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RANDOM FIELDS OF MULTIVARIATE TEST STATISTICS, WITH
APPLICATIONS TO SHAPE ANALYSIS

BY J. E. TAYLOR1 AND K. J. WORSLEY2

Stanford University, Université de Montréal and McGill University

Our data are random fields of multivariate Gaussian observations, and
we fit a multivariate linear model with common design matrix at each point.
We are interested in detecting those points where some of the coefficients
are nonzero using classical multivariate statistics evaluated at each point. The
problem is to find the P -value of the maximum of such a random field of
test statistics. We approximate this by the expected Euler characteristic of the
excursion set. Our main result is a very simple method for calculating this,
which not only gives us the previous result of Cao and Worsley [Ann. Statist.
27 (1999) 925–942] for Hotelling’s T 2, but also random fields of Roy’s max-
imum root, maximum canonical correlations [Ann. Appl. Probab. 9 (1999)
1021–1057], multilinear forms [Ann. Statist. 29 (2001) 328–371], χ̄2 [Sta-
tist. Probab. Lett 32 (1997) 367–376, Ann. Statist. 25 (1997) 2368–2387] and
χ2 scale space [Adv. in Appl. Probab. 33 (2001) 773–793]. The trick involves
approaching the problem from the point of view of Roy’s union-intersection
principle. The results are applied to a problem in shape analysis where we
look for brain damage due to nonmissile trauma.

1. Introduction. Our motivation comes from a study by Tomaiuolo, Worsley,
Lerch, Di Paulo, Carlesimo, Bonanni, Caltagirone and Paus [25] on the anatomy
of a group of 17 nonmissile brain trauma patients measured by magnetic resonance
imaging (MRI). The aim is to detect regions of brain damage (shape change) by
comparing anatomy at each point in N = 3 dimensional space to that of a group
of 19 age and sex matched controls. Each brain was first linearly transformed into
a common stereotactical reference space. Then the method of Collins, Holmes,
Peters and Evans [6] was used to find the nonlinear vector deformations Yi(s) ∈
�d (d = 3 here) required to transform the MRI image of subject i to a common
atlas standard at each point s inside a search region S ⊂ �N , usually the whole
brain—see Figure 1. This sort of anatomical data is good at detecting changes in
the boundary of brain structures, with the added benefit of estimating the direction
in which the change took place.
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FIG. 1. Shape analysis of nonmissile brain trauma data. (a) Trauma minus control average defor-
mations (arrows and color bar), sampled every 6mm inside the brain, with T (s) = Hotelling’s T 2

field for significant group differences (threshold t = 54.0, P = 0.05). The reference point of max-
imum Hotelling’s T 2 is marked by the intersection of the three axes. (b) Closeup of (a) showing
that the damage is an outward movement of the anatomy, either due to swelling of the ventricles
or atrophy of the surrounding white matter. (c) Regions of effective anatomical connectivity with
the reference point, assessed by T (s) = maximum canonical correlation field (threshold t = 0.746,
P = 0.05). The reference point is connected with its neighbors (due to smoothness) and with con-
tralateral regions (due to symmetry). (d) Regions where the connectivity is different between trauma
and control groups, assessed by T (s) = Roy’s maximum root field (threshold t = 30.3, P = 0.05).
The small region in the contralateral hemisphere (right) is more correlated in the trauma group than
the control group.

To do this, Cao and Worsley [4] set up a linear model for subject i, i = 1, . . . , n:

Yi(s)
′ = x′

iβ(s) + Zi(s)
′�(s)1/2,(1)
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where xi is a p-vector of known regressors, and β(s) is an unknown p × d coeffi-
cient matrix. The error Zi(s) is a d-vector of independent zero mean, unit variance
Gaussian random field components with the same spatial correlation structure, and
Var(Yi(s)) = �(s) is an unknown d × d matrix. We can now detect how the re-
gressors are related to shape at point s by testing contrasts in the rows of β(s).
Classical multivariate test statistics evaluated at each point s then form a random
field T (s).

We suspect that the changes are confined to a small number of localized regions
and the rest of the brain is unchanged. It is not hard to show that if the spatial
pattern of the change matches the spatial correlation function of the errors, and
if T (s) is the likelihood ratio at a single point s, then the spatial maximum of
T (s) is the likelihood ratio test under unknown signal location, provided �(s) is
known (Siegmund and Worsley [14]). In essence, this is just the Matched Filter
Theorem from signal processing. Thresholding T (s) at that threshold which con-
trols the P -value of its maximum should then be powerful at detecting changes,
while controlling the false positive rate outside the changed region to something
slightly smaller than the nominal P -value. Our main problem is therefore to find
the P -value of the maximum of random fields of multivariate test statistics.

The outline of the paper is as follows. An approximate P -value of the maximum
of a random field is given in Section 2, and in Section 3 we apply this to random
fields of multivariate test statistics T (s) such as Hotelling’s T 2, Roy’s maximum
root and maximum canonical correlation. The same methods can also be applied to
random fields of χ̄2 (Lin and Lindsay [12] and Takemura and Kuriki [18]) statis-
tics, but this will be the subject of a forthcoming paper (Taylor and Worsley [23]).
In Section 4 we apply these results to the nonmissile brain trauma data above.
A further application to χ2 scale space random fields is given in Appendix A.5.

2. P -value of the maximum of a random field.

2.1. The expected Euler characteristic. A random field T (s), s ∈ S ⊂ R
N , is

isotropic if it has the same distribution as T (a + Bs), where a ∈ R
N is any trans-

lation and B is any orthnormal (rotation) matrix. A very accurate approximation
to the P -value of the maximum of such a random field, at high thresholds t , is the
expected Euler characteristic (EC) ϕ of the excursion set

P

(
max
s∈S

T (s) ≥ t

)
≈ E

(
ϕ{s ∈ S :T (s) ≥ t}) =

N∑
i=0

μi(S)ρi(t),(2)

where μi(S) is the i-dimensional intrinsic volume of S, and ρi(t) is the
i-dimensional EC density of the random field above t (Adler [1, 2], Worsley [27],
Taylor, Takemura and Adler [22] and Adler and Taylor [3]). The accuracy of the
approximation (2) will be discussed in Section 2.2.
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FIG. 2. (a) The Euler characteristic of a 3D set is ϕ = �blobs − �handles or tunnels + �hollows =
2 − 1 + 0 = 1, or, if we fill the set with a fine rectilinear mesh, then ϕ = �points − �edges + �faces −
�cubes = 47 − 70 + 26 − 2 = 1. (b) The excursion set of a 3D isotropic Gaussian random field with
mean zero and variance one above a threshold t = −2; the set contains isolated hollows that each
contribute +1 to give ϕ = 5 with E(ϕ) = 6.7 from (2); (c) at t = 0 the handles or tunnels dominate,
each contributing −1 to give ϕ = −28 with E(ϕ) = −20.0; (d) at t = 2 the handles and hollows
disappear, leaving isolated blobs, each contributing +1 to give ϕ = 11 with E(ϕ) = 16.1; (e) at
t = 3 only one blob remains (containing the maximum value of 3.16) to give ϕ = 1 with E(ϕ) = 2.1.
At very high thresholds E(ϕ) is a good approximation to the P -value of the maximum.

For N = 3, our main interest in applications, the EC of a set is

ϕ = �blobs − �handles or tunnels + �interior hollows

(see Figure 2). It can be evaluated numerically for a subset of a rectilinear mesh by

ϕ = �points − �edges + �faces − �cubes,(3)

where, for example, a cube is a set of 8 adjacent mesh points, differing by one
mesh step along each axis, and all inside the set [Figure 2(a)]. This method was
used to calculate the EC of the excursion sets in Figure 2(b)–(e).

Intrinsic volumes are defined in Appendix A.1, and for N = 3, they are

μ0(S) = ϕ(S),

μ1(S) = 2 caliper diameter(S),
(4)

μ2(S) = 1
2surface area(S),

μ3(S) = volume(S).
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For convex S, the caliper diameter is the distance between two parallel planes
tangent to S, averaged over all rotations.

EC density is defined in Section 2.3. As an example, suppose T = T (s) is a
unit Gaussian random field (UGRF), defined as a Gaussian random field with
E(T ) = 0, Var(T ) = 1 and Var(Ṫ ) = IN×N , the N × N identity matrix, where
dot denotes (spatial) derivative with respect to s. Then the first four EC densities
of T are

ρ0(t) = P(T ≥ t),

ρ1(t) = (2π)−1 exp(−t2/2),
(5)

ρ2(t) = (2π)−3/2t exp(−t2/2),

ρ3(t) = (2π)−2(t2 − 1) exp(−t2/2).

Note that any stationary Gaussian random field can be transformed to a UGRF
by an appropriate linear transformation of its domain and range. In particular, if
Var(Ṫ ) = cIN×N for some scalar c, then ρi(t) is multiplied by ci/2.

2.2. The accuracy of the approximation. A heuristic explanation for why we
use the expected EC as a P -value approximation is as follows. If the threshold t is
high, the handles and hollows of the excursion set tend to disappear, leaving a set of
isolated blobs, each containing one local maximum, so that the EC then counts the
number of connected components [Figure 2(d)]. At very high thresholds the excur-
sion set is mostly empty with an EC of 0, or occasionally, when maxs∈S T (s) ≥ t ,
it will contain just one connected component with an EC of 1 [Figure 2(e)]. Thus,
at these high thresholds the expected EC is a good approximation to the P -value
of maxs∈S T (s). The beauty of the EC is that there is an exact expression for its
expectation for all thresholds.

Moreover, the approximation (2) is astonishingly accurate when S is either con-
vex or has smooth boundary, and T (s) is Gaussian, in which case

E
(
ϕ{s ∈ S :T (s) ≥ t})

(6)
= P(T ≥ t) + (c0 + c1t + · · · + cD−1t

D−1) exp(−t2/2)

for some constants c0, . . . , cD−1 [see (5) and (9) below]. Since P(T ≥ t) =
O(1/t) exp(−t2/2), it might be thought that the error in the P -value approxi-
mation (2) is simply the next term down, that is, O(1/t2) exp(−t2/2). In fact, the
error is exponentially smaller than this:

P

(
max
s∈S

T (s) ≥ t

)
= E

(
ϕ{s ∈ S :T (s) ≥ t}) + O

(
exp(−αt2/2)

)
(7)

for some α > 1 which is related to the curvature of the boundary of S and Var(T̈ )

(Taylor, Takemura and Adler [22]). This means that there are in effect no further
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terms in the expansion, and the expected EC captures essentially all of the polyno-
mial terms in the P -value.

We will see later that many of the P -value approximations for non-Gaussian
fields can be transformed into P -value approximations of Gaussian fields on larger
parameter spaces. This means that these special non-Gaussian fields also have ex-
ponentially accurate P -value approximations as in (7). There will be some exam-
ples, however, with a χ2 field in the denominator, for which this trick will not
work. For these examples, it is difficult to give quantitative bounds on the error.
The general techniques in Taylor, Takemura and Adler [22] still apply to these
non-Gaussian fields, though the final form of the bound is not explicitly known in
these cases.

2.3. The EC density. A direct method for finding EC densities of any suffi-
ciently smooth random field can be derived using Morse theory (Morse and Cairns
[13]) for i > 0,

ρi(t) = E
(
1{T ≥t} det(−T̈i) | Ṫi = 0

)
P(Ṫi = 0),(8)

where dot notation with subscript i denotes differentiation with respect to the first
i components of s, and double dot with subscript i denotes the matrix of second
derivatives with respect to the first i components of s (Adler [1] and Worsley [27]).
For i = 0, ρ0(t) = P(T ≥ t). If T is a UGRF, Adler [1] uses this method to obtain
its EC density

ρG
i (t) =

( −1√
2π

∂

∂t

)i

P(T ≥ t),(9)

which leads directly to (5) and (6).
Our main interest in this paper is finding P -values for maxima of random fields

of test statistics commonly encountered in multivariate analysis, with the ultimate
aim of applying this to detecting points s where coefficients in a multivariate linear
model are nonzero. First of all we must define the random field T . For example,
a χ2 random field with d degrees of freedom is defined as

T (s) = Z(s)′Z(s),(10)

where Z(s) is a d-vector of i.i.d. UGRFs. In a similar way we can define other
test statistic random fields, such as t and F statistic random fields, by applying the
usual definition to component UGRFs.

2.4. The Gaussian kinematic formula. Finding workable expressions for EC
densities is a tedious process. The result for UGRFs (9) appears to be simple, but
its derivation takes most of Chapter 5 of Adler [1]. In fact, Adler did not at first
recognize that it could be expressed as the derivative of the P -value at a point. For
many years this was thought to be a coincidence, but a new result of Taylor [20] on
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Gaussian kinematic formulas shows that indeed this is not a coincidence in certain
cases (the Gaussian is one, the

√
χ2 is another): the EC densities of functions of

UGRFs fall out as the coefficients of a power series expansion of the probability
content of a tube about the rejection region, in terms of the tube radius. For the
Gaussian case, this tube is just another rejection region of the same shape, which
ultimately leads to the special form of the Gaussian EC density (9).

The details of the Gaussian kinematic formula are as follows. Suppose T (s) =
f (Z(s)) is a function of Z(s), a d-vector of i.i.d. UGRFs as before, so that
the rejection or critical region is C = {z :f (z) ≥ t} ⊂ R

d . Let Tube(C, ε) =
{x : minz∈C ‖z − x‖ ≤ ε} be the tube of radius ε around C. Let Z be a d-vector
of i.i.d. N(0,1) random variables. Then the Gaussian kinematic formula is

P
(
Z ∈ Tube(C, ε)

) =
∞∑
i=0

εi

i! (2π)i/2ρi(t).(11)

For T (s) a UGRF, d = 1, f (z) = z, and this leads directly to the Gaussian EC
density (9). For an F statistic random field with (η, ν) degrees of freedom,

f (z) = z′
1z1/η

z′
2z2/ν

,

where z = (z′
1, z

′
2)

′, z1 ∈ R
η, z2 ∈ R

ν and d = η + ν. The rejection region C is a
cone, and after a little elementary geometry, it can be seen that the first d terms
come only from the sides of the cone and are easy to calculate (Taylor and Wors-
ley [23]):

P
(
Z ∈ Tube(C, ε)

) = P
(√

V ≥ √
Wtη/ν − ε

√
1 + tη/ν

) + O(εd),(12)

where V ∼ χ2
η independently of W ∼ χ2

ν . Expanding the right-hand side of (12) in
powers of ε and equating it to that of the Gaussian kinematic formula (11) gives
the i-dimensional EC densities ρF

i (t) of the F field for i < d . This agrees with an
explicit expression found using the Morse theory result (8) that can be found in
Worsley [26].

The higher-order terms in O(εd) in (12) come from the apex of the cone. Luck-
ily we do not have to calculate them, since we only need EC densities up to dimen-
sion N and if N ≥ d , then the F field is not defined (Worsley [26]). The F field
is not defined because both numerator and denominator of F can take the value 0
(i.e., F = 0/0) with positive probability. The reason is that the zero set of any of
the component UGRFs is a smooth surface of dimension N − 1; the intersection
of d such surfaces is a set of dimension N − d which is nonempty (with positive
probability) if N − d ≥ 0. On this set both numerator and denominator of F take
the value 0 with positive probability and F is not defined.
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2.5. Non-Gaussian random fields. Unfortunately the EC densities of non-
Gaussian random fields are not always derivatives of the P -value as in (9). In-
stead we must go back to the Morse theory result (8) or, if the random field is
a function of i.i.d. UGRFs (as is the case here), we can use the Gaussian kine-
matic formula (11). Both are equally complex for the types of random fields we
are interested in.

For the Gaussian kinematic formula, we must evaluate the probability content
of a tube about a very complex rejection region. For the Morse theory result, we
must obtain expressions for the joint distribution of the random field and its first
two derivatives, then evaluate the expectation (8) by careful manipulation of vector
and matrix random variables. This has been done for χ2, t and F random fields
(Worsley [26]), Hotelling’s T 2 random fields (Cao and Worsley [4]) and correla-
tion random fields (Cao and Worsley [5]). In each case, after a great deal of tedious
algebra, an exact closed-form expression for the EC density is obtained.

The types of random fields we are interested in are generalizations of
Hotelling’s T 2, which is used to test for a single coefficient in a multivariate
linear model. Our goal is to generalize random field theory to testing for multi-
ple coefficients, the only missing piece. The obvious choice is the likelihood ratio
statistic, Wilks’ �, but so far this has resisted our attempts. Instead, by a very
simple trick that builds on previous EC densities and avoids any further evaluation
of the Morse theory result (8), we can easily obtain P -value approximations sim-
ilar to (2) (but not EC densities) for Roy’s maximum root, a common alternative
to Wilks’ �. Using the same method, we re-derive in Section 3.1 the EC density
for Hotelling’s T 2, shortening the original derivation from an entire Annals paper
(Cao and Worsley [4]) down to just several lines. We use the same trick to get the
χ2 scale space field from the Gaussian scale space field, again reducing most of an
Advances in Applied Probability paper (Worsley [28]) down to just one line—see
Appendix A.5.

2.6. The union-intersection principle. The trick is to approach the problem
from the point of view of Roy’s union-intersection principle. Take, for example,
the χ2 random field with d degrees of freedom (10). We can write this as the
maximum of linear combinations of d i.i.d. UGRFs Z(s) as follows:

T (s) = max
u

T̃ (s, u), where T̃ (s, u) = (Z(s)′u)2,

and u ∈ R
d is restricted to the unit sphere Ud = {u :u′u = 1}. In other words, we

have written the χ2 field in terms of the square of a Gaussian field over a larger
domain S × Ud .

At first glance this seems to make things more difficult, but, in fact, it makes
things easier. We can now apply the P -value approximation (2) to T̃ (s, u), replac-
ing S by S × Ud . Using integral geometry, the intrinsic volume of S × Ud is a
simple function of the intrinsic volumes of S and Ud . The EC densities of T̃ (s, u)

are easily obtained from the Gaussian EC densities (9). Putting them all together
and pulling out the coefficient of μi(S) gives us the EC density for the χ2 field.
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2.7. Nonisotropic fields and Lipschitz–Killing curvature. There is only one
technical difficulty. Although T̃ (s, u) is isotropic in s for fixed u, it is not isotropic
in u for fixed s (since u is on a sphere), nor jointly isotropic in (s, u). To handle
this situation, Taylor and Adler [21] and Taylor [20] have extended the theory of
Adler [1] and Worsley [27] to nonisotropic fields on smooth manifolds with piece-
wise smooth boundaries. They show that if the random field is a function of i.i.d.
nonisotropic UGRFs, then it is only necessary to replace intrinsic volume μi(S) in
the expected EC (2) by Lipschitz–Killing curvature (LKC) Li (S):

P

(
max
s∈S

T (s) ≥ t

)
≈ E

(
ϕ{s ∈ S :T (s) ≥ t}) =

N∑
i=0

Li (S)ρi(t).(13)

This result holds for nearly all nonisotropic random fields that are N(0,1) at each
point and smooth, that is, with at least two almost sure derivatives and an additional
mild regularity condition; see Taylor and Adler [21].

The LKC of S is a measure of the intrinsic volume of S in the Riemannian
metric defined by the variogram. Specifically, we replace local Euclidean distance
between points s1, s2 ∈ S by the square root of the variogram

Var
(
Z1(s1) − Z1(s2)

)1/2
,(14)

where Z1(s) is the first (say) component of Z(s). Note that the LKC of S depends
on the local spatial correlation structure of the underlying UGRF, although we sup-
press this dependence in the notation Li (S). The corresponding EC density in (13)
is then calculated as before, but assuming the component UGRFs are isotropic. In
other words, the information about the nonisotropy of the random field is trans-
ferred from the EC density to the LKC.

An explicit expression for the LKC can be found in Taylor and Adler [21], but
it requires a solid grasp of differential geometry which is beyond the scope of this
paper. Some idea of how the LKC can be calculated is as follows. Suppose S can
be embedded by a smooth transformation into a set S̃ ⊂ R

Ñ in a higher Ñ ≥ N

dimensional Euclidean space so that, in this space, local Euclidean distance is the
square root of the variogram (14). Then

Li (S) = μi(S̃).

The Nash Embedding Theorem guarantees that such a finite Ñ exists; moreover,
it is bounded by Ñ ≤ N(N + 1)/2 + N . However, in Taylor and Adler [21] the
actual derivation of the expected EC (2) in the nonisotropic case proceeds more
naturally from first principles, namely, the variogram metric (14), with isotropic
random fields in Euclidean space following as a special case.

Fortunately there is a very simple expression for the N -dimensional LKC,
which usually makes the largest contribution to the expected EC (2):

LN(S) =
∫
S

det(Var(Ż1(s)))
1/2 ds.(15)
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Similarly, there is a simple formula for the (N − 1)-dimensional LKC:

LN−1(S) = 1
2

∫
∂S

det(Var(ŻT
1 (s)))1/2 ds,

where ∂S is the boundary of S and ŻT
1 (s) is the derivative of Z1 tangential to the

boundary. The lower dimensional LKCs do not have a simple formula, except for
L0(S) = ϕ(S).

Of particular interest for this paper, it can be shown that in the cases we consider,

Li (S × Ud) = μi(S × Ud),

where S × Ud is considered as a subset of R
N+d . This justifies carrying on with

the expected EC (2) as if T̃ (s, u) were jointly isotropic in (s, u).
Finally, Appendix A.5 gives a neat application of the LKC version of the ex-

pected EC (13) to derive the χ2 scale space EC densities from the Gaussian scale
space EC densities.

2.8. The tube method, a direct approach to the P -value of the maximum. The
tube method, developed by Knowles and Siegmund [10], Johansen and Johnstone
[9], Sun [15] and Sun and Loader [16], is a direct approach to the P -value of the
maximum of a random field.

The approach starts by writing the random field as a Karhunen–Loéve expan-
sion, then finding the P -value of the maximum of the first m terms, then letting
m → ∞. The first m terms can be written as a linear combination of m spatial
basis functions with m independent N(0,1) random variables. Conditioning on
the sum of squares of these Gaussian random variables, the P -value of the maxi-
mum of the first m terms comes down to the probability content of a subset of the
m-dimensional unit sphere. This subset turns out to be a tube with a radius that de-
pends on the threshold of the random field. The P -value calculation is thus reduced
to a geometrical calculation: the ratio of the measure of the tube to the measure of
the sphere. Taking expectations over the sum of squares of the Gaussian random
variables completes the calculation. The final step is to let m → ∞, giving a series
expansion for the P -value similar to (2).

Sun [15] gives a general two-term series expansion for the P -value of the max-
imum of a general Gaussian random field that does not have to be homogeneous
nor have a finite Karhunen–Loéve expansion, and an upper bound for an (N − 1)-
term expansion. In an unpublished manuscript by Sun (referenced in Adler [2]),
it was generalized to include more general boundary cases. Sun, Loader and Mc-
Cormick [17] developed simultaneous confidence regions for response curves in
generalized linear models, using the tube formula, and generalized inverse Edge-
worth expansions, which they developed using the Skorohod construction.

As we can see from this method, there is no need to assume isotropy, but the tube
method cannot be applied to non-Gaussian fields such as t , F or the multivariate
random fields that interest us here. Moreover, in the case of Gaussian random
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fields, Takemura and Kuriki [19] show that the tube method’s series expansion
agrees with the expected EC (2) out to the number of terms in the expected EC.
Thus, when they overlap, the two methods give essentially the same result, but the
EC method appears to be easier to work with, and extendable to the multivariate
random fields that concern us here.

3. Random fields of multivariate test statistics. It is not hard to see how we
can apply this same union-intersection principle to other types of random fields.
In Section 3.1 we shall get the EC densities for a Hotelling’s T 2 field from the t

field; in Section 3.2 we shall get a P -value approximation (but not quite the EC
density) for a Roy’s maximum root field from the F field; in Section 3.3 we shall
get similar results for a maximum canonical correlation field from the correlation
field. In fact, all the results so far known can be obtained from the correlation field,
which makes the computer implementation particularly simple. This has been done
in the stat_threshold function of the FMRISTAT package for the statistical
analysis of fMRI data (http://www.math.mcgill.ca/keith/fmristat).

Further generalizations in Section 3.4 to multilinear forms are obvious. In fact,
there is a strong link between this paper and Kuriki and Takemura [11]. The lat-
ter paper is concerned with obtaining P -values for maxima of multilinear forms,
linear combinations of a multidimensional array (rather than just a matrix) of
Gaussian random variables. Their interest is only in the P -value of the multilinear
form itself, not a random field of multilinear forms, and their method is based on
the tube method described in Section 2.8.

The same idea can easily be extended to random fields of χ̄2 statistics (Lin and
Lindsay [12] and Takemura and Kuriki [18]) by simply replacing the sphere Ud

with a cone (a subset of the sphere). This will be developed in a forthcoming paper
[23]. Finally, Appendix A.5 shows how to get the χ2 scale space field from the
Gaussian scale space field.

3.1. Hotelling’s T 2. Hotelling’s T 2 field is defined as

T (s) = νZ(s)′W(s)−1Z(s),

where W(s) is an independent d × d Wishart random field with ν degrees of free-
dom, generated as the sum of squares matrix of ν independent copies of Z(s). We
are interested in finding ρH

i , the i-dimensional EC density of the Hotelling’s T 2

field. Using Roy’s union-intersection principle, we write the Hotelling’s T 2 field
as the maximum of the square of a (Student’s) t field:

T (s) = max
u

T̃ (s, u) where T̃ (s, u) = (Z(s)′u)2

u′W(s)u/ν
.

The variance of the derivative with respect to u of Z′u is the identity matrix, so
that Z′u is a UGRF as a function of u (when restricted to the unit sphere Ud ) as
well as s. Hence, T̃ is the square of a (unit) t field with ν degrees of freedom.

http://www.math.mcgill.ca/keith/fmristat
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There is a direct link between the EC of T and the EC of T̃ : for t > 0,

ϕ{s ∈ S :T (s) ≥ t} = 1
2ϕ{(s, u) ∈ S × Ud : T̃ (s, u) ≥ t},

since for each fixed s, the excursion set {u ∈ Ud : T̃ (s, u) ≥ t} is either empty or a
pair of ellipsoidal caps with EC equal to 2. To see this, replace u by v = W 1/2u,
and note that the excursion set is the intersection of an ellipsoid with a pair of
symmetric half-spaces. In other words, {(s, u) ∈ S ×Ud : T̃ (s, u) ≥ t} has the same
topology as two copies of {s ∈ S :T (s) ≥ t}. Figure 3 illustrates this point for the
simplest nontrivial case of N = 1, d = 1 and ν = ∞.

Let ρT
k be the k-dimensional EC density of a t field with ν degrees of freedom.

Then

E
(
ϕ{s ∈ S :T (s) ≥ t}) = 1

2E
(
ϕ{(s, u) ∈ S × Ud : T̃ (s, u) ≥ t})

=
N+d∑
k=0

μk(S × Ud)ρT
k

(√
t
)

(16)

=
N∑

i=0

μi(S)

d∑
j=0

μj(Ud)ρT
i+j

(√
t
)
.

The first step in the above (16) essentially follows from the expected EC (2),
though, as noted in Section 2.7, the isotropic theory cannot be directly applied. For-
tunately, as mentioned in Section 2.7, the Lipschitz–Killing curvatures of S × Ud

agree with the intrinsic volumes of S × Ud considered as a subset of R
N+d . In

what follows, we will apply this same argument without further mention.
The last step in the above (16) follows from a result of integral geometry on the

intrinsic volumes of products of sets (see Appendix A.3). Note that the factor of
1
2 disappears because the expected EC of the excursion set of a t field squared is
twice that of a t field not squared. Equating (16) to the expected EC (2) gives the
EC density of Hotelling’s T 2 random field:

ρH
i (t) =

d∑
j=0

μj(Ud)ρT
i+j

(√
t
)
.

Appendix A.2 gives the intrinsic volume of the sphere μj(Ud), and Worsley [26]
gives the EC density of the t field. We have thus re-derived the same result as Cao
and Worsley [4], but with far less trouble.

3.2. Roy’s maximum root. Let V (s) be a Wishart random field with η degrees
of freedom and component random fields independently distributed as Z(s). Let
λ1(s) ≥ · · · ≥ λd(s) be the roots of the generalized eigenvalue equation V (s)u/η =
W(s)uλi(s)/ν, where W(s) is a Wishart random field with ν degrees of freedom
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FIG. 3. Example of Hotelling’s T 2 field in N = 1 dimensions, with d = 2 components, and ν = ∞
degrees of freedom. (a) Excursion set of T̃ (s, u) above t = 1 (horizontal and vertical lines on graphs
below); (b) “unwrapped” T̃ (s, u), u = (sin θ, cos θ); (c) Hotelling’s T 2, T (s) = maxu T̃ (s, u);
(d) observed and expected EC of T̃ and T as a function of threshold t , calculated using (3) and (2).
Note that the EC of T̃ is twice that of T (e.g., at t = 1, 6 = 2 × 3).
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as before. Roy’s maximum root random field is T (s) = λ1(s). But it can also be
derived from the union-intersection principle:

T (s) = max
u

T̃ (s, u) where T̃ (s, u) = u′V (s)u/η

u′W(s)u/ν
.

Hotelling’s T 2 random field is a special case with V (s) = Z(s)Z(s)′, that is, η = 1.
Unfortunately, the EC of the excursion set of T̃ is no longer directly related to that
of T , as it was in the case of Hotelling’s T 2, as the following lemma shows:

LEMMA 1. The EC of T̃ is twice the alternating sum of the EC of the roots:

ϕ{(s, u) ∈ S × Ud : T̃ (s, u) ≥ t} = 2
d∑

i=1

(−1)i−1ϕ{s ∈ S :λi(s) ≥ t}.

PROOF. The EC of the excursion set of T̃ for fixed s is now more complicated,
but we can find it by Morse’s theorem (Morse and Cairns [13]), which states the
following. Suppose f is any smooth function defined on a set A which takes its
minimum value everywhere on the boundary of A, and all turning points where
ḟ = 0 have nonzero det(f̈ ) and are interior to A. Then Morse’s theorem states that

ϕ(A) = ∑
a∈A

1{ḟ (a)=0} sign(det(−f̈ (a))).

All we have to do is choose a suitable Morse function, f . Let � = diag(λ1, . . . ,

λd), suppressing dependency on s. Then

ϕ{u ∈ Ud : T̃ (s, u) ≥ t} = ϕ{a ∈ Ud :a′�a ≥ t}.
A suitable Morse function for A = {a ∈ Ud :a′�a ≥ t} is of course f (a) = a′�a

itself. The 2d turning points of f in Ud where ḟ = 0 are the vectors ±ei , where
ei has 1 in position i and 0 elsewhere. The (d − 1) × (d − 1) second derivative
matrix f̈ (±ei) is the diagonal matrix with elements λj − λi for all j �= i, and
so sign(det(−f̈ (±ei))) = (−1)i−1. Adding these contributions over the turning
points where f ≥ t , that is, λi ≥ t , gives

ϕ{u ∈ Ud : T̃ (s, u) ≥ t} = 2
d∑

i=1

(−1)i−11{λi≥t},

or in other words, 2 if the number of roots greater than t is odd, and 0 otherwise.
Applying Morse theory to S × Ud in the same way proves the result. �

Thus in the case of Roy’s maximum root, there is no direct connection between
the EC of T and the EC of T̃ , except in the case of η = 1, where there is only
one nonzero root (equal to Hotelling’s T 2). For η > 1, the EC of T̃ is smaller than
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twice that of T , suggesting that half the EC of T̃ approximates the P -value of the
maximum root maximized over S:

P

(
max

s
T (s) ≥ t

)
≈ 1

2E
(
ϕ{(s, u) ∈ S × Ud : T̃ (s, u) ≥ t}).

It is difficult to give quantitative bounds on the error in the above approximation as
the fields are non-Gaussian. For Gaussian fields, there exist tools such as Slepian’s
inequality (Adler [2]) and for the finite Karhunen–Loéve Gaussian case, the tube
work of Taylor, Takemura and Adler [22]. In the non-Gaussian case, recent tech-
niques described in Taylor, Takemura and Adler [22] give a recipe for bounding
the error, though we have not applied these techniques here. If the degrees of free-
dom of the denominator were infinite, then the maximum of the Roy’s maximum
root field is a maximum of a Gaussian field and the results of Taylor, Takemura
and Adler [22] described in Section 2.2 apply.

To evaluate the EC density, note that T̃ is simply an F field with η, ν degrees of
freedom and k-dimensional EC density ρF

k . Then

E
(
ϕ{(s, u) ∈ S × Ud : T̃ (s, u) ≥ t}) =

N∑
i=0

μi(S)ρR
i (t),

where

ρR
i (t) =

d∑
j=0

μj(Ud)ρF
i+j (t).

Note that ρR
i (t) is not the EC density of Roy’s maximum root; rather, it is twice

the alternating sum of the EC densities of all the roots (see Figure 4). But for high
thresholds, the other roots are much smaller than the maximum, so their EC is close
to zero. For this reason, we can use half ρR

i (t) in the approximate P -value (2).
It is interesting to note that the Roy’s maximum root field is not always smooth.

If the number of dimensions N ≥ 2, then it can contain (with positive probability)
nonsmooth local minima or “cusps” where the two largest roots are equal. Figure 5
shows an example with N = 2, d = 2, η = 6 and ν = ∞. The reason is that for
equality of the two roots, the two diagonal elements v11 and v22 of V must be
equal, and the off-diagonal element v12 must be zero. These two constraints are
satisfied on two zero contour lines of v11 − v22 and v12. The two lines intersect in
points (with positive probability) where both constraints are satisfied, and at these
points the roots are equal. This cannot happen in N = 1 dimensions, almost surely,
so we do not see it in Figure 4. In general, equal roots, and hence cusps, will occur
for any d ≥ 2 whenever N ≥ 2. This lack of smoothness rules out the possibility
of using (8) to find the EC density of the Roy’s maximum root field. This does not
mean a simple expression might not exist; the conjunction random field, defined
as the minimum of independent smooth random fields (Worsley and Friston [30])



16 J. E. TAYLOR AND K. J. WORSLEY

FIG. 4. Example of Roy’s maximum root field in N = 1 dimensions, with d = 2 components, and
η = 2, ν = ∞ degrees of freedom. (a) Excursion set of T̃ (s, u) above t = 1 (horizontal and verti-
cal lines on graphs below); (b) “unwrapped” T̃ (s, u), u = (sin θ, cos θ); (c) Roy’s maximum root
T (s) = maxu T̃ (s, u) and the minimum root minu T̃ (s, u); (d) observed and expected EC of T̃ and
observed EC of the maximum and minimum roots, as a function of threshold t , calculated using (3)
and (2). Note that the EC of T̃ is twice the EC of the maximum root minus the minimum root [e.g. at
t = 1, 4 = 2 × (3 − 1)]. Note that at high thresholds, the EC of the minimum root is negligible, so the
EC of the maximum root is well approximated by half the EC of T̃ .
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FIG. 5. Example of cusps, or nonsmooth local minima, in a Roy’s maximum root field, with N = 2
dimensions, d = 2 components, and η = 6, ν = ∞ degrees of freedom. The vertical axis is the random
field value (the lower lattice is zero). The upper surface is the maximum root, the lower surface is
the minimum root. Two cusps are visible in the center of the picture (above arrow heads) where the
upper and lower surfaces almost touch. Cusps will occur whenever N ≥ 2 with positive probability.

also has cusps (at local maxima), yet despite this, a simple closed-form expression
can be found for its EC density without using (8).

3.3. Maximum canonical correlation. Let X(r), r ∈ R ⊂ R
M , and Y(s), s ∈

S ⊂ R
N be matrices of UGRFs with c and d columns, respectively, and the same

number n of rows. Let u ∈ Uc and v ∈ Ud . Define the maximum canonical corre-
lation random field as

T (r, s) = max
u,v

T̃ (r, s, u, v)

where T̃ (r, s, u, v) = u′X(r)′Y(s)v

(u′X(r)′X(r)uv′Y(s)′Y(s)v)1/2 .

Note that T is the maximum of the canonical correlations between X and Y , de-
fined as the singular values of (X′X)−1/2X′Y(Y ′Y)−1/2. Once again there is no
direct connection between the EC of T and the EC of T̃ . Using the same ap-
proach as in Section 3.2, it can be shown that, for positive thresholds, the EC of
{u, v : T̃ (r, s, u, v) ≥ t} is 2 if the number of canonical correlations greater than t is
odd, and 0 otherwise. If c = 1 or d = 1, there is only one nonzero canonical corre-
lation, so the EC density of T̃ is twice that of T . Otherwise, the EC of T̃ is smaller
than twice that of T , suggesting that half the EC of T̃ approximates the P -value of
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the maximum canonical correlation maximized over R,S. This approximation is

P

(
max
r,s

T (r, s) ≥ t

)
(17)

≈ 1
2

M∑
i=0

μi(R)

N∑
j=0

μj(S)

c∑
k=0

μk(Uc)

d∑
l=0

μl(Ud)ρC
i+k,j+l(t),

where ρC
ij is the EC density of the (cross) correlation random field T̃ for fixed

u, v given in Cao and Worsley [5]. If M = N , R = S, and the search region in
R×S is confined to the “diagonal” where r = s, then this is called the homologous
correlation random field (Cao and Worsley [5]), which we can generalize in the
same way.

We now show that all previous results can be obtained from (17) by setting R to
a single point (M = 0), which eliminates the need for special cases and makes it
much simpler to program. For this reason, and to keep this paper self-contained, an
explicit expression for ρC

ij is given in Appendix A.4. First of all, it is well known
that for fixed r, s the square of the maximum canonical correlation is a monotonic
function of Roy’s maximum root with d as before and

V = Y ′X(X′X)−1X′Y, η = c,

W = Y ′Y − V, ν = n − c,

and thus, Hotelling’s T 2 (c = 1) and the F statistic (d = 1) are special cases. What
is not obvious is that their distributions as random fields are the same, since (17)
was derived under the assumption of a random X and Y , whereas Roy’s maximum
root (and the others) only require a random Y . However, it is easy to see that, con-
ditional on X, V and W have the appropriate Wishart distributions with parameters
that do not depend on X, hence, they also have the appropriate distributions mar-
ginal on X. Moreover, since R is a point (M = 0), then X is the same for all s ∈ S,
and so the above remarks apply to the random fields, not just the random values at
a single s.

3.4. Maximum multilinear form. Let uj be a unit dj -vector, j = 1, . . . ,D, and
u = u1 ⊗ · · · ⊗ uD be their Kronecker product, that is, a vector of all components
of the form c1c2 · · · cD where cj is a component of uj . Let Z̃(s) be a vector of i.i.d.
UGRFs of length equal to that of u. The maximum multilinear form random field
can be defined as

T (s) = max
u1,...,uD

T̃ (s, u1, . . . , uD) where T̃ (s, u1, . . . , uD) = Z̃(s)′u.

Note that if D = 1, then T (s)2 is a χ2 field with d1 degrees of freedom; if D = 2,
then T (s)2 is the maximum root of a d1 ×d1 Wishart random field with d2 degrees
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of freedom, the same as ν times Roy’s maximum root as ν → ∞. The EC density
is straightforward:

ρM
N (t) =

(
D∏

j=1

dj∑
kj=0

μkj
(Udj

)

)
ρG

N+k(t) where k =
D∑

j=1

kj .

Noting that T is unchanged if any pair of uj ’s are multiplied by −1 suggests that

P

(
max

s
T (s) ≥ t

)
≈ 2−(D−1)

N∑
i=0

μi(S)ρM
i (t).

In the nonrandom field case, N = 0, this appears to be the same as that given by
Kuriki and Takemura [11]; numerical comparisons of the coefficients of powers of
t are identical in every case considered so far.

4. Application.

4.1. Estimating Lipschitz–Killing curvature. Since real data is usually non-
isotropic, the first step is to estimate the LKC. A method for doing this was devel-
oped in Worsley, Andermann, Koulis, MacDonald and Evans [29] and Taylor and
Worsley [24], but, for completeness, we briefly describe it here as it pertains to the
multivariate linear model (1).

Let Y(s) = (Y1(s), . . . , Yn(s))
′ be the n × d matrix of all the deformations data

at a point s, and let X = (x1, . . . , xn)
′ be the n × p design matrix of the model (1),

assumed of full rank. The least-squares residuals are

R(s) = Y(s) − X(X′X)−1X′Y(s).

Let Rj(s) be the j th column of R(s), j = 1, . . . , d . The corresponding normalized
residuals are

Qj(s) = Rj(s)/‖Rj(s)‖.
Let ek be the N -vector of zeros with kth component equal to the lattice step size
along axis k, k = 1, . . . ,N . Let

Dj(s) = (
Qj(s + e1) − Qj(s), . . . ,Qj (s + eN) − Qj(s)

)
be the n × N matrix of differences of Qj(s) in all lattice directions. Then
Dj(s)

′Dj(s) is an estimator of Var(Ż1(s))�, where � is the product of the lattice
step sizes. Summing over all such lattice points in S and averaging over compo-
nents j , our estimator of the N -dimensional LKC of S is

L̂N(S) =
d∑

j=1

∑
s∈S

det(Dj (s)
′Dj(s))

1/2/d.(18)
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Worsley et al. [29] show that this is consistent and unbiased in the limit as the
mesh size approaches zero. Note that this estimator is not invariant to a linear
transformation of the components of Yi(s), and indeed, Rj(s) could be replaced
by any linear combination of the columns of R(s) and the LKC estimator (18)
would still be unbiased in the limit.

Estimating the lower dimensional LKCs is more complicated. Taylor and Wors-
ley [24] describe a method that involves filling S with a simplicial mesh (a tetrahe-
dral mesh in N = 3 dimensions), a nontrivial problem. The coordinates s ∈ R

N of
the mesh are then replaced by the normalized residuals Qj(s) ∈ R

n. The intrinsic
volumes of all the components of the simplicial complex (points, edges, triangles,
tetrahedra, . . .) are calculated then added together in an inclusion–exclusion type
formula to give estimates of the LKCs of the union of the simplices, and hence,
of S itself. Again, this estimator is consistent and unbiased as the mesh size ap-
proaches zero.

In practice, this estimator produces P -value approximations (13) that are a little
different from simply assuming that S is an N -dimensional ball of volume LN(S).
The reason is that it is usually the N -dimensional term that makes the largest con-
tribution to the P -value approximation (2). Moreover, we have already estimated
LN(S) quite easily by (18) without filling S with a simplicial mesh. In N = 3
dimensions, the radius of this ball is r = (3L̂3(S)/(4π))1/3 so that, from (4), the
lower-dimensional LKC’s can be estimated by

L̂0(S) = 1, L̂1(S) = 4r, L̂2(S) = 2πr2.

This short-cut usually results in a slightly liberal P -value approximation since a
ball has the lowest surface area (and other lower dimensional intrinsic volumes)
for a given volume.

4.2. The nonmissile trauma data. As an illustration of the methods, we apply
the P -value approximations for Roy’s maximum root and maximum canonical
correlation to the data on nonmissile trauma subjects (Tomaiuolo et al. [25]) that
was analyzed in a similar way in Worsley, Taylor, Tomaiuolo and Lerch [31]. The
subjects were 17 patients with nonmissile brain trauma who were in a coma for 3–
14 days. MRI images were taken after the trauma, and the multivariate data were
the d = 3 component vector deformations needed to warp the MRI images to an
atlas standard (Collins et al. [6]) sampled on a 2 mm voxel lattice. The same data
were also collected on a group of 19 age and sex matched controls, to give a sample
size of n = 36. The p = 2 regressors were binary indicators for these two groups
of subjects. Although a comparison of each trauma case with the control group
might be useful in clinical applications, we follow Tomaiuolo et al. [25] and pool
the trauma cases together and compare them with the control group (Tomaiuolo et
al. [25] did a similar two-group comparison of white matter density, a univariate
random field).
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Damage is expected in white matter areas, so the search region S was defined
as the voxels where smoothed average control subject white matter density ex-
ceeded 5% (see Figure 1). The LKCs were estimated as in Section 4.1 by those
of a ball with volume L̂3(S) = 2571 (radius r = 8.5). This choice of search re-
gion is somewhat arbitrary, but a similar search region was used in [25] for de-
tecting group changes in white matter density. If it was felt that damage was re-
stricted to a smaller region of higher white matter density, then the LKCs would
be smaller, resulting in lower P -values, lower test statistic thresholds and greater
power at detecting changes. However, this must be offset against the possibility
that the smaller search region may have excluded regions where change really
took place.

4.2.1. Hotelling’s T 2. The first analysis was to look for brain damage by com-
paring the deformations of the 17 trauma patients with the 19 controls. We are
looking at a single contrast, the difference between trauma and controls, so η = 1
and the residual degrees of freedom is ν = 34. In this case Roy’s maximum root is
Hotelling’s T 2. The P = 0.05 threshold, found by equating (13) to 0.05 and solv-
ing for t , was t = 54.0. The thresholded data, together with the estimated contrast
(mean trauma—control deformations) is shown in Figure 1(a). A large region near
the corpus callosum seems to be damaged. The nature of the damage, judged by
the direction of the arrows, is away from the center [see Figure 1(b)]. This can
be interpreted as expansion of the ventricles, or more likely, atrophy of the sur-
rounding white matter, which causes the ventricle/white matter boundary to move
outward.

4.2.2. Roy’s maximum root. We might also be interested in functional anatom-
ical connectivity: are there any regions of the brain whose shape (as measured by
the deformations) is correlated with shape at a reference point? In other words, we
add three extra regressors to the linear model whose values are the deformations at
a pre-selected reference point, so now p = 5 and ν = 31. The test statistic is now
the maximum canonical correlation, or equivalently, the Roy’s maximum root for
these η = 3 extra regressors. We chose as the reference the point with maximum
Hotelling’s T 2 for damage, marked by axis lines in Figure 1. Figure 1(c) shows
the resulting maximum canonical correlation field above the P = 0.05 threshold
of 0.746 for the combined trauma and control data sets removing separate means
for both groups. Obviously there is strong correlation with points near the refer-
ence, due to the smoothness of the data. The main feature is the strong correla-
tion with contralateral points, indicating that brain anatomy tends to be symmet-
ric.

A more interesting question is whether the correlations observed in the control
subjects are modified by the trauma (Friston et al. [7]). In other words, is there any
evidence for an interaction between group and reference vector deformations? To
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do this, we simply add another three regressors to the linear model whose values
are the reference vector deformations for the trauma patients, and the negative
of the reference vector deformations for the control subjects, to give p = 8 and
ν = 28. The resulting Roy’s maximum root field for testing for these η = 3 extra
regressors, thresholded at 30.3 (P = 0.05) is shown in Figure 1(d). Apart from
changes in the neighborhood of the reference point, there is some evidence of
a change in correlation at a location in the contralateral side, slightly anterior.
Looking at the maximum canonical correlations in the two groups separately, we
find that correlation has increased at this location from 0.719 to 0.927, perhaps
indicating that the damage is strongly bilateral.

4.2.3. Maximum canonical correlation. If we chose to search over all refer-
ence points as well as all target points, this would lead to a maximum canonical
correlation field with X = Y . Note that since the correlation between X(r) and
Y(s) is the same as that between X(s) and Y(r) (since X = Y ), then the P -value
should be halved. Note also that the reference and target points must be sufficiently
well separated to avoid detecting high correlation due to spatial smoothness. The
parameters in our case are M = N = c = d = 3, and n is effectively 36 − 2 = 34
after removing the separate group means. The threshold for the maximum correla-
tion random field at P = 0.05 is 0.962 from (17) and Section A.4. Computing all
correlations is obviously very expensive, but aside from this, the correlation thresh-
old of 0.962 is so high that the search over all possible correlations is unlikely to
reveal much beyond the obvious symmetry reported above.

4.2.4. Conclusion. In conclusion, our analysis shows that damage appears to
be confined to central brain regions around the ventricles, and not, as one might
expect, to regions near the brain surface where the brain might have impacted the
skull. Similar conclusions were reported by Tomaiuolo et al. [25] in an analysis of
white matter density.

APPENDIX

A.1. Intrinsic volumes. The intrinsic volume μi(A) of a set A ⊂ R
d with

nonempty interior and bounded by a smooth hypersurface is defined as follows
(Worsley [27]): μd(A) is the Lebesgue measure of A, and for j = 0, . . . , d − 1,

μj(A) =
∫
∂A

detrd−1−j (C)/ad−j ,

where C is the curvature matrix of ∂A, the boundary of A [the (d − 1) × (d − 1)

second derivative matrix of the inside distance between ∂A and its tangent hyper-
plane], detrk(C) is the sum of the determinants of all k × k principal minors of C,
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and ak = 2πk/2/�(k/2) is the Lebesgue measure of the unit (k − 1)-sphere in R
k .

Note that μ0(A) = ϕ(A) by the Gauss–Bonnet theorem.

A.2. Unit sphere. For A = Ud , the unit sphere in R
d , μd(Ud) = 0. Now C =

I(d−1)×(d−1) on the outside of Ud and C = −I(d−1)×(d−1) on the inside. Since
detrd−1−j (I(d−1)×(d−1)) = 2

(d−1
j

)
, then

μj(Ud) = 2
(

d − 1
j

)
ad

ad−j

= 2j+1πj/2�((d + 1)/2)

j !�((d + 1 − j)/2)

if d − 1 − j is even, and zero otherwise, j = 0, . . . , d − 1.

A.3. Products. We now show that

μk(A × B) =
k∑

i=0

μi(A)μk−i (B).

A very useful result of Hadwiger [8] states that if ϕ(S) is a set functional that is
invariant under rotations and translations, and has the additivity property

ϕ(S1 ∪ S2) = ϕ(S1) + ϕ(S2) − ϕ(S1 ∩ S2),(19)

then ϕ(S) must be a linear combination of intrinsic volumes of S. Fixing A, we
can see that ϕ(B) = μk(A × B) has these properties. Fixing B and repeating the
exercise, we conclude that

μk(A × B) =
k∑

i=0

k∑
j=0

cijμi(A)μj (B)

for some constants cij . We now determine the constants by judicious choice of A

and B . First, increasing the size of A by a factor γ increases its k-dimensional
intrinsic volume by γ k : μk(γA) = γ kμk(A). Replacing A,B by γA,γB in the
above, and noting that γA × γB = γ (A × B), we conclude that the only nonzero
constants occur when i + j = k. Next, let A ⊂ R

i , B ⊂ R
k−i , both with nonzero

Lebesgue measure. Then A×B ⊂ R
k has Lebesgue measure μi(A)μk−i (B). Note

that μj(A) = 0 for j > i and μj(B) = 0 for j > k − i, so the right-hand side re-
duces to ci,k−iμi(A)μk−i(B). Since Lebesgue measure and intrinsic volume coin-
cide in these cases, we conclude that ci,k−i = 1. This completes the proof.

A.4. EC density of the correlation random field. For completeness, we re-
produce the EC density ρC

ij (t) of the correlation random field given in Cao and
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Worsley [5]. ρC
00(t) is just the upper tail probability of the Beta distribution with

parameters 1/2, (n − 1)/2. Let h = i + j . For i > 0, j ≥ 0 and n > h,

ρC
ij (t) = 2n−2−h(i − 1)!j !

πh/2+1

×
�(h−1)/2�∑

k=0

(−1)kth−1−2k(1 − t2)(n−1−h)/2+k

×
k∑

l=0

k∑
m=0

(
�

(
n − i

2
+ l

)
�

(
n − j

2
+ m

))
× (

l!m!(k − l − m)!(n − 1 − h + l + m + k)!
× (i − 1 − k − l + m)!(j − k − m + l)!)−1

,

where �·� rounds down to the nearest integer, terms with negative factorials are ig-
nored and ρC

ij (t) = ρC
ji(t). The summations have been arranged for easy numerical

evaluation.

A.5. Scale space. The Gaussian scale space random field is obtained by
smoothing white noise with an isotropic spatial filter over a range of filter widths
or scales, and adding the scale to the location parameters of the field (Siegmund
and Worsley [14]). In essence, it is a continuous wavelet transform that is designed
to be powerful at detecting localized signal of an unknown spatial scale as well as
location. Let dB(s) be Gaussian noise on R

N based on Lebesgue measure and let
f (s) be a filter, normalized so that

∫
f 2 = 1, and scaled so that

∫
ḟ ḟ ′ = IN×N .

The Gaussian scale space random field with filter f is defined as

T (s,w) = w−N/2
∫

RN
f

(
(s − t)/w

)
dB(t).(20)

Note that T (s,w) ∼ N(0,1) and Var(∂T /∂s) = w−2NIN×N at each point s,w.
Siegmund and Worsley [14] and Worsley [28] show that for searching over a range
of scales w ∈ [w1,w2],

E
(
ϕ{s,w ∈ S × [w1,w2] :T (s,w) ≥ t}) =

N∑
i=0

μi(S)ρS
i (t),(21)

where the Gaussian scale space EC density is

ρS
i (t) = w−i

1 + w−i
2

2
ρG

i (t)

(22)

+ w−i
1 − w−i

2

i

�i/2�∑
j=0

κ(1−2j)/2 (−1)j i!
(1 − 2j)(4π)j j !(i − 2j)!ρ

G
i+1−2j (t)
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[we define wi/i as log(w) when i = 0]. The parameter κ measures the variance of
the derivative in the log scale direction:

κ =
∫

RN

(
s′ḟ + (N/2)f

)2
ds,

with κ = N/2 for the Gaussian filter and κ = (N + 4)/2 for the Marr filter.
The scale space random field T (s,w) is nonisotropic in (s,w), so the scale

space result can be set in terms of the Lipschitz–Killing curvature of S ×[w1,w2],
as in (13):

E
(
ϕ{s,w ∈ S × [w1,w2] :T (s,w) ≥ t}) =

N+1∑
i=0

Li (S × [w1,w2])ρG
i (t).(23)

Equating the two expressions (21) and (23) for the expected EC implies that
L0(S × [w1,w2]) = μ0(S) and for i ≥ 1,

Li (S × [w1,w2])

= w−i
1 + w−i

2

2
μi(S)

(24)

+
�(N−i+1)/2�∑

j=0

w
−i−2j+1
1 − w

−i−2j+1
2

i + 2j − 1

× κ(1−2j)/2(−1)j (i + 2j − 1)!
(1 − 2j)(4π)j j !(i − 1)! μi+2j−1(S).

While the above expression (23) is no more compact than (21), it allows us to
immediately get an expression for the EC density of the χ2

d scale space random
field with d degrees of freedom, defined as the sum of squares of d independent
copies of the Gaussian scale space field (20). The maximum multilinear form ran-
dom field can be similarly defined. Having expressed (21) in terms of Lipschitz–
Killing curvatures in (23), it immediately follows that the EC density of the χ2

d

scale space field is the same as that of the Gaussian scale space field (22), but re-
placing Gaussian EC densities ρG

i (t) with χ2
d EC densities. We have thus derived

the main result of Worsley [28] with very little effort. Indeed, we have much more
than this result because we can compute the EC densities of any scale space ran-
dom field for which we can compute the EC densities in the isotropic, fixed scale,
case.
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