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OBJECT ORIENTED DATA ANALYSIS: SETS OF TREES

BY HAONAN WANG1 AND J. S. MARRON1,2

Colorado State University and University of North Carolina

Object oriented data analysis is the statistical analysis of populations of
complex objects. In the special case of functional data analysis, these data ob-
jects are curves, where standard Euclidean approaches, such as principal com-
ponent analysis, have been very successful. Recent developments in medical
image analysis motivate the statistical analysis of populations of more com-
plex data objects which are elements of mildly non-Euclidean spaces, such
as Lie groups and symmetric spaces, or of strongly non-Euclidean spaces,
such as spaces of tree-structured data objects. These new contexts for object
oriented data analysis create several potentially large new interfaces between
mathematics and statistics. This point is illustrated through the careful devel-
opment of a novel mathematical framework for statistical analysis of popula-
tions of tree-structured objects.

1. Introduction. Object oriented data analysis (OODA) is the statistical
analysis of data sets of complex objects. The area is understood through consider-
ation of the atom of the statistical analysis. In a first course in statistics, the atoms
are numbers. Atoms are vectors in multivariate analysis. An interesting special
case of OODA is functional data analysis, where atoms are curves; see Ramsay
and Silverman [17, 16] for excellent overviews, as well as many interesting analy-
ses, novel methodologies and detailed discussion. More general atoms have also
been considered. Locantore et al. [13] studied the case of images as atoms, and
Pizer, Thall and Chen [15] and Yushkevich et al. [23] took the atoms to be shape
objects in two- and three-dimensional space.

An important major goal of OODA is understanding population structure of a
data set. The usual first step is to find a centerpoint, for example, a mean or me-
dian, of the data set. The second step is to analyze the variation about the center.
Principal component analysis (PCA) has been a workhorse method for this, espe-
cially when combined with new visualizations as done in functional data analysis.
An important reason for this success to date is that the data naturally lie in Euclid-
ean spaces, where standard vector space analyses have proven to be both insightful
and effective.
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Medical image analysis is motivating some interesting new developments in
OODA. These new developments are not in traditional imaging areas, such as the
denoising, segmentation and/or registration of a single image, but instead are about
the analysis of populations of images. Again common goals include finding center-
points and variation about the center, but also discrimination, that is, classification,
is important. A serious challenge to this development is that the data often natu-
rally lie in non-Euclidean spaces. A range of such cases has arisen, from mildly
non-Euclidean spaces, such as Lie groups and Riemannian symmetric spaces (see
Wikipedia [21, 22] for a good introduction to these concepts), to strongly non-
Euclidean spaces, such as populations of tree- or graph-structured data objects.
Because such non-Euclidean data spaces are generally unfamiliar to statisticians,
there is opportunity for the development of several types of new interfaces be-
tween statistics and mathematics. One purpose of this paper is to highlight some
of these. The newness of this nonstandard mathematical statistics that is currently
under development (and much of which is yet to be developed) is underscored by
a particularly deep look at an example of tree-structured data objects.

Lie groups and symmetric spaces are the natural domains for the data objects
which arise in the medial representation of body parts, as discussed in Section 1.1.
Human organs are represented using vectors of parameters, which have both real
valued and angular components. Thus each data object is usefully viewed as a
point in a Lie group, or a symmetric space, that is, a curved manifold space. Such
representations are often only mildly non-Euclidean, because these curved spaces
can frequently be approximated to some degree by tangent spaces, where Euclid-
ean methods of analysis can be used. However the most natural and convincing
analysis of the data is done “along the manifold,” as discussed in Section 1.1. Be-
cause there already exists a substantial medical imaging literature on this, only an
overview is given here.

Data objects which are trees or graphs are seen in Section 1.2 to be important
in medical image analysis for several reasons. These data types present an even
greater challenge, because the data space is strongly non-Euclidean. Fundamental
tools of standard vector space statistical analysis, such as linear subspace, pro-
jection, analysis of variance and even linear combination are no longer available.
Preliminary ad hoc attempts made by the authors at this type of OODA ended
up collapsing in a mass of contradictions, because they were based on trying to
apply Euclidean notions in this very non-Euclidean domain. This motivated the
development of a really new type of mathematical statistics: a rigorous definition–
theorem–proof framework for the analysis of such data, which was the dissertation
of Wang [19]. In Section 2 it is seen how these tools provide an analysis of a real
data set. Section 3 gives an overview of the mathematical structure that underpins
the analysis.

Note that statistics and mathematics (of some nonstandard types) meet each
other in several ways in OODA. For the Lie group—symmetric space data, math-
ematics provides a nonstandard framework for conceptualizing the data. For data
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as trees, an axiomatic system is used as a device to overcome our poor intuition
for data analysis in this very non-Euclidean space. Both of these marriages of
mathematics and statistics go in quite different directions from that of much of
mathematical statistics: the validation and comparison of existing statistical meth-
ods through asymptotic analysis as the sample size tends to infinity. Note that this
latter type of analysis has so far been completely unexplored for these new types
of OODA, and it also should lead to the development of many more interesting
connections between mathematics and statistics.

1.1. OODA on Lie groups—symmetric spaces. Shape is an interesting and
useful characteristic of objects (usually in three dimensions) in medical image
analysis. Shape is usually represented as a vector of measurements, so that a data
set of shapes can be analyzed as a set of vectors. There are a number of ways
to represent shapes of objects. The best known in the statistical literature is land-
mark based approaches; see Dryden and Mardia [4] for good overview of this area.
While they have been a workhorse for solving a wide variety of practical problems,
landmark approaches tend to have limited utility for population studies in medical
imaging, because a sufficient number of well-defined, replicable landmarks are
frequently impossible to define.

Other approaches to shape representation are discussed in Section 1.1 of Wang
and Marron [20], but are not discussed here to save space.

A class of convenient and powerful shape representations is m-reps (a shorten-
ing of “medial representation”), which are based on medial ideas; see Pizer, Thall
and Chen [15] and Yushkevich et al. [23] for detailed introduction and discussion.
The main idea is to find the “central skeletons” of objects, and then to represent
the whole object in terms of “spokes” from the center to the boundary. The central
structure and set of spokes to the boundary are discretized and approximated by a
finite set of m-reps. The m-rep parameters (location, radius and angles) are the fea-
tures and are concatenated into a feature vector to provide a numerical summary
of the shape. Each data object is thus represented as the direct product (thus a large
vector) of these parameters over the collection of m-reps. A major motivation for
using m-reps over other types of representation is that they provide a more direct
solution to the correspondence problem, which is to match parts of one object with
corresponding parts of other members of the population.

A simple example of the use of m-reps in OODA is shown in Figure 1, which
uses the specific representation of Yushkevich et al. [23], which studied a set of
human corpora callosa gathered from two-dimensional magnetic resonance im-
ages. The corpus callosum is the small window between the left and right halves
of the brain. The left hand panel of Figure 1 shows a single m-rep decomposition
of one corpus callosum. Each large central dot shows the center of an m-rep (five
of which are used to represent this object). The m-reps are a discretization of the
medial axis, shown in gray in the center of the object. The boundary of the object
is determined by the spokes, which are the shorter line segments emanating from
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FIG. 1. Corpus callosum data. Left-hand panel shows all components of the medial representation
of the corpus callosum of one person. Right-hand panel shows the boundaries of objects lying along
the first PCA eigenvectors, showing the largest component of variation in the population.

each m-rep. These spokes are paired, and are determined by their (common) angle
from the medial axis, and their length. All of these parameters are summarized into
a feature vector which is used to represent each object.

The right-hand panel of Figure 1 shows a simple OODA of a population of
72 corpora callosa. This is done here by simple principal component analysis of
the set of feature vectors. The central shape is the mean of the population. The
sequence of shapes gives insight into population variation, by showing the first
principal component (thus the mode of maximal variation). In particular, each
shape shows a location along the eigenvector of the first PC. This shows that the
dominant mode of variation in this population is in the direction of more over-
all bending in one direction, versus less overall bending in the opposite direc-
tion.

For a much deeper and more complicated example of using m-reps for shape
analysis, see Figure 2 of Wang and Marron [20]. A simple approach to OODA
for m-rep objects is to simply use Euclidean PCA on the vectors of parameters.
However, there is substantial room for improvement, because some parameters are
angles, while others are radii (thus positive in sign), and still others are position
coordinates. One issue that comes up is that units are not commensurate, so some
vector entries could be orders of magnitude different from the others, which will
drastically affect PCA. An approach to this problem is to replace the eigen-analysis
of the covariance matrix (conventional PCA) with the an eigen-analysis of the cor-
relation matrix (a well-known scale free analog of PCA). But this still does not
address the central challenge of statistical analysis of angular data. For example,
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what is the average of a set of angles where some are just above 0◦, and the rest
are just below 360◦? The sensible answer is something very close to 0◦, but simple
averaging of the numbers involved can give a diametrically opposite answer closer
to 180◦. There is a substantial literature on the statistical analysis of angular data,
also called directional data, that is, data on the circle or sphere. See Fisher [5],
Fisher, Lewis and Embleton [6], Mardia [10] and Mardia and Jupp [11] for good
introduction to this area. A fundamental concept of this area is that the most con-
venient mathematical representation of angles is as points on the unit circle, and
for angles in 3d, as points on the unit sphere.

For these same reasons it is natural to represent the vectors of m-rep parameters
as direct products of points on the circle and/or sphere for the angles, as positive
reals for the radii, and as real numbers for the locations. As noted in Fletcher
et al. [7], the natural framework for understanding this type of data object is Lie
groups and/or symmetric spaces. Fletcher et al. [7] go on to develop an approach to
OODA for such data. The Fréchet approach gives a natural definition of the sample
center, and principal geodesic analysis (PGA) quantifies population variation.

The Fréchet mean has been a popular concept in robustness, since it provides
useful generalizations of the sample mean. It also provides an effective starting
point for non-Euclidean OODA. The main idea is that one way to characterize
the sample mean is as the minimizer of the sum of squared distances to each data
point. Thus the Fréchet mean can be defined in quite abstract data spaces, as long
as a suitable metric can be found. For Lie group–symmetric space data, the natural
distance is along geodesics, that is, along the manifold, and this Fréchet mean is
called the geodesic mean.

Fletcher’s Lie group–symmetric space variation of PCA is PGA. The key to this
approach is to characterize PCA as finding lines which maximally approximate
the data. On curved manifolds, the analog of lines are geodesics, so PGA searches
for geodesics which maximally approximate the data. See Fletcher et al. [7] for
detailed discussion and insightful examples.

For other examples of OODA, and discussion of the relationships between
OODA and a variety of other areas, see Wang and Marron [20].

1.2. OODA on tree spaces. A type of data space which is much farther from
Euclidean in nature is the set of trees. A simple motivating example of trees as
data is the case of multifigural objects, of the type shown in Figure 2 of Wang and
Marron [20]. In that example, all three figures are present in every data object. But
if some figures are missing, then the usual vector of m-rep parameters has missing
values. Thus the natural data structure is trees, with nodes representing the figures.
For each figure, the corresponding m-rep parameters appear as attributes of that
node. A more complex and challenging example is the case of blood vessel trees,
discussed in Section 2.

In most of the rest of this paper, the focus is on the very challenging problem
of OODA for data sets of tree-structured objects. Tree-structured data objects are
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mathematically represented as simple graphs (a collection of nodes and edges,
each of which connects some pair of nodes). Simple graphs have a unique path
(a set of edges) between every pair of nodes (vertices). A tree is a simple graph,
where one node is designated as the root node, and all other nodes are children of
a parent node that is closer to the root, where parents and children are connected
by edges. In many applications, a tree-structured representation of each data object
is very natural, including medical image analysis, phylogenetic studies, clustering
analysis and some forms of classification (i.e., discrimination). Limited discussion
with references of these areas is given in Section 1.2.1. Our driving example, based
on a data set of tree-structured blood vessel trees, is discussed in Section 2.

For a data set of tree-structured data objects, it is unclear how to develop no-
tions such as centerpoint and variation about the center. Our initial ad hoc at-
tempts at this were confounded by the fact that our usual intuitive ideas led to
contradictions. As noted above, we believe this is because our intuition is based on
Euclidean ideas, such as linear subspaces, projections and so on, while the space
of trees is very “non-Euclidean” in nature, in the sense that natural definitions of
the fundamental linear operators of addition and scalar multiplication operations
do not seem to be available. Some additional mathematical basis for the claim of
“non-Euclideanness of tree space,” in the context of phylogenetic trees, can be
found in Billera, Holmes and Vogtmann [2]. This failure of our intuition to give
the needed insights, has motivated our development of the careful axiomatic math-
ematical theory for the statistical analysis of data sets of trees given in Section 3.
Our approach essentially circumvents the need to define the linear operations that
are the foundations of Euclidean space.

The development essentially starts from a Fréchet approach, which is based
on a metric. In general, we believe that different data types, such as those listed
in Section 1.2.1, will require careful individual choice of a metric. In Sections
3.2 and 3.3, we define a new metric which makes sense for our driving problem of
a data set of blood vessel trees.

Once a metric has been chosen, the Fréchet mean of a data set is the point which
minimizes the sum of the squared distances to the data points. A simple example
is the conventional sample mean in Euclidean space (just the mean vector), which
is the Fréchet mean with respect to Euclidean distance. In Section 3.4 this idea is
the starting point of our development of the notion of centerpoint for a sample of
trees.

After an appropriate centerpoint is defined, it is of interest to quantify the vari-
ability of the sample about this center. Here, an analog of PCA, based on the notion
of a treeline which plays the role of “one-dimensional subspace,” is developed for
tree space (see Section 3.5). A key theoretical contribution is a fundamental the-
ory of variation decomposition in tree space, a tree version of the Pythagorean
theorem (see Section 3.5), which allows ANOVA style decomposition of sums of
squares.



OBJECT ORIENTED DATA ANALYSIS 1855

The driving problem in this paper is the analysis of a sample of blood ves-
sel trees in the human brain; see Bullitt and Aylward [3]. We believe that similar
methods could be used for related medical imaging problems, such as the study
of samples of pulmonary airway systems, as studied in Tschirren et al. [18]. The
blood vessel systems considered here are conveniently represented as trees. In our
construction of these trees, each node represents a blood vessel, and the edges only
illustrate the connectedness property between two blood vessels. For these blood
vessel trees, both topological structure (i.e., connectivity properties) and geomet-
ric properties, such as the locations and orientations of the blood vessels, are very
important. These geometric properties are summarized as the attributes of each
node.

Focusing on our driving example of blood vessel trees and their corresponding
attributes, we develop a new metric δ on tree space; see Section 3.3. Margush [14]
gives a deeper discussion of metrics on trees. This metric δ consists of two parts:
the integer part dI , which captures the topological aspects of the tree structure (see
Section 3.2 for more detail), and the fractional part fδ , which captures character-
istics of the nodal attributes (see Section 3.3).

The metric δ provides a foundation for defining the notion of centerpoint. A new
centerpoint, the median-mean tree, is introduced (see Section 3.4). It has properties
similar to the median with respect to the integer part metric (see Section 3.2) and
similar to the mean with respect to the fractional part metric (see Section 3.3).

In Section 3, methods are developed for the OODA of samples of trees. An inter-
esting question for future research is how our sample centerpoint and measures of
variation about the center correspond to theoretical notions of these quantities and
an underlying probabilistic model for the population. For a promising approach to
this problem, see Larget, Simon and Kadane [12].

1.2.1. Additional applications of OODA for trees. Our driving application of
OODA for tree-structured data objects, to analyze a data set of blood vessel trees,
is discussed in Section 2. A number of additional important potential applications,
which have not been tried yet, are discussed in Wang and Marron [20].

2. Tree OODA of a blood vessel data set. In this section, advanced statistical
analysis, including centerpoint and variation about the center, of a data set of tree-
structured objects is motivated and demonstrated in the context of human brain
blood vessel trees.

An example of arterial brain blood vessels from one person, provided by E. Bul-
litt, is shown in Figure 2. Because of the branching nature of blood vessel systems,
a tree-structured data representation is very natural. See Bullitt and Aylward [3]
for detailed discussion of the data, and the method that was used to extract trees
of blood vessel systems from magnetic resonance images. The blood vessel sys-
tems considered here have three important components: the left carotid, the right
carotid and the vertebrobasilar systems, shown in different gray levels in Figure 2.
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FIG. 2. The three component blood vessel trees from one person. This detailed graphical illustra-
tion uses all attributes from the raw data.

Each component consists of one root vessel and many offspring branches (ves-
sels). Each branch is represented as a node in the tree structure. The attributes for
each node include both information about that vessel, and also tree connectivity
information. The individual information about that branch is coded as a sequence
of vessel medial points (essentially a discretization of the medial axis of the blood
vessel), where each point has a 3d location and a radius (of the vessel at the point).
The connectivity information for each branch (node) records an index of its parent,
and also the location of attachment to the parent. All of these attributes are used in
the visual rendering shown in Figure 2.

The full data set analyzed here has 11 trees from three people. These are the
left carotid, right carotid and vertebrobasilar systems from each person, plus two
smaller, unattached, components from one of the three people.

For simplicity of analysis, in this paper we will work with only a much smaller
set of attributes, based on a simple linear approximation of each branch. In partic-
ular, the attributes of the root node are the 3d locations of the starting and ending
medial points. The attributes of the other branches include the index of the parent,
together with a connectivity parameter indicating location of the starting point on
the linear approximation of the parent, as

p = Distance of starting point to point of attachment on the parent

Distance of starting point to ending point on the parent
,

and the 3d locations of the ending point. An additional simplification is that radial
information is ignored.

For computational speed, only a subtree (up to three levels and three nodes) of
each element among those 11 trees is considered. There are only two different tree
structures in this data set, which are called Type I and Type II, shown in Figure 3.
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FIG. 3. Two types of three-node tree structures, that are present in our sample, of simplified blood
vessel trees, where seven are of Type I, and four are of Type II.

Among these 11 blood vessel trees, seven trees have Type I structure and four trees
have Type II structure.

Each panel of Figure 4 shows the individual component trees for one person.
The three-dimensional aspect of these plots is most clearly visible in rotating
views, which are Internet available from the links “first person,” “second person”
and “third person” on the web site of Wang, www.stat.colostate.edu/~wanghn/tree.
htm. These components are shown as thin line trees, which represent each raw data
point. Trees are shown using the simplified rendering, based on only the linear
approximation attributes, as described above. The root node of each tree is indi-
cated with a solid line type, while the children are dashed. We will first treat each
person’s component trees as a separate subsample. Each panel of Figure 4 also
includes the new notion of centerpoint (for that subsample), shown using a thicker
line type. This is the median-mean tree, as developed in Section 3.4. This tree is
central in terms of structure, size and location, in senses which will be defined
there.

These trees are combined into a single, larger sample in Figure 6 of Wang and
Marron [20]. It turns out that the median-mean tree is surprisingly small, especially

FIG. 4. Simplified blood vessel trees (thin lines) for each person individually, with the individual
median-mean trees (thicker black line). Root nodes use solid line types and children are dashed.
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FIG. 5. The principal structure treeline for the full simplified blood vessel data, without nodal
attributes. The figure shows that the dominant sample variation in structure is towards the addition
of left-hand children nodes.

in comparison to the median-mean trees for individual people, shown in Figure 4.
This will be explained through a careful analysis of the variation about the median-
mean tree.

Another important contribution of this paper is the development of an approach
to analyzing the variation within a sample of trees. In conventional multivariate
analysis, a simple first-order linear approach to this problem is principal compo-
nent analysis. We develop an analog for samples of trees in Section 3.5. Our first
approach is illustrated in Figure 5, with an analysis of the dominant mode of tree
structure variation for the full blood vessel tree sample shown in Figure 6 of Wang
and Marron [20].

The generalization of PCA to samples of tree-structured objects could be ap-
proached in many ways, because PCA can be thought of in a number of different
ways. After considering many approaches, we found a suggestion by J. O. Ram-
say to be the most natural. The fundamental idea is to view PCA as a sequence
of one-dimensional representations of the data. Hence, our tree version PCA is
based on notions of one-dimensional representation of the data set. These notions
are carefully developed and precisely defined in Section 3.5. The foundation of this
approach is the concept of treeline, which plays the role of line (a one-dimensional
subspace in Euclidean space) in tree space. Two different types of treelines are de-
veloped in Section 3.5. The structure treeline which quantifies sample variation in
tree structure, is formally defined in Definition 3.1 and is illustrated here in Fig-
ures 5 and 6. The attribute treeline describes variation within a fixed type of tree
structure, is defined in Definition 3.2, and is illustrated here in Figure 7.

The structure treeline which best represents the data set (this will be formally
defined in Section 3.5, but for now think in analogy to PCA) is called the princi-
pal structure treeline. The principal structure treeline for the full simplified blood
vessel data is shown in Figure 5 (structure only, without attributes) and Figure 6
(with attributes). In Figure 5 this treeline starts with the tree u0, which has two
nodes. The other trees in this direction are u1 and u2, which consecutively add one
left child. Generally structure treelines follow the pattern of successively adding
single child nodes. This principal structure treeline is chosen, among all treelines
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FIG. 6. The principal structure treeline with nodal attributes. This shows more about the sample
variation than is available from mere structure information.

that pass through the median-mean tree, to explain as much of the structure in the
data as possible (in a sense defined formally in Section 3.5). Hence, this high-
lights structure variation in this sample by showing that the dominant component
of topological structure variation in the data set is toward branching in the direc-
tion of addition of left-hand children nodes. Next, we also study how the attributes
change as we move along this principal structure treeline, in Figure 6. The three
panels show the simplified tree rendering of the trees whose structure is illustrated
in Figure 5, with the first treeline member u0 shown in the left box, the three node
tree u1, which is the median-mean tree, in the center box, and u2 with four nodes
in the right hand box.

In addition to the principal structure representation, another useful view of
the data comes from the principal attribute directions (developed in Section 3.5).
Principal attribute treelines have a fixed tree structure, and highlight important
sample variation within the given tree structure. Since the tree structure is fixed,
this treeline is quite similar to the conventional first principal component, within
that structure. Here we illustrate this idea, showing the principal attribute tree-
line which passes through (and thus has the same structure as) the median-mean
tree, shown in Figure 7. There are six subplots in this figure. The subplots de-
pict a succession of locations on the attribute treeline, which highlights the sam-
ple variation in this treeline direction. These are snapshots which are extracted
from a movie version that provides clear visual interpretation of this treeline,
and is Internet available from the link “median-mean tree” from Wang’s web-
site, www.stat.colostate.edu/wanghn/tree.htm. A similar movie, showing a differ-
ent principal attribute treeline can be found at the link “support tree” (this concept
is explained in Section 3.1) on the website.

In general, Figure 7 shows marked change in the length and orientation of the
main root (solid black line). It starts (upper left) as a long nearly vertical segment,
which becomes shorter and moves towards horizontal (upper right). This trend
continues in the lower left box, where the root is very short indeed and is horizon-
tal. In the next plots (lower row) the root begins to grow, this time in the opposite
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FIG. 7. The principal attribute treeline passing through the median-mean tree. These are snapshots
from a movie which highlights this mode of variation in the sample. The thick black root node flips
over.

direction. In particular, the root node flips over, with the top and bottom ends trad-
ing places. While these trends are visible here, the impression is much clearer in
the movie version. The branches also change in a way that shows smaller scale
variation in the data. This was a surprising feature of the sample. Careful inves-
tigation showed that the given data sets did not all correctly follow the protocol
of choosing the coordinate system according to the direction of blood flow. Some
of them have the same direction, while some of them have the reverse direction.
A way of highlighting the two different data types is via the projections (the direct
analogs of the principal component coefficients in PCA) of the 11 trees on this
attribute treeline, as shown in Figure 10 of Wang and Marron [20]. This shows
that there are two distinct clusters with a clear gap in the middle, validating the
above discovery. The gap also shows that no trees correspond to the fourth frame
in Figure 7, with a very short root, which can also be seen in the raw data in Fig-
ure 6 of Wang and Marron [20]. This shows that the surprisingly short root node,
for the median-mean tree, resulted from its being central to the sample formed by
these two rather different subgroups that were formed by different orientations of
the blood flow in the data set. Note that the clusters dominate the total variation,
perhaps obscuring population features of more biological interest.
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3. Development of the tree OODA methodology. In this section a rigorous
mathematical foundation is developed for the OODA of a data set of trees. We will
use S = {t1, t2, . . . , tn} to denote the data set of size n. Careful mathematics are
needed because the non-Euclidean nature of tree space means that many classical
notions do not carry over as expected. For simplicity, only the case of binary trees
with finite level is explicitly studied. A binary tree is a tree such that every node
has at most two children (left child and right child). If a node has only one child,
it should be designated as one of left and right. In our blood vessel application, we
consistently label each single child as left. The set of all binary trees, the binary
tree space, is denoted by T .

3.1. Notation and preliminaries. This section introduces a labeling system for
the nodes of each tree in the sample, that is, each t ∈ S. Each tree has a designated
node called the root. An important indicator of node location in the tree is the
level of the node, which is the length (number of edges) of the path to the root.
In addition, it is convenient to uniquely label each node of a binary tree by a nat-
ural number, called the level-order index. The level-order index of the node ω is
denoted by ind(ω), which is defined recursively as:

1. if ω is the root, let ind(ω) = 1;
2. if ω is the left child of the node ν, let ind(ω) = 2 × ind(ν);
3. otherwise, if ω is the right child of the node ν, let ind(ω) = 2 × ind(ν) + 1.

For a tree t , the set of level-order indices of the nodes is denoted by IND(t).
The set IND(t) completely characterizes the topological structure of t , and will be
a very useful device for proving theorems about this structure.

An important relationship between trees is the notion of a subtree, which is an
analog of the idea of subset. A tree s is called a topological subtree of a tree t

when every node in s is also in t , that is, IND(s) ⊆ IND(t). Moreover, if for every
node k ∈ IND(s) the two trees also have the same nodal attributes, then s is called
an attribute subtree of t .

Also useful will be a set operations, such as union and intersection, on the
topological binary tree space (i.e., when only structure is considered). For two
binary trees t1 and t2, the tree t is the union (intersection) tree if IND(t) =
IND(t1) ∪ IND(t2) [IND(t) = IND(t1) ∩ IND(t2), resp.]. A horizon for our sta-
tistical analysis is provided by the union of all trees in the sample, which is called
the support tree. This allows simplification of our analysis, because we only need
to consider topological subtrees of the support tree.

The set of all topological subtrees of a given tree t is called a subtree class and
is denoted Tt . The terminology “class” is used because each Tt is closed under
union and intersection.

As noted in Section 1, the first major goal of statistical analysis of samples of
tree-structured objects is careful definition of a centerpoint of the data set. For
classical multivariate data, there are many notions of centerpoint, and even the
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simple concept of sample mean can be characterized in many ways. After careful
extensive investigation, we have found that approaches related to the Fréchet Mean
seem most natural. This characterizes the centerpoint as the binary tree which is
the closest to all other trees in some sense (sum of squared Euclidean distances
gives the sample mean in multivariate analysis). This requires a metric on the space
of binary trees. Thus, the second fundamental issue is the definition of a distance
between two trees. This will be developed first for the case of topology only, that is,
without nodal attributes, in Section 3.2. In Section 3.3 this metric will be extended
to properly incorporate attributes.

3.2. Metric on the binary tree space without nodal attributes. Given a tree t ,
its topological structure is represented by its set of level-order indices IND(t). Two
trees have similar (different) topologies when their level-order index sets are simi-
lar (different, resp.). Hence, the noncommon level-order indices give an indication
of the differences between two trees. Thus, for any two topological binary trees
s and t , define the metric

dI (s, t) =
∞∑

k=1

1{k ∈ IND(s)� IND(t)},(3.1)

where � is used to denote the symmetric set difference (A�B = (A∩B)∪(A∩B),
where A is the complement of A). Note that dI (s, t) counts the total number of
nodes which show up only in either s or t , but not both of them. Another useful
view is that this metric is the smallest number of addition and deletion of nodes
required to change the tree s into t . Since dI is always an integer, it is called
the integer tree metric, hence the subscript I . This will be extended to trees with
attributes in Section 3.3 by adding a fractional part to this metric.

This metric can also be viewed in another way. Each binary tree can be repre-
sented as a binary string using 1 for an existent node and 0 otherwise. Since the
metric dI counts differences between strings of 0s and 1s, it is just the Hamming
distance from coding theory.

3.3. Metric on the binary tree space with nodal attributes. The integer tree
metric dI captures topological structure of the tree population. In many important
cases, including image analysis, the nodes of the trees contain useful attributes
(numerical values, see Section 1) which also characterize important features of
data objects.

The attributes contained in the node with level-order index k on the tree t are
denoted by (xtk, ytk), where for simplicity only the case of two attributes per
node is treated explicitly here. For each node, indexed by k, the sample mean
attribute vector,

∑
t∈S(xtk, ytk)/

∑
t∈S 1{k ∈ IND(t)}, can be assumed to be zero

in the theoretical development, by subtracting the sample mean from the corre-
sponding attribute vector of every tree which has the node k. Moreover, the up-
per bound of the absolute values of the attributes, |xtk| and |ytk|, can be chosen
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as
√

2
4 . Given any sample S, this assumption can always be satisfied by multi-

plying each attribute by the scale factors
√

2
4 (maxt∈S |xtk|1{k ∈ IND(t)})−1 and√

2
4 (maxt∈S |ytk|1{k ∈ IND(t)})−1. This can induce some bias in our statistical

analysis, which can be partly controlled through careful choice of weights as dis-
cussed below, or by appropriate transformation of the attribute values. But this
assumption is important to control the magnitude of the attribute component of the

metric with respect to the topological component. The bound
√

2
4 is used because

the Euclidean distance between two-dimensional vectors whose entries satisfy this
bound is at most 1. For the general nodal attribute vector (e.g., the nodal attribute
vectors of the blood vessel trees), a different bound will be chosen to make the
attribute difference (between two trees) less than 1.

For any trees s and t with nodal attributes, define the new metric (Theorem 3.1
establishes that this is indeed a metric)

δ(s, t) = dI (s, t) + fδ(s, t),(3.2)

where

fδ(s, t) =
[ ∞∑

k=1

αk

(
(xsk − xtk)

2 + (ysk − ytk)
2)

×1{k ∈ IND(s) ∩ IND(t)}
(3.3)

+
∞∑

k=1

αk(x
2
sk + y2

sk)1{k ∈ IND(s)\ IND(t)}

+
∞∑

k=1

αk(x
2
tk + y2

tk)1{k ∈ IND(t)\ IND(s)}
]1/2

and where {αk}∞k=1 is a nonnegative weight series with
∑∞

k=1 αk = 1. These
weights are included to allow user intervention on the importance of various nodes
in the analysis (e.g., in some cases it is desirable for the root node to dominate the
analysis, in which case α1 is taken to be relatively large). When there is no obvious
choice of weights, equal weighting, αk = 1

#(nodes appearing in the sample) for nodes k

that appear in the sample, and αk = 0 otherwise, may be appropriate. All the theo-
rems in this paper are developed for general weight sequences. But, in Section 3.6
of Wang and Marron [20] we consider some toy examples based on the exponen-
tial weight sequence, which gives the same weight to nodes within a level and uses
an exponentially decreasing sequence across levels. In particular, the weight

αk = {
2−(2i+1)}, where i = 	log2 k
,(3.4)

(where 	·
 denotes the greatest integer function) is used for each node on the ith
level, i = 0,1,2, . . . . In the analysis of the blood vessel data, different normal-
ization of the attributes is required, because there are as many as six attributes
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per node. The data analyzed in Section 2 was first recentered to have 0 mean and
rescaled so that the absolute value of the attributes was bounded by 1

2
√

7
. To more

closely correspond to the original data, all of the displays in Section 2 are shown
on the original scale.

The last two summations in equation (3.3) are included to avoid loss of in-
formation from those nodal attributes that are in one tree and not the other. This
formulation, plus our assumption on the attributes, ensures that the second term in
equation (3.2), fδ (where “f ” means fractional part of the metric), is at most 1.

Also, note that fδ is a square root of a weighted sum of squares. When trees s

and t have the same tree structure, fδ(s, t) can be viewed as a weighted Euclidean
distance. In particular, the nodal attributes of a tree t can be combined into a sin-
gle long vector called the attribute vector, denoted �v, for conventional statistical
analysis. For an attribute subtree of t , the collection of attributes of the nodes of
this subtree are a subvector of �v which is called the attribute subvector.

When trees s and t have different tree structures, it is convenient to replace the
nonexistent nodal attributes with (0,0). This also allows the nodal attributes to be
combined into a single long vector, �v. Then fδ(s, t) is a weighted Euclidean metric
on these vectors.

For another view of fδ , rescale the entries of the vector by the square root of the
weights αk . Then fδ is the ordinary Euclidean metric on these rescaled vectors.

Next, Theorem 3.1 shows that δ is a metric. This requires the following assump-
tion.

ASSUMPTION 1. The weight αk is positive and
∑

αk = 1.

THEOREM 3.1. Under Assumption 1, δ is a metric on the tree space with
nodal attributes.

A sketch of the proof of Theorem 3.1 is in Section 4. The full proof is in the
dissertation Wang [19], the proof of Theorem 3.1.2 in Section 3.1.

REMARK. To understand why the Assumption 1 is critical to Theorem 3.1,
consider the integer part dI . While dI is a metric on topological tree space, it is not
a metric on the binary tree space with nodal attributes. In particular, for any two
binary trees s and t with the same topological structure, dI (s, t) is always equal
to zero regardless of their attribute difference. Thus, dI is only a pseudo-metric on
the tree space with nodal attributes. The Assumption 1 ensures that δ is a metric,
not just a pseudo-metric.

3.4. Central tree. In the Euclidean space R
1, for a given data set of size n,

there are two often-used measurements of the centerpoint, the sample mean and the
sample median. Nonuniqueness for the median arises when n is an even number.
In this section the concepts of the sample median and the sample mean will be
extended to the binary tree spaces, both with and without nodal attributes.
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First, the case with no nodal attributes, that is, only topological structure, is
considered. A sensible notion of centerpoint is the median tree, which is defined
as the minimizing tree, arg mint

∑n
i=1 dI (t, ti), taken over all trees t .

This is a modification of the Fréchet mean, arg mint

∑n
i=1 dI (t, ti)

2, which is
used because it allows straightforward fast computation. This can be done using
the characterization of the minimizing tree that is given in Theorem 3.2.

THEOREM 3.2. If a tree s is a minimizing tree according to the metric dI ,
then all the nodes of tree s must appear at least n

2 times in the binary tree sam-
ple S. Moreover, the minimizing tree s (according to dI ) must contain all the nodes,
which appear more than n

2 times, and may contain any subset of nodes that appear
exactly n

2 times.

The proof is given in Section 4.
Nonuniqueness may arise when the sample size is an even number. The minimal

median tree, which has the fewest nodes among all the median trees, is recom-
mended as a device for breaking any ties.

Banks and Constantine [1] independently developed essentially the same notion
of central tree and this characterization of the minimizing tree, which is called the
majority rule. We use this same terminology.

Next the case of nodal attributes is considered. Our proposed notion of center-
point in this case is called the median-mean tree. It has properties similar to the
sample median with respect to dI and similar to the sample mean with respect
to fδ . Its tree structure complies with the majority rule and its nodal attributes
can be calculated as the sample mean

∑
t∈S(xtk, ytk)/

∑
t∈S 1{k ∈ IND(t)}. As for

the median tree, the median-mean tree may not be unique, and again the minimal
median-mean tree (with minimal number of nodes) is suggested for breaking such
ties.

The median-mean tree is not always the same as the Fréchet mean,

arg min
t

∑
s∈S

δ(t, s)2.

We recommend the median-mean tree because it is much faster to compute. The
median-mean tree is also most natural as the centerpoint of the Pythagorean theo-
rem (i.e., sums of squares analysis) developed in Section 3.5.

Another useful concept is the average support tree, which consists of all the
nodes that appear in the tree sample with nodal attributes calculated as averages,
as done in the median-mean tree. Thus the median-mean tree is an attribute subtree
of the average support tree.

3.5. Variation analysis in the binary tree space with nodal attributes. Now
that the central tree has been developed, the next question is how to quantify the
variation of the sample about the centerpoint, that is, about the median-mean tree.
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In Euclidean space, the classical analysis of variance approach based on de-
composing sums of squares provides a particularly appealing approach to quan-
tifying variation. This analysis has an elegant geometric representation via the
Pythagorean theorem.

After a number of trials, we found that the most natural and computable analog
of the classical ANOVA decomposition came from generalizing the usual squared
Euclidean norm to the variation function,

Vδ(s, t) = dI (s, t) + f 2
δ (s, t).(3.5)

Note that if every tree has the same structure, then this reduces to classical sums
of squares, and the median-mean tree is the Fréchet mean, with respect to the
variation Vδ(s, t) = f 2

δ (s, t), in the sense that it is the minimizing tree over t of∑
s∈S Vδ(s, t). This is also true in the case of tree samples that are purely topologi-

cal, that is, that have no attributes, when the variation becomes Vδ(s, t) = dI (s, t).
Then dI is a full metric (not just a pseudo-metric), which can be written as a sum
of zeros and ones [see equation (3.1)]. So the metric dI can be interpreted as a sum
of squares, because

∞∑
k=1

(
1{k ∈ IND(s)� IND(t)})2 =

∞∑
k=1

1{k ∈ IND(s)� IND(t)} = dI (s, t).(3.6)

In Euclidean space, the total variation of a sample can be measured by the sum
of squared distances to its sample mean. For the tree sample S and the median-
mean tree mδ , the total variation about the median-mean is defined as∑

s∈S

Vδ(s,mδ) = ∑
s∈S

dI (s,mδ) + ∑
s∈S

f 2
δ (s,mδ).

This total variation about the median-mean tree does not depend on how the tie is
broken between the median-mean trees (when it is not unique).

In classical statistics, PCA is a useful tool to capture the features of a data set by
decomposing the total variation about the centerpoint. In PCA the first principal
component eigenvector indicates the direction in which the data vary the most. Fur-
thermore, other eigenvectors maximize variation in successive orthogonal residual
spaces.

In binary tree space, each tree in the sample is considered to be a data point.
Unlike Euclidean space, binary tree space is a nonlinear space according to the
metric δ defined at (3.2). As noted above, because the space is nonlinear, the gen-
eralization of PCA is not straightforward. The foundation of our analog of PCA, is
a notion of a one-dimensional manifold in binary tree space, which is a set of trees
that plays the role of a “line” (a one-dimensional subspace in Euclidean space).
There are two important types, defined below, both of which are called treeline.

DEFINITION 3.1. Suppose l = {u0, u1, u2, . . . , um} is a set of trees with (or
without) nodal attributes in the subtree class Tt of a given tree t . The set l is called
a structure treeline (s-treeline) starting from u0 if for i = 1,2, . . . ,m,
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FIG. 8. Toy example tree t , for illustrating the concept of s-treeline, shown in Figure 9.

1. ui can be obtained by adding a single node (denoted by νi) to the tree ui−1
(thus, when attributes exist, they are common through the treeline);

2. the next node to be added, νi+1, is the child of νi ;
3. the first tree u0 is minimal, in the sense that the ancestor node of ν1 is the root

node, or else has another child.

REMARK. Structure treelines are “one-dimensional” in the sense that they fol-
low a single path, determined by u0 and the sequence of added nodes ν1, . . . , νm.
In this sense the elements of l are nested. Also when there are attributes, each at-
tribute vector is the corresponding attribute subvector (defined in Section 3.3) of
its successor.

In Definition 3.1 the tree ui−1 is a subtree (an attribute subtree, if there are at-
tributes) of the trees ui , ui+1, and so on. Since every element in the s-treeline is
a topological subtree of t , the length of the s-treeline cannot exceed the number
of levels of the tree t . Illustration of the concept of s-treeline is shown in Fig-
ures 8 and 9.

Figure 9 shows the s-treeline in Tt , where t has the tree structure shown in Fig-
ure 8. Figure 9 indicates both tree topology and attributes. The positive attributes
(x, y) are graphically illustrated with a box for each node, where x is shown as the
horizontal length and y is the height.

Note that the attributes are common for each member of the treeline. Each suc-
ceeding member comes from adding a new node. The starting member, u0, cannot

FIG. 9. An s-treeline in Tt , based on the tree t shown in Figure 8.
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be reduced, because the root node has a child which does not follow the needed
sequence.

A structure treeline l is said to pass through the tree u, when the tree u is an
element of the tree set l, that is, u ∈ l. Recall from Section 2 that, for the blood
vessel data, Figure 5 shows the topology of the structure treeline passing through
the median-mean tree, and Figure 6 shows the corresponding attributes. The central
tree in each figure is the median-mean tree.

An s-treeline summarizes a direction of changing tree structures. The following
definition will describe a quite different direction in tree space, in which all trees
have the same tree structure but changing nodal attributes.

DEFINITION 3.2. Suppose l = {uλ :λ ∈ R} is a set of trees with nodal at-
tributes in the subtree class Tt of a given tree t . The set l is called an attribute
treeline (a-treeline) passing through a tree u∗ if

1. every tree uλ has the same tree structure as u∗;
2. the nodal attribute vector is equal to �v∗ +λ�v, where �v∗ is the attribute vector of

the tree u∗ and where �v is some fixed vector, �v = �0.

REMARK. An a-treeline is determined by the tree u∗ and the vector �v. The
treeline is “one-dimensional” in this sense, which is essentially the same as a line
in Euclidean space.

Figure 10 shows some members of an a-treeline from the same subtree class Tt

shown in Figure 8, with λ = 0.5,1.0,1.2,1.5 and

�v = [0.2,0.1,0.1,0.2,0.1,0.1,0.2,0.2]′.
The topological structures of all of the trees in Figure 10 are the same. The

dimensions of the boxes, illustrating the values of the attributes, change linearly.
In Section 2, Figure 7 illustrated an attribute treeline. That treeline highlighted

the strong variation between orientations of the trees in the sample.
From now on, both s-treelines and a-treelines are called treelines. An analogy

of the first principal component is the treeline which explains most of the variation
in the data. A notion of projection, of a tree onto a treeline, needs to be defined,
because this provides the basis for decomposition of sums of squares.

FIG. 10. Toy example of an a-treeline for the same subtree class Tt as in Figure 8. Several members
of the treeline are shown. The attributes are a linear function of each other.
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For any tree t and treeline l, the projection of t onto l, denoted Pl(t), is the tree
which minimizes the distance δ(t, ·) over all trees on the treeline l. The idea of
projection is most useful when it is unique, as shown in the next theorem.

THEOREM 3.3. Under Assumption 1, the projection of a tree t onto a treeline l

is unique.

Because of an editorial decision to save space, the proof is given in Section 4 of
Wang and Marron [20].

The Pythagorean theorem is critical to the decomposition of the sums of squares
in classical ANOVA. Analogs of this are now developed for tree samples. The-
orem 3.4 gives a Pythagorean theorem for a-treelines and Theorem 3.5 gives a
Pythagorean theorem for s-treelines.

THEOREM 3.4 (Tree version of the Pythagorean theorem: Part I). Let l be an
a-treeline passing through a tree u in the subtree class Tt . Then, for any t ∈ Tt ,

Vδ(t, u) = Vδ(t,Pl(t)) + Vδ(Pl(t), u).(3.7)

REMARK. This states that the variation (our analog of squared distance) of a
given tree t from a tree u in the treeline l, which is essentially the hypotenuse of
our triangle, is the sum of the variation of t from Pl(t), plus the variation of Pl(t)

from u, representing the legs of our triangle. This is the key to finding treelines
that explain maximal variation in the data, because Vδ(t, u) is independent of l,
so maximizing (over treelines l) a sample sum over Vδ(Pl(t), u) is equivalent to
minimizing the residual sum over Vδ(t,Pl(t)).

In this paper, only those s-treelines where every element is an attribute subtree
of the average support tree (as defined in Section 3.4) are considered, because this
gives a tree version of the Pythagorean theorem, shown next.

THEOREM 3.5 (Tree version of the Pythagorean theorem: Part II). Let S =
{t1, t2, . . . , tn} be a sample of trees. Let l be an s-treeline where every element is
an attribute subtree of the average support tree of S. Then, for any u ∈ l,∑

t∈S

Vδ(t, u) = ∑
t∈S

Vδ(t,Pl(t)) + ∑
t∈S

Vδ(Pl(t), u).(3.8)

REMARK. This theorem complements Theorem 3.4, because it now gives a
structure treeline version of the Pythagorean theorem, which simplifies analysis
of variance, because minimizing the residual sum

∑
t∈S Vδ(Pl(t), t) is equivalent

to maximizing the sum
∑

t∈S Vδ(µδ,Pl(t)) over all treelines passing through the
minimal median-mean tree, µδ . In some sense, this theorem is not so strong as
Theorem 3.4, because the sample summation is needed, while the Pythagorean
theorem 3.4 is true even term by term.
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Sketches of the proofs of Theorems 3.4 and 3.5 are given in Section 4 of Wang
and Marron [20]. Further details are in the proofs of Theorems 3.5.3 and 3.5.4 in
Section 3.5 of Wang [19].

The foundations are now in place to develop variation analysis in binary tree
space. There are two main steps to the PCA on trees variation analysis.

First, find an s-treeline lPS that minimizes the sum
∑

t∈S Vδ(t,Pl(t)) over l pass-
ing through the minimal median-mean tree µδ of the sample S, that is,

lPS = arg min
l : µδ∈l

∑
t∈S

Vδ(t,Pl(t)).(3.9)

This structure treeline is called a one-dimensional principal structure represen-
tation (treeline) of the sample S. Because of the Pythagorean theorem 3.5, the
one-dimensional structure treeline lPS explains a maximal amount of the variation
in the data, as is done by the first principal component in Euclidean space. This
is illustrated in the context of the blood vessel data in Section 2. Figure 6 shows
the principal structure treeline lPS = {u0, u1, u2} with nodal attributes, where u1 is
the unique median-mean tree (also the minimal median-mean tree) of the sample.
Figure 5 shows the topological tree structures of the principal structure treeline in
Figure 6.

Second, a notion of principal attribute treeline direction will be developed. This
will complement the principal structure treeline, in the sense that together they
determine an analog of a two-dimensional subspace of binary tree space. Recall
from Definition 3.2 that an attribute treeline is indexed by a starting tree u∗, with
attribute vector �v∗, and by a direction vector �v, and has general attribute vector
�v∗ + λ�v, for λ ∈ R. To create the desired two-dimensional structure, we consider
a family of attribute treelines indexed by the nested members {u0, u1, . . . , um} of
the principal structure treeline and their corresponding nested (in the sense of at-
tribute subvectors, as defined in Section 3.3) attribute vectors {�v∗

0 , �v∗
1 , . . . , �v∗

m}, and
indexed by a set of nested direction vectors {�v0, �v1, . . . , �vm}.

The union of treelines that are nested in this way is called a family of attribute
treelines. This concept is developed in general in the following definition.

DEFINITION 3.3. Let l = {u0, u1, . . . , um} be a structure treeline, and let �c be
a vector of attributes corresponding to the nodes of um. The l, �c-induced family of
attribute treelines, El,�c = {e0, e1, . . . , em}, is defined for k = 0,1, . . . ,m as

ek = {tλ : tλ has attribute vector �vk + λ�ck, λ ∈ R},
where �vk is the attribute vector of uk , and where �ck is the corresponding attribute
subvector of �c.

Next an appropriate family of attribute treelines is chosen to provide maximal
approximation of the data (as is done by the first two principal components in
Euclidean space). Following conventional PCA, we start with the principal struc-
ture treeline lPS (which we will denote in this paragraph as l simply to save a level
of subscripting) and choose the direction vector �c so that the l, �c-induced family of
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attribute treelines explains as much of the data as possible. In particular, we define
the principal attribute direction vector, �cPA, as

�cPA = arg min
�c

∑
t∈S

Vδ(t,PEl,�c (t)),

where PEl,�c (t) is the projection of the tree t onto the l, �c-induced family of attribute
treelines. This is an analog of a two-dimensional projection, defined as

PEl,�c (t) = arg min
s : s∈e(t)

δ(t, s),

where e(t) is the attribute treeline determined by the tree Pl(t) (the projection of
t onto the principal structure treeline) and by the direction vector which is the
corresponding attribute subvector of �c.

The elements of the lPS, �cPA-induced family of attribute treelines are all called
principal attribute treelines. As the first two principal components can illuminate
important aspects of the variation in data sets of curves, as demonstrated by, for
example, Ramsay and Silverman [17, 16], the principal structure and attribute tree-
lines can find important structure in a data sets of trees. An example of this is
shown in Figure 7 of this paper and Figure 10 of Wang and Marron [20], where
the principal attribute treeline through the median-mean tree revealed the change
in orientation in the data.

For completely different extensions of PCA in nonlinear ways, see the princi-
pal curve idea of Hastie and Stuetzle [9] and the principal geodesic analysis of
Fletcher, Lu and Joshi [8]. Principal curves provide an interesting nonlinear de-
composition of Euclidean space. Principal geodesics provide a decomposition of
data in nonlinear manifolds, including Lie groups and symmetric spaces.

For an interesting comparison of our tree version PCA and regular PCA, see
Section 3.6 of Wang and Marron [20].

4. Derivations of theorems.

A SKETCH OF THE PROOF OF THEOREM 3.1. The proof follows from the
fact that dI is a metric on the binary tree space without nodal attributes and fδ is
a weighted Euclidean distance between two attribute vectors (the nodal attributes
for nonexistent nodes are treated as zeros). �

PROOF OF THEOREM 3.2. Let s be a minimizing tree according to the integer
tree metric dI . Suppose some of the nodes in s appear less than n

2 times and ν is
the node with the largest level among all of those nodes. If a node appears less
than n

2 times, so do its children. Thus, ν must be a terminal node of s.
For the binary tree s′, with IND(s′) = IND(s)\{ind(ν)}, the following equation

is satisfied:
n∑

i=1

dI (s
′, ti) =

n∑
i=1

dI (s, ti) + nν − (n − nν),(4.1)
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where nν = #{appearance of the node ν in the sample S}. Since nν < n
2 ,

n∑
i=1

dI (s
′, ti) <

n∑
i=1

dI (s, ti),

which is a contradiction of the assumption that s is a minimizing tree.
From the proof above, if nν = n

2 , then
∑n

i=1 dI (s
′, ti) = ∑n

i=1 dI (s, ti); that is,
s′ is also a minimizing tree. Therefore, the minimizing tree may contain any subset
of the nodes that appear exactly n

2 times.
Finally, a proof is given of the fact that the minimizing binary tree s contains all

the nodes which appear more than n
2 times.

Suppose the node ω appears more than n
2 times in the sample S and ind(ω) /∈

IND(s). Without loss of generality, suppose that ω is a child of some node in the
binary tree s. Otherwise, choose one of its ancestor nodes.

For the binary tree s′′, with IND(s′′) = IND(s) ∪ {ind(ω)}, the following equa-
tion is satisfied:

n∑
i=1

dI (s, ti) =
n∑

i=1

dI (s
′′, ti) + nω − (n − nω),(4.2)

where nω = #{appearance of the node ω in the sample S}. Since nω > n
2 ,

n∑
i=1

dI (s
′′, ti) <

n∑
i=1

dI (s, ti),

which is a contradiction of the assumption that s is the minimizing tree. �
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