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The purpose of this note is to provide proofs for some facts about
the NK model of evolution proposed by Kauffman and Levin. In the
case of normally distributed fithess summands, some of these facts have
been previously conjectured and heuristics given. In particular, we provide
rigorous asymptotic estimates for the number of local fithess maxima in the
case wherK is unbounded. We also examine the role of the individual fithess
distribution and find the model to be quite robust with respect to this.

1. Introduction. The purpose of this note is to provide proofs for some facts
about the NK model. Some of these proofs have been previously formulated, at
least approximately, as conjectures or heuristic arguments. Since we are interested
in the mathematical analysis of the model, we include only a brief summary of the
biological motivation, for which we can do no better than to excerpt and paraphrase
from the introductory section of the paper by Evans and Steinsaltz [3].

Beginning with Sewall Wright in the early twentieth century, evolution has been
modeled as the gradual motion of a genome through an abstract space, with a
tendency toward increasing values of fiteess function. One may think of the
graph of this function as ftness landscape and of natural selection as a random
walk with upward drift on the fitness landscape. One cannot understand the likely
behavior of such a random walk without understanding the qualititative nature
of the landscape as one with “slivers of high fithess looming up above the vast
genomic tohubohu” [3]. In any random walks model of fithess landscapes and
natural selection, the nature of the global fitness maximum is less important than
the number and height of local maxima.

Kauffman and Levin [7] introduced the NK model, which is a probabilistic
model for the fitness landscape. In this model, thereMateci, at each of which is
one of two possible alleles. Thus a genome is an element of the $paigé .

The fitness of a genome is the sum Mf different fitnesses, thgth of which
is determined by the alleles at sitgsj + 1,...,j + K modulo N. In the NK
model, the £+1 alleles in theN possible positions are given fitnesses whose joint
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distribution is that of #+1N i.i.d. picks from a distributionF. The fitness of a
given genome is then the sum of tefithesses corresponding to the actual string

of K + 1 alleles beginning at each position. Note that this randomness is present
in the model at the start; later one may model natural selection as a random walk
in this random environment, but that is beyond the scope of this paper. Evans and
Steinsaltz pointed out that since the allele substrings of lekigthl overlap, there

is no easy way to find the optimal choice for tivealleles. They concluded that
“while no one would mistake this abstract system for a realistic model of genetic
evolution, it has the virtues of a good foundational model: it is easy to describe, yet
contains a wealth of structure that is neither obvious nor superficially accessible.
Before we can analyze a more realistic model, it would seem we must first come
to grips with models such as this one. At the same time, we may hope that some
general features of this model will carry over to something like the real world.”

Most studies of the NK model rely on simulations, which are limited to small
to intermediate values oV (e.g., in [6], N =96 and in [2],N = 1024, which
corresponds to the size of a gene, but it is much smaller than the number of genes
in a genome). Simulations may provide quick answers to various questions in
particular cases of fitness distributidgh However, a very interesting and natural
question of robustness of the model under variationg inan be tackled only
mathematically.

We warn the reader that waways assume in this paper that the parameer
is strictly positive and that the underlying distributidhis continuous. The NK
model forK =0 or K = N — 1 exhibits special behaviors which were rigorously
analyzed by many authors (see, e.g., [7])F lfvere not continuous, ties would be
possible and analysis would become cumbersome.

The study of the question to which our paper is devoted begins with [11], where
Weinberger gives asymptotic formulae for the number of local fithess maxima
(LFM) when N and K are large andF is the normal distribution. As noted
in [2] and [3], however, Weinberger’s derivation is not rigorous. Weinberger's
heuristics are limited to the case whdrds the normal distribution, although he
points out that other distributions such as the Cauchy might be more realistic and
that one could expect the outcome to be independent of the choice of distribution.

The majority of rigorous results that have been obtained assumg tissfixed
and N — oo. In this context, several results were obtained in two recent papers
[2, 3]. Among other things, they both show ([3], Theorem 7, and [2], Theorem 2.1)
that the exponential growth rate number of local maxima (or, equivalently, the
exponential decay of the probability of a given genome being a local fitness
maximum) exists as a limit. In other words, the probability of a LFM decays
like expN(A g + 0(1)) as N — oo with K remaining fixed. ForK = 1, they
computed this limit explicitly wher¥F is the exponential distribution [3] or the
negative exponential [2]. In the case whétdnas an exponential moment, Durrett
and Limic ([2], Theorem 5.1) made partial progress toward showing the number
of local maxima (for largek, N) to be independent of the distributidf: they
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bounded the exponential rate on one side and they conjectured this to be correct
to within a constant factor. The value @f is theoretically possible to compute

for certain distributions whel® > 1, but practically impossible. It is biologically
reasonable thak be on the order of at least several dozens, whence our interest
in asymptotic formulae fok g with error estimates that are valid & N — oo
without restriction. For example, in [6], pages 122-142, it is shown that maturation
of the immune response fits the paramet&rs= 40 and N = 122, which is
probably best described a®“andK large, withN /K remaining bounded.”

The first purpose of this note is to rigorize Weinberger’'s computations for the
normal case. This includes sharpening his statements to include error bounds
and quantified asymptotic statements, specifically convergence unifoiynas
K — o0. The second purpose is to investigate dependende. @pecifically, we
prove some asymptotic results that do not depend at all on the distributibn of
completing and generalizing the conjecture in [2], and we show some stronger
results for the “fat-tail” case, which we believe to be the extreme opposite to the
case wher& has finite second moment.

The remainder of the paper is organized as follows. The next section sets
forth the notation and states our main results. Section 3 gives proofs for the
results in whichF is the normal distribution. Section 4 proves results for general
distributions and derives asymptotics for fat-tailed distributions wigR — oo.
Section 5 contains a detailed analysis of the case whdras fat tails andv/K
remains bounded. Finally, Section 6 gives an exact expression for the exponential
rate whenF is the fat tail andK = 1, which, when compared with similar
computations for other distributions, corroborates an extremality conjecture for
the fat tail.

We use notatiom(1) to represent a term that converges to Kas> oo, O (1)
to represent a term bounded by a constant @tieixpressiofik)) to represent a
term for which there are positive finite constant<” (independent oK) such
thatc expressio(k) < term< C expressionk).

2. Notation and statements of results. The parameters of the model are
positive integersNV > K and a continuous distribution functioA on the real
numbers. Our concern in this paper is with the number of LFMs for a random
fitness landscape. The expectation of this number is equalMtdirles the
probability that any given genome is a local fitness maximum. Consequently, our
sole focus is the rigorous estimation of this probability. Showing that the logarithm
of the number of LFMs is near its expectation is not hard, but will not concern us
here; see, for example, [2], Theorem 7.1, where an asymptotic normality result is
obtained for the logarithm of the number of local fithess maxima.

In the NK model the (unnormalized) fitness of a particular genome
(11, 12, ..., nn) € {0, 1}V is defined to be

N
(2.1) Y Y(ji (i nj4ts - 1K)
j=1
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where the family

(Y(j: o m2e - omka1)) i =1, ..o N (1 m2s -, nx+1) € {0, KT

is the family of of N - 2K+1 i.i.d. random variables with common distributidn
Suppose we are given such a family on a probability sp&@ee#,P) and
abbreviate

Y;:=Y(j;(0,0,...,0)

to be the fitness of the substring &f + 1 zeros starting in positiori; here and
throughout, arithmetic on subscripts is always taken modiMoWith the above
notation the fitness of the zero genom§]$’:1 Y;.

The genome consisting of all 0’s haé neighbors, namely all binary strings
of length N with exactly one 1. Since in this paper we are only interested in the
probability of the event that the string of all O’s is LFM, the only other relevant
random variables from the above family are the fithe¥sgs (91, n2, ..., nk+1)),
wherej =1, ..., N andwheré_; n; = 1. We again abbreviate ford j < N,0<
i <K,

Yii=Y(—i;0,...,1,...,0),

where 1 is only in théth position above (here we count positions starting from 0).
The quantityY; ; is interpreted as the fitness of the substring of length- 1
starting at positiory — i that is all 0’'s except for a single 1 in positign Then the
definition (2.1) says that the strirgg consisting ofN — 1 0’s and a single 1 in the
jth position has fitness (in the new notation)

j—K-1
Z Yi+Yjo+Yj1+---+Yk.
i=j+1
The zero genome is a LFM if it has greater fithess than that of any genome with
exactly one 1. We denote the event of optimality of the zero stringioywe
may write # = (; #;, where #; is the event that all O's are better than
Equivalently,

Jj K
(2.2) Hies > iz Y
i=j—K i=0

Define pr (N, K) := P(F#). We usually suppress dependenceforand write
simply p(N, K). Our first result makes rigorous and precise what is stated in [11].

THEOREM2.1. Supposethat F isthe standard normal distribution. Then

N
logp(N,K) = f(— logK + Ry k)
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with
cloglogK > Ry gk > —cvIogK

for somec > 0.

REMARKS. (i) Specializing to the cas& /K — «, we obtain the estimate
p(N, K) = K~Yeto® (jj) The error terms are independent®f so the previous
estimate is uniform iV > K + 1 asK — oo; here and throughouall asymptotic
notation iswith respect to K only (unless otherwise noted). (iii) In contrast to what
will be the case with other distributions, there is no correction wkigk does not
go to infinity. (iv) If K = N — 1, then the NK model is essentially different from
the NK model whereK < N — 1, but sincep(N,N —1)=1/N + 1, it is still
true that logp(N, N — 1) = —log(N + 1) ~ —N log(N — 1)/(N — 1) with error
smaller than the above bounds BR n_1 for largeN.

Next, we state our most general result.
THEOREM2.2. Let F beany distributionand N > 2(K + 1). Then

(2.3) 09 p(N. K) = ~(1+0(D)| 3 —o(D) | logk
(2.4) > —(3+0(1))[%—‘ log K.

We believe that the upper bound (2.3) is sharp, so we make the following
conjecture:

CONJECTUREL. Itispossibletoreplace3 by 1in(2.4).

When sums of random variables are concerned, the class of most tightly
clustered distributions comprises the distributions with finite variance, since
these exhibit Gaussian behavior when summed. At the other extreme, one has
distributions with extremely fat tails. In the limit, one might consider a distribution
with the following property: In any collection of i.i.d. picks, the greatest is much
greater than the sum of the magnitudes of the others with probability tending
exponentially rapidly to 1 as — oo. For example, ifU is uniform on|[O, 1],
then expexp(1/U)) has this property. In this case, as longkas> oo at least as
fast as logv, one may approximatg; by the event

(2.5) H = { max Y; > maij,l-}.
: j—K<i<j i

Heuristically, properties ofp(N, K) shared by fat-tailed distributions and
normal distributions would be likely to hold for all distributions, since all others
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lie in between. One approach to establishing facts about fat-tailed distributions
would be to axiomatize how fast the probability should tend to 1 of the event
that the largest of: picks dominates all the others, and then prove theorems
about distributions satisfying the axiom. We choose a less cumbersome approach,
namely to provide an analysis of the probability of the eveit= 9’:1 J(’; We

use the notatiopai (N, K) to denotéP(#’) and sometimes call itf(N, K) under

the fat-tail distribution.” Note thapiat(N, K) is independent of’, assumingF is
continuous.

CONJECTUREZ2. For any N and K, the infimum over all F of pp(N, K) is
equal to psat(N, K).

Our next result shows that Conjecture 1 holds for the fat tail and thus that
Conjecture 2 implies Conjecture 1.

THEOREM 2.3. Wehave

log prat(N, K) > —(1+ o(l))[% + 0(1)1 log K.

Weinberger suggested the Cauchy as a biologically realistic distribution. Those
readers who are bothered by a mythological distribution called the fat tail will
perhaps be interested to see that the previous result for the fat tail may be proved
for the Cauchy. We remark that the criterion we have suggested for axiomatization
of the fat tail, namely exponential decay of the probability that the largespiuks
fails to dominate the sum of the others, requires much fatter tails than the Cauchy
distribution possesses. Thus we view the following result as more than adequate to
demonstrate that the fat-tail results hold for typical fat-tailed distributions.

THEOREM2.4. When F isa symmetric Cauchy distribution,

09 p(N. K) = ~(1+o(D)[ £ +0(1) |log k.

Comparing these last results to Theorem 2.1, we see that for the fat-tail and
Cauchy distributions, and conjecturally for all distributioAs logpr(N, K) ~
logpas (N, K), whered is the normal c.d.f., as long &5/ K — oo: In this case the
difference betweew /K and[N/K + o(1)] is irrelevant and the formulae agree.
Note that, on the other hand,M/K ~ o, wherea =m — 0.5 for some integem,
the difference betweefV/K + o(1)] and|N/K + o(1)] is 1, which amounts to
the difference of 1K in the asymptotic lower and upper bounds iV, K). It
turns out there is, in fact, an asymptotic inequivalence betweepdoy, K) and
log prat(N, K) when N/K does not go to infinity. Because of this, we include a
more precise description of that asymptotics of @@/, K) in this regime.
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TABLE 1
Behavior of p(N, K) across integer values of N/K

N J 1+ 0(D)psar (N, K)
2K+D—j 0<j<K  F(gss -4+

r=y»(K+D 0<y<l ZfO+pmhanl+y

The statement of the following theorem makes more sense if one keeps in mind
how #' is likely to occur. There will be atleagg := [N /K ] large fithesses among
the Y;, which is the minimum number for which it is possible to have a large
fitness in every window of siz&. The number of ways to pick large fithesses
increases withr, but the probability that any specificfitness values are all large
decreases with. In this energy—entropy tradeoff, the maximum occurs-atrg as
N/K increasesteg — o(1), at which point the value that achieves the maximum
switches tag + 1.

THEOREM2.5. As K — oo with N/K bounded, there are formulae that give
the value of pii(NV, K) up to a factor of 1+ o(1). The formulae are in terms
of functions { £, :» > 3} on R, which are defined by formula (5.7) in Section 5
and summarized in Table 1. Additionally, the functions f, satisfy the following
statements:

fr(o) =0.

fr(x)~x""lasx — 0.

For r > 4, f, isincreasing, continuous and bounded on [0, 1].

For r =3, f, isincreasing and continuouson [0, 1), with f3(1—1) ~ 2log(1/t)
ast — OF.

In other words, there are narrow windows in the paramaigk in which
prat(N, K) changes from roughlyk =" to K~+D. These windows occur at
N/K ~r — K~Y0=D_An exception is when = 2. In this case, the change from
orderK —2 to orderk —3log K is complete aitV = 2K — clog K, after which the
order slowly slides down t& —2 as log N — 2K increases to log .

A final result is the analysis for the fat tail wheki = 1. Note that when
K = 0(1), maxima are taken over collections of a bounded size, so no actual
distribution has tails fat enough to ensure that the maximum dwarfs the others.
Nevertheless, this result is still relevant to Conjecture 2.

THEOREM2.6. Wehave

N~Ylog prar(N, 1) — z := —log 1.803. .. = —0.58947... .,
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where z is the solution of the Bessel equation
0=n+v/6BessellZ, 3v/2z) — n+/3zBessel(—3, £v/2z)
+3v2BesselK3, 2v/2z) + 3./zBessel{3, 3v/2z).

The published exact values of lpgN, 1) for the exponential and negative
exponential are, respectively;0.57504... [3] and —0.5499934.. [2]. The
published lower bound for the uniform is0.55957... [2]. All of these values
are greater than the value for the fat tail given by Theorem 2.6, thus providing
further corroboration of Conjecture 2.

Some final notation and methodology common to all the proofs is as follows.
We let¥ =o(Y;:1< j < N) be theo-field generated by the fitnesses of zero
substrings. We le 4D denote the c.d.f. for the sum & + 1 independent
picks from the distributionF. Conditional on¥, the events¥; are independent,
with

j+K
P(H;|F) = F(KH)(Z Y,-).
i=j

Removing the conditioning then gives a formula which appears as [11], (2.4),
N j+K

(2.6) p(N,K) =/ I F<K+1)<Z Yl-) dF(Y1)---dF(Yy).

j=1

i=j
3. Analysisof thenormal case. The following facts are well known.

LEMmA 3.1. If & and ¢ arethe normal c.d.f. and density, respectively, then
log®(x) = (—1+40(D)(1— @ (x))

3.1

G4 =p)(x"T+0(x7?), x — 00,
y (I) /_ 2

3.2) (log ®)" = % <0

and

(3.3) the function log ® is concave.

Next we define the normalized total fithess
N
.= ]\7_1/2 Z Yj
j=1

and the recentered window sums
) - (K + )N
N VK +1 ’

XJ'Z
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It is immediate to verify that eack; is a normal with mean 0 and variance-1

(K +1/N). Since the quantities; —t/+/N are independent normals recentered to
sum to zero, their joint distribution is independent of the centering const@hts
can be verified explicitly by checking that the covarianc&aindY; —¢/+/N is O

for eachj. Consequently, sinc¢’K + 1X; = Z{:JK(YJ —1/+/N), we see that
(3.4) {X;:1<j < N}isindependent of.

Plugging this into (2.6) and using the fact that“+? is a normal of variance
K + 1, we get

N
(3.5) p(N,K):E]‘[d><X,~+,/KT+1z>.

j=1

Up to here we have followed Weinberger, arriving at [11], (3.2). Weinberger
now asserts that ; = O (1) with mean zero, and may therefore be removed from
the equation, resulting ip(N, K) ~ E® (r/(K + 1)/N )", wherer is a standard
normal; this is then evaluated by steepest descent. Our contribution in the rest of
this section is to finish this properly, with one inequality (the upper boungt)on
following directly from (3.3) of Lemma 3.1, rather than relying on independence
ofrand{X;:1<j < N}.

Upper boundon R. By definition, the random variablés; sum to zero. Using
concavity of logb, we have the (deterministic) inequality

N
K+1 K+1
ZIOQ(I)(X]- —H‘/T> < Nlog<I><t T)
j=1

Plugging into (3.5) then gives

N N
(3.6) P(A) §Ed><t‘/KT+l> :/é(x‘/KT—Hl) ¢(x)dx,

where¢ is the normal density. Lef(x) = Iy g (x) denote the integrand in (3.6)
and letM denote the maximum value of ldg

M :=maxiog! (x) = — logv/27 + mxax[N Iog<I><x KTH> - x—;}
If we can show that
(3.7) Iog/IN,K(x)dx <M+ 01
and that

(3.8) M= —%(IogK + O(loglogkK)),
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then the first inequality in Theorem 2.1 will be proved. Both computations are
routine, and we need only one inequality of (3.8), but we include the arguments
because they clarify matters by indicating the location of the saddle.

To show (3.8), letrg := /(2N /(K + 1)) log(K + 1). Of course

M >logly g (xo)

= —log+/27 + KLH[(K +1)log®(v2log(K +1)) — log(K + 1)]

= x| JIogK +o0(1) [

where we have used the estimate (3.1) from Lemma 3.1 o lagd where
the lasto(1) accounts for—log+/27. This shows one inequality in (3.8).
For an upper bound onM, suppose first thatx > 2N/(K +1)) x
+/(og(K + 1) — 2loglog(K + 1)). Then

2

N
log Iy kx (x) < —% = —?(IogK + O(loglogkK))

as needed. On the other hand, whemn < J2N/(K+1) x
/(og(K +1) — 2loglog(K + 1)), then

log Iy x (x) < —log~/2m + Nlog®(v2(log(K + 1) — 2loglog(K + 1)))

1 (logK)?
=(-1 1)N—
(=1+o ))NK /2logK — 4loglogk

N
< —(1+0(1) (log K)%2,

so these values of need not be considered and the other inequality in (3.8) is
proved.

Proving (3.7) is merely a matter of estimating the second derivative df.IBg
log concavity of®, this is at most the second derivative of fpgwhich is equal to
—1/2. Letxy :=xu (N, K) be such thafy x(xp) = M. Now an easy calculus
argument (using log concavity) shows

1(x) < expll (xar)} expl—(x — xu)?/4) = e™ expl—(x — xp1)?/4),

so that[ e Iy g (x) dx is bounded above by a constanfs? exp(—x2/4) dx
that is independent d¥ and K, which shows that log 7 (x) dx < M + O(1) and
finishes the proof of (3.7) and the first inequality of Theorem 2.1.

Lower boundon R. Let G4 be the event that

t>x1:=V(2N/(K + 1)) (log(K + 1) + 3vIog(K +1)).
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Let G2 be the event that maX ;| < 1. Due to independence offrom {X;:1 <
j < N}, we may write

PN, K) = P(G1N G2)P(H|G1, G2) =P(GDP(G2)P(H]G1, G2).

We estimate this in pieces, the first being the one responsible for puRhdiogvn

to —c./logk.

Since logp (x) = —x2/2 4+ 0(1), we may estimate
logP(G1) = log(1 — ®(V(2N /(K + 1))(log(K + 1) + 3/10g(K +1))))

= Iog((l + o(l))%[\/(ZN/(K +1))(log(K + 1) + 3vlog(K + 1)) ])
N

=0Q1) — K+ D (log(K + 1) 4+ 3vlog(K + 1)) — logx1

= _%(Iogl( + O(v/logK)).

Next, we estimat®(G»).

LEMMA 3.2. Wehave

logP(G2) > e N
FED="7%
PROOF Let S; := Y/, (¥; — t/v/N) be the recentered partial sums. Then

X; = (K+1)~Y2(S; 1k —S;_1), with indices still taken modul®&/. The event),
defined by

Gh:={IS;] < 3VK forall j < N},

implies the evenG,. Let Wo be Wiener measure on continuous pathsn [0, N]
starting at 0 and Iewgr be the Brownian bridge measure, thatlig conditioned

on {w(N) = 0}. The law of {S;:1 < j < N} is the law of partial sums oV

i.i.d. standard normals conditioned on summing to zero; this is the same as the
conditional law of{w(j):1 < j < N} under Wy, conditioned onfw(N) = 0},

which is the same as the law @b (j):1 < j < N} underW(t,".

A Brownian bridge always stays closer to the origin than unconstrained
Brownian motion, in the following sense. In fact, it is not difficult to couple the
path of the reflected simple random walk bridge (i.e., the absolute value of the
random walk path conditioned to visit O at time)2and the path of the reflected
simple random walk up to stepe2so that the former stays below the later at
all times with probability 1. Taking the diffusion limits in an appropriate way
constructs one coupling of the reflected Brownian bridge and reflected Brownian
motion described above.
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Letting G be the event thdt ()| < +/K /2 for all+ < N, we then have
P(Go) = P(GY) > W'(GY) = Wo(GH).
Let W, be Wiener measure started from distributipn Clearly W, (G%) is
maximized wheru = 8o; that is, Wo(G%) > W,,(G%) for any u. Now let u be
the distribution on[—/K /2, v/K /2] with density C cogmx/+/K ). This is an

eigendensity for Brownian motion killed on exitifig-v/K /2, v/K /2] (see [8],
Theorem 4.1.1). We see that

T2 N
P(G2) = W, (G}) = exp(—7?),

proving the lemma. O

Finally, we estimate the third term. Recall from (3.5) the formula for the
probability of LFM:

N
p(N,K)= E[exp(Z log®(X; + (k/N)t))]

j=1
Forx > 1, consider the inequality

\/2(x+3\/)7)>\/2(\/;-1-1)2—\/5—{-1:\/2-{-1,

which can easily be checked, for example, by squaring both sides (note that
if x > 1, then both sides of the inequality are strictly positive). Applying this
inequality yields onG1 N G,

K+1
N

Therefore, onG1 N G2 we then have for alf

Iog<I><Xj +t‘/KT+1> >log®(v2log(K +1))

and hence, using (3.5),

X+t z\/Z(Iog(K—i-l)—i-\/log(K—i—l))—12\/2Iog(K+1).

P(#|G1, G2) > (®(v2Iog(K +1)))" > ex _K——i-l)'

Plugging in the estimates f@(G1) andP(G>) then yields

2
logp(N,K) > —%(% +logK + O(\/IogK)),

which finishes the proof of the theorem.
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4. Proof of universality results.

PROOF OF THEOREM 2.2. First inequality. For the moment let the small
positive real parametey be unspecified. Break the interval from 1 A into

= |[N/(1+ y)(K +1)] intervals of length (1 + y)(K + 1)], discarding any
unused positions at the end. Denote these interffals ., I; and IetIJ/. denote
the first[y(K + 1)] positions in/;. Lets; denote the index e I]’. that maximizes

S:= Z,.K:o Y ;. The maximum is a maximum of( K + 1) independent draws from
FEFD soB; := FETD (28, ¥y, ) has distribution8(1, y(K + 1)) The mean

of Bjisl—(y(K+1+1)~ 1 Forthe even#; to occur, the sunZ Y must

exceedS. LetF ' =o(Y;;:1<j<N,0<i< K) be theo -field generated by the
fitnesses of substrings with exactly one 1. Then

P(H;,|F)=1-Bj.

Slnce|sj — sk| > K whenj # k, the events¥; are conditionally independent
given¥’, and theB;’s are mutually mdependent random variables. Therefore,

o/ 1 L
P(H) §]P’<Oljfsj> _E]P’<Olj€sj|f ) =E 11(1 Bj)= <1+y(K +1)) .
J= J= J=

When K = o(N), we choosey = y(K) = o(1) to optimize this bound.
For example, takingg = 1/log K gives an upper bound of egp(1 + o(1)) x
(N/K)logK), as is required to prove (2.3).

WhenK = ®(N), the same choice of leads to the same conclusion, except
that one hagN/y(K + 1)| in place of N/K. Sincey(K) = o(1), this is again
sufficient to prove (2.3).

Second inequality. To prove (2.4), begin with the observation that the events
#; are increasing events with respect to the varialjlés.1 < j < N} and
{=Y;i:1<j<N,0<i <K} By Harris’ inequality, these are positively
associated. Lek = [N/(K +1)] and, for 1< j < L, let

J(K+D)
Gj = ﬂ in.
i=(-1)(K+D+1
Positive association implies that

L

P(#) = (ﬂ >>IP(G1)L.

Thus it suffices to establish
(4.1) logP(G1) > —(3+ 0(1)) logK.
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Letq := FKHD (YK y,) for eachl € [1, K + 1]. Then

K+1
P(G1) =EP(G1|F)=E [] a.
=1

If @ >1—1/K foreach € [1, K +1],then[[X ya; > e 1 +0(1), so (4.1) follows
from

1
(4.2) P(min{a, l<I<K+1}>1- E) >cK 3.

Let ¥* be theo-field generated by the unordered pair of Sgts ..., Y t1}
and {Yxio2,...,Yog12}. Then mirday, axi2} € F*. Furthermore, conditional
on ¥ *, the collectionS; := Zgzl(Yi—kK—kl —Y;):1<I < K+1}hasexchangeable
increments (generated by continuous distribution i.i.d. picks, so ties in the partial
sum sequencg- happen with probability 0) that are symmetric about 0. Now note
the following consequence of exchangeability: Conditioned on all the increments,
if their total sum is positive, then the probability that the minimum occurs at the
beginning, that is, all the intermediate sums are positive, is at |¢&st Nlamely,
all cyclic permutations of the increments are equally distributed and almost surely
there is at least one such permutation for which the minimum is achieved at step O.
Therefore,

P(min{S;:1<I<K+1}>0>3K "

When{min{S;:1 <[ < K+1} > 0} occurs,we havemia;:1 </ < K + 1} = a;.
Hence, by conditioning oF * first, the probability on the left-hand side of (4.2)
is at least

K 'P(min{ay, ag 42} = 1— 1/K),
and by independence of andag 2 (recall thatV > 2K + 1) this is equal to
(3 +o@)k k2,
proving (2.4). O
The proofs of Theorems 2.3 and 2.4 are similar to the argument used to prove

the second inequality of Theorem 2.2. Having specific distributions to work with
makes the arguments simpler and the results sharper (cf. Conjecture 1).

PrROOF OFTHEOREM 2.3. Cover the intervalN] :={1,..., N} with L :=
[N/((1—y)(1+ K))] intervals of sizel (1 — y)(K + 1)]. Denote these intervals
by I, ..., I.. Positive association again implies that

P(H") = P(H;V j e D"
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Let I’ denote the interval of lengthy (K + 1) | adjacent to and just precedidg If
the maximum of the collectiofl;,Y;;:j € I''lel;,0<i<K}is Y, for some
jo €I, it follows that,%’} occurs for eacly € I;. The last claim follows directly
from definition (2.5) since for suchip we haveY;, < ma>g.’:j_K Y; whenever
jen.

The probability of

{maij > max Yl,i } s
jel’ lel1,0<i<K

up to corrections for integer roundoff, is clearly equabt& + 1) /[(1 — y)(K +
12+ y(K + 1)]. Thus

L
P = [(L+0) K+ ) Ik

A—)(EK+D2+y(K +1)
Choosingy = y(K) =1/logK as before suffices to prove the theorernl

PROOF OFTHEOREM 2.4. Keeping the notation from the previous proof, we
need to estimaté(#;Vj € I1) whenF is the Cauchy distribution. Define events:

() A:={maxc,¥; >2(K +1)?};
(i) B:={(Tjenun0V (=Y)) < (K +D?;
(i) C:={maxjc, >KoY;i < (K +1)2).

Here I is the interval of lengthk preceding/ so that fory(K) < 1 (which will
be the case]’ C Ip. Note thatAN BN C C (e, #; Since onA N BN C we
have, if j € I1, both

ji—K
{ Z Y; > maxY; + Z (Ov (=Y))> (K +1)2}
i=j Jel jenhUly
and

K

{ZY,-,,- <(K + 1>2}.

i=0

It is not difficult to check that
P(A) = ()t +o)yk L,

_ _ 2
P(B) > exp(%) +o(D),

P(C) = exp(#) +o(l).
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Indeed,

P4 =1- P(max; <2 +1?)
Jjel

B Ym+o@)\ Dy 1
_1_<1_ 2(K +1)2 ) __K+1<Z+0(1))’
K+1
P(B)zP(_max Ov (=Y < )
jelhUly 2—y

B 2y \(K+DE-Y) 2— y)2
—(1‘m) Zexp(‘ n )*‘“”

and

)ﬂ—y)(“l) <1<+1 1 )<1—y><1<+1)

K
_ . 2
P(C)_P<ZY1,,§(K+1) . n(l+y2)dy

i=0
(1/7 +o(1)) (1-y)(K+1D) 1
(1- %) e ~~ (1= 1) + o
Another application of positive association shows that

-5/
P(ANBNC) > (e
2

+ 0(1))%

so that

e—5/7‘r y L
P(%)z[( — +o(1))ﬂ ,

and taking the logarithm, with(K) = log(K)~%, completes the proof.[J

5. Thefat tail when N/K remainsbounded. This section provides a proof
of Theorem 2.5. In particular, in this section we derive asymptotic formulae for
piat(N, K) that are valid asv, K — oo, uniformly as long asVv/K remains
bounded. Probability estimates come from the following algorithm for checking
whether#¢’ has occurred.

1. Initializer =1 andC to be the collection of variablgs’;, Y; ;:1< j < N,0<
i <K}.
2. Find the maximum of the variables @
3. (a) If this maximum is one of the variablg$ ;, then output FALSE and
stop.
(b) Else, letj, be the index such that the maximum occurred jat
4. Remove fron® the variabled’; ; for j1 < j < j1+K,0<i <K (these are no

longer relevant since no matter what their value is, we knommj'éjjf J.{’; has
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occurred, and othe?f[’s do not depend on the values¥f;, j1 < j < j1+ K,
0 <i < K, anyhow), and also remove the varialylg.
5. (a) If the collectionC contains no more variablds; ;, then output TRUE
and stop.
(b) Else, set tor + 1 and go to Step 2.

Clearly #¢’ = {algorithm stops at TRUE We may think of the output as
containing all values of, found before stopping, so that in addition to the indicator
function of the even#¢’, the algorithm outputs the random variabRsjy, .. ., jg,
whereR is the maximum value for which the first Step 3(b) (the else statement)
is executed. Recall thay := [N/(K + 1)] is a lower bound forR, provided
the output is TRUE. The possible values for the sequé¢mneken it is of length
R = r are precisely the sef(r) of sequences that satisfy both of the following
statements:

(x) Foreveryi € [N]thereis ary <r forwhich0<i— j; <K.
(x*) No initial segment of satisfies property).

Letting #(j) denote the event thak’ occurs and the algorithm outputs the
witnessing sequende we may decomposéf’ into a disjoint union by setting
H(r):= UjeS(r) J¢(j) and

H=Jrr = UJ #0O.

" jes(r)

Given 1< s <r + 1 and any sequeng¢@f lengthr containing distinct elements
of [N], define

missed(s,j) :={j € [N]:j — j: ¢{0,..., K} V1 <s},
M(s,j) := |missed(s, j)|.

Vacuously,M (1,j) = N for all j. Figure 1 illustrates this definition wheg = 4.
In the illustration, the intervalpjs, ..., js + K] are shadedj; is equal toK + 1,
one interval overlaps witfil, K + 1] modulo N and the other two intervals also
overlap. Figure 1 also illustrates a general fact, namely that tneissztd (s, | ) (the
white space between the shaded intervals) is always composed of no mose than
intervals (i.e., the unshaded set has at mosbnnected pieces), where adjacent
white intervals are separated by a distance of at |Kast1.

One further observation is that for allandj,

(5.1) N=>M(s,j)=N—(s=1)(K+1).

Conditional on the evem® > r + 1 and onjy, ..., j,, the values of the variables
remaining inC at stage- are i.i.d., so the conditional probability gf,, = j for
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N=(r;-y) (K+D)

FiG. 1.

anyj ¢ {j1,..., j-}is equal to the reciprocal of the number of variables remaining
in G, thatis, ¥(N —r + (K +1)M(r,j)). Applying this inductively yields

d 1

(5.2) P(#())) =S:l"[1 N—G-D+K+DMGe))

The(K +1)M s, j) contribution above comes from the numbeipf variables
that are still inC. The above computation can be generalized in the following
useful way. Define the evedt™*(j) by

H*(j) := #' N {j is an initial segment of the output of the algorithm

Whenj of lengthr is an element of (r), #(j) = #*(j); otherwise# () is empty
and the right-hand side in (5.2) computes the probability of outputi@sgan initial
segment. To obtaif®(#*(j)) from this, one must multiply the right-hand side
in (5.2) by the probabilityQ (j) that, conditional on the initial segment beinghe
algorithm eventually outputs TRUE. We compute an upper boun@@n, for j

of lengthr, as follows. For each intervdl= [a, b] C missed(r, j), for the #*(j)

to happen, it is necessary that max <<, ¥; be greater than max; o<i<x Y;.;-
This probability of{max, _x<;j<» ¥; > max;c; 0<i<k Y;,i} equals

b+K+1—-a _ b+1l—a)+K
b+K+1l—a+(b+1—a)kK b+l—a+bB+2—a)K
1 1

< .
*X+1br12-a

If missed(r, ) is composed of more than one interval, the probabilities for each
interval are multiplied (since they are at ledst+ 1 units apart, everything is
independent) and, therefore, for a givéf(r,j), the upper bound o (j) is
greatest whemissed has only one interval and we may take as an upper bound

!
=

5.3 '
(5.3) o) =< Mo

We now bound the number of sequengc#sat produce a given value 1 (r, j).
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LEMMA 5.1. Let N = (r — y)(K + 1). Then the number of sequences| of
length r with M(r 4+ 1,]) = ¢ isat most

NCr)(yK +0) 2

PROOFE By symmetry, it suffices to consider only sequences for whick
.-+ < jr in cyclic order modulaV and then multiply by — 1)!. By convention,
we letjo:= j, — N.For1<s <r, considerthe quantities; := j,_1+ K +1—j,
to be unknown and satisfying the following two nice properties:

@ Y _jAs=jo—jr+r(K+D)=-N+r(K+1)=yK+1);
(b) Zgzl(_As) v0= Z;:]_[(js - js—l) - (K + 1)] AO=1.

Property (b) is a consequence of the fact that the length of the unique (white)
interval that contributes tanissed(r + 1,j), which is contained inj;_1, js],
equals[(j; — js—1) — (K + 1)] A 0. The sequencédy,..., A,;) and the value
Jj1 together determing. The number of possible sequengels, ..., A,) above
may be bounded as follows. Lét, be the set of indices for which A; > 0.
GivenS,, the subsequencd; :i € S;) is a sequence of nonnegative integers that
sum toy(K + 1) 4+ . These sequences are caltainpositions of y(K + 1) +
into | S| parts, and the number of such composition(syf§+|1§j|‘f'ls+'_1) ([10],
page 14). Similarly(A;:i ¢ ST) is a composition of into » — |S. | parts, and

the number of these i(éf’_“s‘f‘*_“ll). We claim that the product of the above two

binomial coefficients is bounded above by(r)(y(K + 1) + ¢)"~2. Indeed, the
product equals

OEK+D+e+1S0 =D @+r =[S —1)!
ISt —DIOK + D +0! Ol — S — Dl
Clearly|S,| < y(K + 1)+ andr — | S| <, which implies
V(K +1) + 14 5.] — D!
(K +1)+0)!

1S41-1

<[2(y(K +1) +1)]

and
(t+r—|S¢l =1
(!
Thus, for a givers,., there are at mosY Co(r)(y(K + 1) +1)" ~2 suchj sequences

(N comes from the choice gf). Summing over at most 2- 2 values ofS,. proves
the lemma. O

<[2(y(K +1) 4] 715171

As mentioned prior to the statement of Theorem 2.6, the complexity in the
behavior of piat(N, K) is due to transitions in the number &f variables with
large values from one integer to the next higher. We separate the argument into
several cases, the first three being restrictegte [N/K] > 3:
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l.ro—14e<N/(K+1)<rp—-¢;
2.ro—e<N/(K+1) =<ro;

3. rp—1<N/(K4+1)<rg—1+g¢;
4, rog=2.

The analyses of Cases 2 and 3 actually cover Case 1 since one couldHtdke,
but since the argument is easier for valued/gf K + 1) not too close to an integer,
we prefer to present this as the first case.

Casel. We first computé(J(rg)). For each € S(rg) and each < rg, the
expression (5.2) and the bounds (5.1) imply

c(e) < KZOP(H(j)) <C(e)  (recallN ~ rgK).

Together with the fact thaf(rg) has cardinality® (K'°) (see below for details),
this immediately implies that

P(H(r0)) = O(K™'0).

In this case, we claim thak(#(r)) is maximized at = rg. With P(#( — 1))
trivially being zero, this statement and the theorem follow from a more precise
estimate ofP(# (rp)) and a bound ofP(F#*(rg + 1)).

Let T be therg-dimensional torus ofp-tuples inlR/Z, with addition modulo 1
and unit Lebesgue measureFory € [0, rg], define a subsét(y) =T(y,rp) €T
to be the set ok = (x1,...,x,) such that for allz there is aj < ro with
xj—1/(ro —y) <z <x;. Consider the mapping &f(ro) into T by

(5.4 j—]/N.

The setS(rg) then maps into the saty) for y =rg — (N/(K + 1)). In fact, for
anyU C T(y), the cardinality of the subset &f(rg) that maps intd/ under (5.4)
is equal to(1 + o(1)) N'°A(U) uniformly in N/K asN — oo. Furthermore, for

j € S(ro),

1 — —F —F J_
(5.5) P(#(})) = (1+ o(L))N 0K On(N),
where
ro 1
5.6 = ~
(5.6) n(X) ElM(S,X)

andM (s, x) is the measure qb, 1]\ Uj—1lx: —K/N,x;].Lety =ro— N/(K +1)
and note thap equalsj/(K + 1) whenN = ro(K + 1) — j for j > 0. By bounded
convergence, we then have

(5.7) KOP(H(r0)) = foo(y) i= /T 0(X) d2.(X)
0

(yAL;ro)
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(note here that since e [¢,1 —¢], y Al=1y) asN — oo, uniformly in N/K,
with f,,(-) bounded, continuous and nondecreasing. This igfitherm in the last
line of Table 1.

Next, we compute an upper bound for the evéfit(ro + 1) := U{H*(]):] ¢
S(ro), |j| = ro} that an output of TRUE requires at leastt- 1 covering intervals.
Multiplying the right-hand side of (5.2) b@(ro,j) = Q(j), using (5.3) withr =rg
and using the fact that/ (s, j) > C(¢)K for s < ro, we see that

1
(s—1D+(K+2D)M(s,j)

o
P o+ D)= 3 0[] 5=

i¢S(ro) s=1

N
SZ Z C;ﬁ,

s=1M(ro+1,j)=s

whereC represents a constant that depends onlygcemde, and the sum is over
sequencesg of lengthrg. By Lemma 5.1, we may further bound this from above

by

N
P(#*(ro+1) <) CyK + )’0‘2} A -
roTEI= YR k2o =0

s=1
1 Y s\Vo /X1
(5.8) <C KoL Sg:l B (y + ?> (S; B ~log(N) ~log(K) + c)
Together with (5.7), this establishes that
(5.9) K"™P(H') = fro(¥).

Whene < y <1 — ¢, the term containing’, in the last line of Table 1 dominates
the term containingf,+1 since f,.(e) > 0, so this proves the theorem in the case
e<y<l—candN/(K +1) > 3.

CAse 2. This is quite similar to the previous case. The part where we
estimated (5.7) goes through unchanged, only rfigutends to zero ad/ /(K +
1) — ry and we need to find the asymptotic rate to compare toithe term.

LEMMA 5.2. The measure A(T(y, rg)) of T(y,ro) is asymptotically yo—1/
(ro— y)o~ 1 near y =0.

PROOFE The setT(y) is invariant under translation of each coordinate by a
constant, so by symmetry the measure is the same agdhe 1)-dimensional
measure of the fiber af(y), wherex; = 0. By permutation invariance, this is equal



2170 V. LIMIC AND R. PEMANTLE

to (ro — 1)! times the measure of the subsef@f), where 0= x1 < x2--- < x,.
Such a point is ifr(y) if and only if the quantitiess; + 1/(ro — y) — x;+1, for
1<i <rg—1, are positive numbers summing to at megstro — y). In fact, the
mapping that maps eaghn the fiber to the sequenc¢e, + K /N —x2, ..., xq—1+

K /N — x,,) is an isometry. Thérg — 1)-dimensional simplex of positive numbers
summing to at most/(ro — y) has volumey™=1/((ro — y)"*~1(rg — 1)!), which
proves the lemma.

As y — 0, the factors 1M (s, x) converge tag/(rg — (s — 1)), since the only
way for a vector to be irT(y) is for it to haverg approximately evenly spaced
coordinates. Therefore, the functigndefined in (5.6) converges to the constant
ro’/rol onT(y), and we have

ro ro—1

M) dA(X) ~ A (T() ~ 2
) ro:

fo =] —.

Since the contribution oP(#(ro + 1)) to P(#’) is no longer negligible, we
must compute it a little more precisely as well. If we write it as an integral
analogous to (5.7), we find, fop > 3, that the integrafm) n(X) dir(x) exists as
an improper integral, but the integral ovély) diverges fory > 1. We have shown
that K"OP(# (rg)) ~ y©~1/(ro — 1)! asy — 0, and we have an upper bound (5.8)
onP(#H*(ro+ 1)). Wheny > K ~1/70, these two together show that still

K"P(H') ~ fro(¥).
Assume therefore that
(5.10) y< K~
We cannot immediately conclude forQy < K ~1/70 that
KM P(H*(ro+ 1) = frora(D)

and it is our remaining task to verify the above statement. One part of this is easy.
For any positivel, the functiom 1, ;, is bounded and, as — oo, these functions
converge inL! to n as long as; € LY, which is the case since we have assumed
thatrg > 3. Equivalently, the function

(L) = / 00 Ly 021 dAX)
T(L;ro+1)

converges to 0 a5 — oo and, by bounded convergence, we may approximate the
truncated sum of the terms in (5.5) by a truncated integrél as oc:

(5.11)  KOMP(H(ro+ D) N {n(j/N) < L}) = (1— g(L)) fro+1(D).
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The theorem, in Case 2, follows if we can show that

(5.12) ]P’(n(lﬁ) SL,J(’*(ro-i-Z)) SC(L)W’
i 1
(5.13) P(n(%) > L, H*(ro+ 1)) < C(L)W

forc(L) — 0asL — oo, uniformly in K. Indeed if these two hold, then férlarge
enough sothat(L) < §/2 andK then chosen large enough so th&l.) /K < §/2,

we have
i )
P[Jf/\(,%(ro +1nN {n<JN) < LD] < KrorL’

which together with (5.11) finishes Case 2.
To prove (5.12), we may use the same argument that proved (5.8), butgwith
replaced by + 1. We sum over sequencisf lengthrg + 1 to get

] ro+1

J ) ) ) ot 1

P — L, +2)) < j
(n(N < (ro+2) <j¢S(Xm:+1)Q(J) 51:[1 N—-—(6-1D)+(K+1DHM(s,j)

N 1 1
SZ Z C(L)—W-

s=1 M (ro+Lj)=s §

Here we have used the fact thatj/N) < L to bound the product in the first
line by C(L)K~20°~2; equation (5.3) is valid for any, so there is no trouble
replacingrg by rg + 1 here. At the next step, instead of requiring Lemma 5.1,
we require only the trivial bound on the number of sequenaddengthrg + 1
with M (ro+ 2,j) = j, namelyCK’°. Following the path to (5.8) leads this time
to (5.12).

To prove (5.13), observe first thaf(j/N) > L implies M(ro + 1,j) <
e(L)K for some functione(L) going to zero ad. — oo. This follows from
expression (5.2), according to which all the factord/Ls, j) in the definition of
n are bounded from below except for the factor witk rg + 1, which is of order
K/M(ro+1,]). Hence,

P(n(jﬁ) > L, H*(ro+ 1))

e(L)K 1

ro
=2 2 bl ey

s=1 j:M(ro+1,j)=s

s(L)K 1
< > Clro,e)(N —roK +25)°"1 = g =20
N
s=1
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(LYK ro—1
C(ro, ) ° N s\ 1
= ot Szzl <—K—r0+2—K) 5

This sum is at most twice the integral for which it is an upper Riemann. To be
precise, we consider the sum as a step function, change variablesto+ 1)/ K,
and compare the upper and lower Riemann sums to integrals, concluding that

K ’°+1IP’<77<JN) > L, 3" (ro+ 1))

2C o —N + 2x ’071 d
< _ .
< (Fo,S)/O (K ro ) T i

As a family of functions on0, 1], the integrands form a uniformly integrable
family as long asN/K — ro < K™% for some K. By assumption (5.10), this
inequality is indeed satisfied, and we may conclude that the integral from(@.}o

tends to zero uniformly irK ase(L) — 0. This finishes the proof of (5.13) and
therefore of Case 2. We go onto Case 4, coming back to Case 3 later since it uses
some of the computations from Case 4.

Case 4. Whenrg = 2, the computation is particularly simple without using
the continuous approximation. The first term in the product in (5.2) is always
1/(N(K + 2)). By symmetry,

P(H(2)=N Y P(H())).
jes@
J1=

For j; = 1, so thatj satisfies propertys), it is necessary to choos€ — K <
j2 < K + 2. Also, if j1 =1, thenmissed(j,2) ={K + 2,..., N} and the second
factor in (5.2) is always AN — 1+ (K + 1)(N — K — 1)). Thus, lettingj =
2(K+1)—Ne€{0,...,K}, we have

2K+3—-N

NK+2)N—-1+(K+1((N—-K—1)
1 j+1
" K4+2N—-1+(N-K-1D(K+1)

1 j+1
K2N—(K+1)+((N-1/(K +1))

1 j+1

K2K+3—j°

For P(#(3)), a similarly direct argument ensues. H#(3) occurs via#(j)

for somej € S(3) with j; = 1, then since#(2) does not occur, eithej,
[2,N—(K+1)]orjoe[K+3, N]. Inthe former casegiz € [N — K, jo+ K +1],

p(H(2) =

(5.14)

=(1+4o0(1))

=(140(1))
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while in the latter casegiz € [j — K — 1, K + 2]. For the first of the two cases, we
then have a contribution tp(#¢(3)) of

—K—-1 jo+K+1

K+2 &= G N1+ (K +1-HEK+D

1
X
(N—2)+(N—jo—K)K+1)
1 1
CK4+2N-14+(K+1—j)(K+1
(5.15) 1 ( J)( )
V& J+Jj2

* ].ZZZZ N-2+(K+D(N-K - J

N—-K-2q _ s/K
SR <Timy 7 B D
_ logK

Here the third equality comes from the substitutioe= N — K — j> and the
definition of j as 4K + 1) — N, while the (1 + o(1)) term comes from factors
of order(1+ O(1/K)) that remain once we remove three factorskofrom the
top and bottom of the fraction preceding the sum and one fact&rfodm the top
and bottom of the summand. The computation for the second case is symmetrical,
leading to
log K

K3(1—j/K)

Comparing (5.16) to (5.14), we see that the former is dominant when
o(logK), the latter when lo& = o(j) and both contribute whep = ©(log K).
In particular, (5.14) contributes only whegn— oo, in which case the contribution
is (1+ o(l))%(ﬁg_j — 4, while (5.16) contributes only whepi= o(K), in
which case the contribution (€ + o(1))log K / K 3. From these the first line in the
Table 1 follows as a lower bound, with an identical upper bound yet to follow if
we show that changing¢ (3) to #*(4) produces no change to the asymptotics.

The difference betwee#¢ (3) and #*(4) is that in the latter casgz can be
element ofmissed(3, (j1, j2)). These are alli’ not in the interval 1, j,], so the
numeratorj + j» of (5.15) becomesv — j,. This changes the & s/K in the
numerator of the subsequent line to+ls/K, which does not affect the sum
asymptotically since all the contribution come frera: o(K).

(5.16) p(H(3)) =(2+0(1))

Case 3. The analysis of th®(# (ro + 1)) term in Case 2 works just as well
for N slightly greater thamg(K + 1), and this becomes thg term in the last line



2174 V. LIMIC AND R. PEMANTLE

of the table forr = rg + 1. Sincerg > 3, Case 2 handles thg terms forr > 4. It
remains only to analyze thg term appearing in line 2 of the table.

We borrow the analysis from Case 4. Now the evé&f{2) cannot happen,
so we need to evaluatg(#(3)), show it gives the asymptotics stated in the
theorem and then show that addi®g#¢*(4)) does not alter the asymptotics.
Let N =2(K + 1) + j. Assumeji; = 1, so the first interval thrown out af is
[1, K + 1]. To cover in three intervals, the second interval thrown out must overlap
the first or be contiguous to it: otherwigewill be two disjoint intervals and will
have diameter more thaki, whence one more step will not suffice to cover it.
Again we may consider only the case where the second interval is contiguous to the
right of the first and then double to count the case where the second is contiguous
to the left of the first. The value gb cannot bej or less, since this would leave
C with cardinality greater thaik + 1, which is too large a set to cover in one
additional step. Thus, before doubling, the allowable ranggfe([j + 1, K + 2].
The corresponding range fgg is [N — K, j» + K + 1]. Equation (5.15) now
becomes

P(#@3) 1 1
2  K+42N-1+K+1DK+1+))
Kt2 J2—1J
(5.17) x Y —
T N =2+ K+ DK +2—j2+ )
1401 K*i‘fl—j/lf—s/zf
K3+ j/K) o jH1+/K+s

which is bounded wheli/K € [¢,1/2] and ag := j/K — 0" due to

K+2—j i _ K+2—j
Z.lJ/K. S/KSZ : =
o Jt1+j/K+s T o jH1+j/K+s
K+2
~log(K(1—1) + 2+ K1) — log(K 1) = |09<K—+z)’
by

1+0(1) 1
—x3 Iog(;).

Doubling yields, as a lower bound, the expression in the second line of Table 1 for
r = 3; for the upper bound, it remains to get an upper boun@* (4)).

We must sum this time over two types of sequengesy», j3). The first are
those withj +2 ¢ [j + 1, K + 2]; these do not appear iF(3) because it is not
possible to covelN] in three intervals starting this way. The second are sequences
where jo € [j + 1, K + 2] but (1, jo, j3) ¢ S(3); these do not appear i (3)
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because the third interval did not complete the covefMf, where a different
choice of j3 could have completed the cover. Analyzing the second of these two
types repeats the analysis from the last paragraph of Case 4. That is, allowing these
values ofjz replaces + j/K —s/K in the numerator of (5.17) byt j/K +s/K,
which does not affect the leading term whge- o(K) and otherwise multiplies
by a bounded factor, which we absorb into the definitiorfof

The first of the two types of sequences splits into subtypes=< j» < j (in
which case you do not cover enough new ground to be able to complete coverage
in three steps) oK + 3 < j» < K + 1+ j [in which case the sehissed(2, )
splits into two intervals and cannot be covered by one more interval]. For the first
subtype, M (3, ) is always at leasK, so the sum over sequences of this subtype
is O(K ~2). For the second subtyp#{(3,j) = j. For eactr there is exactly one
value of jo for which missed(2,j) is composed of disjoint intervals sizesand
j —t in that order. Given that this occurs for somene may reason as in (5.3)
to see tha(j) < 2/(t(j —t)). Thus the total probability of the second subtype is
bounded above by

R =)

J

and since this is negligible compared k¥623log(K /), the proof in Case 3 is
complete.

6. The fat tail when K =1. In this section, we prove Theorem 2.6. For
convenience we add a variabifg to get an i.i.d. collectio® := {Yo, ¥;, ¥; ;11 <
Jj = N,0=<i <1} and define the eveni, to hold whenYo Vv Y1 > Y10V Y11.
Letting #* = Ho N ﬂ 1 Jf’/, it is evident that

P(#H*) > pra(N + 1, 1)

by monotonicity of probability, and from Harris’ (positive association) inequality
we see that

prat(N +2,1) = P(Hy o N Hy 1 N N Hy) - P(Hy) =P(HY) - P(Hy).

SinceP(#;) = ¢ > 0 independently ofv, it suffices to prove Theorem 2.6 for
N = P(F*) in places ofpat(N, 1).

Having sliced open the circle, itis possible to derive arecursiop forObserve
that the order of the variables ®, namely{Y;,Y;;, Yo:1<j<N,0<i <1},is
uniform among th&3N + 1)! permutations, and that the permutation determines
whether#¢* has occurred. Foﬂ’* to occur, it is necessary that the maximuh
of variables inC beY; for somej. Thus

N
1
PN ,Z:o3N+1 (FNY) = M)
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These conditional probabilities may be evaluated recursivelyp ¥ M, then
further information about’1o and Y11 is irrelevant and the ordering of the
remaining 3V — 2 variables is uniform, leading to

P(#H*|Yo=M) = pn-1.
To ensure this holds faV = 1, we setpg := 1. Similarly,
P(H*|YNn = M) = pn-1.

Now suppose&V > 2 andY; = M for some 1< j < N —1. Then#’, andﬂ’j’.H are
known to occur. Removing from consideration the variabhlgs’; ; andY ;1 ; for

i =0, 1, the remaining variables are broken into two subsets of gize-3) + 1
and 3N — j — 1) + 1; the ordering on the union of these is still jointly uniform,
leading to

P(H*|Y; =M)=pj-1pN—j-1.

This equation is readily verified fo¥ > 2 andj =1 or j = N — 1 as well. Putting
these together gives the recursion

1 N-1
PN =do,N t+ 3N + 1(21?1\/—1 + Z P/'—lPN—j—l)
=1
(6.1) !

1 N
= 3N+ 1<2PN_1 + jX:_ij—ZPN—J),
which holds for allV due to the inclusion of the delta function.

Let f(z) == X N0 pnzN. Since we know (by submultiplicativity) that
log pn/N — log(2) for somex € (0, 1), the radius of convergence for the power
series definingf above will be ¥A. The generating function faiSN + 1) py is
equal tof + 3zf’. The generating function fafp y is 1, the generating function
for 2py_1 is 2zf and the generating function f(E;V:z Pj—2PN—j IS z2f2. Equa-
tion (6.1) then becomes a Riccati equation:

(6.2) f+3zf =1+ 2zf + 2212

From the derivation it is apparent that this functional equation has a unique
formal power series solutiorf,, and sincépy| < 1 for all N, the series represents
a function, also denoted, that is analytic in a neighborhood of the origin. Only
one locally analytic function can satisfy (6.2). To see this, wsite) = zf (%) so
thatg’ = 1+ 2z2¢ + z%g2 := F(z, g) with boundary value;(0) = 0. SinceF is
bounded and Lipschitz in a neighborhood of the origin, Gronwall’'s lemma ([5] or
implicit in the classical uniqueness result [1], Theorem 2.2) says there is at most
one suctly in the set of functions differentiable near 0.

Thus f is the unique locally analytic solution to (6.2), whence we may use
Maple’s ordinary differential equation solver to find solutions to (6.2) and be
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rigorously assured that any such solution we can verify by differentiation must
equal f. One finds that for any real constafif there is a solutiorfs which is a
ratio of Bessel functions. Its numerator is equal to

num := (A Bessel(—3, v/2z) + BesselK3, v/22))
and its denominator is equal to
den := \/z(—Av2 Bessell2, 2v/2z) + A/z Bessel(—1, 3v/2z)
++/2 BesselK3, 2v/2z) + /z BesselK3, 2v/22));

here Bessell and BesselK denote modified Bessel functions of the first and second
kinds, respectively. It is not yet clear whether one of these solutiofis is

As a fractional power seriesi4 has a leading term of /3, so certainly if
fa = f, thenA must be chosen to make this term vanish. SolvingAoyields
A = —m+/3/3, and plugging this into the expressions farm andden leads to
a function with a power series, a priori fractional, beginning with 3/2+ - - -.
The series converges in a neighborhood of the origin, so it defines a function that
is 14+ O(z) nearz = 0. Any function that is + O(z) near the origin and satisfies
the differential equation (6.2) must be analytic in a neighborhood of the origin. We
have therefore found the functigh

Since f has positive coefficients, its minimal modulus singularities lie on the
positive real axis. Its functional form dictates thfahas positive real singularities
precisely at the zeros oflen. We may approximate these as closely as we
wish. Maple’s numeric solver giveg := 1.803034611.. (the constant is not
recognized by Plouffe’s inverse symbolic calculator). Thus

logpn
N

— —logzo = —0.58947114. .,

which finishes the proof of Theorem 2.6.
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