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STABLE STATIONARY PROCESSES
RELATED TO CYCLIC FLOWS1

BY VLADAS PIPIRAS AND MURAD S. TAQQU

Boston University

We study stationary stable processes related to periodic and cyclic
flows in the sense of Rosiński [Ann. Probab. 23 (1995) 1163–1187].
These processes are not ergodic. We provide their canonical representations,
consider examples and show how to identify them among general stationary
stable processes. We conclude with the unique decomposition in distribution
of stationary stable processes into the sum of four major independent
components: 1. A mixed moving average component. 2. A harmonizable
(or “trivial”) component. 3. A cyclic component 4. A component which is
different from these.

1. Introduction. Consider a symmetricα-stable (SαS, for in short),α∈ (0,2),
stationary process{Xα(t)}t∈T that has an integral representation

{Xα(t)}t∈T
d=

{∫
S
ft(s)Mα(ds)

}
t∈T

,(1.1)

where d= stands for equality in the sense of the finite-dimensional distributions.
Here,T = Z or T = R, (S,S, ν) is a standard Lebesgue space (see Appendix A
for a precise definition),

{ft}t∈T ⊂ Lα(S,S, ν)

is a collection of deterministic functions such that the mapft (s) :T × S �→ R or
C is measurable andMα is, respectively, either a real-valued or a complex-valued
rotationally invariant SαS random measure on(S,S) with the control measureν.
(Rotationally invariant means thateiγ Mα

d= Mα for any real angleγ .) The process
Xα is real-valued if the random measureMα and the functionsft are real-valued;
it is complex-valued if the measure and the functions are complex-valued.

Relationship (1.1) then means that the characteristic function of the processXα

can be expressed as

E exp

{
i

n∑
k=1

θkXα(tk)

}
= exp

{
−

∫
S

∣∣∣∣∣
n∑

k=1

θkftk (s)

∣∣∣∣∣
α

ν(ds)

}
,(1.2)
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whereθk ∈ R, tk ∈ T , in the real-valued case, and as

E exp

{
i

n∑
k=1

�(
θkXα(tk)

)}

= E exp

{
i

n∑
k=1

(�(θk)�(
Xα(tk)

) + �(θk)�(
Xα(tk)

))}
(1.3)

= exp

{
−c0

∫
S

∣∣∣∣∣
n∑

k=1

θkftk (s)

∣∣∣∣∣
α

ν(ds)

}
,

whereθk ∈ C, tk ∈ T , c0 = (2π)−1 ∫ 2π
0 |cosφ|α dφ and z denotes the complex

conjugate ofz ∈ C, in the complex-valued case [see, e.g, Samorodnitsky and
Taqqu (1994)]. It is known, for example, that every measurable real-valued SαS
processXα has an integral representation (1.1) with, for example,S = (0,1),
S = B(0,1) andν = Lebesgue measure [see Samorodnitsky and Taqqu (1994),
Theorems 13.2.1 and 9.4.2]. Finally, recall that{Xα(t)}t∈T is stationary if, for all
h ∈ T , the finite-dimensional distributions of the processXα(t + h), t ∈ T , are
identical to those of the processXα(t), t ∈ T .

In a fundamental paper, Rosiński (1995) showed that a SαS stationary process
Xα can be related to a flow and a corresponding cocycle as in Definition 1.1. A flow
is a collection of deterministic maps{φt}t∈T that satisfy

φt1+t2 = φt1 ◦ φt2, t1, t2 ∈ T .

A cocycle{at}t∈T for the flow{φt}t∈T satisfies relationship

at1+t2 = at1at2 ◦ φt1, t1, t2 ∈ T .

See Appendix A for precise definitions. By support of{ft}t∈T , we mean a minimal
(a.e.) setA ∈ S such thatν{ft (s) �= 0, s /∈ A} = 0 for everyt ∈ T . The support is
denoted supp{ft , t ∈ T }.

DEFINITION 1.1 [Rosínski (1995)]. A SαS stationary processXα that has
a representation (1.1) is said to be generated by a nonsingular measurable flow
{φt}t∈T on (S,S, ν) if, for all t ∈ T ,

ft(s) = at(s)

{
d(ν ◦ φt )

dν
(s)

}1/α

f0
(
φt(s)

)
a.e.ν(ds),(1.4)

where f0 ∈ Lα(S,S, ν) and {at}t∈T is a cocycle for the flow{φt}t∈T taking
values in{−1,1} in the real-valued case and in the unit circle{w : |w| = 1} in
the complex-valued case, and

supp{ft , t ∈ T } = S, ν-a.e.(1.5)
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Observe that this definition is consistent with stationarity because it implies, by
using the definitions of a flow and a cocycle, that∫

S

∣∣∣∣∣
n∑

k=1

θkftk+h(s)

∣∣∣∣∣
α

ν(ds)

=
∫
S

∣∣∣∣∣
n∑

k=1

θkatk+h(s)

{
d(ν ◦ φtk+h)

dν
(s)

}1/α

f0
(
φtk+h(s)

)∣∣∣∣∣
α

ν(ds)

=
∫
S

∣∣∣∣∣
n∑

k=1

θkatk

(
φh(s)

){d(ν ◦ φtk )

dν

(
φh(s)

)}1/α

f0
(
φtk

(
φh(s)

))∣∣∣∣∣
α

(ν ◦ φh)(ds)

=
∫
S

∣∣∣∣∣
n∑

k=1

θkftk (s)

∣∣∣∣∣
α

ν(ds),

where the last equality follows by a change of variablesφh(s) → s and (1.4).
Definition 1.1 relatesft to f0 ◦ φt . By using this connection between kernels

and flows, Rosínski (1995) obtained a unique decomposition in distribution of SαS
stationary processes into two independent processes

Xα
d= XD

α + XC
α ,(1.6)

where the processXD
α is generated by a dissipative flow and the processXC

α is
generated by a conservative flow (see Appendix A for definitions of dissipative
and conservative flows). Moreover, Rosiński showed that dissipative processesXD

α

have a canonical representation∫
X

∫
T

k(x, t + u)Mα(dx, du),(1.7)

where(X,X,µ) is a standard Lebesgue space andMα has the control measure
µ(dx)λ(du) with (δ denotes a counting measure)

λ(du) =
{

δZ(du), if T = Z,

du, if T = R,
(1.8)

and showed that conservative processesXC
α can be uniquely decomposed further

into two independent processesXF
α andX

C\F
α .

In the complex-valued case, the processXF
α is theharmonizable process

XF
α (t)

d=
∫
T̂

eitxNα(dx),(1.9)

whereNα has a finite control measureη on

T̂ =
{

R, if T = R,

[0,2π), if T = Z.
(1.10)
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In the real-valued case,XF
α is thetrivial stationary process

XF
α (t)

d= X1 + n(t)X2 =
∫
{1}

Nα(dx) + n(t)

∫
{2}

Nα(dx) a.s.∀ t ∈ T,(1.11)

whereX1 andX2 are independent SαS random variables,Nα has a finite control
measureη on {1,2} and

n(t) =
{

0, if T = R,

(−1)t , if T = Z,
(1.12)

that is,XF
α (t)

d= X1 if T = R andXF
α (t)

d= X1 + (−1)tX2 if T = Z.
The processXF

α , whether harmonizable or trivial, is a stationary SαS process
generated essentially by the simplest type of conservative flows, namely, the
identity flows defined byφt (s) = s for all t ∈ T, s ∈ S with S = T̂ in the complex-
valued case andS = {1,2} in the real case. The other process in the decomposition
of XC

α , that is,XC\F
α , is a SαS stationary process generated by a conservative

flow which does not have a harmonizable (or trivial) component, meaning that it
cannot be decomposed into two independent processes one of which is either a
harmonizable process in the complex-valued case or a trivial stationary process
in the real-valued case. This led Rosiński (1995) to the unique decomposition in
distribution of SαS stationary processes into three independent processes

Xα
d= XD

α + XF
α + XC\F

α .(1.13)

A nice review can be found in Rosiński (1998).
In this work, we focus on SαS stationary processes generated byperiodic flows

in the sense of Definition 1.1 and more specifically bycyclic flows. Periodic flows
are examples of conservative flows such that any point in the space comes back
to its initial position in a finite period of time. Identity flows are periodic flows
with period zero. Cyclic flows are periodic flows with positive period. We will
show that SαS stationary processes generated by periodic flows have a canonical
representation which is given by the sum of two terms. The first term is the
harmonizable or trivial process∫

T̂
eitxNα(dx) (complex-valued case),

(1.14) ∫
{1}

Nα(dx) + n(t)

∫
{2}

Nα(dx) (real-valued case);

the second term is∫
Z

∫
[0,q(z))

b1(z)
[v+t]q(z) g

(
z, {v + t}q(z)

)
Mα(dz, dv),(1.15)

where, fora > 0 andx ∈ R,

[x]a = max{n ∈ Z :na ≤ x}, {x}a = x − a[x]a ≥ 0,(1.16)
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(Z,Z, σ ) is a standard Lebesgue space,q(z) ∈ T+ with

T+ =
{

(0,∞), if T = R,

{2,3, . . . }, if T = Z,
(1.17)

and

b1(z) ∈
{ {w : |w| = 1}, (complex-valued case),

{−1,1}, (real-valued case),

g ∈ Lα
(
Z × [0, q(·)), σ (dz)λ(dv)

)
,

with λ(dv) defined in (1.8). Moreover,Mα andNα above areindependent SαS
random measures with the control measuresσ(dz)λ(dv) andη(dx), respectively,
so that (1.14) and (1.15) are independent processes. The processes represented by
the sum of (1.14) and (1.15) are calledstationary periodic processes. Observe that
the term “periodic” refers to the flow and not to the sample path behavior of the
process. A stationary periodic process is called astationary cyclic process if it does
not have a harmonizable (or trivial) component, that is, if it cannot be represented
as a sum of two independent stationary processes one of which is a nondegenerate
harmonizable (or trivial) process. Note that stationary cyclic processes cannot be
defined by (1.15) because, for example, harmonizable or trivial processes (1.14)
can also be represented by (1.15) (see Lemma 3.1).

Stationary periodic processes (1.14) and (1.15) are always generated by periodic
flows because the process (1.14) is generated by an identity flow and the
process (1.15) is generated by a cyclic flow (see Theorem 3.1). We show in
Theorem 3.2 that if representation (1.14) and (1.15) areminimal, that is, if
there is no redundancy in the representation (minimal representations are defined
in Appendix B), then a stationary periodic (cyclic, resp.) process can only be
generated by a periodic (cyclic, resp.) flow.

If the representation is not minimal, stationary periodic processes
(1.14) and (1.15) may also be generated by flows that are not periodic (see Ex-
ample 3.1) and stationary cyclic processes may also be generated by flows that
are not cyclic. To determine, therefore, whether a given stationary stable processes
is a stationary periodic or cyclic process, it is in general not enough to examine
whether the underlying flow is periodic or cyclic. There is, however, an alternate
criterion that can be used to identify stationary periodic and cyclic processes. This
criterion is based on the structure of the kernel functionft in (1.1) (see Theo-
rems 4.1 and 5.1). Thus while flows have a physical interpretation, the identifica-
tion criterion, which is based on the kernel, has the advantage that it can be used
whether the representation is minimal or not. An analogous approach was fol-
lowed by Rosínski (1995) in the case of harmonizable (or trivial) processes (1.9)
[or (1.11)], typically associated with identity flows.

Our goal then is to identify stationary periodic (cyclic, resp.) processes among
general SαS stationary processes, namely, to be able to conclude that a given SαS
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stationary process is a stationary periodic (cyclic, resp.) process, either by using
flows in the case of a minimal representation or by applying the identification
criterion mentioned above.

The identification criterion provides also a decomposition of SαS stationary
processes which is more refined than the decomposition (1.13) obtained by
Rosínski (1995). More precisely, we will show (see Theorem 6.1) that the “third
kind” processX

C\F
α in (1.13) can be further uniquely decomposed into two

independent processes

XC\F
α

d= XL
α + XC\P

α ,(1.18)

whereXL
α is a stationary cyclic process andXC\P

α is a SαS stationary process
generated by a conservative flow, that is without a periodic component.

A simple example of a real-valued SαS stationary cyclic process withT = R is
the real part of a harmonizable process (1.9),

�
∫

R
eitxMα(dx)

d= c

∫
R

∫ 2π

0
cos(v + zt)Mα(dz, dv)

(1.19)
d= c

∫
R

∫ 2π/|z|
0

cos
(
z{w + t}2π/|z|

)
Mα(dz, dw),

that is, the process (1.15) withb1(z) = 1,q(z) = 2π/|z| andg(z,u) = cos(zu) (see
Example 3.2). We show in Example 5.1 that the process (1.19) is indeed a station-
ary cyclic process, that is, an example of a processXL

α in the decomposition (1.18).
An example of the processXC\P

α is the stationary sub-Gaussian process (see Ex-
ample 6.1).

This paper is organized as follows. In Section 2, we prove some results on
periodic and cyclic flows that are used in the sequel. In Section 3, we show
that stationary SαS processes generated by periodic flows have a canonical
representation given by the sum of (1.14) and (1.15). In Section 4, we provide a
criterion to identify stationary periodic processes among general SαS stationary
processes. In Section 5, we do this for stationary cyclic processes. A further
decomposition of stationary SαS processes is established in Section 6. Finally,
in Appendix A, we collect some basic facts related to flows and, in Appendix B,
we recall the definition of minimal integral representations for stable processes.

2. Periodic and cyclic flows. Let {φt}t∈T be a measurable flow on a standard
Lebesgue space(S,S, ν), whereT = Z or T = R (see Appendix A). Let also

P := {
s :∃p = p(s) ∈ T \ {0} :φp(s) = s

}
,(2.1)

F := {s :φt(s) = s for all t ∈ T },(2.2)

L := P \ F(2.3)

be theperiodic, fixed andcyclic points of the flow{φt }t∈T , respectively.
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DEFINITION 2.1. A measurable flow{φt}t∈T on (S,S, ν) is periodic if
S = P ν-a.e., isidentity if S = F ν-a.e., and iscyclic if S = L ν-a.e.

We say henceforth that a setA ⊂ S or a mapf on S is ν-measurable if it is
measurable with respect to a measureν, that is, measurable with respect to the
completion of the Borel sets under that measure.

LEMMA 2.1. The set F in (2.2) is (Borel) measurable and the sets P in (2.1)
and L in (2.3)are ν-measurable.

PROOF. Since the proof of the lemma is elementary whenT = Z, we consider
only the caseT = R. To show that the setF is measurable, we first show that
F ′ := {s :φt(s) = s a.e.dt} satisfiesF ′ = F . Indeed, ifs ∈ F ′, then, by definition,
τ := {t :φt (s) = s} = R a.e. Observe thatτ is an additive group ofR [if t1, t2 ∈ τ ,
then t1 + t2 ∈ τ , becauseφt1+t2(s) = φt1(φt2(s)) = φt1(s) = s] and hence by
Corollary 1.1.4 in Bingham, Goldie and Teugels (1987), we haveτ = R and hence
F ′ = F . Then,F = {s :h(s) = 0}, whereh(s) = ∫

R 1{φt (s) �=s}(t, s) dt. Since the
function h(·) is measurable by the Fubini theorem, the setF is measurable as
well [use Theorem A in Halmos (1950), page 143]. To prove that the setP =
{s :∃p = p(s) �= 0 :φp(s) = s} is ν-measurable, consider the measurable setP̃ =
{(s,p) :φp(s) = s,p �= 0}. Observe thatP = projS{P̃ } := {s :∃p : (s,p) ∈ P̃ }.
The ν-measurability ofP follows from Lemma 4.2. The setL is ν-measurable
becauseL = P \ F . �

We use in the sequel the following alternative definition of a cyclic flow, which
is equivalent to Definition 2.1 by Theorem 2.1.

DEFINITION 2.2. A measurable flow{φt }t∈T on (S,S, ν) is cyclic if it is
null isomorphic (mod 0) to the flow

φ̃t (z, v) = (
z, {v + t}q(z)

)
(2.4)

on (Z × [0, q(·)),Z × B([0, q(·))), σ (dz)λ(dv)), whereq(z) ∈ T+ a.e. is some
measurable function [see also the notation (1.8), (1.16) and (1.17)].

The σ -field Z × B([0, q(·))) in Definition 2.2 is defined as the restriction
of the σ -field Z × B(R) to the setZ × [0, q(·)). Null isomorphic (mod 0) in
Definition 2.2 means that there are two null setsN ⊂ S and Ñ ⊂ Z × [0, q(·)),
and a Borel measurable, one-to-one, onto and nonsingular map with a measurable
inverse (a so-called null isomorphism)� :Z × [0, q(·)) \ Ñ �→ S \ N such that

φt

(
�(z, v)

) = �
(
φ̃t (z, v)

)
(2.5)

for all t ∈ T and(z, v) ∈ Z × [0, q(·)) \ Ñ . The null setsN andÑ are required
to be invariant under the flowsφt andφ̃t , respectively. We can view (2.4) in two
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ways. At eachz on the horizontal axis, we climb toheight q(z) before falling back
on the horizontal axis to the same starting points. Equivalently, we can view the
space(z, v) shaped as a torus where at each pointz on the “grand circle,” we rotate
around the “small circle” of lengthq(z).

EXAMPLE 2.1. A collection of maps

φt (s) = eitθ s, t ∈ R,

with some fixedθ > 0, is a measurable flow on the unit circle{s : |s| = 1}. The flow
{φt}t∈R is cyclic since each point of the space is not fixed and comes back to its
initial position in a finite time (Definition 2.1) or since it is isomorphic to the flow
φ̃t (v) = {v + t}2πθ−1, t ∈ R, v ∈ [0,2πθ−1) (Definition 2.2). This corresponds to
representing motion on the circle by a periodic motion on an interval.

EXAMPLE 2.2. SupposeT = R. The collection of maps

φt(z, v) = (
z, {v + s(z)t}q(z)

)
, t ∈ R,(2.6)

wheres(z) ∈ R \ {0}, q(z) ∈ R+ a.e. are measurable functions, is a measurable
flow on Z × [0, q(·)). It is a cyclic flow because each point of the space comes
back to its initial position in a finite (nonzero) time. We may think of the function
|s(z)| as thespeed at which a point(z, v) moves under the flow{φt}t∈R. Observe
also that the flow{φt}t∈R is isomorphic to the flow̃φt(z, v) = (z, {v + t}q(z)/|s(z)|)
onZ × [0, q(·)/|s(·)|).

EXAMPLE 2.3. Consider now the caseT = Z. The maps

φt(z, v) = (
z, {v + s(z)t}q(z)

)
, t ∈ Z,(2.7)

still define a cyclic flow onZ × ([0, q(·)) ∩ Z) or, equivalently, on the space
(Z × [0, q(·)), σ (dz)λ(dv)) with λ(dv) = δZ(dv) by using the notation of
Definition 2.2. The definition of this cyclic flow, however, is not very natural.
Consider, for example, the flowφt(v) = {v + 2t}4, t ∈ Z, defined by (2.7) with
the suppressedZ = {1}, σ (dz) = δ{1}(dz) on the space{0,1,2,3}. Sincet ∈ Z,
this flow takes 0 to 2 and then 2 back to 0, and takes 1 to 3 and then 3 back to 1.
It hence consists of two separate cyclic flows: the flowφ|{0,2} restricted to the
points{0,2} and the flowφ|{1,3} restricted to the points{1,3}. For a fixedz, the
flow in thev coordinate of (2.7) may hence consist of a number of distinct cyclic
flows.

To avoid this type of situation whenT = Z, it is preferable to consider, instead
of (2.7), the flow

φt(z, v) = (
z, {v + s(z)t}|s(z)|q(z)

)
, t ∈ Z,(2.8)

on Z × ([0, |s(·)|q(·)) ∩ |s(·)|Z), whereq(z) ∈ Z+ a.e. andaZ = {ap :p ∈ Z},
a ∈ R, or equivalently, on the space(Z × [0, |s(·)|q(·)), σ (dz)δ|s(·)|Z(dv)). For
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example, the flowφt (v) = {v + 2t}4 is now defined only on the points{0,2} and
thus, we do not have to deal with two flows anymore. In general, for a fixedz,
the flow in thev coordinate of (2.8) takes 0 to|s(z)|, |s(z)| to 2|s(z)|, . . . , (q(z) −
2)|s(z)| to (q(z) − 1)|s(z)| before returning to 0. Since the space[0, |s(z)|q(z)) ∩
|s(z)|Z consists only of these points 0, |s(z)|, . . . , (q(z)−1)|s(z)|, there can be no
other distinct cyclic flow on this space. Observe that the function|s(z)| in (2.8)
still plays the role of speed.

Observe also that the flows (2.6) and (2.8) have a common representation
(z, {v + s(z)t}q(z)) only for |s(z)| = 1. Since we prefer to work with a cyclic flow
representation valid for bothT = R andT = Z, and since a flow(z, {v+s(z)t}q(z))

with |s(z)| = 1 is isomorphic to the simpler cyclic flow(z, {v+ t}q(z)), we suppose
in (2.4) of Definition 2.2 thats(z) = 1.

THEOREM 2.1. Definitions 2.1and 2.2of cyclic flows are equivalent.

PROOF. If the flow {φt}t∈T is cyclic in the sense of Definition 2.2, then every
point in the spaceZ × [0, q(·)) is cyclic and henceS = L a.e. by using (2.5).

To show the converse, we suppose that{φt}t∈T is cyclic in the sense of
Definition 2.1. We first consider the caseT = R. Since{φt}t∈R has no fixed points
(a.e.), we may suppose without loss of generality that the flow{φt}t∈R is a special
flow on a spaceY × [0, r(·)) as defined in Appendix A (see also Figure 1 in that
appendix), that is,

φt(y,u) = (
V ny, t + u − rn(y)

)
(2.9)

for rn(y) < u + t ≤ rn+1(y), where rn(y) = ∑n−1
k=0 r(V ky), n ≥ 1, r0(y) = 0,

rn(y) = ∑−1
k=n r(V ky), n ≤ −1, r(·) > 0 a.e. andV is a one-to-one, onto,

bimeasurable map on a a standard Lebesgue space(Y, τ ). Indeed, as stated in
Appendix A, given a flow{φt}t∈R without fixed points, there is a special flow
given by (2.9) which is null isomorphic to{φt}t∈R. If {φt}t∈R is cyclic in the sense
of Definition 2.1, then the null isomorphic special flow (2.9) is cyclic as well. Then,
if the flow (2.9) is shown to be null isomorphic to a flow given by (2.4), then the
original flow {φt}t∈R is null isomorphic to the flow (2.4) as well (this is because
null isomorphism is an equivalence relationship).

Since, by assumption, a.e. point(y,u) comes back to its initial position in a
finite period of time, we have that

Y =
∞⋃

n=1

{y :V ny = y} =:
∞⋃

n=1

A′
n

(2.10)

=
∞⋃

n=1

(
A′

n \ (A′
1 ∪ · · · ∪ A′

n−1)
) =:

∞⋃
n=1

An (with A′
0 = ∅)

a.e.τ (dy). The setAn represents thosey that are attained for the first time byV ny.
SinceV An = An, the setsCn := {(y,u) :y ∈ An} are invariant under the flow. We



STABLE STATIONARY PROCESSES 2231

now want to show that the flow (2.9) satisfying (2.10) is indeed cyclic in the sense
of Definition 2.2. Since the setsCn are invariant under the flow, it is enough to
show that, forn ≥ 1, the flow (2.9) restricted toCn is cyclic. We do so forn = 2
only, since the proof for other values ofn is similar.

To prove thatφ|C2 is cyclic, we show that there is a null isomorphism mapping
φ|C2 into a flowφ̃ of the type (2.4). The first step is to construct a space where the
flow φ̃ is defined. The idea is to reduce the space so that(y, v) and(Vy, v) are only
represented by either(y, v) or (Vy, v) or, since we are focusing onA2, to reduce
the space so thaty ∈ A2 andVy are represented only by eithery or Vy. To do
so, we proceed in a way similar to the exhaustion principle used in ergodic theory
[see, e.g., page 17 in Krengel (1985)]. Letτ̃ be a finite measure onY equivalent
to τ . Let first

B1 = {measurableB ⊂ A2 :B ∩ V B = ∅},
τ̃1 = sup{τ̃ (B) :B ∈ B1} and takeB1 ∈ B1 such that̃τ (B1) ≥ τ̃1/2. Then define a
sequence of setsBn, n ≥ 2, recursively, by letting

Bn = {measurableB ⊂ A2\(B1∪· · ·∪Bn−1∪V B1∪· · ·∪V Bn−1) :B∩V B = ∅},
τ̃n = sup{τ̃ (B) :B ∈ Bn} and pickingBn ∈ Bn such that̃τ (Bn) ≥ τ̃n/2. Sincẽτ is
finite and the setsB1, . . . ,Bn+1 are disjoint, we havẽτ (Bn) → 0 and hencẽτn → 0
asn → ∞.

We argue next that

A2 =
∞⋃

n=1

(Bn ∪ V Bn)(2.11)

a.e.̃τ (dy) and hence a.e.τ (dy).
Relationship (2.11) must hold because if it does not then we have a contradic-

tion: we will show that it is then possible to construct a measurable setB ⊂ A2
with τ̃ (B) > 0, B ∩ V B = ∅ and the setsB andBn ∪ V Bn being disjoint for
all n. This is a contradiction because the argument preceding (2.11) precludes the
existence of such a set. Assume then that (2.11) does not hold, that is, there is
a setA ⊂ A2 such that̃τ(A) > 0 and the setsA and

⋃∞
n=1(Bn ∪ V Bn) are dis-

joint. By the definition ofA2, we haveVy �= y on A (a.e.) and hence there is a
setA0 ⊂ A such that̃τ (A0) > 0 andA0 �= V A0 a.e. Then defineB = A0 \ V A0.
SinceA0 �= V A0 a.e., we havẽτ (B) > 0. Moreover, sinceB = A0∩V Ac

0, we have
B ∩ V B = A0 ∩ V Ac

0 ∩ V A0 ∩ V 2Ac
0 = A0 ∩ V (Ac

0 ∩ A0) ∩ V 2Ac
0 = ∅ because

V is one-to-one. SinceA and
⋃∞

n=1(Bn ∪ V Bn) are disjoint, the setsB ⊂ A and
Bn ∪ V Bn are disjoint for alln as well. We therefore conclude that (2.11) holds.

Now let

Z =
∞⋃

n=1

Bn
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and observe that

A2 =
∞⋃

n=1

(Bn ∪ V Bn) =
( ∞⋃

n=1

Bn

)
∪

( ∞⋃
n=1

V Bn

)
= Z ∪ V Z

a.e.τ (dy).
The spacesZ andV Z are disjoint by construction. Instead of focusing on the

spaceA2 ⊂ Y , whereA2 = Z ∪ V Z a.e.τ (dy), we “combine”Z andV Z. We
do so by focusing on the spaceZ only and by defining the flow̃φ on the space
(Z × [0, r2(·)), τ (dz) dv) as

φ̃t (z, v) = (
z, {v + t}r2(z)

)
,(2.12)

where

r2(z) = r(z) + r(V z)

is the function which appears in the special representation (2.9). (To visualize this,
see Figure 1 in Appendix A.) By usingr2(z), we have replaced the “vertical”
motions on{(z, u),0≤ u < r(z)} and{(V z,u),0≤ u < r(V z)} by a single motion
on

{(z, u),0≤ u < r(z) + r(V z)}.
Our new spaceZ × [0, r2(·)) is thus related to the previous spaceC2 = {(y,u) :
y ∈ A2} by the map� :Z × [0, r2(·)) �→ C2 defined by

�(z, v) =
{

(z, v), if 0 ≤ v < r(z),(
V z, v − r(z)

)
, if r(z) ≤ v < r2(z).

Then, by usingA2 = Z∪V Z a.e.τ (dy) and the fact thatZ andV Z are disjoint,
we obtain that� is a null isomorphism and

φt |C2

(
�(z, v)

) = �
(
φ̃t (z, v)

)
.

This shows that the flowφ|C2 is indeed cyclic in the sense of Definition 2.2.
To show the converse in the caseT = Z is easier. We sketch here only the main

ideas of the proof. The functionq(s) = min{n ∈ N :φn(s) = s} is measurable and
a.e. finite onS. It is enough to show, for example, that the flow{φt}t∈Z restricted
to C2 = {s :q(s) = 2} is cyclic. Arguing as above, we can construct a measurable
setZ such thatC2 = Z ∪ φ1Z, whereZ andφ1Z are disjoint. The flowφ|C2 can
then be shown to be isomorphic to the flow̃φt(z, v) = (z, {v + t}2). �

In the following lemma, we characterize cocycles associated with cyclic flows.
(See the end of Appendix A for a definition of a cocycle.) This result is used in the
next section.
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LEMMA 2.2. Let {φt}t∈T be a cyclic flow and let {at}t∈T be a cocycle for
{φt}t∈T taking values in a second countable group (A, ·). Suppose that � :Z ×
[0, q(·)) \ Ñ �→ S \ N is the null isomorphism between the flows {φt}t∈T and
{φ̃t}t∈T in Definition 2.2.Let ãt (z, v) = at(�(z, v)) if (z, v) ∈ Z × [0, q(·)) \ Ñ ,
and ãt (z, v) = e if (z, v) ∈ Ñ , where e is the group unity. Then {ãt }t∈T is a cocycle
for {φ̃t}t∈T and

ãt (z, v) = (
ã(z, v)

)−1
ã1(z)

[v+t]q(z) ã
(
z, {v + t}q(z)

)
(2.13)

for all t ∈ T and (z, v) ∈ Z×[0, q(·)), where ã :Z×[0, q(·)) �→ A and ã1 :Z �→ A

are some measurable functions.

PROOF. We may suppose without loss of generality thatN = Ñ = ∅ because
the proof below shows that̃at(z, v) = at (�(z, v)) satisfies the cocycle relationship
on the setZ × [0, q(·)) \ Ñ (which is invariant for the flow̃φ) and so obviously
does̃at(z, v) = e on the set̃N . By substitutings = �(z, v) in the definition (A.3)
of a cocycle, we obtain that

at1+t2

(
�(z, v)

) = at2

(
�(z, v)

)
at1

(
φt2

(
�(z, v)

))
and hence, sinceφt ◦ � = � ◦ φ̃t , we get that

ãt1+t2(z, v) = ãt2(z, v)ãt1(φ̃t2(z, v))(2.14)

= ãt2(z, v)ãt1

(
z, {v + t2}q(z)

)
.(2.15)

Relationship (2.14) shows that{ãt}t∈T is a cocycle for the flow{φ̃t}t∈T . To
show (2.13), we use (2.15). We consider the caseZ = {1} only. The proof for
a general spaceZ follows as below by working with a fixedz. For notational
simplicity, we denotẽat(1, v) by ãt (v) and, to avoid writing indices, bỹa(t, v).

By takingv = 0 in (2.15), we get̃a(t1 + t2,0) = ã(t2,0)ã(t1, {t2}q). Then

ã(t, v) = (̃
a(v,0)

)−1
ã(v + t,0)(2.16)

if v ∈ [0, q) ∩ T . Observe now that, by (1.16) and (2.15),

ã(v + t,0) = ã(q[v + t]q + {v + t}q,0) = ã(q[v + t]q ,0)ã({v + t}q,0)

for all t ∈ T andv ∈ [0, q) ∩ T . Then, by (2.16), forv ∈ [0, q) ∩ T ,

ã(t, v) = (̃
a(v,0)

)−1
ã(q[v + t]q ,0)ã({v + t}q,0)

= (̃
a(v)

)−1
ã(q[v + t]q)ã({v + t}q),

whereã(·) = ã(·,0), but by settingt2 = nq, t1 = mq andv = 0 in (2.15), we get
that ã(qm + qn) = ã(qm)ã(qn) for all n,m ∈ Z. It follows that ã(qm) = ãm

1 for
somẽa1 ∈ A and hence

ã(t, v) = (
ã(v)

)−1
ã

[v+t]q
1 ã({v + t}q),

which proves (2.13) whenZ = {1}. �
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3. Representation of stationary processes generated by periodic flows. We
now provide a representation of stable stationary processes generated by periodic
flows. This basic result is used several times in this and the following section.

THEOREM 3.1. Suppose that a stationary SαS, α ∈ (0,2), process Xα is
generated by a periodic flow in the sense of Definition 1.1. Then Xα can be
represented in distribution as the sum of two independent stationary stable
processes. The first process is a harmonizable process in the complex-valued case
or a trivial process in the real-valued case,∫

T̂
eitxNα(dx) (complex-valued case),

(3.1) ∫
{1}

Nα(dx) + n(t)

∫
{2}

Nα(dx) (real-valued case),

where Nα has a finite control measure η(dx) and n(t) is defined by (1.12).The
second process can be represented as∫

Z

∫
[0,q(z))

b1(z)
[v+t]q(z) g

(
z, {v + t}q(z)

)
Mα(dz, dv).(3.2)

Here, (Z,Z, σ ) is a standard Lebesgue space, q(z) ∈ T+ a.e. σ(dz), g ∈
Lα(Z × [0, q(·)), σ (dz)λ(dv)) and b1(z) ∈ {−1,1} [or b1(z) ∈ {w : |w| = 1} in
the complex-valued case] are measurable functions, and SαS random measure Mα

has the control measure σ(dz)λ(dv).

PROOF. Suppose that the processXα is generated by a flow{φt}t∈T on
(S,S, ν) which is periodic. Since the flow is periodic, we haveS = P a.e.ν(ds)

and henceS = F + L a.e.ν(ds) as well, whereF andL are the fixed and the
cyclic points of the flow{φt}t∈T . Then

Xα(t)
d=

∫
F

ft(s)Mα(ds) +
∫
L

ft (s)Mα(ds) =: Yα(t) + Zα(t),

where the stationary stable processesYα and Zα are independent, the process
Yα is generated by an identity flow and the processZα is generated by a cyclic
flow. (The processesYα and Zα are independent becauseF ∩ L = ∅.) By
Propositions 5.1 and 5.2 in Rosiński (1995), the processYα is harmonizable (or
trivial). To conclude the theorem, we still need to show that the processZα has a
representation (3.2).

By Definition 2.2, there is a space(Z,Z, σ ), functionq(z) ∈ T+ a.e.σ(dz) and
a null isomorphism� :Z × [0, q(·)) �→ L such that

φt

(
�(z, v)

) = �
(
z, {v + t}q(z)

)
(3.3)

for all t ∈ T and(z, v) ∈ Z × [0, q(·)). In other words, the flow{φt }t∈T on (L, ν)



STABLE STATIONARY PROCESSES 2235

is null isomorphic to the flow{φ̃t}t∈T on (Z × [0, q(·)), σ (dz)λ(dv)) defined by

φ̃t (z, v) = (
z, {v + t}q(z)

)
.

[We may suppose that the null sets in (2.5) are empty because, otherwise, we can
replaceL by L \ N in the definition ofZα without changing its distribution.] By
replacings with �(z, v) in (1.4) and using (3.3), we get that for allt ∈ T ,

ft

(
�(z, v)

) = at

(
�(z, v)

){d(ν ◦ φt)

dν

(
�(z, v)

)}1/α

f0
(
�

(
φ̃t (z, v)

))
(3.4)

a.e. σ(dz)λ(dv). Now, by Lemma 2.2,at(�(z, v)) = ã1(z)
[v+t]q(z) ã(φ̃t (z, v))/

ã(z, v). Sinceφt ◦ � = � ◦ φ̃t , we also have that

d(ν ◦ φt )

dν
◦ � = d(ν ◦ � ◦ φ̃t )

d(ν ◦ �)

=
(

dν

d((σ ⊗ λ) ◦ �−1)
◦ � ◦ φ̃t

)
d((σ ⊗ λ) ◦ φ̃t )

d(σ ⊗ λ)

d(σ ⊗ λ)

d(ν ◦ �)

=
(

dν

d((σ ⊗ λ) ◦ �−1)
◦ � ◦ φ̃t

)
d((σ ⊗ λ) ◦ �−1)

dν
◦ �

=
(

dν

d((σ ⊗ λ) ◦ �−1)
◦ � ◦ φ̃t

)(
dν

d((σ ⊗ λ) ◦ �−1)
◦ �

)−1

,

whered((σ ⊗ λ) ◦ φ̃t )/d(σ ⊗ λ) ≡ 1 because the first component iñφt(z, v) =
(z, {v + t}q(z)) remains the same and the second, wherev is the variable, preserves
the measureλ. Hence, by setting

gt (z, v) = ã(z, v)

{
dν

d((σ ⊗ λ) ◦ �−1)

(
�(z, v)

)}1/α

ft

(
�(z, v)

)
(3.5)

in relationship (3.4), we obtain that, for allt ∈ T ,

gt (z, v) = ã1(z)
[v+t]q(z)g0

(
φ̃t (z, v)

)
(3.6)

a.e.σ(dz)λ(dv). Finally, observe that by writing the characteristic functions, it is
easy to see that (3.5) implies

{Zα(t)}t∈T
d=

{∫
L

ft (s)Mα(ds)

}
t∈T

d=
{∫

Z

∫
[0,q(z))

gt (z, v)M̃α(dz, dv)

}
t∈T

,

whereM̃α(dz, dv) has the control measureσ(dz)λ(dv). The result of the theorem
then follows from (3.6) by settingb1(z) = ã1(z) andg(z, v) = g0(z, v). �

REMARK 3.1. The proof of Theorem 3.1 shows that stationary SαS processes
generated by cyclic flows have a representation (3.2).
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DEFINITION 3.1. A stationary stable process that can be represented by the
sum of the processes (3.1) and (3.2) as in Theorem 3.1 is calleda stationary
periodic process.

The following result is useful for recognizing stationary periodic processes and,
more specifically, processes (3.2) whenT = R.

PROPOSITION3.1. With the notation of Theorem 3.1and letting s(z) ∈ R\{0}
a.e. be a measurable function, processes∫

Z

∫
[0,q(z))

b1(z)
[v+s(z)t]q(z) g

(
z, {v + s(z)t}q(z)

)
Mα(dz, dv), t ∈ R,(3.7)

have a representation (3.2) (with possibly different functions q and g) and hence
are stationary periodic processes.

PROOF. By using the relationships

{v + st}q = q − {−v − st}q = q − {(q − v) − st}q,

[v + st]q = 1

q
(v + st − {v + st}q)

= −1

q

(
(q − v) − st − {(q − v) − st}q) = −[(q − v) − st]q

and by making the change of variablesv to q(z) − v whens(z) < 0, we can first
represent the process in (3.7) as∫

Z

∫
[0,q(z))

b1(z)
[v+|s(z)|t]q(z) ĝ

(
z, {v + |s(z)|t}q(z)

)
Mα(dz, dv),(3.8)

whereĝ(z, u) = g(z, q(z)−u) if s(z) < 0 andĝ(z, u) = g(z,u) if s(z) > 0. Then,
by using the relationships

{v + |s|t}q = |s|{|s|−1v + t}|s|−1q,

[v + |s|t]q = 1

q
((v + |s|t) − {v + |s|t}q)

= 1

|s|−1q

(
(|s|−1v + t) − {|s|−1v + t}|s|−1q

) = [|s|−1v + t]|s|−1q

and by making the change of variables|s(z)|−1v = ṽ, we can represent the process
in (3.8) as ∫

Z

∫
[0,q̃(z))

b1(z)
[ṽ+t]q̃(z) g̃

(
z, {ṽ + t}q̃(z)

)
Mα(dz, dṽ ),(3.9)

whereg̃(z, u) = |s(z)|1/αg(z, |s(z)|−1u) andq̃(z) = |s(z)|−1q(z). �



STABLE STATIONARY PROCESSES 2237

REMARK 3.2. We can also use Theorem 3.1 to show that the process (3.7)
has a representation (3.2). Indeed, Example 2.2 shows thatφt(z, v) = (z, {v +
s(z)t}q(z)), t ∈ R, is a cyclic flow onZ × [0, q(·)). By using the relationship
[v + s(t1 + t2)]q = [v + st1]q + [{v + st1}q + st2]q [to verify it, use the second
relationship in (1.16) and the fact that{φt } is a flow], we get thatb1(z)

[v+s(z)t]q(z)

is a cocycle for the flow{φt}t∈R. The process (3.7) is thus generated by the flow
{φt}t∈R in the sense of Definition 1.1. Since this flow is cyclic, the remark before
Definition 3.1 shows that the process (3.7) has a representation (3.2). Observe,
however, that this does not prove that to obtain (3.2), only the functionsq andg

may need to be modified.

The term “periodic” in “stationary periodic processes” refers to a process that
has a representations (3.1) and (3.2), where the kernel has a periodic-like structure
[as in (4.1)]. It does not necessarily imply that an underlying generating flow of the
process is periodic. In fact, as the following elementary example shows, without
any restrictions on the kernel of a process, a stationary periodic process can be
generated in the sense of Definition 1.1 by conservative flows other than periodic
flows.

EXAMPLE 3.1. Let (Y,Y, τ ) be a standard Lebesgue space with 0<

τ(Y ) < ∞. Observe that a stationary periodic process that has a representa-
tion (3.2) can also be represented as

(τ (Y ))−1/α
∫
Y

∫
Z

∫
[0,q(z))

b1(z)
[v+t]q(z) g

(
z, {v + t}q(z)

)
Mα(dy, dz, dv),(3.10)

where the SαS random measureMα has control measureτ (dy)σ (dz)λ(dv),
because there is no variabley in the kernel of (3.10). Let now{φt}t∈R be
any measure preserving conservative flow on(Y,Y, τ ). Then the stationary
periodic process (3.2), when represented by (3.10), is also generated by the
flow φ̃t (y, z, v) = (φt (y), z, {v + t}q(z)) on Y × Z × [0, q(·)) in the sense of
Definition 1.1. The generating flow is therefore not unique. Observe that since
we can choose the flow{φt}t∈R to be nonperiodic, the flow{φ̃t}t∈R will also be
nonperiodic. A similar problem exists when we consider harmonizable (or trivial)
processes and identity flows.

Without any restrictions on a kernel function, the generating flow may not be
unique. In this case, not only stationary periodic processes can be generated by
nonperiodic flows, but harmonizable (or trivial) processes can also be represented
by (3.2) (Lemma 3.1). This result further indicates that we cannot associate, in
general, harmonizable (or trivial) processes with identity flows and processes that
have the representation (3.2) with cyclic flows.

LEMMA 3.1. The SαS, α ∈ (0,2), harmonizable processes (or trivial proces-
ses in the real-valued case) can be represented as (3.2).
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PROOF. Consider the process

Xα(t) =
∫
T̂

∫
[0,2)

(ei2z)[v+t]2(eiz){v+t}2Mα(dz, dv)

(3.11)
=

∫
T̂

∫
[0,2)

(eiz)(v+t)Mα(dz, dv), t ∈ T,

whereMα is a complex-valued rotationally invariant SαS random measure with
control measureη(dz)λ(dv) andη(T̂ ) < ∞ [see also the notation (1.10)]. The
processXα has a representation (3.2) withZ = T̂ , σ(dz) = η(dz), b1(z) ≡ ei2z,
q(z) = 2 andg(z,u) = eizu. Observe that sinceeiz(v+t) = eizveizt , |eizv| = 1 and
eizv does not involve timet ,

{Xα(t)}t∈T
d=

{∫
T̂

∫
[0,2)

eiztMα(dz, dv)

}
t∈T

d=
{
21/α

∫
T̂

eiztMα(dz)

}
t∈T

,(3.12)

where Mα is a complex-valued rotationally invariant measure with control
measureη(dz). Hence,Xα is also a harmonizable process, showing the result for
harmonizable processes.

The case of trivial processes withT = R follows by taking, for example,Z =
{1}, b1(z) = 1, g(1, z) ≡ 1 andq(1) = 1 in (3.2). WhenT = Z, takeZ = {1,2},
b1(z) ≡ 1 andg(z, v) ≡ a(z)v with a(1) = 1, a(2) = −1 andq(z) = 2. Then (3.2)
becomes ∫

{1,2}

∫
{0,1}

(a(z)){v+t}2Mα(dz, dv)

=
∫
{1,2}

∫
{0,1}

(a(z))v+tMα(dz, dv)

d=
∫
{1,2}

a(z)tNα(dz)

=
∫
{1}

Nα(dz) + (−1)t
∫
{2}

Nα(dz),

which shows the result in the case of trivial processes whenT = Z. �

Lemma 3.1 has the following implication:

COROLLARY 3.1. Stationary periodic processes can also be represented
by (3.2).

The representation of the process in Example 3.1 and the representation (3.2) of
a harmonizable (or trivial) process in Lemma 3.1 have a built-in redundancy [e.g.,
there is no variabley in the kernel of (3.10)]. If we eliminate redundancy and focus
onminimal representations only, then by Theorem 3.2, stationary periodic process
defined by (3.1) and (3.2) can only be generated by periodic flows. This explains
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our use of the term “stationary periodic processes.” (Another justification is
provided in the following sections.) Moreover, as shown in the following theorem,
under minimal representations, harmonizable (or trivial) processes cannot have a
minimal representation (3.2) and they are generated only by identity flows.

THEOREM 3.2. If representations (3.1) and (3.2) of Xα is minimal, then Xα

is generated by a unique flow in the sense of Definition 1.1.This flow is periodic
for (3.1)and (3.2), identity for (3.1)and cyclic for (3.2).The representation (3.1)
is always minimal.

PROOF. If the representation is minimal, then the generating flow is unique
by Theorem 3.1 in Rosiński (1995). Representations (3.1) and (3.2) are obviously
generated by an identity flow and a cyclic flow, respectively, in the sense of
Definition 1.1 and, therefore, representations (3.1) and (3.2) of their sum is
generated by a periodic flow in the sense of Definition 1.1. The minimality of the
representation (3.1) in the complex-valued case was shown by Rosiński (1998a),
Example 4.8. The minimality in the real-valued case can be seen directly from
the definition of minimal representations. [In the caseT = R, sincen(t) ≡ 0,
we assume implicitly that the representation (3.1) is defined on the space{1} and
not {1,2}.] �

By Definition 3.1, harmonizable (or trivial) processes are also stationary
periodic processes. Here is another example of stationary stable process which
is a stationary periodic process.

EXAMPLE 3.2. Consider the process

Xα(t) =
∫

R

∫ 2π

0
cos(v + zt)Mα(dz, dv), t ∈ R,

where the SαS random measureMα has control measureµ(dz) dv andµ(R) < ∞.
The processXα is well defined, that is, cos(v + zt) ∈ Lα(R × (0,2π),µ(dz) dv)

for each t ∈ R. Since cos(u) = cos({u}2π), it has a representation (3.7) with
Z = R, σ(dz) = µ(dz), b1(z) ≡ 1, s(z) = z, q(z) = 2π and g(z,u) = cos(u).
Hence, by Proposition 3.1, the processXα is a stationary periodic process. This
can also be seen directly by using the proof of Proposition 3.1 to observe that

Xα(t)
d=

∫
R

∫ 2π/|z|
0

cos
(
z{w + t}2π/|z|

)
Mα(dz, dv).

As shown in Example 2.5 of Rosiński (2000), the processXα has the same (up
to a constant) finite-dimensional distributions as the real part of a harmonizable
process (1.9); more precisely,

{Xα(t)}t∈R
d=

{
(2π)1/α�

∫
R

eitxMα(dx)

}
t∈R

,(3.13)
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whereMα is a complex-valued rotationally invariant measure with the control
measureµ(dx).

Since harmonizable (or trivial) processes are also stationary periodic processes,
we may want to single out stationary periodic processes that do not have a
harmonizable (or trivial) component. The following definition makes this precise.
The introduced terminology is often used in the sequel, along with that of
stationary periodic processes.

DEFINITION 3.2. A stationary periodic process is called astationary cyclic
process if it does not have a harmonizable (or trivial) component, that is, it cannot
be represented as a sum of two independent stationary processes, one of which is
a nondegenerate harmonizable (or trivial) process.

REMARK 3.3. A stationary periodic (harmonizable or trivial, resp.) process is
defined as a process which can have representations (3.1) and (3.2) [(3.1), resp.].
A stationary cyclic process, however, cannot be defined as a process which can
have the representation (3.2), because, by Lemma 3.1, a harmonizable (or trivial)
process can also be represented as (3.2). It is necessary, therefore, to exclude
explicitly the harmonizable (or trivial) component in Definition 3.2.

How can one determine whether a given stationary process is a stationary
periodic or cyclic process? Example 3.1 and Lemma 3.1 show that, in general,
it is not enough to examine whether an underlyingflow of the process is periodic
or cyclic. We can, however, identify these processes through underlying flows if
their representations are minimal (see Theorem 3.2 and also Corollary 6.2).

Since minimal representations are typically not easy to determine in practice,
we would like to have an identification criterion which does not rely on minimal
representations. We can do so through periodic and cyclic component sets which
we define next. We work now with the kernel of a stationary process itself rather
than with a generating flow. Flows, however, are still used as a tool to obtain an
identification result (see Theorem 4.1 and its proof). The identification results
are used in Section 6 to establish a further decomposition of stationary stable
processes.

4. Characterization of stationary periodic processes. Consider a stationary
process with representation (1.1) involving the kernelft . We first provide a
criterion onft for the process to be a stationary periodic process.

DEFINITION 4.1. A periodic component set of a stationary stable processXα

that has a representation (1.1) is defined as

CP = {
s ∈ S :∃h = h(s) ∈ T \ {0} :ft+h(s) = a(h, s)ft(s)

(4.1)
a.e.λ(dt) for somea(h, s) �= 0

}
.
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Relationship (4.1) expresses physically the fact that, starting ats ∈ CP , we come
back toft (s) after some timeh(s).

LEMMA 4.1. A periodic component set CP in (4.1) is ν-measurable. More-
over, the functions h(s) and a(s) = a(h(s), s) in (4.1) can be taken to be
ν-measurable as well.

PROOF. We first show that the setCP is ν-measurable. Observe that the
condition (4.1) says that the ratioft+h(s)/ft (s) does not depend ont and hence
CP can be also expressed as

CP = {
s ∈ S :∃h = h(s) �= 0 :ft1+h(s)ft2(s) = ft2+h(s)ft1(s) a.e.λ(dt1)λ(dt2)

}
.

To deal with the potential measurability problem raised by∃h, consider the set

A = {
(s, h) �= (s,0) :ft1+h(s)ft2(s) = ft2+h(s)ft1(s) a.e.λ(dt1)λ(dt2)

}
.

SinceA = {(s, h) �= (s,0) :F(s,h) = 0}, where the function

F(s,h) =
∫
T

∫
T

1{ft1+h(s)ft2(s) �=ft2+h(s)ft1(s)}(s, h, t1, t2)λ(dt1)λ(dt2)

is Borel measurable by the Fubini’s theorem [use Theorem A in Halmos (1950),
page 143, and the fact that the function(t, s) �→ ft(s) is Borel], we obtain that
the setA is Borel measurable. We can verify now thatCP is the projection
of the setA on s, namely, thatCP = projS A := {s :∃h : (s, h) ∈ A}. By using
Lemma 4.2, the setCP is ν-measurable and we can choose the functionh(s)

in (4.1) to be ν-measurable. Theν-measurability ofa(s) follows since, for
s ∈ CP , ft1+h(s)(s)ft2(s) = ft2+h(s)(s)ft1(s) a.e.λ(dt1)λ(dt2) and hencea(s) =
ft2+h(s)(s)(ft2(s))

−1 a.e.ν(ds) for somet2 ∈ T . �

The following result characterizes stationary periodic processes.

THEOREM 4.1. A SαS, α ∈ (0,2), stationary process Xα given by (1.1) with
supp{ft , t ∈ T } = S a.e. ν(ds) is a stationary periodic process if and only if

CP = S a.e. ν(ds),

where CP is the periodic component set defined in (4.1).

PROOF. Suppose first thatXα is a SαS process given by (1.1) and that it is a
stationary periodic process. Then, by Corollary 3.1 following Lemma 3.1,Xα has
a representation (3.2) on a spaceZ × [0, q(·)) and with a kernel function

gt (z, v) = b1(z)
[v+t]q(z) g

(
z, {v + t}q(z)

)
.

Since{v + (t + q(z))}q(z) = {v + t}q(z) and[v + (t + q(z))]q(z) = [v + t]q(z) + 1,
we have

gt+h(z,v)(z, v) = a(z, v)gt(z, v)
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for all (z, v) ∈ Z × [0, q(·)), where h(z, v) = q(z) and a(z, v) = b1(z). By
Theorem 1.1 in Rosiński (1995), there are measurable maps� :S �→ Z × [0, q(·))
andk :S �→ R \ {0} (or C \ {0}) such that, for a.e.ν(ds), ft (s) = k(s)gt (�(s)) a.e.
λ(dt). Then, for a.e.ν(ds),

ft+h(�(s))(s) = k(s)gt+h(�(s))(�(s)) = k(s)a(�(s))gt (�(s)) = a(�(s))ft(s)

a.e.λ(dt). This shows thatCP = S a.e.ν(ds).
Suppose now thatXα is a stationary stable process given by (1.1) with

supp{ft , t ∈ T } = S a.e.ν(ds) and such thatCP = S a.e.ν(ds). We want to show
thatXα is a stationary periodic process. The proof involves a number of steps.

STEP 1. First, we show that one may suppose without loss of generality that
the representation{ft}t∈T of the processXα is minimal withCP = S a.e. (minimal
representations are defined in Appendix B). By Theorem 2.2(a), in Rosiński (1995)
[due to Hardin (1982), Theorem 5.1], the processXα has a minimal integral
representation ∫

S̃
f̃t (s̃)M̃α(ds̃),(4.2)

where (S̃, S̃, ν̃) is some standard Lebesgue space,{f̃t}t∈T ⊂ Lα(S̃, S̃, ν̃) and
M̃α has the control measurẽν. Let C̃P be the periodic component set ofXα

defined through the representation{f̃t}t∈T . To conclude the first step, it is enough
to show thatC̃P = S̃ a.e. ν̃(ds̃). By Remark 2.5 in Rosiński (1995), there are
Borel measurable maps� :S �→ S̃ andk :S �→ R \ {0} (or C \ {0}) such that, for
anyt ∈ T ,

ft (s) = k(s)f̃t (�(s))(4.3)

a.e.ν(ds) and

ν̃ = νk ◦ �−1,(4.4)

whereνk(ds) = |k(s)|αν(ds). Since, fors ∈ CP , ft+h(s)(s) = a(s)ft (s) a.e.λ(dt),
we expect, in view of (4.3) that, for a.e.s ∈ CP ,

f̃t+h(s)(�(s)) = a(s)f̃t (�(s)) a.e.λ(dt)(4.5)

and hence that�(s) ∈ C̃P a.e.ν(ds).
To demonstrate that (4.5) follows from (4.3), consider first the setA =

{(s, h) :ft+h(s) = k(s)f̃t+h(�(s)) andft+h(s) = a(h, s)ft (s) a.e.λ(dt) for some
a(h, s) �= 0} and, by Lemma 4.2, choose aν-measurable maph(s) such that
both ft+h(s)(s) = k(s)f̃t+h(s)(�(s)) and ft+h(s)(s) = a(s)ft (s) a.e. λ(dt) for
s ∈ projS A. Observe that projS A = CP a.e. because projS{(s, h) :ft+h(s) =
a(h, s)ft (s) a.e.λ(dt) for somea(h, s) �= 0} = CP by the definition ofCP , and
{(s, h) :ft+h(s) = k(s)f̃t+h(�(s)) a.e.λ(dt)} = S × R a.e. by (4.3). This then
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implies that, for a.e.s ∈ CP , a(s)k(s)f̃t (�(s)) = a(s)ft (s) = ft+h(s)(s) =
k(s)f̃t+h(s)(�(s)) a.e.λ(dt) and hence that (4.5) holds.

Since (4.5) impliess ∈ CP ⇒ �(s) ∈ C̃P a.e.ν(ds), we haveCP ⊂ �−1(C̃P )

a.e.ν(ds). SinceS = CP a.e.ν(ds), we have

S = �−1(C̃P ) a.e.ν(ds).

This implies that̃S = C̃P a.e.̃ν(ds̃ ). Indeed, if̃ν(S̃ \ C̃P ) > 0, then by (4.4), we
haveν(�−1(S̃ \ C̃P )) > 0 as well. However, this contradictsS = �−1(C̃P ) a.e.
ν(ds) since�−1(C̃P ) and�−1(S̃ \ C̃P ) are disjoint.

REMARK 4.1. In the case whenCP is not equal toS a.e.ν(ds), we may argue
as above for the converse and show that if�(s) ∈ C̃P , thens ∈ CP a.e.ν(ds).
In other words,�−1(C̃P ) ⊂ CP a.e.ν(ds). SinceCP ⊂ �−1(C̃P ) a.e.ν(ds) as
shown above, we conclude that

CP = �−1(C̃P ) a.e.ν(ds).(4.6)

Relationship (4.6) is used in the proof of Theorem 6.1.

CONTINUATION OF STEP 1. We may thus suppose without loss of generality
that the representation{ft }t∈T of Xα is minimal and thatCP = S a.e.ν(ds).
By Theorem 3.1 in Rosiński (1995), there is a flow{φt}t∈T on (S,S, ν) and a
corresponding cocycle{at }t∈T such that, for allt ∈ T ,

ft (s) = at (s)

{
d(ν ◦ φt)

dν
(s)

}1/α

f0
(
φt(s)

)
(4.7)

a.e.ν(ds), wheref0 ∈ Lα(S,S, ν), that is, the processXα is generated by the flow
{φt}t∈T in the sense of Definition 1.1.

STEP 2. We now show that the flow{φt}t∈T is periodic. To do so, consider
the set

A = {
(s, h) ∈ S × (T \ {0}) :ft+h(s) = a(h, s)ft (s)

(4.8)
a.e.λ(dt) for somea(h, s) �= 0

}
.

Observe now that by using (4.7) and the definition of a flow and a cocycle in
Appendix A, for anyt, h ∈ T ,

ft+h(s) = ah(s)

{
d(ν ◦ φh)

dν
(s)

}1/α

ft(φh(s))

a.e.ν(ds). Then, setting

A0 = A ∩ {
(s, h) ∈ S × (T \ {0}) :ft+h(s) = b(h, s)ft

(
φh(s)

)
(4.9)

a.e.λ(dt) for someb(h, s) �= 0
}
,
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we haveA = A0 a.e.ν(ds)τ (dh), whereτ (dh) is anyσ -finite measure onT . We
now want to show that by setting

A1 = A0 ∩ {
(s, h) ∈ S × (T \ {0}) :φh(s) = s

}
,(4.10)

we also haveA1 = A0 a.e.ν(ds)τ (dh). It is enough to prove thatφh(s) = s a.e.
ν(ds)τ (dh) for (s, h) ∈ A0. Supposing that this is not true, we can findh such that
φh(s) �= s a.e. on a set of positiveν measure for(s, h) ∈ A0 [otherwise,φh(s) = s

a.e.ν(ds)τ (dh) for (s, h) ∈ A0 by the Fubini theorem]. Then, settingφh(s) = s

for (s, h) ∈ Ac
0, we claim that a.e.λ(dt),

ft

(
φh(s)

) = c(h, s)ft(s) a.e.ν(ds),(4.11)

wherec(h, s) �= 0. This is clearly true for(s, h) ∈ Ac
0 sinceφh(s) = s. This is

also true for(s, h) ∈ A0, because it follows from the definition ofA0 that the
relationshipsft+h = aft andft+h = bft ◦ φh imply ft ◦ φh = cft . We claim now
that (4.11) is true not only a.e.λ(dt), but for allt ∈ T . We only need to consider the
caseT = R, because whenT = Z, the statements “a.e.λ(dt)” and “for all t ∈ T ”
are equivalent. Lett ∈ R be fixed. Since (4.11) holds a.e.λ(dt), there is a sequence
{tn} such thattn → t and (4.11) holds witht replaced bytn. Since, by Lemma 4.3,
ftn → ft in Lα(S, ν), we can select a subsequencetn′ such thatftn′ → ft a.e. Then,
relationship (4.11) witht follows from analogous relationships witht replaced
by tn′ by letting n′ → ∞. Together with the facts thatφh(s) �= s on a set of
positive measureν andφh(s) is nonsingular, (4.11) contradicts the minimality of
the representation{ft}t∈T [see Appendix B and, in particular, condition (M2′)].
Hence,A1 = A0 a.e.ν(ds)τ (dh) and sinceA0 = A a.e.ν(ds)τ (dh) as well, we
have

A = A1 a.e.ν(ds)τ (dh).(4.12)

By Lemma 4.2, we can choose aν-measurable functionh = h(s) �= 0 defined for
s ∈ projS A1 such that(s, h(s)) ∈ A1 and, in particular,

φh(s)(s) = s.(4.13)

By using (4.12), we have projS A1 = projS A a.e. ν(ds). Since projS A = CP

by (4.1) andCP = S a.e. by assumption, we have projS A1 = S a.e.ν(ds), that
is, (4.13) holds for a.e.s ∈ S. This shows thatS = P a.e.ν(ds), whereP are the
periodic points of the flow{φt}t∈T defined by (2.1).

STEP 3. We can now easily conclude the proof. We have

Xα(t)
d=

∫
P

ft (s)Mα(ds) =: XP
α (t).

The processXP
α is generated by a periodic flow{φt |P }t∈T and hence, by

Theorem 3.1, it is a stationary periodic process.�
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EXAMPLE 4.1. Consider the processXα of Example 3.2 defined through the
kernel

ft(v, z) = cos(v + zt), v ∈ (0,2π), z ∈ R andt ∈ R.

Sinceft+2πz−1(v, z) = ft (v, z) for all v ∈ (0,2π), z ∈ R, the periodic component
setCP associated with the representation{ft}t∈R is the full spaceR × (0,2π).
Hence, Theorem 4.1 implies that, as already shown in Example 3.2, the process
Xα is a stationary periodic process.

EXAMPLE 4.2. Consider the process

Xα(t) =
∫ 1

0
{v + t}1Mα(dv), t ∈ R,(4.14)

whereMα has control measuredv. Settingft(v) = {v + t}1 for the kernel ofXα ,
we see thatft+1(v) = ft(v) for all v ∈ [0,1). Since the periodic component setCP

associated with the representation{ft } is the full space[0,1), Xα is a stationary
periodic process. This fact can also be seen directly from the representation (3.2)
which becomes that ofXα whenZ = {1}, b1(1) = 1, q(1) = 1 andg(1, v) = v.

Observe also that the representation (4.14) is minimal (see Appendix B). Indeed,
taking t ∈ (0,1), sincef0(v) < f1−t (v) for v ∈ [0, t) and f1−t (v) < f0(v) for
v ∈ [t,1), we have that(f1−t /f0)

−1([1,∞)) = [0, t) and hence that[0, t) ∈
σ {ft/fs, s, t ∈ R}. It follows that B([0,1)) = σ {ft/fs, s, t ∈ R}. The condition
supp{ft , t ∈ R} = [0,1) is obviously satisfied.

Since the kernel of the stationary periodic processXα in Example 4.2 satisfies
relationshipft+1(v) = ft (v) for all v ∈ [0,1), t ∈ R, we haveXα(t) = Xα(t + 1)

for all t ∈ R, and hence the processXα is not ergodic. Since the kernels of other
stationary periodic processes are also periodic in nature, we can expect that all
these processes are not ergodic either. The following theorem shows that this is
indeed the case.

THEOREM 4.2. The SαS, α ∈ (0,2), stationary periodic processes are not
ergodic.

PROOF. In view of Corollary 3.1, we can suppose that a stationary periodic
process has a representation (3.2). We may suppose without loss of generality that
the measureσ(dz)λ(dv) is finite onS := Z × [0, q(·)), because, otherwise, we
may replaceσ(dz)λ(dv) by a finite measurek(z)ασ (dz)λ(dv), wherek(z) > 0
satisfies∫

Z

∫
[0,q(z))

k(z)ασ (dz)λ(dv) =
∫
Z

k(z)αλ
([0, q(z))

)
σ(dz) < ∞,

and define the processXα as in (3.2) withg(z, {v + t}q(z)) divided byk(z). Then
a stationary periodic process (3.2) is generated by a flowφt (z, v) = (z, {v + t}q(z))



2246 V. PIPIRAS AND M. S. TAQQU

on a spaceS = Z×[0, q(·)) such that, without loss of generality,(σ ⊗ λ)(S) < ∞.
Observe that the measureν := σ ⊗ λ is invariant under the flowφt sinced(ν ◦
φt )/dν = 1. Sinceν(S ∩ φtS) = ν(S) is not only finite but also positive and does
not depend ont ∈ T , we have limt→∞ ν(S ∩ φtS) �= 0. Applying Theorem 4.1 in
Gross (1994) [see also Corollary 2.1 of Rosiński and Samorodnitsky (1996)], we
conclude that a stationary periodic process is not mixing. Applying the same result
of Gross together with a statement at the top of page 279 in Gross (1994) [see also
Remark 2.3 of Rosiński and Samorodnitsky (1996)], it follows that it is not weak-
mixing either and since, for stable processes, weak mixing and ergodicity coincide
[see Samorodnitsky and Taqqu (1994), page 580], it follows that the process is not
ergodic. �

Finally, we establish the results used in the proofs of Lemma 4.1 and
Theorem 4.1.

LEMMA 4.2. Let (S1,S1, ν1) and (S2,S2, ν2) be two standard Lebesgue
spaces and let (S1 × S2,S1 ⊗ S2, ν1 ⊗ ν2) be their Cartesian product. Let also
A ∈ S1 ⊗ S2 be a Borel set of S1 × S2. Then the set

projS1
A := {s1 ∈ S1 :∃ s2 ∈ S2 : (s1, s2) ∈ A}

is ν1-measurable and there is a ν1-measurable function h : projS1
A �→ A such that

(s1, h(s1)) ∈ A for all s1 ∈ projS1
A.

PROOF. The set projS1
A is ν1-measurable because the map projS1

(s1, s2) = s1
is continuous and the setA can be approximated(ν1 ⊗ ν2)-a.e. by rectangles
whose projections are measurable. We show next that there is aν1-measurable
maph : projS1

A �→ A such that(s1, h(s1)) ∈ A for s1 ∈ projS1
A. To do so, we use

Theorem 3.4.3 in Arveson (1976), page 77, which concerns the so-called cross
sections of Borel maps. Consider the mapf = projS1

:A �→ f (A) = projS1
A.

The image setf (A), together with the induced Borel structureF (A) = {f (A) ∩
B :B ∈ S1}, is a Borel space. Moreover, this Borel space is countably separated
[as defined in Arveson (1976), page 69] since the underlying standard Lebesgue
space(S1,S1, ν1) is countably separated. The Borel setA, equipped with the
Borel structureA = {A ∩ B :B ∈ S1 ⊗ S2}, is also a Borel space. It is an analytic
Borel space [as defined in Arveson (1976), page 71] by using the Corollary in
Arveson (1976), page 65, and the fact thatA is a Borel set. Sincef −1(f (A)∩B) =
A ∩ (B × R) ∈ A for all B ∈ S1, the mapf : (A,A) �→ (f (A),F (A)) is Borel.
It follows from Theorem 3.4.3 in Arveson (1976) that there is aν1-measurable
mapg :f (A) �→ A such thatf (g(s1)) = s1. Sincef is a projection, we have that
g(s1) = (s1, h(s1)) for someν-measurable maph(s1) and hence that there is a
ν-measurable maph(s1) such that(s1, h(s1)) ∈ A. �

The next result follows from Surgailis, Rosiński, Mandrekar and Cambanis
(1998), who considered measurable stationary increments processes. We present
their proof here for the convenience of the reader.
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LEMMA 4.3. Every measurable stationary process {X(t)}t∈R is continuous in
probability.

PROOF. Consider‖ξ‖ = E min(|ξ |,1) defined for random variablesξ ∈
L0(�,P ). (We use‖ · ‖ as a convenient notation.) To show that a process
{X(t)}t∈R is continuous in probability, it is enough to prove that‖X(t)−X(s)‖ →
0 ass → t .

Fix an arbitrary smallε > 0. For t ∈ R, let Bt = {s ∈ R :‖X(t) − X(s)‖ < ε}.
Since the processX is assumed measurable, by Theorem 3 in Cohn (1972), the
mapR � t �→ X(t) is Borel and has a separable range. Hence, we can choose a
sequence{tn} ⊂ R such that{Btn} are Borel andR = ⋃

n Btn . Then, there istn such
that the Lebesgue measure ofBtn is positive. By the Steinhaus lemma [see, e.g.,
Bingham, Goldie and Teugels (1987), page 2], the setB = Btn − Btn (of pointsz

such thatz = x − y, x, y ∈ Bn) contains an open interval(−δ, δ) with someδ > 0.
If |s − t| < δ, thens − t = u − v for someu, v ∈ Btn , and hence

‖X(t) − X(s)‖ = ‖X(u) − X(v)‖ ≤ ‖X(u) − X(tn)‖ + ‖X(v) − X(tn)‖ < 2ε,

where we used the stationarity ofX and the fact thatu, v ∈ Btn . This shows that
‖X(t) − X(s)‖ → 0 ass → t . �

5. Characterization of stationary cyclic processes. We know from Sec-
tion 4 how to identify stationary periodic processes. We want to identify stationary
cyclic processes, namely stationary periodic processes without a harmonizable (or
trivial) component (see Definition 3.2). Rosiński (1995) showed that harmonizable
processes (or trivial processes in the real-valued case) can be identified through the
harmonizable (or trivial) component set

CF = {
s ∈ S :ft1+t2(s)f0(s) = ft1(s)ft2(s) a.e.λ(dt1)λ(dt2)

}
.(5.1)

LEMMA 5.1. We have

CF ⊂ CP a.e. ν(ds).(5.2)

PROOF. By Lemma 5.5 in Rosiński (1995),f0 �= 0 a.e. onCF . Hence, by
fixing t1 = h in the definition (5.1) ofCF , we get that, for a.e.s ∈ CF , ft+h(s) =
a(s)ft (s) a.e.λ(dt) with a(s) = fh(s)/f0(s). This shows (5.2). �

Since stationary cyclic processes are stationary periodic processes without a
harmonizable (or trivial) component, we expect that stationary cyclic processes
can be identified through the setCL = CP \ CF .

DEFINITION 5.1. A cyclic component set of a stationary stable processXα

having a representation (1.1) is defined as

CL = CP \ CF ,(5.3)

where the setsCP andCF are defined by (4.1) and (5.1), respectively.
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The next result shows that stationary cyclic processes can indeed be identified
through the cyclic component setCL.

THEOREM 5.1. A SαS, α ∈ (0,2), stationary process Xα given by (1.1) with
supp{ft , t ∈ T } = S a.e. ν(ds) is a stationary cyclic process if and only if

CL = S a.e. ν(ds),

where CL is the cyclic component set defined in (5.3).

PROOF. If Xα is a stationary cyclic process, then it is a stationary periodic
process as well. However, by Theorem 4.1,CP = S a.e.ν(ds). By (5.3), we have
CP = CF + CL. SinceXα does not have a harmonizable (or trivial) component,
Rosínski (1995) results show thatCF = ∅ a.e.ν(ds) and hence thatCL = S a.e.
ν(ds). Conversely, ifCL = S a.e.ν(ds), thenCF = ∅ a.e.ν(ds) andCP = S a.e.
ν(ds). Hence, by Theorem 4.1, the processXα is a stationary periodic process.
SinceCF = ∅, by Rosínski (1995), the processXα does not have a harmonizable
(or trivial) component. �

SinceCF ⊂ CP by Lemma 5.1, we may ask how the definition (5.3) of the set
CF relates to the definition (4.1) of the periodic component setCP . The following
result provides an answer.

PROPOSITION5.1. We have

CF = {
s ∈ S :∃T \ {0} � hn = hn(s) → 0 as n → ∞ :

(5.4)
ft+hn(s) = a(hn, s)ft (s) a.e. λ(dt) for some a(hn, s) �= 0

}
a.e. ν(ds) when T = R and

CF = {s ∈ S :ft+1(s) = a(s)ft(s) a.e. λ(dt) for some a(s) �= 0}(5.5)

a.e. ν(ds) when T = Z.

PROOF. We first consider the caseT = R. Denote the set on the right-hand
side of (5.4) byC0

F . Let us first show thatCF ⊂ C0
F a.e.ν(ds). As shown in

the proof of Theorem 5.7 in Rosiński (1995), for eacht ∈ T , ft(s) = eitk(s)f0(s)

a.e.s ∈ CF , wherek(s) is some function [in the real-valued case, the relationship
is ft(s) = f0(s)]. By the Fubini’s theorem, we also have that, for a.e.s ∈ CF ,
ft (s) = eitk(s)f0(s) a.e.λ(dt). Then, since for a.e.s ∈ CF , ft+h(s) = eihk(s)ft (s)

a.e. λ(dt) for any h ∈ R, it holds in particular for a sequencehn (not even
depending ons) satisfyinghn → 0. Settinga(hn, s) = eihnk(s), we obtainCF ⊂
C0

F a.e.ν(ds).
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We now show thatC0
F ⊂ CF a.e.ν(ds). Let {f̃t}t∈T be the kernel in a minimal

integral representation (4.2) for the processXα . Let alsoC̃F andC̃0
F be the sets

defined in the same way asCF andC0
F , but by using only the kernel̃ft . We can

show as in the proof of Theorem 4.1 thatC0
F = �−1(C̃0

F ) a.e.ν(ds), where� is
the map appearing in (4.3). Moreover, as shown in the proof of Theorem 5.7
in Rosínski (1995),CF = �−1(C̃F ) a.e.ν(ds). It is then enough to show that
C̃0

F ⊂ C̃F a.e. or, equivalently, thatC0
F ⊂ CF a.e., but where{ft}t∈T is supposed

to be a minimal representation. If{ft }t∈T is minimal, then it is generated by a
flow {φt }t∈T in the sense of Definition 1.1 [Theorem 3.1 in Rosiński (1995)]. By
Lemma 5.2, the setC0

F is a.e. invariant under the flow{φt }t∈T . The process∫
C0

F

ft (s)Mα(ds)

is then stationary, its representation{ft |C0
F
}t∈T is minimal and is generated by the

flow {φt |C0
F
}t∈T . Arguing as in the proof of Theorem 4.1 [see (4.13)], we can show

that, for a.e.s ∈ C0
F ,

φhn(s)(s) = s for T \ {0} � hn(s) → 0.(5.6)

In view of the special representation (A.2) of a flow without fixed points, the last
relationship cannot hold for points which are not fixed and hence we obtain that, for
a.e.s ∈ C0

F , φt (s) = s for all t ∈ T . Then, by Proposition 5.8 in Rosiński (1995),
C0

F ⊂ CF a.e.ν(ds).
The caseT = Z can be proved in a similar way. The main difference is that (5.6)

is replaced byφ1(s) = s for a.e.s ∈ C0
F . This shows thatφt(s) = s a.e.s ∈ CF for

all t ∈ T and henceC0
F ⊂ CF a.e.ν(ds) as well. �

The setsCF andCP are explicitly identified by (5.1) and (4.1), respectively.
Proposition 5.1 yields the following explicit identification ofCL = CP \ CF .

COROLLARY 5.1. We have

CL = {
s ∈ S :∃h0 = h0(s) ∈ T \ {0},�T \ {0} � hn = hn(s) → 0 as n → ∞ :

(5.7)
ft+hn(s) = a(hn, s)ft (s) a.e. λ(dt), n ≥ 0, for some a(hn, s) �= 0

}
a.e. ν(ds) when T = R and

CL = {
s ∈ S :∃h = h(s) ∈ T \ {0} :ft+h(s) = a(h, s)ft (s)

a.e. λ(dt) for some a(h, s) �= 0
}

(5.8)

∩ {s ∈ S :ft+1(s) �= a(s)ft (s) a.e. λ(dt) for all a(s) �= 0}
a.e. ν(ds) when T = Z.
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EXAMPLE 5.1. The real part of a harmonizable processXα of Examples
3.2 and 4.1 is a stationary cyclic process, becauseCP = R × [0,2π) as shown
in Example 4.1 andCF = ∅ a.e. by using Proposition 5.1. To see thatCF = ∅
a.e., observe that the conditionft+h(s) = a(h, s)ft (s) a.e.dt for the processXα

becomes cos(v+z(t +h)) = a(h, z, v)cos(v+zt) a.e.dt . After fixing v andz �= 0,
we get cos(w + zh) = a(h, z)cos(w) a.e.dw. This holds only forh = πk/z �= 0,
k ∈ Z \ {0} [with a(h, z) = (−1)k ], which cannot be taken arbitrarily small.

The process of Example 4.2 is also a stationary cyclic process sinceCF = ∅ as
implied by Proposition 5.1.

Finally, we establish an auxiliary result used in the proof of Proposition 5.1.

LEMMA 5.2. If {ft}t∈T is a representation of a SαS, α ∈ (0,2), stationary
process generated by a flow {φt }t∈T in the sense of Definition 1.1and C0

F denotes
the set on the right-hand side of either (5.4) or (5.5), then C0

F is a.e. invariant
under the flow {φt}t∈T , that is, ν(C0

F �φ−1
t (C0

F )) = 0 for all t ∈ T .

PROOF. We have to show that fort0 ∈ T , C0
F = φ−1

t0
(C0

F ) a.e., but since the
flow {φt}t∈T satisfies the group property, it is enough to show that fort0 ∈ T ,
C0

F ⊂ φ−1
t0

(C0
F ), that is,s ∈ C0

F impliesφt0(s) ∈ C0
F a.e.ν(ds). We consider only

the caseT = R. Observe that by using (1.4), fort, h ∈ T ,

ft+t0+h(s) = at0(s)

{
d(ν ◦ φt0)

dν
(s)

}1/α

ft+h

(
φt0(s)

)
(5.9)

a.e.ν(ds). By Lemma 4.2 above, we can choose a sequence ofν-measurable
functionshn :C0

F �→ T \ {0} such thathn(s) → 0 and, fors ∈ C0
F , ft+t0+hn(s)(s) =

an(s)ft+t0(s) a.e. λ(dt) for some an(s) �= 0, and that for a.e.s ∈ C0
F , the

relationship (5.9) holds a.e.λ(dt) with h replaced byhn(s). Since we also have
that by (5.9), for a.e.ν(ds),

ft+t0(s) = at0(s)

{
d(ν ◦ φt0)

dν
(s)

}1/α

ft

(
φt0(s)

)
a.e.λ(dt), it follows that, for a.e.s ∈ C0

F , ft+hn(s)(φt0(s)) = bn(s)ft(φt0(s)) a.e.
λ(dt) for somebn(s) �= 0, that is,φt0(s) ∈ C0

F a.e.ν(ds). �

6. Further decomposition of stationary stable processes. In this section,
we refine the decomposition (1.13) of Rosiński (1995) by showing that (1.18)
holds. We first need to recall some basic facts behind the decompositions (1.6)
and (1.13) found in Rosiński (1995). Consider a SαS stationary processXα given
by (1.1) with supp{ft , t ∈ T } = S a.e.ν(ds). Let

D =
{
s ∈ S :

∫
T

|ft (s)|αλ(dt) < ∞
}

(6.1)
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and

C =
{
s ∈ S :

∫
T

|ft (s)|αλ(dt) = ∞
}
.(6.2)

If, in addition, the processXα is generated by a flow{φt}t∈T in the sense of
Definition 1.1, thenD andC are (a.e.) the dissipative and the conservative parts of
the flow{φt}t∈T , respectively [see Rosiński (1995)]. Recall also the definition (5.1)
of a harmonizable (or trivial) component setCF . If the processXα is generated by
a flow {φt}t∈T and if its representation is minimal (in the sense of Appendix B),
thenCF = F a.e., whereF is the set of the fixed points defined by (2.2). We can
show thatCF ⊂ C a.e. [see Rosiński (1995)].

The processesXD
α andXC

α in (1.6) are then defined as

XD
α (t) =

∫
D

ft (s)Mα(ds), XC
α (t) =

∫
C

ft (s)Mα(ds),(6.3)

that is, by replacing the full spaceS in (1.1) by its disjoint subsetsD and C,
respectively. The other two processes on the right-hand side of (1.13) are defined
as

XF
α (t) =

∫
CF

ft (s)Mα(ds), XC\F
α (t) =

∫
C\CF

ft (s)Mα(ds).(6.4)

As one can see from these definitions, the idea behind decompositions
(1.6) and (1.13) is to partition the underlying spaceS into appropriately chosen
subsets and then define the processes in a decomposition as integrals over these
subsets. To get the decomposition (1.18), we pursue the same idea. We use the
following lemma.

LEMMA 6.1. We have

CP ⊂ C a.e. ν(ds),(6.5)

where the sets CP and C are defined by (4.1)and (6.2).

PROOF. Observe that, fors ∈ CP ,∫
T

|ft(s)|αλ(dt) =
∫
[0,|h(s)|)

|ft (s)|αλ(dt)

( ∞∑
n=−∞

|a(h, s)|αn

)
= ∞.

Hences ∈ C by (6.2). �

By using Lemmas 5.1 and 6.1, and the definition ofX
C\F
α in (6.4), we can write

XC\F
α

d= XL
α + XC\P

α ,(6.6)

where

XL
α (t) =

∫
CL

ft (s)Mα(ds), XC\P
α (t) =

∫
C\CP

ft (s)Mα(ds).(6.7)
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The following result refines the decomposition (1.13) of Rosiński (1995). We say
that the decomposition (6.6) is unique in distribution if the distribution of its two
components does not depend on the representation (1.1) of the processXα . We
also say that a stable stationary process does not have a periodic component if it
cannot be represented as the sum of two independent SαS processes, one of which
is a nondegenerate stationary periodic process.

THEOREM 6.1. The decomposition (6.6) is unique in distribution. Moreover,
the process XL

α is a stationary cyclic process. The process X
C\P
α is a SαS

stationary process generated by a conservative flow without a periodic component.

PROOF. The idea is similar to that of the proof of Theorem 5.7 in Rosiński
(1995). Let {f̃t }t∈T be a minimal integral representation (4.2) for the process
Xα so that, in particular, relationships (4.3) and (4.4) hold. Let alsoC̃, C̃F , C̃L

and C̃P be the sets defined in (6.2), (5.1), (5.3) and (4.1), respectively, by using
the functionsf̃t . Let alsoX̃L

α and X̃
C\P
α be the two components on the right-

hand side of the decomposition (6.6) for the processXα obtained by using the

setsC̃, C̃F , C̃L, C̃P and the kernel̃ft . It is enough to show thatXL
α

d= X̃L
α and

X
C\P
α

d= X̃
C\P
α . As shown in the proofs of Theorems 4.3 and 4.7 in Rosiński

(1995) and in (4.6) in Theorem 4.1, we haveC = �−1(C̃), CF = �−1(C̃F ) and
CP = �−1(C̃P ) a.e.ν(ds), where� is the map appearing in (4.3). Hence,CL =
CP \ CF = �−1(C̃P \ C̃F ) = �−1(C̃L) andC \ CP = �−1(C̃ \ C̃P ) a.e.ν(ds).
The two required identities in distribution above follow from these relationships
by using (4.3), (4.4) and a change of variables as at the end of the proof of
Theorem 4.3 in Rosiński (1995).

Let us show now that the processXL
α is a stationary cyclic process. By using

the preceding discussion, we may suppose without loss of generality that the
representation{ft }t∈T for the processXα is minimal and hence, by Theorem 3.1
in Rosínski (1995), generated by a flow{φt}t∈T in the sense of Definition 1.1.
By using Lemma 6.2, the setCP is a.e. invariant under the flow{φt}t∈T . Since
the setCF is a.e. invariant under the flow by Lemma 5.6 in Rosiński (1995),
the setCL = CP \ CF is a.e. invariant under the flow as well. Consequently, the
processXL

α defined on the setCL is stationary. It is a stationary cyclic process by
construction in view of Theorem 5.1.

We now focus on the processXC\P
α . SinceXL

α and X
C\P
α are independent

and sinceXC\F
α and XL

α are both SαS, stationary and conservative, so is the

processXC\P
α [“conservative” follows from the uniqueness in distribution of the

decomposition (1.6)]. It remains to show thatX
C\P
α does not have a periodic

component. We do so by adapting the end of the proof of Theorem 5.7 in Rosiński
(1995) to our case. Suppose thatX

C\P
α admits a periodic component, that is,

XC\P
α

d= V + W,



STABLE STATIONARY PROCESSES 2253

where V and W are independent SαS processes andW is a nondegenerate
stationary periodic process. Let{f C\P

t }t∈T be the representation of the process
X

C\P
α , that is, the restriction offt to C \ CP , and let{gt }t∈T be the representation

of the processW defined in (3.2) on the space(Z × [0, q(·)), σ (dz)λ(dv)) by
using functionsb1(z), q(z) andg(z, v). By using Theorem 1.1 in Rosiński (1995),
we obtain that

gt (z, v) = h(z, v)f
C\P
t

(
�(z, v)

)
a.e.λ(dt)σ (dz)λ(dv),(6.8)

where� :Z × [0, q(·)) �→ C \ CP andh :Z × [0, q(·)) �→ R or C are some maps.
Sinceσ is not a zero measure (otherwiseW would be degenerate), then (6.8) is
a contradiction to the fact that�(z,u) ∈ C \ CP in view of the definitions of a
stationary periodic process andCP . �

The following result was used in the proof of Theorem 6.1.

LEMMA 6.2. If {ft }t∈T is a representation of a SαS, α ∈ (0,2), stationary
process generated by a flow {φt}t∈T in the sense of Definition 1.1, then the
periodic component set CP in (4.1) is a.e. invariant under the flow {φt }t∈T , that is,
ν(CP �φ−1

t (CP )) = 0 for all t ∈ T .

PROOF. The proof of this lemma is similar and simpler than that of
Lemma 5.2, and hence is omitted.�

The real part of a harmonizable process in (3.13) and the process in Example 4.2
are examples of stationary cyclic processesXL

α in the decomposition (6.6) (see

Example 5.1). We now provide examples of the “fourth” kind of processesX
C\P
α

in that decomposition. We consider the caseT = R only. Extensions toT = Z are
elementary.

EXAMPLE 6.1. Let{Y (t)}t∈R be a stationary process which has càdlàg (that
is, right-continuous and with limits from the left) paths, satisfiesP (|Y (t)| < c) < 1
for all c > 0, E|Y (t)|α < ∞ and is ergodic. Let also� = {w} be the space of
càdlàg functions onR in the real-valued case, let� = {w = w1 + iw2} be the
space of càdlàg functionsw1 andw2 on R in the complex-valued case, and let
P (dw) be a probability measure on the space� corresponding to the processY .
Consider now the process

Xα(t) =
∫
�

ft (w)Mα(dw), t ∈ R,(6.9)

where

ft(w) = w(t) and Mα(dw) has the control measureP (dw).
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We can show thatXα is a well-defined SαS stationary process. WhenY is a real-
valued Gaussian process, the process (6.9) is called a SαS sub-Gaussian stationary
process [see, e.g., Samorodnitsky and Taqqu (1994)]. Ergodicity ofY is equivalent
to the continuity of its spectral measure [see page 163 in Rozanov (1967)]. When
Y is a Sα′S stationary process withα < α′, the process (6.9) is called a substable
process [page 143 in Samorodnitsky and Taqqu (1994)]. To prove thatXα is indeed
the “fourth kind” process in the decomposition (6.6), it is enough to show thatXα

is generated by a conservative flow and thatCP = ∅ a.e.dP .
Since �, equipped with the usual SkorokhodJ1-topology, is a complete

separable metric space, the space(�,F ,P ), whereF is theσ -field of the Borel
sets, is standard Lebesgue. Observe now that

ft (w) = w(t) = (
φt(w)

)
(0) = f0

(
φt (w)

)
,

whereφt :� �→ � is defined by(φt (w))(s) = w(t + s). The collection of maps
{φt}t∈R is a measurable flow on a standard Lebesgue space� and hence, in view
of Definition 1.1, the processXα is generated by the flow{φt}t∈R. The flow is
conservative since it is measure preserving and the measureP on � is finite (in
other words, there can be no wandering set of positive measure).

Let us show now thatCP = ∅ a.e.dP . By the definition (4.1) ofCP , we have

CP = {w ∈ � :∃h = h(w) �= 0 :w(t + h) = a(h,w)w(t)

a.e.dt for somea(h,w) �= 0}.
If w ∈ CP and|a| �= 1, thenw(t) → 0 when eithert → +∞ a.e.dt or t → −∞
a.e.dt (t → +∞ a.e.dt , for example, means thatt → +∞ on a setB such that
Bc = ∅ a.e.dt). In either case, theP measure of such sets is zero. For example, if
w(t) → 0 ast → +∞ a.e.dt , thenT −1 ∫ T

0 1{|w(t)|<1}(t) dt → 1 asT → ∞. If the
P measure of that set is positive, this would contradict the ergodicity according to
which the limit isP (|w(0)| < 1) < 1. If w ∈ CP and|a| = 1, thenw is bounded
a.e.dt on R. Supposing thatP (w ∈ CP , |a| = 1) > 0, we obtain a contradiction
in the same way as above by considering the integralT −1 ∫ T

0 1{|w(t)|<N}(t) dt for
large enoughN . Hence,P (CP ) = 0.

If we work exclusively with minimal representations of stationary stable
processes, then we can relate the setCL = CP \ CF used in the definition (6.7) of
the processXL

α to the set of cyclic pointsL of the underlying flow. This extends to
the cyclic case, Proposition 5.8, in Rosiński (1995), where the setCF is identified
as the set of the fixed pointsF of the flow.

PROPOSITION 6.1. If the representation {ft }t∈T is minimal for the process
Xα and {φt }t∈T is the flow related to {ft}t∈T in the sense of Definition 1.1,then

CL = L a.e. ν(ds),(6.10)

where L is the set of cyclic points of the flow {φt}t∈T defined in (2.3).
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PROOF. By Proposition 5.8 in Rosiński (1995),CF = F a.e., whereF is the
set of the fixed points of the flow. It is therefore enough to prove thatCP = P a.e.
By using the fact that{ft |CP

}t∈T is a minimal representation for a SαS process
generated by the flow{φt |CP

}t∈R and arguing as in the proof of Theorem 4.1, we
can deduce [see (4.13)] thatφh(s)(s) = s for a.e.s ∈ CP . This shows thatCP ⊂ P

a.e. Suppose, on the other hand, thatν(P \ CP ) > 0 and consider the process∫
P \CP

ft (s)Mα(ds).(6.11)

SinceP andCP are a.e. invariant under the flow, the process (6.11) is stationary.
Since the points ofP are periodic for the flow, so are those ofP \ CL. Hence
the stationary process (6.11) is periodic by Theorem 3.1. This shows that the
processXC\P

α in the decomposition (6.6) has a nontrivial periodic component
which contradicts Theorem 6.1.�

COROLLARY 6.1. Under the assumptions of Proposition 6.1, we also have
CP = P a.e. ν(ds), where P is the set of periodic points of the flow.

COROLLARY 6.2. A SαS, α ∈ (0,2), stationary process Xα with a minimal
representation (1.1) is a stationary periodic (cyclic, resp.) process if and only if

S = P ν-a.e. (S = L ν-a.e., resp.),

where P and L are the periodic and the cyclic points of the generating flow,
respectively. The equivalent is true if and only if the generating flow is periodic
(cyclic, resp.).

PROOF. Consider the case of stationary periodic processes. IfS = P ν-a.e.,
then S = CP ν-a.e. since, by Corollary 6.1,CP = P ν-a.e. for minimal
representations. Hence, by Theorem 4.1, the processXα is a stationary periodic
process. Conversely, ifXα is a stationary periodic process with a minimal
representation (1.1), thenCP = S ν-a.e. by Theorem 4.1 andCP = P ν-a.e. by
Corollary 6.1. This impliesS = P ν-a.e. The case of stationary cyclic processes
can be considered in the same way by using Theorem 5.1 and Proposition 6.1.�

Gathering the previous results, we obtain the following unique decomposition
of SαS stationary processes into four independent components.

THEOREM 6.2. Let {Xα(t)}t∈T be a SαS, α ∈ (0,2), stationary process with
a representation (1.1). Then the process Xα can be decomposed uniquely in
distribution into four independent processes

Xα
d= X(1)

α + X(2)
α + X(3)

α + X(4)
α ,(6.12)
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where

X(1)
α (t) = XD

α (t) =
∫
D

ft (s)Mα(ds),

X(2)
α (t) = XF

α (t) =
∫
CF

ft (s)Mα(ds),

X(3)
α (t) = XL

α (t) =
∫
CL

ft (s)Mα(ds),

X(4)
α (t) = XC\P

α (t) =
∫
C\CP

ft (s)Mα(ds),

and the sets D, C, CF , CL and CP are defined in (6.1), (6.2), (5.1), (5.3)and (4.1),
respectively. Here:

1. The process X
(1)
α has a mixed moving average representation (1.7) and is

generated by a dissipative flow.
2. The process X

(2)
α is a harmonizable process with the representation (1.9) in the

complex-valued case and is a trivial process with the representation (1.11) in
the real-valued case.

3. The process X
(3)
α is a stationary cyclic process in the sense of Definition 3.2.

4. The process X
(4)
α is a stationary process generated by a conservative flow

without a periodic component.

If the process Xα is generated by a flow {φt}t∈T , then the sets D and C

are identical to the dissipative and the conservative parts of the flow {φt }t∈T ,
respectively. If, in addition, the representation of the process Xα is minimal, then
the sets CF , CL and CP are the fixed, cyclic and periodic points of the flow {φt }t∈T ,
respectively.

PROOF. The theorem follows from the decomposition of a SαS stationary
process into three components in Rosiński (1995), Theorem 6.1, Proposition 6.1
and Corollary 6.1. �

APPENDIX A

Flows on a standard Lebesgue space. We provide here a number of
definitions related to flows which are used throughout the paper. A measure space
(S,S, ν) is called astandard Lebesgue space when(S,S) is a standard Borel space
equipped with aσ -finite measureν. A standard Borel space is a measurable space
measurably isomorphic (i.e., there is a one-to-one, onto and bimeasurable map) to
a Borel subset of a complete separable metric space. We may thus suppose without
loss of generality that a standard Borel space is a subset of a complete separable
metric space. The correspondingσ -field S is defined as the smallestσ -field that
contains all Borel sets. Standard Lebesgue spaces (or standard Borel spaces) are
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convenient to work with, have nice properties and are widely used in ergodic theory
[see Walters (1982) and Petersen (1983)] and in other areas of mathematics [see
Zimmer (1984), Arveson (1976) and Mackey (1957)]. They were used by Rosiński
(1995) and Pipiras and Taqqu (2002a, b) in the context of stable processes. The
Euclidean space equipped with a Lebesgue measure, for example, is a standard
Lebesgue space.

A flow {φt}t∈T with T = R or T = Z on a standard Lebesgue space(S,S, ν) is
a collection of deterministic mapsφt : (S,S) �→ (S,S) such thatφ0(s) = s and

φt1+t2(s) = φt1

(
φt2(s)

)
for all t1, t2 ∈ T, s ∈ S.(A.1)

A flow {φt}t∈T is callednonsingular if, for every t ∈ T , ν(N) = 0 if and only
if ν(φ−1

t (N)) = 0. It is called measurable if the map φt(s) :T × S �→ S is
measurable.

It is known that a measurable nonsingular flow on a space(S,S, ν) has the
so-calledHopf decomposition [see Krengel (1985), page 17, Rosiński (1995),
page 1171, or Pipiras and Taqqu (2002a, b)]. The Hopf decomposition is a (a.e.)
partition of the spaceS into two disjoint setsC and D. The setD, called a
dissipative part of the flow, can be written asD = ∑

k∈Z φk
1(B) for some wandering

setB. [“Wandering” means that the setsφm
1 (B) andφn

1(B) are disjoint form �= n.]
The setC, called aconservative part of the flow, is such that it has no wandering
set of positive measure. Moreover, the setsC andD can be taken to be invariant
under the flow [i.e.,φ−1

t (C) = C and φ−1
t (D) = D for all t ∈ T ]. The flow

{φt}t∈T is called conservative (dissipative, resp.) ifS = C (S = D, resp.) a.e. For a
general flow{φt}t∈T , its restriction{φt |C}t∈T ({φt |D}t∈T , resp.) is a conservative
(dissipative, resp.) flow.

In this work, we use the notion of aspecial flow {φ̃t}t∈T . Informally, the flow
φ̃t (y, u) is defined on the set of points

� = {(y,u) : 0≤ u < r(y), y ∈ Y } = Y × [0, r(·)),
wherer(y) is a positive function. Plotting(y,u) in two dimensions, we can view
the flowφ̃t as moving up vertically at constant speed until it reaches the levelr(y),
and then jumps back to a point(y′,0) before it renews its vertical climb, this time
from the pointy′ (see Figure 1). Thus, if we focus only on the horizontalY axis,
the flow starting aty moves toy′ = Vy, then toV 2y, . . . , V ny, . . . . Since the flow
φ̃t moves constantly, observe that it has no fixed points.

The flow φ̃t is defined formally as follows. Let(Y,Y, τ ) be a standard
Lebesgue space, letV be a one-to-one, onto, bimeasurable and nonsingular map
of Y onto itself, and letr be a positive measurable function onY such that∑∞

k=0 r(V ky) = ∑−1
k=−∞ r(V ky) = ∞. Set � = {(y,u) : 0 ≤ u < r(y), y ∈ Y },

E = Y ⊗ B([0, r(·))) and letP be a measure on(�,E) such thatdP (y,u) =
p(y,u)τ (dy) du andP (�) = 1. Consider now the map defined on� by

φ̃t (y, u) = (
V ny,u + t − rn(y)

)
(A.2)
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FIG. 1. View the flow φ̃t as moving up vertically at constant speed until it reaches the level r(y)

and then jumps back to a point (y′,0) before it renews its vertical climb, this time from the point y′.

for

0 ≤ u + t − rn(y) < r(V ny),

where rn(y) = ∑n−1
k=0 r(V ky) if n ≥ 1, rn(y) = 0 if n = 0, and rn(y) =∑−1

k=n r(V ky) if n ≤ −1. We can verify that{φ̃t}t∈R is a (measurable, nonsingular)
flow on (�,E ,P ). It is called a special flow built under the functionr . According
to Theorem 3.1 in Kubo (1969), a (measurable, nonsingular) flow{φt}t∈R without
fixed points on a standard Lebesgue space is null isomorphic (mod 0) to some
special flow{φ̃t }t∈R built under the functionr .

In addition to flows, we also use a related functional called acocycle. Let A

be a second countable group, that is, a topological group that has a countable
base for the topology. For example,A = {−1,1} or A = {w : |w| = 1} with a
multiplication operation andA = R with an addition operation. A measurable map
at (s) :T × S �→ A is called a cocycle for a measurable flow{φt}t∈T if

at1+t2(s) = at1(s)at2

(
φt1(s)

) ∀ t1, t2 ∈ T, s ∈ S.(A.3)

In this paper, we use exclusively the casesA = {−1,1} andA = {w : |w| = 1}, but
cocycles are typically associated in the literature [see Zimmer (1984)] with second
countable groups.

APPENDIX B

Minimal representations for stable processes. Finally, we define minimal
integral representations of stable processes which play a central role in relating
stable processes to flows. An integral representation{ft }t∈T ⊂ Lα(S,S, ν) is
called minimal for the processXα given by (1.1) if:
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(M1) supp{ft , t ∈ T } = S ν-a.e.;
(M2) σ {fu/fv,u, v ∈ T } = S moduloν

[see Hardin (1982), Rosiński (1995, 1998a) and Pipiras and Taqqu (2002a)].
A condition equivalent to (M2) is the following:

(M2′) For every nonsingular mapφ :S �→ S andh :S �→ R\{0} such that, for each
t ∈ T ,

ft (s) = h(s)ft (φ(s)) a.e.ν(ds),(B.1)

we haveφ(s) = s a.e.ν(ds) [see Rosínski (1998a)].

As shown in Hardin (1982), every separable in probability SαS process has
a minimal integral representation. Rosiński (1995) showed that minimal integral
representations of stationary SαS processes are related to flows in the sense of
Definition 1.1.
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