ − ρx]

and similarly for ψ̇i(x) log|ψ(i+1)
0 (x)|. Applying integration by parts and us-

ing (A.15) for each term of (A.18), the integral is
∞∑
i=0

[
γi log

∣∣ψ(i)
0

∣∣]β−ε
ε +

∫ β−ε

ε

∞∑
i=0

−ψ̇i dx.
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The lemma follows on taking limits asε ↓ 0. �

A similar result holds in the case of the polynomial extremal.

LEMMA A.4. Suppose that ψ0 is a degree I polynomial which is completely
monotone on [0, β]. Let {γ0, . . . , γI } be nonnegative functions on [0, β] satisfying

I∑
i=0

γi(x) = 1,

I−1∑
i=0

−ψ̇i(x) = 1,

−ψ̇i(x) = γi(x)
−ψ

(i+1)
0 (x)

ψ
(i)
0 (x)

, i = {0, . . . , I − 1}

for all x ∈ [0, β]. Then the cost J (γ ) is given by

J (γ ) = β +
I∑

i=0

[
γi(β) log

∣∣ψ(i)
0 (β)

∣∣− γi(0) log
∣∣ψ(i)

0 (0)
∣∣].(A.19)

PROOF. The cost obtained by integrating the reduced cost function (A.6)
from 0 toβ, using the same substitutions and integration by parts as in the proof
of Theorem A.3. �

A.2.2. Characterization of the extremal cost. In the case of empty ini-
tial conditions, recall that theγi defined in the proof of Theorem A.1 sat-
isfy γi(x) = xi |ψ(i)

0 (x)|/i!. Using this expression to substitute forψ(i)
0 in

(A.17) and (A.19), we find that the costJ (γ ) is simply the relative entropy
D(γ (β)‖P (β)) between theγi(β) and the Poisson, zero cost distribution. It turns
out that the givenγi(β) minimize the relative entropy, among all distributions for
which the firstI + 1 elements are determined byω, and which have meanβ. De-
noting the set of all such distributions byF(1,ω,β), we may prove Theorem 2.5,
which we restate here.

THEOREM A.5. Suppose that γ is an extremal occupancy path constructed
according to Theorem A.1 to meet feasible terminal constraints (1,ω,β). Then

J (γ ) = min
π∈F(1,ω,β)

D
(
π‖P (β)

)
.

PROOF. We first solve the minimization problem, and then relate the problem
to J (γ ). The result is trivially true for polynomial extremals, since thenF(1,ω,β)

has only one element. In the case of an exponential extremal, the given
minimization problem can be solved using Lagrange multipliers, which turn out to
be simple functions of the twist parametersρ andC > 0 associated with the given
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endpoint constraints. We consider the set of nonnegative sequences{πj }∞j=0 ∈ R
∞+

satisfyingπi = ωi for i = 0, . . . , I , and define theLagrangian L on this set to be

L(π;y, z) =
∞∑
i=0

πi log
πi

Pi(β)
+ y

(
1−

∞∑
i=0

πi

)
+ z

(
β −

∞∑
i=0

iπi

)
,

wherez
.= logρ andy

.= logC + (1− ρ)β + 1.
Define π∗

i

.= γi(β), where the latter are determined as in the proof of
Theorem A.1 with the givenC, ρ. For anyi > I , the definitions ofπ∗

i , x andy

and the strict convexity ofx logx imply thatπ∗
i is the unique global minimizer of

x → x logx − x[logPi (β) + y + iz]. Therefore, for anyi > I andπi ∈ [0,∞),

πi log
πi

Pi (β)
− yπi − ziπi ≥ π∗

i log
π∗

i

Pi (β)
− yπ∗

i − ziπ∗
i .

Following standard Lagrangian arguments, we thus have

inf
π∈F(1,ω,β)

D
(
π‖P (β)

)= inf
π̃∈F(1,ω,β)

L(π̃;y, z)

≥ inf
π∈R

∞+
L(π;y, z)

= D
(
π∗‖P (β)

)
.

Since π∗ ∈ F(1,ω,β), it follows that π∗, the terminal distribution, is the
minimizer of the relative entropy. The uniqueness ofπ∗ follows from the strict
convexity of the relative entropy with respect to its first argument.

Substituting the particular form ofπ∗
i into (A.17), we have

J (γ ) =
∞∑
i=0

γi(β) log
γi(β)

βie−β/i! = D
(
π∗‖P (β)

)
,

where

γi(β) =
{

ωi, 0 ≤ i ≤ I ,

CPi (ρβ), i > I . �

The cost for an exponential extremal can be written explicitly in terms ofρ,
ω andβ as

J (γ ) =
I∑

i=0

ωi log
ωi

Pi (β)
+
(

1−
I∑

i=0

ωi

)(
logC + (1− ρ)β

)

+
(
β −

I∑
i=0

iωi

)
logρ,

whereC is defined by (2.6). In the polynomial case, the cost is simply given by
the first term in the above expression.
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A.3. Characterization of the extremals under general initial conditions.
We now generalize the solution to the Euler–Lagrange equations for the case when
the urns are not all initially empty, but in which they may contain up toK balls.
Recall that the fraction of urns havingk balls initially is denotedαk , and the
set of urn occupanciesk with αk > 0 is denotedK . Without loss of generality,
we may assume that some urns are initially empty (hence, 0∈ K) and we may
takeK = maxK .

In the caseK ≥ 1, we regard the urns as belonging to|K| classes, according
to their initial occupancies. We denote the final number of additional balls per urn
entering thekth class byβk, in which case the total number of additional balls per
urn isβ =∑

k∈K αkβk . It turns out in the solution of the Euler–Lagrange equations
that the fraction of balls entering thekth class in any time period isαkβk/β. After
rescaling time by the factorβk/β, the evolution ofadditional balls entering each
class of urns becomes an occupancy problem with initially empty conditions and
terminal timeβk .

We can thus define|K| occupancy curvesγ(k) = {γk,i}i , where the function
γk,i : [0, βk] → [0,1] represents the fraction of classk urns which containi
additional balls (thus,k + i total balls) afterx balls per urn have been given to
this class. The overall extremal occupancy curves for the general initial conditions
are then given by

γi(x) = ∑
k∈K

αkγk,i−k(xβk/β).

We will see that the occupancy curveγ(k) for the kth subproblem is an extremal
of the form given by Theorem A.1, withI − k terminal constraints. Given
the appropriate subproblem terminal conditions(1,ω(k), βk), the results of the
previous section determine the twist parametersCk and ρk and corresponding
extremals.

At this point we come to the main obstacle in determining the extremals
for nonempty initial conditions. This is to show that thereexist subproblem
terminal conditions(1,ω(k), βk) which yield the extremal solution in the overall
problem. To show that such conditions and the corresponding extremals exist,
we will first give the form of the final cost function (which can be obtained
by formal arguments). We then show that the cost function is the solution of
a minimization problem, that the problem has a unique minimizing argument, that
it has corresponding Lagrange multipliers, and that the extremal curves can be
constructed using the Lagrange multipliers.

The large deviations exponent for the case of nonempty initial conditionsα

turns out to be

min
π∈S

|K|∞

∑
k∈K

αkD
(
π(k)‖P (β)

)
,(A.20)
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subject to the conservation constraint

∑
k∈K

αk

∞∑
j=0

jπk,j = β(A.21)

and the terminal conditions

ωi = ∑
k≤i,k∈K

αkπk,i−k for all 0 ≤ i ≤ I.(A.22)

Recall thatS|K |∞ is the set of all|K|-tuples of distributions{π(k)}k∈K , where each
π(k) is a distribution on the nonnegative integers. It is straightforward to show
that this problem is feasible whenever(α,ω,β) are feasible constraints, as we
discuss in the proof of Lemma A.6. As in the empty case, each polynomial problem
can be formulated in a standard way so thatωI+ = 0, in which case equality
holds in the monotonicity condition

∑I
j=0αj = ∑I

j=0ωj = 1 as well as in the
conservation condition (2.4). Unlike in the empty case, the minimization problem
does not become trivial in the polynomial case since degrees of freedom remain
in allocating balls among the|K| classes. In the polynomial case, the constraints
imply that

πk,j = 0, k + j > I(A.23)

so that the minimization problem is finite dimensional. The polynomial problem
can be stated equivalently as minimization of (A.20) subject to (A.23) and the
endpoint constraints (A.22), in which case the conservation constraint (A.21) need
not be included explicitly.

As written, the vector of distributionsπ = (π(0), . . . , π(k), . . . , π(K)) is such
that k only ranges over indices withαk > 0. Including all indices 0≤ k ≤ K

yields an equivalent problem in which the minimizing solution is not unique,
since theπ(k) with αk = 0 make no contribution to the objective function or the
constraints. In the form given, however, the solution can be shown to be unique.

LEMMA A.6. Suppose that (α,ω,β) are feasible constraints. Then there is
a unique vector of distributions π∗ ∈ S

|K |∞ which minimize (A.20) subject to
constraints (A.21) and (A.22).

PROOF. Recall thatF(α,ω,β) denotes the set of all distributionsπ ∈ S
|K |∞

satisfying the constraints (A.21) and (A.22). The feasibility of (α,ω,β) implies
that F has at least one element. Moreover, it has at least one element with finite
support and, thus, finite cost. A sketch argument for this point is as follows: First
of all, any set of exponential constraints with terminal conditionω ∈ SI can be
reformulated as a set of polynomial constraints with terminal conditionω̂ ∈ S

Î
,

whereÎ > I . Any feasible point for constraints(α, ω̂, β) would also be feasible
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for the original constraints, and would have finite support. It remains to show that
there is at least one feasible point for each set of feasible polynomial constraints.
Such a feasible point may be constructed by an ordered filling construction.
First, we assignπ0,0 = ω0/α0. The first monotonicity condition (i = 0) in (2.3)
ensures that this is possible with less than or equal to unit mass. Next, some of
the remaining mass from the distributionπ(0) is applied toπ0,1, and mass from
π(1) is applied toπ1,0 as necessary until the constraintα0π0,1 + α1π1,0 = ω1
is satisfied. Thatπ(0) and π(1) have sufficient mass to do so follows from the
(i = 1) condition in (2.3). This process continues until all constraintsωi have been
satisfied. The equality in the conservation condition (2.4) impliesthat the final step
uses up all of the probability mass in the distributions{π(k)}.

It will be useful to consider|K|-tuples of distributions inS∞ under the
topology of weak convergence, with the distance between distributions given by
the Prohorov metric [5]. For two distributionsP , Q in S∞, this distance is simply∑

i:Pi>Qi

Pi − Qi = ∑
i : Qi>Pi

Qi − Pi,

and the metric extends to|K|-tuples by treating them as elements of a product
space. For eachA < ∞, define the set

HA =
{
π ∈ S|K | :

∑
k

αkD
(
π(k)‖P (β)

)≤ A

}
.

The level sets of the relative entropy are compact under the above topology ([11],
Lemma 1.4.3), from which it follows thatHA is also compact. For later reference,
we note that a finite sum of relative entropy functions also inherits from the relative
entropy the properties of lower semi-continuity and of strict convexity with respect
to its first argument. As the next step in proving the lemma, we wish to show for
some finiteA that

QA(α,ω,β)
.= F(α,ω,β) ∩ HA

is compact and nonempty. This will enable us to find the minimum as a limit of
a sequence of distributions inQA.

Since there are solutions with finite cost, it is automatic thatQA(α,ω,β) is
nonempty for large enoughA. Since the setQA is bounded, it is enough to
verify for each convergent sequence of distributionsπ(n) ∈ QA that the limiting
distribution π lies in F(α,β,ω). (That it lies in HA is immediate since this
set is compact.) The only difficulty lies in showing that the mean of thekth
subdistributionπ(k) is equal to the limit of the means of theπ(n)

(k) . This will be
the case if we can show for any sequence inQA and for an arbitraryk that the
sequenceπ(n)

(k) is uniformly integrable. In the present context, uniform integrability
means that for eachε > 0, there ism < ∞ such that∑

j≥m

jπ
(n)
k,j ≤ ε(A.24)
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for all n andk.
Sinceey − 1= supx>0[xy − x logx + x − 1], we have the inequality

xy ≤ (x logx − x + 1) + (ey − 1),

where by convention 0 log0= 0. Observe that this inequality is valid for ally and
all x ≥ 0, and thatx logx −x +1 is nonnegative. We will also make use of the fact
that the Poisson distribution has exponential moments: for anyδ > 0,

∞∑
j=0

e1/δjPj (β) =
∞∑

j=0

e1/δje−ββj

j ! = eβe1/δ−β < ∞.

Takingy
.= j/δ andx

.= π
(n)
k,j /Pj (β), we have the estimate

∑
j≥m

jπ
(n)
k,j = ∑

j≥m

δ
j

δ

π
(n)
k,j

Pj (β)
Pj (β)

≤ ∑
j≥0

δ

[
π

(n)
k,j log

( π
(n)
k,j

Pj (β)

)
− π

(n)
k,j + Pj (β)

]
+ δ

∑
j≥m

(e1/δj − 1)Pj (β)

= δD
(
π

(n)
k ‖P (β)

)+ δ
∑
j≥m

(e1/δj − 1)Pj (β)

≤ δA + δ
∑
j≥m

(e1/δj − 1)Pj (β),

where the second equality uses the fact that bothπ
(n)
(k) andP (β) are probability

distributions. Thus, (A.24) follows by first pickingδ > 0 sufficiently small and
then m < ∞ sufficiently large. [Note also for use in Corollary A.7 that the
analogous result holds ifβ is replaced by a sequenceβ(n) → β ∈ (0,∞)].

We now apply the uniform integrability to analyze the limits of the means.
It follows from [5], Theorem 5.4, that

β
(n)
k → βk.

Finally, ∑
k

αkβk = lim
n

∑
k

αkβ
(n)
k = lim

n
β = β,

so thatπ ∈ F(β,α,ω) andQA is compact.
We have shown thatQA is compact under the Prohorov metric and that it is

nonempty. Now let

G
.= inf

π∈QA

∑
k∈K

αkD
(
π(k)‖P (β)

)≥ 0.

Choose a sequenceπ(n) ∈ QA such that
∑K

k=0 αkD(π
(n)
(k) ‖P (β)) ≤ G+1/n. Since

QA is compact this has a convergent subsequence, and to simplify the notation we
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index this subsequence byn. Letπ∗ ∈ QA be the limit point. Since relative entropy
D
(
π‖η) is lower semi-continuous inπ ([11], Lemma 1.4.3(b)), it follows that∑

k∈K

αkD
(
π∗

(k)‖P (β)
)≤ lim inf

n

∑
k∈K

αkD
(
π

(n)
(k) ‖P (β)

)= G,

where in fact we have equality by definition ofG. The uniqueness of this
minimizing vector of distributions follows from the strict convexity of the
objective function. �

Before continuing with the question of the existence of the extremals, we pause
to obtain a corollary which will be useful in establishing the strong minimum in
Theorem A.14. DefineJ(α,ω,β) to be the minimum cost in the problem (A.20)
if the constraints are feasible, and∞ otherwise.

COROLLARY A.7. Suppose that (α(n),ω(n), β(n)) is a sequence of feasible
optimization problems with costs J(n) .= J(α(n),ω(n), β(n)) such that(

α(n),ω(n), β(n))→ (α,ω,β)

componentwise and such that (α,ω,β) is feasible with 0 < β < ∞. Then

lim inf
n

J(n) ≥ J(α,ω,β).

PROOF. For anyA > lim infn J(n) .= G, we may choose a subsequence of
problems such that

J(n) ≤ G + 1/n < A,

and for each problem in this subsequence, we defineπ(n) ∈ QA(α(n), β(n),ω(n)) to
be the minimizing solutionπ∗ given in the above lemma. By compactness, there
is a further subsequence such thatπ(n) → π ∈ HA. As in the proof of Lemma A.6,
if β < ∞, then

β
(n)
k

.=
∞∑

j=0

jπ
(n)
k,j → βk

.=
∞∑

j=0

jπk,j , k = 0,1, . . . ,K.

If α
(n)
k → 0 andβ

(n)
k α

(n)
k �→ 0, then the termα

(n)
k D(π

(n)
(k) ‖P (β(n))) would go to

infinity; to see this, note that the infimum ofD(π‖P (β)) over distributionsπ
with meanλ is β −λ+λ log(λ/β). Since our sequence has bounded cost, we must
haveα

(n)
k β

(n)
k → αkβk even ifαk = 0.

Thus, ∑
k∈K

βkαk = lim
n

∑
k

β
(n)
k α

(n)
k = lim

n
β(n) = β,
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and π satisfies the constraints(α,ω,β). By joint lower semi-continuity of the
relative entropy in both arguments ([11], Lemma 1.4.3(b)) we have

lim inf
n

K∑
k=0

α
(n)
k D

(
π

(n)
(k) ‖P

(
β(n)

))≥ lim inf
n

∑
k : αk>0

α
(n)
k D

(
π

(n)
(k) ‖P

(
β(n)

))

≥ ∑
k : αk>0

αkD
(
π(k)‖P (β)

)

≥ J(α,ω,β)

as desired. �

We now turn to the existence of the Lagrange multipliers corresponding to the
minimization problem (A.20). For a given vectorω, it will be helpful to define
the set of integersI(ω), wherei ∈ I(ω) if 0 ≤ i ≤ I andωi > 0, or if i > I and
ωI+ > 0. This is the set of terminal urn occupancy levels which the constraints
do not force to be empty. As we will show, for irreducible constraints, the optimal
{πk,j } with k + j ∈ I(ω) are always strictly positive. This result does not hold
directly for reducible constraints, but as we discussed earlier, any problem with
reducible constraints can be replaced by a finite number of subproblems with
irreducible constraints.

LEMMA A.8. Suppose that (α,ω,β) are irreducible feasible constraints, and
let π∗ ∈ S

|K |∞ be the minimizer of (A.20) subject to constraints (A.21) and (A.22).
Then π∗

k,j > 0 for all k + j ∈ I(ω) and π∗
k,j = 0 if k + j /∈ I(ω).

PROOF. For k + j /∈ I(ω), the constraints force theπk,j to be zero for all
feasible points of the problem, and hence, for the minimizer in particular. The
main point is to show that it is feasible for any other element to be positive, and
the result will then follow from the infinite derivative of the objective function near
the boundary.

Letπ ∈ S
|K |∞ be any feasible solution meeting the given constraints, and suppose

thatπm,n = 0 for some particular(m,n) with m + n ∈ I(ω). Let π̃ be an arbitrary
set of probability distributions inS|K |∞ subject to the restrictions thatπ̃m,n > 0, that
π̃k,j = 0 for all k + j /∈ I(ω), and thatπ̃ has finite support. If we define

ω̃i
.=

i∑
k=0

αkπ̃k,i−k, β̃
.= ∑

k∈K

αk

∞∑
j=0

jπ̃k,j ,

then π̃ is a feasible solution for the constraints(α, ω̃, β̃). Next, for anyη > 0,
we may define

β̂
.= (β − ηβ̃)/(1− η), ω̂

.= (ω − ηω̃)/(1− η).

By construction, the constraints(α, ω̂, β̂) are feasible for sufficiently smallη.
In the exponential case, this is immediately true because(α,ω,β) satisfies all
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constraints in (2.3) and (2.4) with strict inequality. In the polynomial case, the
(α,ω,β) satisfies theI th monotonicity constraint of (2.3) and the conservation
constraint (2.4) with equality. However, it may easily be verified that these two
constraints also hold with equality for(α, ω̃, β̃) and, hence, for(α, ω̂, β̂).

We may now let π̂ be a feasible point for(α, ω̂, β̂), and finally form
π̄ = ηπ̃ + (1− η)π̂ . By construction,π̄ is a feasible solution corresponding to
the original constraints(α,ω,β), and, in addition,̄πm,n > 0. As discussed in the
proof of Lemma A.6, we may takêπ to have finite support so that̄π also has
finite support.

We will show thatπ is not a minimizer by proving that a sufficiently small
perturbation towardπ̄ reduces the objective function. Because the constraints
are linear, the pointsπε = επ̄ + (1 − ε)π are feasible solutions to the original
constraints for all 0≤ ε ≤ 1. Let f (ε) denote the value of the objective function
evaluated atπε. The derivative of this function is

f ′(ε) = ∑
k∈K

αk

∞∑
j=0

(
log

πε
k,j

Pj (β)
+ 1

)
(π̄k,j − πk,j )

= ∑
k∈K

αk

∞∑
j=0

log
πε

k,j

Pj (β)
(π̄k,j − πk,j )

= αmπ̄m,n log
πε

m,n

Pn(β)
+ ∑

k∈K

αk

∑
(k,j ) �=(m,n)

π̄k,j log
πε

k,j

Pj (β)

− ∑
k∈K

αk

∑
j

πk,j log
πε

k,j

Pj (β)
.

In the limit asε → 0, the third term in the last display tends to

−∑
k

αkD
(
π(k)‖P (β)

)≤ 0.

The second term is bounded above by the expression−∑
k αk

∑
j π̄k,j logPj (β),

which is finite becausēπ has finite support. The first term in the display tends
to −∞, which establishes thatf (δ) < f (0) for some sufficiently smallδ > 0.
We have shown that, for anym+n ∈ I(ω), π cannot minimize (A.20) ifπm,n = 0.
As πm,n is arbitrary within m + n ∈ I(ω), it follows that π∗

m,n > 0 whenever
m + n ∈ I(ω). �

We now establish the existence of Lagrange multipliers and the form of the
optimal solution for the polynomial case.

THEOREM A.9. Suppose that (α,ω,β) are irreducible feasible constraints
yielding equality in (2.4),and let π∗ be the corresponding unique minimizer from
Lemma A.6. Then there exist positive constants {Dk}k∈K and {Wi}i∈I such that
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the minimizer takes the form

π∗
k,j =

{
DkPj (β)Wk+j , k ∈ K, j + k ∈ I(ω),

0, otherwise.

PROOF. The strict equality in the constraints requires every feasible point
to be supported on the finite set satisfyingk ∈ K and k + j ∈ I and, hence,
the minimization problem (A.20) may be considered to be a finite-dimensional
problem over this set. By Lemma A.8 the minimizerπ∗ is strictly positive. Since
the objective function is continuously differentiable in a neighborhood ofπ∗,
and the constraints are linear, Lagrange multipliers are guaranteed to exist for
this problem (see, e.g., [4], Proposition 1.33). Specifically, there are constants
zk andwi such that the Lagrangian

L(π) = ∑
k∈K

αk

∑
k+j∈I

πk,j log
πk,j

Pj (β)
+ ∑

k∈K

zkαk

(
1− ∑

k+l∈I

πk,l

)

+∑
i∈I

wi

(
ωi −

i∑
k=0

αkπk,i−k

)

is also minimized atπ∗, with all partial derivatives ofL being zero at the optimal
point. Taking partial derivatives and rearranging, the optimality condition yields

π∗
k,j = Pj (β)ezk−1+wk+j .

The result follows on definingDk = ezk−1 andWi = ewi . �

We now give the corresponding theorem for the exponential case.

THEOREM A.10. Suppose that (α,ω,β) are irreducible feasible constraints
yielding strict inequality in (2.4), and let π∗ be the corresponding unique
minimizer from Lemma A.6. Then there exist positive constants ρ, {Ck}k∈K , and
{Wi}i∈I,i≤I such that the minimizer takes the form

π∗
k,j =




CkPj (ρβ)Wk+j , k ∈ K, k + j ≤ I , k + j ∈ I,

CkPj (ρβ), k ∈ K, k + j > I ,

0, otherwise.

PROOF. To avoid difficulties with infinite-dimensional Lagrangians, consider
a sequence of truncated problems indexed by a sequence of integersM > I . For
each suchM define

β(M) .= ∑
k∈K

αk

∑
l≤M

lπ∗
k,l, η

(M)
k

.= ∑
l≤M

π∗
k,l

and consider the problem of minimizing∑
k∈K

αk

∑
j≤M,k+j∈I

πk,j log
πk,j

Pj (β)
,
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subject to the constraints∑
k∈K

αk

∑
l≤M,k+l∈I

lπk,l = β(M),

∑
l≤M,k+l∈I

πk,l = η
(M)
k , k ∈ K,

∑
k≤i,k∈K

αkπk,i−k = ωi, i ∈ I.

By construction, the minimizer of this problem is obtained simply by truncat-
ing π∗. As in the previous lemma, the strict positivity of the minimizer, together
with the linearity of the constraints, guarantees the existence of Lagrange multi-
pliers via [4], Proposition 1.33. The Lagrangian for theM th problem is

L(M) .= ∑
k∈K

αk

∑
j≤M,k+j∈I

πk,j log
πk,j

Pj (β)
+ y(M)

(
β(M) − ∑

k∈K

αk

∑
l≤M,k+l∈I

lπk,l

)

+
K∑

k∈K

z
(M)
k αk

(
η

(M)
k − ∑

l≤M,k+l∈I

πk,l

)

+∑
i∈I

w
(M)
i

(
ωi − ∑

k≤i,k∈K

αkπk,i−k

)
.

Since the derivative ofL with respect toπk,j must be zero at the minimizer,
it follows that

π∗
k,j = Pj (β)e

jy(M)−1+z
(M)
k +w

(M)
k+j ,

for all j < M andk + j ∈ I, where for convenience we have definedwi = 0 for
i > I . Fork + j > I , note that

π∗
k,j+1

π∗
k,j

= Pj+1(β)

Pj (β)
ey(M)

so thaty(M) is independent ofM . Sincew
(M)
k+j = 0 if k + j > I , it follows that

z
(M)
k andw

(M)
i are also independent ofM . Then the above expression forπ∗

k,j

holds for allk + j ∈ I, with fixed Lagrange multipliersy, {zk} and{wi}. The form
expressed in the theorem is based on the substitutionsρ = ey , Ck = e(ρ−1)β−1+zk

andWi = ewi . �

Now that we have the general form of the minimizing endpoint valuesπ∗
k,j ,

we are ready to characterize the extremal curves. We denote the mean of
the kth distributionπ∗

(k) by βk
.= ∑

j jπ∗
k,j . In the exponential case, we define

ρk = ρβ/βk so that the distributionπ(k) meetsI − k terminal constraints, has
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meanβk and a Poissonρkβk tail. Denoting the terminal constraints byωk,j
.= π∗

k,j

and ω(k) = (ωk,0, . . . ,ωk,I−k), we see thatπ∗
(k) is the minimizing distribution

arising in Theorem A.1 for the terminal constraints(1,ω(k), βk), with associated
twist parametersρk and Ck . In the polynomial case, the terminal constraints
(1,ω(k), βk) mean that each subproblem is polynomial, withCk = 0. In either case,
Theorem A.1 gives the form of the extremal occupancy curvesγk,j (x) for each of
thesek subproblems. We now show that the subproblem curves sum to form the
general extremals.

THEOREM A.11. Suppose that {π∗
k,j } are the minimizing distributions from

Lemma A.6 for feasible constraints (α,ω,β). Denote the means of the minimizing
arguments by βk = ∑

j jπ∗
k,j , and let γk,j (x) be the extremal curves from

Theorem A.1 for the subproblems (1,ω(k), βk). Then the curves

γi(x) =
i∑

k=0

αkγk,i−k(xβk/β), i = 0, . . . , I,

γI+(x) = 1−
I∑

i=0

γi(x)

are extremals which satisfy the constraints (α,ω,β).

PROOF. We assume without loss of generality that the constraints are
irreducible. Otherwise, each irreducible subproblem may be treated separately.

We extend the definition ofγi(x) for i > I by using the extended definition
of γk,j (x) used in the proof of Theorem A.1 [see (A.13)]. Also, for convenience,
defineγ k,j (x)

.= γk,j (xβk/β) and likewise, defineψk,j . Theψi inherit from theγi

the relation

ψi(x) =
i∑

k=0

αkψk,i−k(x).

To see that theγi are valid occupancy curves, note that

∞∑
i=0

γi(x) =
∞∑
i=0

i∑
k=0

αkγ k,i−k(x) =
K∑

k=0

αk

∞∑
j=0

γ k,j (x) = 1.

Also, the−ψ̇i(x) are all nonnegative on[0, β], and

∞∑
i=0

−ψ̇i(x) =
K∑

k=0

αk

∞∑
j=0

−ψ̇k,j (x) =
K∑

k=0

αk(βk/β) = 1,

where the last equality follows from the fact that theπ∗
k,j satisfy the conservation

constraint (A.21). Hence, curvesγi(x), i ≤ I andγI+(x) satisfy the conditions of
Lemma 2.1.
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It is clear that theγi satisfy the desired initial conditions sinceγk,0(0) = 1 and
γk,j (0) = 0 for j > 0. The terminal conditions are guaranteed by the fact that the
valuesγk,j (βk) = π∗

k,j satisfy the constraints (A.22).

In order to establish that the curves satisfy the Euler–Lagrange equations,
we first show that the rescaled zero-occupancy curveψk,0 for thekth subproblem
is proportional to thekth derivative of the overall zero-occupancy curveψ0.

First, take the exponential case, and recall thatρkβk = ρβ. The kth zero-
occupancy curve, after rescaling, is

ψk,0(x) = Cke
−ρk(xβk/β) +

I−k∑
i=0

(
ωk,i − CkPi (ρkβk)

)(
1− xβk/β

βk

)i

= Cke
−ρx +

I−k∑
i=0

(
ωk,i − CkPi (ρβ)

)(
1− x

β

)i

= Ck

[
e−ρx +

I−k∑
i=0

(
Wk+i − 1

)
Pi (ρβ)

(
1− x

β

)i
]
.

Here we have used thatωk,i = π∗
k,i = CkPi (β)Wk+i when i ≤ I − k. The kth

derivative ofψ0 = α0ψ0,0 is

(−1)kψ
(k)
0 (x)

= α0C0

[
ρke−ρx +

I∑
i=k

(Wi − 1)Pi(ρβ)
i!

(i − k)!βk

(
1− x

β

)i−k
]

(A.25)

= α0C0ρ
k

[
e−ρx +

I−k∑
j=0

(Wk+j − 1)Pj (ρβ)

(
1− x

β

)j
]

= α0C0ρ
k

Ck

ψk,0(x).

Using Theorem A.1 to expressγk,j in terms ofψk,0, we have

γi(x) =
i∑

k=0

αk

(xβk/β)i−k

(i − k)! (−1)i−kψ
(i−k)
k,0

(
xβk

β

)

=
i∑

k=0

αk

xi−k

(i − k)! (−1)i−k di−k

dxi−k
ψk,0(x)

=
i∑

k=0

αkCk

α0C0ρk

xi−k

(i − k)! (−1)iψ
(i)
0 (x).
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Similarly, we obtain

−ψ̇i(x) = −
i∑

k=0

αk

βk

β
ψ̇k,i−k

(
xβk

β

)

=
i∑

k=0

αk

xi−k

(i − k)!(−1)i−k di−k+1

dxi−k+1
ψk,0(x)

=
i∑

k=0

αkCk

α0C0ρ
k

xi−k

(i − k)!(−1)i+1ψ
(i+1)
0 (x),

so that the extremals satisfy the simple relation

θi(x)

γi(x)
= −ψ

(i+1)
0 (x)

ψ
(i)
0 (x)

,(A.26)

which also arose in the case of empty initial conditions. Because the polynomial
portion of ψ0 has degreeI , the ratio θi(x)/γi(x) is given by the constantρ
for i > I , which establishes (as in the proof of Lemma A.3) that

θI+(x)

1− ψI (x)
= ρ.(A.27)

As shown in the proof of Theorem A.1, the relations (A.26) and (A.27) are
sufficient to show that theγi satisfy the Euler–Lagrange equations.

In the polynomial case, similar computations show that

(−1)kψ
(k)
0 (x) = α0D0

Dk

ψk,0(x)(A.28)

and that

θi(x) =
i∑

k=0

αkDk

α0D0

xi−k

(i − k)!(−1)i+1ψ
(i+1)
0 (x) = γi(x)

−ψ
(i+1)
0 (x)

ψ
(i)
0 (x)

(A.29)

for i = 0, . . . , I , establishing the restricted set of equations (A.7).�

In order to demonstrate a strong minimum we will need the following.

COROLLARY A.12. For irreducible constraints, the occupancy functions
defined in Theorem A.11 satisfy the integrated version of the Euler–Lagrange
equations: given x1 ∈ [0, β), there are constants Ci, i = 0, . . . , I − 1 (and also
i = I in the exponential case) depending on x1 only such that∫ x′

x1

∂L

∂ψi

(
ψ(x), θ(x)

)
dx + ∂L

∂θi

(
ψ(x′), θ(x′)

)= Ci

for all x′ ∈ (x1, β).
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PROOF. We may takeα0 > 0 without loss of generality. By Theorem A.11,
the extremals satisfy the usual form of the Euler–Lagrange equations. The above
indefinite integral is log(−ψ

(i+1)
0 (x)/ψ

(i)
0 (x)), which is finite at both endpoints,

because(−1)iψ
(i)
0 (x) > 0 for x ∈ [0, β), i ≤ I (andi = I + 1 in the exponential

case), as shown in Lemma A.2. The partial derivative with respect toθi also exists
for the same reason.�

THEOREM A.13. Suppose that γ is the extremal defined by Theorem A.11
for the feasible constraints (α,ω,β). Then the cost J (γ ) is the solution to the
minimization problem (A.20) subject to constraints (A.21) and (A.22).

PROOF. Consider first the exponential case. The infinite sequence of func-
tionsγi defined in the proof of Theorem A.11 are shown in the proof to satisfy the
conditions of Lemma A.3. Hence, the cost is

J (γ ) = β +
∞∑
i=0

[
i∑

k=0

αkγ k,i−k(β) log
∣∣ψ(i)

0 (β)
∣∣]−

K∑
k=0

αk log
∣∣ψ(k)

0 (0)
∣∣

=
K∑

k=0

αk

∞∑
j=0

γ k,j (β) log
∣∣∣∣ ψ

(k+j)
0 (β)

ψ
(k)
0 (0)e−β

∣∣∣∣.
The fact thatψk,0(0) = 1 together with (A.25) implies thatψ(k)

0 (x) = ψ
(k)
0 (0) ×

ψk,0(x), so that

ψ
(k+j)
0 (x)

ψ
(k)
0 (0)e−β

=
(

βk

β

)j

ψ
(j)
k,0

(
xβk

β

)
eβ = γ k,j (x)

(−x)j e−β/j ! .

Then

J (γ ) =
K∑

k=0

αkD
(
γ k,·(β)‖P (β)

)
.

By construction, the endpointsγ k,j (β) coincide with the optimal argumentsπ∗
k,j

of the minimization problem.
The proof of the polynomial case is almost identical, except that we use

Lemma A.4 and (A.28). �

A.4. Extremal curves have globally minimal cost. In this section we prove
the following theorem:

THEOREM A.14 (Strong minimum). Given feasible constraints (α,ω,β),
let γ be the corresponding extremal occupancy path defined in Theorem A.11,
and let γ̃ be any other occupancy path satisfying the same constraints. Then
J (γ ) ≤ J (γ̃ ).
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We first introduce some notation. LetO denote the set of valid occupancy func-
tions, that is, vector functionsγ such that the cumulative occupancy functionsψ

satisfy the conditions of Lemma 2.1, and letO(α,ω,β)
.= {γ ∈ O :γ (0) = α,

γ (β) = ω} be the subset of valid occupancy functions satisfying feasible con-
straints(α,ω,β). The proof of the following lemma is a straightforward conse-
quence of the convexity of the map(θ, γ ) → D(θ‖γ ) and, hence, omitted.

LEMMA A.15.

(a) O(α,ω,β) is a convex set.
(b) J (γ ) restricted to O(α,ω,β) is a convex function.

For a given pair of occupancy functions̄γ , γ̃ ∈ O(α,ω,β), we denote
γ ε .= (1− ε)γ̄ + εγ̃ and define the functionG : [0,1] → R+ ∪ {∞} by

G[ε] .= J (γ ε) =
∫ β

0
D
(
θε(x)‖γ ε(x)

)
dx.

To simplify the notation, we do not explicitly indicate the dependence ofG on
γ̄ andγ̃ . Lemma A.15 ensures thatG is a well-defined, convex function for anȳγ ,
γ̃ ∈ O(α,ω,β).

For the remainder of this section, we once again restrict attention to irreducible
constraints, without loss of generality. The following lemma establishes the
minimality of the extremals in an important special case. The proof uses the fact
that the extremal curve and its derivative can be bounded away from zero.

LEMMA A.16. Suppose that (α,ω,β) are strictly positive, irreducible feasi-
ble constraints, where the upper indices K and I of α and ω satisfy K = I + 1
in the exponential case, or K = I in the polynomial case. Suppose that γ is the
extremal curve for these constraints, defined in Theorem A.11, and that γ̃ is any
competing occupancy function satisfying the same constraints. Then

J (γ ) ≤ J (γ̃ ).

PROOF. We construct the family of pathsγ ε = (1 − ε)γ + εγ̃ , with
G[ε] = J (γ ε). It follows from convexity thatG is left and right differentiable
wherever it is finite. We will show thatG′+[0] = 0, whereG′+[ε] denotes the right
derivative ofG. The convexity ofG then implies the desired result.

It will be convenient to work with the cumulative occupancy functionsψε ,
and as in Section A.1.2, we will mix notation by writing, for example,J (γ ) =∫ β
0 L(ψ, θ) dx.

After defining

η(x)
.= ψ̃(x) − ψ(x),
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we may write

G[ε] =
∫ β

0
L(ψ + εη, θ − εη̇) dx

.=
∫ β

0
g(x, ε) dx.(A.30)

We can assume without loss thatG(1) = J (γ̃ ) < ∞, since there is nothing to
prove otherwise. We wish to show that differentiation under the integral sign with
respect toε is valid in a neighborhood of 0. The validity of this operation will
follow from [23], Corollary 39.2, if we can provide a constant bound on the partial
derivative ofg with respect toε for almost everyx ∈ [0, β].

To construct this bound, we will first establish that the componentsγi(x)

and derivativesθi(x) = −ψ̇i(x) are uniformly bounded away from zero. For
specificity, we first assume that(α,ω,β) are exponential constraints. Note
that in the empty case studied in Section A.2,γ0(x) decreases monotonically
to γ0(β) = ω0 and θ0(x) decreases monotonically toθ0(β). Inspection of the
formula for ψ0 in Theorem A.1 reveals thatθ0(β) = ω1/β if I > 0 and
θ0(β) = CP1(ρβ)/β otherwise. Hence, for any exponential problem with empty
initial conditions and positive terminal conditionsωi , γ0 and θ0 are uniformly
bounded away from zero. For the constraints(α,ω,β) under consideration, each of
the associated subproblems is an exponential empty problem with positive terminal
conditions, and soγk,0(x) andθk,0(x) are uniformly bounded from zero for each
subproblem. These, in turn, lower bound the overallγi andθi , since, for example,

γi(x) =
i∑

k=0

αkγk,i−k(x) ≥ αiγi,0(x).

The catch-all termγI+(x) is monotonically increasing, and hence, satisfies
γI+(x) ≥ αI+1 > 0. The identityθI+(x) = ργI+(x), established in the proof of
Theorem A.11, ensures a similar bound onθI+(x).

Note thatγ ε ≥ (1 − ε)γ and θε ≥ (1 − ε)θ , so that for each 0≤ ε < 1,
these functions are also uniformly bounded from zero on[0, β]. Indeed, given
an arbitraryε0 < 1, there are positive lower bounds onγ ε and θε which hold
uniformly for x ∈ [0, β] and ε ∈ [0, ε0]. To be precise, these inequalities and
bounds hold everywhere except possibly on a set of measure zero whereθ̃ may
not exist.

The partial derivative of the integrand of (A.30) is

∂

∂ε
g(x, ε) =

I∑
i=0

∂L

∂ψi

∣∣∣∣
γ ε

(x)ηi(x) −
I∑

i=0

∂L

∂θi

∣∣∣∣
γ ε

(x)η̇i (x).

The partial derivatives ofL are (in mixed notation)

∂L

∂ψi

(x) = − θi(x)

γi(x)
+ θi+1(x)

γi+1(x)
,

∂L

∂θi

(x) = log
θi(x)

γi(x)
− log

θI+(x)

1− ψI (x)
.
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The uniform lower bounds onγ ε and θε , together with upper boundsγ ε ≤ 1,
θε ≤ 1 and the boundedness ofη andη̇, combine to establish that there is a finiteB

such that ∣∣∣∣ ∂

∂ε
g(x, ε)

∣∣∣∣< B for ε ∈ [0, ε0], a.e.x ∈ [0, β].
Similar arguments may be used to establish this bound in the polynomial case.
In that case, the termsψI = 1 andθI = 0 do not play a role, and the expression for
the partial derivative ofL with respect toθi simplifies.

We are now free to differentiate under the integral sign so that

G′[ε] =
∫ β

0

∂

∂ε
g(x, ε) dx

for all ε ∈ [0, ε0). We note that∫ x

0

∂L

∂ψi

∣∣∣∣
γ

dx′ =
∫ x

0

{
− θi

γi

+ θi+1

γi+1

}∣∣∣∣
γ

dx′

is absolutely continuous as a function ofx, since it is the difference of two
continuous monotone functions with bounded derivatives. Applying integration by
parts for absolutely continuous functions ([23], 36.1, page 209) to the first term,
we obtain

G′+[0] =
∫ β

0

{
∂L

∂ψ
(x) · η(x) − ∂L

∂θ
(x) · η̇(x)

}
dx

=
∫ β

0
η̇(x) ·

(
−
∫ x

0

∂L

∂ψ
(x′) dx′ − ∂L

∂θ
(x)

)
dx

= −
∫ β

0

I∑
i=0

Ciη̇i(x) dx

=
I∑

i=0

Ci

(
ηi(0) − ηi(β)

)= 0.

The constantsCi appearing in the third equality come from the integrated version
of the Euler–Lagrange equations (Corollary A.12), while the last equality is due to
the fact thatγ andγ̃ have the same beginning and end points.�

We now extend the lemma to show that the extremal is a global minimizer even
when some of the initial and terminal points are zero. Without loss of generality
we suppose thatα0 > 0 and note that the extremals defined in Theorem A.1 and
in Theorem A.11 are strictly positive except possibly at the initial and final times
t = 0 andt = β.

Let γ be this extremal and suppose thatγ̃ is an alternate occupancy function.
It may be supposed thatγ̃ also lies on the boundary only att = 0 or t = β, since if
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there is aγ̃ with lower cost thanγ , the convexity ofJ implies that there is another
occupancy path of the formλγ̃ + (1− λ)γ which also has lower cost thanγ , and
which avoids the boundary everywhere thatγ does.

Given x
(n)
1 ↓ 0 and x

(n)
2 ↑ β, let γ (n) be the extremal curve with initial

point γ̃ (x
(n)
1 ) and terminal point̃γ (x

(n)
2 ). By Lemma A.16,

J (γ (n)) ≤
∫ x

(n)
2

x
(n)
1

D
(
θ̃ (x)‖γ̃ (x)

)
dx.

It then follows that

J (γ ) = J(α,ω,β)

≤ lim inf
n

J
(
γ̃
(
x

(n)
1

)
, γ̃
(
x

(n)
2

)
, x

(n)
2 − x

(n)
1

)
= lim inf

n
J
(
γ (n)

)

≤ lim
n

∫ x
(n)
2

x
(n)
1

D
(
θ̃ (x)‖γ̃ (x)

)
dx

= J (γ̃ )

with the first two equalities following from Theorem A.13 and the definition
of J(α,ω,β), the first inequality following from Corollary A.7 and the last
equality from the monotone convergence theorem.
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