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ON SURROGATE DIMENSION REDUCTION FOR MEASUREMENT
ERROR REGRESSION: AN INVARIANCE LAW

BY BING LI1 AND XIANGRONG YIN

Pennsylvania State University and University of Georgia

We consider a general nonlinear regression problem where the predictors
contain measurement error. It has been recently discovered that several well-
known dimension reduction methods, such as OLS, SIR and pHd, can be per-
formed on the surrogate regression problem to produce consistent estimates
for the original regression problem involving the unobserved true predictor.
In this paper we establish a general invariance law between the surrogate and
the original dimension reduction spaces, which implies that, at least at the
population level, the two dimension reduction problems are in fact equiva-
lent. Consequently we can apply all existing dimension reduction methods
to measurement error regression problems. The equivalence holds exactly for
multivariate normal predictors, and approximately for arbitrary predictors.
We also characterize the rate of convergence for the surrogate dimension re-
duction estimators. Finally, we apply several dimension reduction methods
to real and simulated data sets involving measurement error to compare their
performances.

1. Introduction. We consider dimension reduction for regressions in which
the predictor contains measurement error. Let X be a p-dimension random vec-
tor representing the true predictor and Y be a random variable representing the
response. In many applications we cannot measure X (e.g., blood pressure) accu-
rately, but instead observe a surrogate r-dimensional predictor W that is related to
X through the linear equation

W = γ + �T X + δ,(1)

where γ is an r-dimensional nonrandom vector, � is a p by r nonrandom matrix
and δ is an r-dimensional random vector independent of (X,Y ). The goal of the
regression analysis is to find the relation between the response Y and the true,
but unobserved, predictor X. This type of regression problem frequently occurs in
practice and has been the subject of extensive studies, including, for example, those
that deal with linear models (Fuller [15]), generalized linear models (Carroll [2],
Carroll and Stefanski [5]), nonlinear models (Carroll, Ruppert and Stefanski [4])
and nonparametric models (see Pepe and Fleming [23]).
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Typically there is an auxiliary sample which provides information about the re-
lation between the original predictor X and the surrogate predictor W , for example,
by allowing us to estimate �WX = cov(W,X). Using this covariance estimate we
can adjust the surrogate predictor W to align it as much as possible with the true
predictor X. At the population level this is realized by regressing W on X, that is,
adjusting W to U = �XW�−1

W W , where �XW = cov(X,W) and �W = var(W).
The fundamental question that will be answered in this paper is this: If we per-
form a dimension reduction operation on the surrogate regression problem of Y

versus U , will the result correctly reflect the relation between Y and the true pre-
dictor X?

In the classical setting where the true predictor X is observed, the dimension
reduction problem can be briefly outlined as follows. Suppose that Y depends on
X only through a lower dimensional vector of linear combinations of X, say βT X,
where β is a p by d matrix with d ≤ p. Or more precisely, suppose that Y is
independent of X conditioning on βT X, which will be denoted by

Y ⊥⊥ X|βT X.(2)

The goal of dimension reduction is to estimate the directions of column vectors
of β , or the column space of β . Note that the above relation will not be affected if
β is replaced by βA for any nonsingular p × p matrix A. This is why the column
space of β , rather than β itself, is the object of interest in dimension reduction.
A dimension reduction space provides us with a set of important predictors among
all the linear combinations of X, with which we could perform exploratory data
analysis or finer regression analysis without having to fit a nonparametric regres-
sion over a large number of predictors. Classical estimators of the dimension re-
duction space include ordinary least square (OLS) (Li and Duan [21], Duan and Li
[13]), sliced inverse regression (SIR) (Li [19]), principle Hessian directions (pHd)
(Li [20]) and the sliced inverse variance estimators (SAVE) (Cook and Weisberg
[11]).

It has been discovered that some of these dimension reduction methods can be
performed on the adjusted surrogate predictor U to produce consistent estimates
of at least some vectors in the column space of β in (2) that describes the relation
between Y and the (unobserved) true predictor X. The first paper in this area is
Carroll and Li [3], which demonstrated this phenomenon for OLS and SIR, and
introduced the corresponding estimators of β in the measurement error context.
More recently, Lue [22] established that the pHd method, when applied to the sur-
rogate problem (U,Y ), also yields consistent estimators of vectors in the column
space of β . This work opens up the possibility of using available dimension reduc-
tion techniques to estimate β by simply pretending U is the true predictor X.

In this paper we will establish a general equivalence between the dimension
reduction problem of Y versus U and that of Y versus X. That is,

Y ⊥⊥ X|βT X if and only if Y ⊥⊥ U |βT U.(3)
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This means that dimension reduction for the surrogate regression problem of Y

versus U and that for the original regression problem of Y versus X are in fact
equivalent at the population level. Thus the phenomena discovered by the above
work are special cases of a very general invariance pattern—we can, in fact, ap-
ply any consistent dimension reduction method to the surrogate regression prob-
lem of Y versus U to produce consistent dimension reduction estimates for the
original regression problem of Y versus X. This fundamental relation is of prac-
tical importance, because OLS, SIR and pHd have some well-known limitations.
For example, SIR does not perform well when the regression surface is symmet-
ric about the origin, and pHd does not perform well when the regression surface
lacks a clear quadratic pattern (or what is similar to it). New methods have recently
been developed that can, in different respects and to varying degrees, remedy these
shortcomings; see, for example, Cook and Li [9, 10], Xia et al. [25], Fung et al.
[16], Yin and Cook [27, 28] and Li, Zha and Chiaromonte [18]. This equivalence
allows us to choose among the broader class of dimension reduction methods to
tackle the difficult situations in which the classical methods become inaccurate.

Sometimes the main purpose of the regression analysis is to infer the condi-
tional mean E(Y |X) or more generally conditional moments such as E(Y k|X).
For example, in generalized linear models we are mainly interested in estimating
the conditional mean E(Y |X), and for regression with heteroscedasticity we may
be interested in both the conditional mean E(Y |X) and the conditional variance
var(Y |X). In these cases it is sensible to treat the conditional moments such as
E(Y |X) and var(Y |X) as the objects of interest and the rest of the conditional
distribution f (Y |X) as the (infinite dimensional) nuisance parameter, and refor-
mulate the dimension reduction problem to reflect this hierarchy. This was carried
out in Cook and Li [9] and Yin and Cook [26], which introduced the notions of the
central mean space and central moment space as well as methods to estimate them.
If there is a p by d matrix β with d ≤ p such that E(Y |X) = E(Y |βT X), then we
call the column space of β a dimension reduction space for the conditional mean
E(Y |X). More generally, the dimension reduction space for the kth conditional
moment E(Y k|X) is defined as above with Y replaced by Y k . In this paper we
will also establish the equivalence between the dimension reduction spaces for the
k-conditional moments of the surrogate and the original regressions. That is,

E(Y k|X) = E(Y k|βT X) if and only if E(Y k|U) = E(Y k|βT U).(4)

The above invariance relations will be shown to hold exactly under the assump-
tion that X and δ are multivariate normal; a similar assumption was also used in
Carroll and Li [3] and Lue [22]. For arbitrary predictor and measurement error,
we will establish an approximate invariant relation. This is based on the fact that,
when p is modestly large, most projections of a random vector are approximately
normal (Diaconis and Freedman [12], Hall and Li [17]). Simulation studies indi-
cate that the approximate invariance law holds for surprisingly small p (as small
as 6) and for severely nonnormal predictors.



2146 B. LI AND X. YIN

This paper will be focused on the dimension reduction problems defined
through relationships such as Y ⊥⊥ X|βT X. A more general problem can be for-
mulated as Y ⊥⊥ X|t (X), where t (X) is a (possibly nonlinear) function of X; see
Cook [8]. Surrogate dimension reduction in this general sense is not covered by
this paper, and remains an important open problem.

In Section 2 we introduce some basic issues and concepts related to measure-
ment error problems and dimension reduction, as well as some machinery that will
be repeatedly used in our further exposition. Equivalence (3) will be established
in Section 3 for the case where � in (1) is a p by p nonsingular matrix. Equiva-
lence (3) for general � will be shown in Section 4. In Section 5 we will establish
equivalence (4). The approximate equivalence for general predictors and measure-
ment errors will be developed in Section 6. In Section 7 we will turn our attention
to a general estimation procedure for surrogate dimension reduction and study its
convergence rate. In Section 8 we conduct a simulation study to compare different
surrogate dimension reduction methods. In Section 9 we apply the invariance law
to analyze a managerial behavior data set (Fuller [15]) that involves measurement
errors. Some technical results will be proved in the Appendix.

2. Preliminaries. In this section we lay out some basic concepts and notation.
For a pair of random vectors V1 and V2, we will use �V1V2 to denote the covariance
matrix cov(V1,V2), and for a random vector V , we will use �V to denote the
variance matrix var(V ). If V1 and V2 are independent, then we write V1 ⊥⊥ V2; if
they are independent conditioning on a third random element V3, then we write
V1 ⊥⊥ V2|V3. If a matrix � is positive definite, then we write � > 0. For a matrix
A, the space spanned by its columns will be denoted by span(A). If a matrix A has
columns a1, . . . , ap , then vec(A) denotes the vector (aT

1 , . . . , aT
p )T . If A,B,C are

matrices, then vec(ABC) = (CT ⊗A)vec(B), where ⊗ denotes the tensor product
between matrices.

In a measurement error problem we observe a primary sample on (W,Y ), which
allows us to study the relation between Y and W , and an auxiliary sample that al-
lows us to estimate �WX , thus relating the surrogate predictor to the true predictor.
The auxiliary sample can be available under one of several scenarios in practice,
which will be discussed in detail in Section 7. We will first (through Sections 3 to 6)
focus on developments at the population level, and for this purpose it suffices to
assume a matrix such as �XW is known, keeping in mind that it is to be obtained
externally to the primary sample—either from the auxiliary data or from prior in-
formation.

Because X is not observed, we use �XW to adjust the surrogate predictor W

to make it stochastically as close to X as possible. As will soon be clear we can
assume E(X) = E(W) = 0. In this case we adjust W to U = �XW�−1

W W (see,
e.g., Carroll and Li [3]). Note that if W is multivariate normal this is just the
conditional expectation E(X|W). Thus U is the measurable function of W closest
to X in terms of L2 distance. If W is not multivariate normal, then U can simply
be interpreted as linear regression of X on W .
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3. Invariance of surrogate dimension reduction. Recall that if there is a p

by d matrix β , with d ≤ p, such that (2) holds, then we call the column space of β

a dimension reduction space. See Li [19, 20] and Cook [6, 7]. Under very mild
conditions, such as given in Cook [7], Section 6, the intersection of all dimension
reduction spaces is again a dimension reduction space, which is then called the
central space and is written as SY |X . We will denote the dimension of SY |X by q .
Note that q ≤ d for any β satisfying (2). Similarly, we will denote the central space
of Y versus U as SY |U and call it the surrogate central space. Our interests lie, of
course, in the estimation of SY |X , but SY |U is all that we can infer from the data.
In this section we will establish the invariance law

SY |U = SY |X(5)

in the situation where � is a p by p nonsingular matrix and X and δ are multivari-
ate normal.

We can assume without loss of generality that E(X) = 0 and E(U) = 0 because,
for any p-dimensional vector a, SY |X = SY |(X−a) and SY |U = SY |(U−a). Since we
will always assume E(δ) = 0, E(X) = E(U) = 0 implies that γ = 0, and the
measurement error model (1) reduces to

W = �T X + δ.(6)

The next lemma (and its variation) is the key to the whole development in this
paper. It is also a fundamental fact about multivariate normal distributions that has
been previously unknown. It will be applied to both exact and asymptotic distrib-
utions.

LEMMA 3.1. Let U∗
1 ,V ∗

1 be r-dimensional and U∗
2 ,V ∗

2 be s-dimensional ran-
dom vectors with r + s = p. Let

V ∗ =
(

V ∗
1

V ∗
2

)
and U∗ =

(
U∗

1
U∗

2

)
,

and let Y be a random variable. Suppose:

1. U∗
1 , U∗

2 , V ∗
1 , V ∗

2 are multivariate normal.
2. U∗ − V ∗ ⊥⊥ (V ∗, Y ).

Then:

1. If there is an r-dimensional multivariate normal random vector V ∗
3 such that

V ∗
3 ⊥⊥ (V ∗

1 −V ∗
3 ,V ∗

2 ), and if U∗
1 ⊥⊥ U∗

2 , then Y ⊥⊥ V ∗|V ∗
3 implies Y ⊥⊥ U∗|U∗

1 .
2. If there is an r-dimensional multivariate normal random vector U∗

3 such that
U∗

3 ⊥⊥ (U∗
1 −U∗

3 ,U∗
2 ), and if V ∗

1 ⊥⊥ V ∗
2 , then Y ⊥⊥ U∗|U∗

3 implies Y ⊥⊥ V ∗|V ∗
1 .

We should emphasize that despite its appearance the lemma is not sym-
metric for U∗ and V ∗ because of assumption 2; note that we do not assume
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V ∗ − U∗ ⊥⊥ (U∗, Y ). This is why the second assertion, though similar to the first,
is not redundant. This asymmetry is intrinsic to the measurement error problem,
where U is a diffusion of X but not conversely.

PROOF OF LEMMA 3.1. Write U∗ as V ∗ + (U∗ − V ∗), and we have

E(eitT U∗ |Y) = E
(
eitT V ∗

eitT (U∗−V ∗)|Y )
.(7)

By assumption 2 we have (U∗ −V ∗) ⊥⊥ V ∗|Y and U∗ −V ∗ ⊥⊥ Y . Hence the right-
hand side reduces to

E(eitT V ∗ |Y)E
(
eitT (U∗−V ∗)|Y ) = E(eitT V ∗ |Y)E

(
eitT (U∗−V ∗)).(8)

Assumption 2 also implies that �U∗ = var(U∗ −V ∗)+�V ∗ , and hence that U∗ −
V ∗ ∼ N(0,�U∗ − �V ∗). Thus the right-hand side of (8) further reduces to

E(eitT V ∗ |Y)e−(1/2)tT (�U∗−�V ∗ )t .

Substitute this into the right-hand side of (7) to obtain

E(eitT U∗ |Y)e(1/2)tT �U∗ t = E(eitT V ∗ |Y)e(1/2)tT �V ∗ t .(9)

Now suppose there is a V ∗
3 such that V ∗

3 ⊥⊥ (V ∗
1 − V ∗

3 ,V ∗
2 ) and Y ⊥⊥

(V ∗
1 ,V ∗

2 )|V ∗
3 . The latter independence implies Y ⊥⊥ (V ∗

1 − V ∗
3 ,V ∗

2 )|V ∗
3 which,

combined with the former independence, yields

(V ∗
1 − V ∗

3 ,V ∗
2 ) ⊥⊥ (V ∗

3 , Y ) ⇒ (V ∗
1 − V ∗

3 ,V ∗
2 ) ⊥⊥ V ∗

3 |Y
and

(V ∗
1 − V ∗

3 ,V ∗
2 ) ⊥⊥ Y.

Hence

E(eitT V ∗ |Y) = E
(
eitT1 (V ∗

1 −V ∗
3 )eitT2 V ∗

2 eitT1 V ∗
3 |Y )

(10)
= E

(
eitT1 (V ∗

1 −V ∗
3 )eitT2 V ∗

2
)
E(eitT1 V ∗

3 |Y).

Now let W ∗ = ((V ∗
1 − V ∗

3 )T ,V ∗
2

T )T . Because V ∗
3 ⊥⊥ V ∗

2 we have

�W ∗ =
(

�V ∗
1 −V ∗

3
�V ∗

1 V ∗
2

�V ∗
2 V ∗

1
�V ∗

2

)
=

(
�V ∗

1 −V ∗
3

− �V ∗
1

0
0 0

)
+ �V ∗ .(11)

In the meantime, because W ∗ is multivariate normal we have

E
(
eitT1 (V ∗

1 −V ∗
3 )eitT2 V ∗

2
) = e−(1/2)tT �W∗ t .(12)

Now combine (9) through (12) to obtain

E(eitT U∗ |Y)etT �U∗ t = E(eitT1 V ∗
3 |Y)e

(1/2)tT1 �V ∗
1

t1−(1/2)tT1 (�V ∗
1 −V ∗

3
)t1

.
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Consequently the left-hand side does not depend on t2; that is, we can take t2 = 0
without changing it:

E(eitT U∗ |Y)etT �U∗ t = E(eitT1 U∗
1 |Y)e

tT1 �U∗
1
t1
.

This is equivalent to

E(eitT U∗ |Y) = E(eitT1 U∗
1 |Y)e

−tT �U∗ t+tT1 �U∗
1
t1 = E(eitT1 U∗

1 |Y)e
−tT2 �U∗

2
t2
,(13)

where the second equality follows from the assumption U∗
1 ⊥⊥ U∗

2 . Multiply both
sides by eiτY and then take the expectation to obtain

E(eiτY+itT U∗
) = E[eiτY E(eitT1 U∗

1 |Y)]e−tT2 �U∗
2
t2 = E(eiτY eitT1 U∗

1 )e
−tT2 �U∗

2
t2
,

from which it follows that (Y,U∗
1 ) ⊥⊥ U∗

2 , which implies that Y ⊥⊥ U∗|U∗
1 .

The second assertion can be proved similarly. Following the same argument that
leads to (10), we have

E(eitT U∗ |Y) = E(eitT1 U∗
3 |Y)e

−(1/2)tT1 (�U∗
1 −U∗

3
)t1−(1/2)tT2 �U∗

2
t2
.(14)

Now combine this relation with (9) and follow the proof of the first assertion to
complete the proof. �

We are now ready to establish the invariance relation (5).

THEOREM 3.1. Suppose:

1. X ∼ N(µX,�X), where �X > 0.
2. δ ⊥⊥ (X,Y ) and δ ∼ N(0,�δ), where �δ > 0.

Then SY |U = SY |X .

PROOF. Assume, without loss of generality, that E(X) = 0 and E(U) = 0.
We first show that SY |U ⊆ SY |X . Denote the dimension of SY |X by q , and let β be
a p by q matrix whose columns form a basis of SY |X . Let ζ be a p by p−q matrix
such that ζ T �Uβ = 0 and such that the matrix η = (β, ζ ) is full rank. Let

V ∗
1 = βT �U�−1

X X, V ∗
2 = ζ T �U�−1

X X,

V ∗
3 = (βT �Uβ)(βT �Xβ)−1βT X,

U∗
1 = βT U, U∗

2 = ζ T U.

Then

cov(U∗
1 ,U∗

2 ) = βT �Uζ = 0,

cov(V ∗
3 ,V ∗

2 ) = (ζ T �Uβ)(βT �Xβ)−1(βT �Uβ) = 0,

cov(V ∗
3 ,V ∗

1 − V ∗
3 ) = (βT �Uβ)(βT �Xβ)−1(βT �Uβ)

− (βT �Uβ)(βT �Xβ)−1(βT �Uβ) = 0.
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It follows that U∗
1 ⊥⊥ U∗

2 and V ∗
3 ⊥⊥ (V ∗

1 −V ∗
3 ,V ∗

2 ). In the meantime, by definition,

U∗ − V ∗ = ηT (U − �U�−1
X X).

However, recall that

U = �XW�−1
W �T X + �XW�−1

W δ = �XW�−1
W �WX�−1

X X + �XW�−1
W δ

(15)
= �U�−1

X X + �XW�−1
W δ,

where the second equality holds because �WX = �T �X , which follows from the
independence X ⊥⊥ δ and the definition of W ; the third equality holds because
�U = �XW�−1

W �WX . Hence U∗ − V ∗ = ηT �XW�−1
W δ, which is independent of

(V ∗, Y ). Finally, we note that V ∗
3 is a one-to-one function of βT X and V ∗ is a

function of X. So Y ⊥⊥ V ∗|V ∗
3 . Thus, by the first assertion of Lemma 3.1, we have

U∗ ⊥⊥ Y |U∗
1 ⇒ U ⊥⊥ Y |βT U ⇒ SY |U ⊆ SY |X .

To prove SY |X ⊆ SY |U , let β be a matrix whose columns are a basis of SY |U ,
and ζ be such that the columns of (β, ζ ) are a basis of R

p and ζ T �Xβ = 0. Let

U∗
1 = βT �X�−1

U U, U∗
2 = ζ T �X�−1

U U,

U∗
3 = (βT �Xβ)(βT �Uβ)−1βT U,

V ∗
1 = βT X, V ∗

2 = ζ T X.

Now follow the proof of SY |U ⊆ SY |X , but this time apply the second assertion of
Lemma 3.1, to complete the proof. �

The assumptions made in Theorem 3.1 are roughly equivalent to those made in
Lue [22], Theorem 1, though our dimension reduction assumption, Y ⊥⊥ X|βT X,
is weaker than the corresponding assumption therein, which is Y = g(βT X, ε)

where ε ⊥⊥ X—it is easy to show that the latter implies the former. For example, if
Y = g(βT X, ε) where ε ⊥⊥ X|βT X, then Y ⊥⊥ X|βT X still holds but ε is no longer
independent of X. Except for this dimension reduction assumption, our assump-
tions are stronger than those made in Carroll and Li [3], Theorem 2.1. However,
our conclusion is stronger than those in both of these papers, in that it reveals the
intrinsic invariance relation between dimension reduction spaces, not limited to
any specific dimension reduction methods.

In the next example, we will give a visual demonstration of the invariance law.

EXAMPLE 3.1. Let p = r = 6, X ∼ N(0, Ip), ε ∼ N(0, σ 2
ε ), δ ∼ N(0, σ 2

δ Ip)

and δ ⊥⊥ (X, ε). Consider the measurement-error regression model

Y = 0.4(βT
1 X)2 + 3 sin(βT

2 X/4) + σεε, W = �T X + δ,(16)

where β1 = (1,1,1,0,0,0)T and β2 = (1,0,0,0,1,3)T , and � is a p × p matrix
with diagonal elements equal to 1 and off-diagonal elements equal to 0.5. We take
σε = 0.2, σδ = 1/6, and generate (Xi, Yi,Wi), i = 1, . . . ,400, from this model.
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FIG. 1. Original and surrogate dimension reduction spaces. Left panels: Y versus βT
1 X (upper)

and Y versus βT
2 X (lower). Right panels: Y versus βT

1 U (upper) and Y versus βT
2 U (lower).

In Figure 1 the left panels are the scatter plots of Y versus βT
1 X (upper) and

βT
2 X (lower) from a sample of 400 observed (X,Y ). The 3D shape of Y versus

βT X is roughly a U -shaped surface tilted upward in an orthogonal direction. The
right panels are the scatter plots for Y versus βT

1 U and βT
2 U . As predicted by

the invariance law, the directions β1 and β2, which are in SY |X , also capture most
of the variation of Y in its relation to U , although the variation for the surrogate
problem is larger than that for the original problem.

4. The invariance law for arbitrary �. We now turn to the general case
where � is a p × r matrix. We will assume r ≤ p, which makes sense because
otherwise there will be redundancy in the surrogate predictor W . In this case W is
of dimension r , but the adjusted surrogate predictor U still has dimension p, with
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a singular variance matrix �U if r < p. We will assume that the column space of
� contains the dimension reduction space for Y |X (which always holds if � is a
nonsingular square matrix). This is a very natural assumption—it means that we
can have measurement error, but this error cannot be so erroneous as to erase part
of the true regression parameter.

THEOREM 4.1. Suppose that � in (1) is a p by r matrix with r ≤ p, and
that � has rank r . Suppose that δ ∼ N(0,�δ) with �δ > 0, X ∼ N(µX,�X)

with �X > 0, and δ ⊥⊥ (X,Y ). Furthermore, suppose that SY |X ⊆ span(�). Then
SY |U = SY |X .

PROOF. First we note that

Y ⊥⊥ X|�T X and Y ⊥⊥ U |�T U.(17)

The first relation follows directly from the assumption span(β) ⊆ span(�). To
prove the second relation, let P�(�X) = �(�T �X�)−1�T �X be the projection
onto span(�) in terms of the inner product 〈a, b〉 = aT �Xb. Then

var
[(

I − P�(�X)
)T

U
] = [I − P�(�X)]T �U [I − P�(�X)].

However, we note that

[I − P�(�X)]T �U = (
I − �X�(�T �X�)−1�T )

�X��−1
W �T �X = 0.

Thus var[(I − P�(�X))T U ] = 0, which implies U = P T
� (�X)U . That is, U and

�T U in fact generate the same σ -field, and hence the second relation in (17) must
hold.

Next, by the definition of U we have

U = �X��−1
W (�T X + δ).

Multiply both sides of this equation from the left by �T , to obtain

�T U = �T �X��−1
W (�T X + δ).

Let Ũ = �T U and X̃ = �T X. Then �X̃W = �T �X� and �Ũ = �T �U�. In this
new coordinate system the above equation can be rewritten as

Ũ = �X̃W�−1
W (X̃ + δ).

Because (i) X̃ has a multivariate normal distribution with �X̃ = �T �X� > 0 and
(ii) δ ⊥⊥ (X̃, Y ) and δ ∼ N(0,�δ) with �δ > 0, we have, by Theorem 3.1, SY |Ũ =
SY |X̃ .

Now let q be the dimension of SY |X and suppose that β is a p by q matrix whose
columns form a basis of SY |X . We note that q ≤ r . Because span(β) ⊆ span(�),
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there is an r by q matrix η of rank q such that β = �η. The following string of
implications is evident:

Y ⊥⊥ X|βT X ⇒ Y ⊥⊥ X|ηT �T X ⇒ Y ⊥⊥ X|ηT X̃

⇒ Y ⊥⊥ �T X|ηT X̃ ⇒ Y ⊥⊥ X̃|ηT X̃.

This means span(η) is a dimension reduction space for the problem Y |X̃, and
hence, because SY |X̃ = SY |Ũ , it must also be a dimension reduction space for the
problem Y |Ũ . It follows that Y ⊥⊥ Ũ |ηT Ũ or equivalently

Y ⊥⊥ �T U |ηT �T U.(18)

In the meantime, because �T U and (�T U,ηT �T U) generate the same σ -field,
the second relation in (17) implies

Y ⊥⊥ U |(�T U,ηT �T U).(19)

By Proposition 4.6 of Cook [7], relations (18) and (19) combined imply that

Y ⊥⊥ (U,�T U)|ηT �T U ⇒ Y ⊥⊥ U |ηT �T U ⇒ Y ⊥⊥ U |βT U,

from which it follows that SY |U ⊆ SY |X .
To show the reverse inclusion SY |X ⊆ SY |U , let s be the dimension of SY |U and ξ

be a p by s matrix whose columns form a basis of SY |U . By the second conditional
independence in (17) we have span(ξ) ⊆ span(�). Hence s ≤ q , and there is an r

by s matrix ζ of rank s such that ξ = �ζ . Follow the proof of the first inclusion to
show that

Y ⊥⊥ �T X|ζ T �T X.

In the meantime, because �T X and (�T X, ζ T �T X) generate the same σ -field, the
first conditional independence in (17) implies that

Y ⊥⊥ X|(�T X, ζ T �T X).

Now follow the proof of the first inclusion. �

5. Invariance of surrogate dimension reduction for conditional moments.
We now establish the invariance law between the central mean (or moment) spaces
of the surrogate and the original dimension reduction problem. As briefly discussed
in the Introduction, if there is a p by d matrix β with d ≤ p such that for k =
1,2, . . . ,

E(Y k|X) = E(Y k|βT X),(20)

then we call the column space of β a dimension reduction space for the kth con-
ditional moment. Similar to the previous case, the intersection of all such spaces
again satisfies (20) under mild conditions. We call this intersection the kth central
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moment space, and denote it by SE(Y k |X). Let SE(Y k |U) be the kth central moment
space for Y versus U . The goal of this section is to establish the invariance relation

SE(Y k |X) = SE(Y k |U).(21)

The next lemma parallels Lemma 3.1. Its proof will be given in the Appendix.

LEMMA 5.1. Let U∗
1 ,V ∗

1 ,U∗
2 ,V ∗

2 , Y be as defined in Lemma 3.1 and suppose
assumptions 1 and 2 therein are satisfied. Let h(Y ) be an integrable function of Y .
Then:

1. If there is an r-dimensional multivariate normal random vector V ∗
3 such that

V ∗
3 ⊥⊥ (V ∗

1 − V ∗
3 ,V ∗

2 ), and if U∗
1 ⊥⊥ U∗

2 , then E[h(Y )|V ∗,V ∗
3 ] = E[h(Y )|V ∗

3 ]
implies E[h(Y )|U∗] = E[h(Y )|U∗

1 ].
2. If there is an r-dimensional multivariate normal random vector U∗

3 such that
U∗

3 ⊥⊥ (U∗
1 − U∗

3 ,U∗
2 ), and if V ∗

1 ⊥⊥ V ∗
2 , then E[h(Y )|U∗,U∗

3 ] = E[h(Y )|U∗
3 ]

implies E[h(Y )|V ∗] = E[h(Y )|V ∗
1 ].

The next theorem establishes the invariance law (21).

THEOREM 5.1. Suppose k is any positive integer and:

1. X ∼ N(µX,�X), where �X > 0,
2. δ ⊥⊥ (X,Y ) and δ ∼ N(0,�δ), where �δ > 0,
3. E(|Y |k) < ∞.

Then SE(Y k |U) = SE(Y k |X).

The proof is similar to that of Theorem 3.1; the only difference is now we use
Lemma 5.1 instead of Lemma 3.1. Evidently, we can follow the same steps in
Section 4 to show that the assertion of Theorem 5.1 holds for general �. We state
this generalization as the following corollary. The proof is omitted.

COROLLARY 5.1. Suppose that � in (1) is a p by r matrix with r ≤ p, and
that � has rank r . Suppose that δ and X are multivariate normal with �X > 0,
�δ > 0, E(δ) = 0, and δ ⊥⊥ (X,Y ). Suppose that E(|Y |k) < ∞. Furthermore,
suppose that SE(Y k |X) ⊆ span(�). Then SE(Y k |U) = SE(Y k |X).

6. Approximate invariance for non-Gaussian predictors. In this section we
establish an approximate invariance law for arbitrary predictors. This is based
on the fundamental result that, when the dimension p is reasonably large, low-
dimensional projections of the predictor are approximately multivariate normal.
See Diaconis and Freedman [12] and Hall and Li [17]. Although this is a limiting
behavior as p → ∞, from our experience the approximate normality manifests for
surprisingly small p. For example, a 1-dimensional projection of a 10-dimensional
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uniform distribution is virtually indistinguishable from a normal distribution. Thus
the multivariate normality holds approximately in wide application. Intuitively, if
we combine the exact invariance under normality, as we developed in the previous
sections, and the approximate normality when p is large, then we will arrive at an
approximate invariance law for large p. This section is devoted to establishing this
intuition as a fact.

We rewrite quantities such as X,U, δ,β in the previous sections as Xp,Up, δp,

βp . Let S
p denote the unit sphere in R

p : {x ∈ R
p : ‖x‖ = 1}, and Unif(Sp) de-

note the uniform distribution on S
p . The result of Diaconis and Freedman [12]

states that, if βp ∼ Unif(Sp), then, under mild conditions the conditional distrib-
ution of βT

p Xp|βp converges weakly in probability (w.i.p.) to normal as p → ∞.

That is, the sequence of conditional characteristic functions E(eitβT
p Xp |βp) con-

verges (pointwise) in probability to a normal characteristic function. Intuitively,
this means when p is large, the distribution of βT

p Xp is nearly normal for most
βp’s. Here, the parameter βp is treated as random to facilitate the notion of “most
of βp .” We will adopt this assumption. In Diaconis and Freedman’s development
the Xp is treated as nonrandom, but in our case (δp,Xp,Y ) is random. In this con-
text it makes sense to assume βp ⊥⊥ (Y,Xp, δp), which would have been the case
if the data (Y,Xp, δp) were treated as fixed. With βp being random, the dimension
reduction relation should be stated as Y ⊥⊥ Xp|(βT

p Xp,βp).
Our goal is to establish that, if Y ⊥⊥ Xp|(βT

p Xp,βp), then, in an approximate
sense Y ⊥⊥ Up|(βT

p Up,βp), and vice versa. To do so we need to define an approx-
imate version of conditional independence. Recall that, in the classical context
when p is fixed and β is nonrandom, Y ⊥⊥ U |βT X if and only if Y ⊥⊥ tT U |βT X

for all t ∈ R
p , as can be easily shown using characteristic functions. The definition

of approximate conditional independence is analogous to the second statement.

DEFINITION 6.1. Let βp be a p × d dimensional random matrix whose
columns are i.i.d. Unif(Sp) and βp ⊥⊥ (Up,Y ). We say that Y and Up are as-
ymptotically conditionally independent given (βT

p Up,βp), in terms of weak con-
vergence in probability if, for any random vector ζp satisfying ζp ∼ Unif(Sp)

and ζp ⊥⊥ (βp,Up,Y ), the sequence (Y,βT
p Up, ζ T

p Up)|(βp, ζp) converges w.i.p.
to (Y ∗,U∗,V ∗) in which Y ∗ ⊥⊥ V ∗|U∗. If this holds we write

Y ⊥⊥ Up|(βT
p Up,βp) w.i.p. as p → ∞.

The following lemma gives further results regarding w.i.p. convergence that will
be used in the later development. Its proof will be given in the Appendix.

LEMMA 6.1. Let {Rp}, {Sp}, {Tp} and {βp} be sequences of random vectors
in which the first three have dimensions not dependent on p. Then:
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1. Let R∗ be a random vector with the same dimension as Rp and denote by

φp(t;βp) and ω(t) the characteristic functions E(eitT Rp |βp) and E(eitT R∗
),

respectively. Then Rp|βp → R∗ w.i.p. if and only if, for each t ∈ R
p ,

Eφp(t;βp) → ω(t), E|φp(t;βp)|2 → |ω(t)|2.(22)

2. If (Rp,Sp,Tp)|βp → (R∗, S∗, T ∗) w.i.p. and Rp ⊥⊥ Sp|(Tp,βp) for all p, then
R∗ ⊥⊥ S∗|T ∗.

Expression (22) is used as a sufficient condition for w.i.p. convergence in Dia-
conis and Freedman [12]; here we use it as a sufficient and necessary condition.
In the next lemma, ‖ · ‖F will denote the Frobenius norm. Let Mp be the random
matrix (Up,Xp,�Up�−1

Xp
Xp) and M̃p be an independent copy of Mp .

LEMMA 6.2. If ‖�Xp‖2
F = o(p2), ‖�Up‖2

F = o(p2) and ‖�Up�−1
Xp

�Up‖2 =
o(p2), then p−1MT

p M̃p = oP (1).

This will be proved in the Appendix. The convergence p−1MT
p M̃p = oP (1)

was used by Diaconis and Freedman [12], as one of the two main assumptions
[assumption (1.2)] in their development, but here we push this assumption back
onto the structure of the covariance matrices. (More precisely, they used a parallel
version of the convergence because they treat the data as a nonrandom sequence.)
Conditions such as ‖�Xp‖2

F = o(p2) are quite mild. To provide intuition, recall
that, if �p is a p ×p matrix, and λ1, . . . , λp are the eigenvalues of �p and λmax =
max(λ1, . . . , λp), then

‖�p‖2
F =

p∑
i=1

λ2
i ≤ pλ2

max.

Hence the condition ‖�p‖2
F = o(p2) will be satisfied if λmax = o(

√
p).

To streamline the assumptions, we make the following definition.

DEFINITION 6.2. We will say that a sequence of p × p matrices {�p :p =
1,2, . . .} is regular if p−1 tr(�p) → σ 2 and ‖�p‖2

F = o(p2).

We now state the main result of this section.

THEOREM 6.1. Suppose that βp is a p × d random matrix whose columns
are i.i.d. Unif(Sp). Suppose, furthermore, that:

1. {�Xp}, {�Up} and {�Up�−1
Xp

�Up} are regular sequences with σ 2
X , σ 2

U and σ 2
V

being the limits of their traces divided by p as p → ∞.
2. δp ⊥⊥ (Xp,Y ) and βp ⊥⊥ (Xp,Y, δp).
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3. p−1MT
p Mp = E(p−1MT

p Mp) + oP (1).

If Y ⊥⊥ Xp|(βT
p Xp,βp) and the conditional distribution of Y |(βT

p Xp = c,βp)

converges w.i.p. for each c, then Y ⊥⊥ Up|βT
p Up,βp w.i.p. as p → ∞.

If Y ⊥⊥ Up|(βT
p Up,βp) and the conditional distribution of Y |(βT

p Up = c,βp)

converges w.i.p. for each c, then Y ⊥⊥ Xp|(βT
p Xp,βp) w.i.p. as p → ∞.

The condition that “the conditional distribution of Y |(βT
p Xp = c,βp) converges

w.i.p. for each c” means that the regression relation stabilizes as p → ∞. Assump-
tion 3 is parallel to the other of the two main assumptions in Diaconis and Freed-
man [12], Assumption 1.1. This is also quite mild: for example, it can be shown
that if Xp and δp are uniformly distributed on a ball {x ∈ R

p :‖x‖ ≤ ρ} and if
the covariance matrices involved satisfy some mild conditions, then assumption 3
is satisfied. For further discussion of this assumption see Diaconis and Freedman
[12], Section 3—though it is given in the context of nonrandom data, parallel con-
clusions can be drawn in our context.

PROOF OF THEOREM 6.1. For simplicity, we will only consider the case
where d = 1; the proof of the general case is analogous and will be omitted. In
this case βp ∼ Unif(Sp). Let ζp ∼ Unif(Sp) and ζp ⊥⊥ (βp,Xp, δp,Y ). Following
Diaconis and Freedman [12], we can equivalently assume βp ∼ N(0, Ip/p) and
ζp ∼ N(0, Ip/p), because these distributions converge to Unif(Sp) as p → ∞,
and thus induce the same asymptotic effect as Unif(Sp). To summarize, we equiv-
alently assume

βp ∼ N(0, Ip/p),

ζp ∼ N(0, Ip/p), βp ⊥⊥ ζp, (βp, ζp) ⊥⊥ (Xp, δp,Y ).

To prove the first assertion of the theorem, let

U1,p = βT
p Up, U2,p = ζ T

p Up,

V1,p = βT
p �Up�−1

Xp
Xp, V2,p = ζ T

p �Up�−1
Xp

Xp, V3,p = (σ 2
U/σ 2

X)βT
p Xp.

Our goal is to show that, as p → ∞,

(Y,U1,p,U2,p,V1,p,V2,p,V3,p)|(βp, ζp) → (Y,U∗
1 ,U∗

2 ,V ∗
1 ,V ∗

2 ,V ∗
3 ) w.i.p.,

where Y ⊥⊥ U∗
2 |U∗

1 .
Let (βp, ζp) = ηp and Lp = (U1,p,U2,p,V1,p,V2,p,V3,p)T . Then

Lp = A(I2 ⊗ MT
p )vec(ηp), where A =



1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1

0
σ 2

U

σ 2
X

0 0 0 0

 .
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We first derive the w.i.p. limit of (I2 ⊗ MT
p )vec(ηp)|ηp . Its (conditional) charac-

teristic function is

φp(t;ηp) = E
(
eitT (I2⊗Mp)T vec(ηp)|ηp

)
, where t ∈ R

2p.

Because vec(ηp) ∼ N(0, I2p/p) and ηp ⊥⊥ Mp , we have

E[φp(t;ηp)] = E
[
E

(
eitT (I2⊗Mp)T vec(ηp)|Mp

)] = E
(
e−(1/(2p))‖tT (I2⊗Mp)T ‖2)

.

By assumption 3 and assumption 1,

p−1MT
p Mp = p−1E(MT

p Mp) + oP (1)
P−→

σ 2
U σ 2

U σ 2
V

σ 2
U σ 2

X σ 2
U

σ 2
V σ 2

U σ 2
V

 ≡ �.(23)

Thus, by the continuous mapping theorem (Billingsley [1], page 29),

e−(1/(2p))‖tT (I2⊗Mp)T ‖2 P−→ e−(1/2)tT (I2⊗�)t .(24)

Because the sequence {e−(1/(2p))‖tT (I2⊗Mp)T ‖2} is bounded, we have

Eφp(t;ηp) = E
[
e−(1/(2p))‖tT (I2⊗Mp)T ‖2] → e−(1/2)tT (I2⊗�)t .(25)

In the meantime,

E[|φp(t;ηp)|2] = E
[
E

(
eitT (I2⊗Mp)T vec(ηp)|ηp

)
E

(
e−itT (I2⊗Mp)T vec(ηp)|ηp

)]
.

If we let M̃p be a copy of Mp such that M̃p ⊥⊥ (Mp,ηp), then the right-hand side
can be rewritten as

E
[
E

(
eitT [(I2⊗Mp)T −(I2⊗M̃p)T ]vec(ηp)|Mp,M̃p

)]
= E

(
e−(1/(2p))‖tT [I2⊗(Mp−M̃p)]T ‖2)

.

By Lemma 6.2 and convergence (23),

(Mp − M̃p)T (Mp − M̃p) = MT
p Mp − MT

p M̃p − M̃T
p Mp + M̃T

p M̃p
P→ 2�.

Again, by the continuous mapping theorem,

e−(1/(2p))‖tT [I2⊗(Mp−M̃p)]T ‖2 P−→ e−‖tT (I2⊗�)T ‖2
.

Because the sequence {e−(1/(2p))‖tT [I2⊗(Mp−M̃p)]T ‖2} is bounded, we have

E|φp(t, s;ηp)|2 = E
[
e−(1/(2p))‖tT [I2⊗(Mp−M̃p)]T ‖2] → e−tT (I2⊗�)t .(26)

By part 1 of Lemma 6.1, (25) and (26),

(I2 ⊗ Mp)vec(ηp)|ηp → N(0, I2 ⊗ �) w.i.p. as p → ∞.
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Thus the w.i.p. limit of Lp|ηp is N(0,A(I2 ⊗ �)AT ). By calculation,

cov(U∗
1 ,U∗

2 ) = 0, cov(V ∗
2 ,V ∗

3 ) = 0,

cov(V ∗
1 − V ∗

3 ,V ∗
3 ) = cov(V ∗

1 ,V ∗
3 ) − cov(V ∗

3 ,V ∗
3 ) = σ 4

U

σ 2
X

− σ 4
U

σ 2
X

= 0.

Hence, by multivariate normality we have U∗
1 ⊥⊥ U∗

2 and V ∗
3 ⊥⊥ (V ∗

1 − V ∗
3 ,V ∗

2 ).
Also, recall from (15) that Up − �Up�−1

Xp
Xp = �XpWp�−1

Wp
δp and, by assump-

tion 2, δp ⊥⊥ (Xp,Y )|ηp . Consequently,

ηT
p Up − ηT

p �U�−1
X Xp ⊥⊥ (Xp,Y )|ηp.

By part 2 of Lemma 6.1, U∗ − V ∗ ⊥⊥ (V ∗, Y ). So condition 2 of Lemma 3.1 is
satisfied.

Let L∗ denote the w.i.p. limit of Lp . We now show that (Y,LT
p )T → (Y ∗,L∗T )T

w.i.p. for some random variable Y ∗ and

Y ∗ ⊥⊥ (V ∗
1 ,V ∗

2 )|V ∗
3 .(27)

Since, given ηp , Lp is a function of Xp and δp , we have

E(eiτY |Lp,ηp) = E[E(eiτY |Xp, δp, ηp)|Lp,ηp].
Since Y ⊥⊥ Xp|(βT

p Xp,βp) and ζp ⊥⊥ (Xp, δp,Y,βp), we have Y ⊥⊥ Xp|(βT
p Xp,

ηp). Also, since δp ⊥⊥ (Xp,Y, ηp), we have Y ⊥⊥ δp|(Xp,ηp). Hence

E(eiτY |Xp, δp, ηp) = E(eiτY |Xp,ηp) = E(eiτY |V3,p, ηp).

Thus E(eiτY |Lp,ηp) = E(eiτY |V3,p, βp), or equivalently

Y ⊥⊥ (Lp, ηp)|(V3,p, βp).(28)

It follows that the conditional distribution of Y |Lp,ηp is the same as the condi-
tional distribution of Y |(βT

p Xp,βp). Let µ(·|c) be the w.i.p. limit of Y |(βT
p Xp =

c,βp), and draw the random variable Y ∗ from µ(· |V ∗
1 ). Then (Y,Lp)|ηp →

(Y ∗,L∗) w.i.p. In the meantime (28) implies that Y ⊥⊥ Lp|(V3,p, ηp). Hence, by
part 2 of Lemma 6.1, Y ⊥⊥ L∗|V ∗

3 , which implies (27). Thus all the conditions for
assertion 1 of Lemma 3.1 are satisfied, and the first conclusion of this theorem
holds.

The proof of the second assertion is similar, but this time let

U1,p = βT
p �Xp�−1

Up
Up, U2,p = ζ T

p �Xp�−1
Up

Up, U3,p = (σ 2
X/σ 2

U)βT
p Up,

V1,p = βT
p Xp, V2,p = ζ T

p Xp

and use the second part of Lemma 3.1. The details are omitted. �

We now use a simulated example to demonstrate the approximate invariance
law.
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EXAMPLE 6.1. Still use the model in Example 3.1, but this time, assuming
the distribution of X is nonnormal, specified by

Xp = 3Zp�(‖Zp‖)/‖Zp‖,
where � is the c.d.f. of the standard normal distribution and Zp ∼ N(0, Ip). Thus,
conditioning on each line passing through the origin, Xp is uniformly distributed.
Note that this is different from a uniform distribution over a ball in R

p , but it is
sufficiently nonnormal to illustrate our point. Figure 2 presents the scatter plots
of Y versus βT

1 Xp , βT
2 Xp and the scatter plots of Y versus βT

1 Up , βT
2 Up . We

see that, even for p as small as 6, SY |Up already very much resembles SY |Xp for
nonnormal predictors. In fact, we can hardly see any significant difference from
Figure 1, where the invariance law holds exactly.

Although we have only shown the asymptotic version of the invariance law (3)
for nonsingular p ×p dimensional �, similar extensions can be made for arbitrary
� (with r ≤ p), as well as the invariance law (4). Because the development is
completely analogous they will be omitted. Also notice that the assumptions for
Theorem 6.1 impose no restriction on whether X is a continuous random vector;
thus the theorem also applies to discrete predictors—so long as its conditions are
satisfied.

7. Estimation procedure and convergence rate. Having established the in-
variance laws at the population level, we now turn to the estimation procedure
and the associated convergence rate for surrogate dimension reduction. Since we
are no longer concerned with the limiting argument as p → ∞, we will drop the
subscript p that indicates dimension. Instead the subscripts in (Xi, Yi) will now
denote the ith case in the sample.

In the classical setting where measurement errors are absent, a dimension re-
duction estimator usually takes the following form. Let (X1, Y1), . . . , (Xn,Yn) be
an i.i.d. sample from (X,Y ). Let FXY be the distribution of (X,Y ), and Fn,XY be
the empirical distribution based on the sample. Let F be the class of all distrib-
utions of (X,Y ), and G be the class of all p by t matrices. Let T :F → G be a
mapping from F to G. Most of the existing dimension reduction methods, such as
those described in the Introduction, have the form of such a mapping T , so chosen
that (i) span(T (FXY )) ⊆ SY |X , and (ii) T (Fn,XY ) = T (FXY ) + �n, where �n is
op(1) or Op(1/

√
n) depending on the estimators used. If these two conditions are

satisfied with �n = Op(1/
√

n) then we say that T (Fn,XY ) is a
√

n-consistent es-
timator of SY |X; if, in addition, (i) holds with equality then we say that T (Fn,XY )

is a
√

n-exhaustive estimator of SY |X . See Li, Zha and Chiaromonte [18].
The invariance law established in the previous sections tells us that we can ap-

ply a classical dimension reduction method to the adjusted surrogate predictor
U1, . . . ,Un and, if it satisfies (i) and (ii) for estimating SY |U (or SE(Y k |U)), then
it also satisfies these properties for estimating SY |X (or SE(Y k |X)). Of course, here
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FIG. 2. Comparison of the original and surrogate dimension reduction spaces for a nonnormal
predictor. Left panels: Y versus βT

1 X (upper) and Y versus βT
2 X (lower). Right panels: Y versus

βT
1 U (upper) and Y versus βT

2 U (lower).

the adjusted surrogate predictor U is not directly observed, because it contains
such unknown parameters as �XW and �W . However, these parameters can be es-
timated from an auxiliary sample that contains the information about the relation
between X and W . As discussed in Fuller [15] and Carroll and Li [3], in practice
this auxiliary sample can be available under one of the several scenarios.

1. Representative validation sample. Under this scenario we observe, in addition
to (W1, Y1), . . . , (Wn,Yn), a validation sample

(X−1,W−1), . . . , (X−m,W−m).(29)

We can use this auxiliary sample to estimate �XW and �W by the method of
moments,

�̂XW = Em[(X − X)(W − W)T ], �̂W = Em[(W − W)(W − W)T ],
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where Em denotes averaging over the representative validation sample (29).
We can then use the estimates �̂XW and �̂W to adjust the surrogate predictor
Wi as Ûi = �̂XW�̂−1

W Wi , and estimate SY |X by T (Fn,m,ÛY ). Here, Fn,m,ÛY is
Fn,UY with U replaced by Û ; we have added the subscript m to emphasize the
dependence on m.

2. Representative replication sample. In this case we assume that p = r and that �

is known, which, without loss of generality, can be taken as Ip . We have a sep-
arate sample where the true predictor Xi is measured twice with measurement
error. That is,

Wij = γ + Xi + δij , j = 1,2, i = −1, . . . ,−m,(30)

where {δij } are i.i.d. N(0,�δ), {Xi} are i.i.d. N(0,�X) and {δij } ⊥⊥ {(Xi, Yi)}.
From the replication sample we can extract information about �XW and �W as
follows. It is easy to see that, for i = −1, . . . ,−m,

var(Wi1 − Wi2) = 2�δ, var(Wi1 + Wi2) = 4�X + 2�δ,

from which we deduce

�δ = var(Wi1 − Wi2)/2,

�W = var(Wi1 + Wi2)/4 + var(Wi1 − Wi2)/4.

We can then estimate these two variance matrices by substituting in the right-
hand side the moment estimates of var(Wi1 +Wi2) and var(Wi1 −Wi2) derived
from the replication sample (30). Because in this case

�XW�W = Ip − �δ�
−1
W ,

we adjust the surrogate predictor Wi as Ûi = (Ip − �̂δ�̂
−1
W )Wi .

A variation of the second sampling scheme appears in Fuller [15], which will be
further discussed in Section 9 in conjunction with the analysis of a data set con-
cerning managerial behavior.

Under the above schemes �XW and �W can be estimated by �̂XW and �̂W

at the
√

m-rate, as can be easily derived from the central limit theorem. Hence
Fn,m,ÛY = Fn,UY +Op(1/

√
m). Meanwhile, by the central limit theorem, we have

Fn,UY = FUY + Op(1/
√

n). The dimension reduction estimator T (Fn,m,ÛY ) can
be decomposed as

T (Fn,m,ÛY )
(31)

= T (FUY ) + [T (Fn,m,ÛY ) − T (Fn,UY )] + [T (Fn,UY ) − T (FUY )].
Usually the mapping T is sufficiently smooth so that the second term is of order
Op(1/

√
m) and the third term is of the order Op(1/

√
n). That is,

T (Fn,m,ÛY ) = T (FUY ) + Op

(
1/

√
m

) + Op

(
1/

√
n

)
.(32)
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While it is possible to impose a general smoothness condition on T for the above
relation in terms of Hadamard differentiability (Fernholz [14]), it is often simpler
to verify (32) directly on an individual basis. The next example will illustrate how
this can be done for a specific dimension reduction estimator.

EXAMPLE 7.1. Li, Zha and Chiaromonte [18] introduced contour regression
(CR) which can be briefly described as follows. Let

HX(c) = E[(X̃ − X)(X̃ − X)T I (|Ỹ − Y | ≤ c)],(33)

in which (X,Y ) and (X̃, Ỹ ) are independent random pairs distributed as FXY , and
c > 0 is a cutting point roughly corresponding to the width of a slice in SIR or
SAVE. Let vp−q+1, . . . , vp be the eigenvectors of �

−1/2
X HX�

−1/2
X corresponding

to its q smallest eigenvalues. Then, under reasonably mild assumptions,

span(�
−1/2
X vp, . . . ,�

−1/2
X vp−q+1) = SY |X.(34)

Thus, the mapping T in this special case is defined by

T (FXY ) = (�
−1/2
X vp, . . . ,�

−1/2
X vp−q+1).

For estimation we replace HX and �X by their sample estimators,

ĤX(c) =
(

n

2

)−1 ∑
(i,j)∈N

[(Xj − Xi)(Xj − Xi)
T I (|Yj − Yi | ≤ c)],

(35)
�̂X = En[(X − X)(X − X)T ],

where, in the first equality, N is the index set {(i, j) : 1 ≤ j < i ≤ n}.
The motivation for introducing contour regression is to overcome the difficulties

encountered by the classical methods. It is well known that if the relation Y |X is
symmetric about the origin then the population version of the SIR matrix is 0,
and if E(Y |X) is linear in X then the population version of the pHd matrix is
zero. In these cases, or in situations close to these cases, or in a combination of
these cases, SIR and pHd tend not to yield accurate estimation of the dimension
reduction space. Contour regression does not have this drawback because of the
property (34).

In the context of measurement error regression the true predictor Xi is to be re-
placed by Ûi . For illustration, we adopt the first sampling scheme described above.
Let �̂W1 and �̂W2 be the sample estimates of �W based on the primary sample
{W1, . . . ,Wn} and the auxiliary sample {W−1, . . . ,W−m}, respectively. Let ĤÛ (c)

be the matrix ĤX(c) in (35) with Xi,Xj replaced by Ûi, Ûj . Then, it can be easily
seen that

ĤÛ (c) = �̂XW�̂−1
W2ĤW (c)�̂−1

W2�̂WX,
(36)

�̂Û = �̂XW�̂−1
W2�̂W1�̂

−1
W2�̂WX,
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where in the first equality ĤW (c) is ĤX(c) in (35) with Xi,Xj replaced by Wi,Wj .
Because �̂XW and �̂W2 are based on the auxiliary sample, they approximate �XW

and �W at the
√

m-rate. Because �̂W1 is based on the primary sample, it estimates
�W at the

√
n-rate. Consequently, �̂Û = �U + Op(1/

√
m) + Op(1/

√
n), which

implies

�̂
−1/2
Û

= �
−1/2
U + Op

(
1/

√
n

) + Op

(
1/

√
m

)
.

In the meantime, it can be shown using the central limit theorem for U -statistics
(see Li, Zha and Chiaromonte [18]) that ĤW (c) = HW(c) + Op(1/

√
n), where

HW(c) is HX(c) in (33) with X, X̃ replaced by W,W̃ . Hence

ĤÛ (c) = �XW�−1
W HW(c)�−1

W �WX + Op

(
1/

√
n

) + Op

(
1/

√
m

)
(37)

= HU(c) + Op

(
1/

√
n

) + Op

(
1/

√
m

)
.

Combining (36) and (37) we see that

�̂
−1/2
Û

ĤÛ �̂
−1/2
Û

= �
−1/2
U HU�

−1/2
U + Op

(
1/

√
n

) + Op

(
1/

√
m

)
.

It follows that the eigenvectors v̂p−q+1, . . . , v̂p of the matrix on the left-hand side
converge to the corresponding eigenvectors of the matrix on the right-hand side,
vp−q+1, . . . , vp , at the rate of Op(1/

√
n) + Op(1/

√
m), and consequently,

�̂
−1/2
Û

v̂i = �
−1/2
U vi + Op

(
1/

√
n

) + Op

(
1/

√
m

)
.

Thus we have verified the convergence rate expressed in (32).

It is possible to use the general argument above to carry out asymptotic analysis
for a surrogate dimension reduction estimator, in which both the rates according
to m and n are involved. This can then be used to construct test statistics. But
because of limited space this will be developed in future research. Special cases
are available for SIR and OLS (Carroll and Li [3]) and for pHd (Lue [22]).

8. Simulation studies. As already mentioned, a practical impact of the in-
variance law is that it makes all dimension reduction methods accessible to the
measurement error problem, thereby allowing us to tackle the difficult situations
that the classical methods do not handle well. We now demonstrate this point by
applying SIR, pHd and CR to simulated samples from the same model and com-
paring their performances.

We still use the model in Example 3.1, but this time take � = Ip . Under this
model �W = �X + �δ and �XW = �X . We take an auxiliary sample of size
m = 100. The standard deviations σδ and σε are taken to be 0.2, 0.4, 0.6. For
the auxiliary sample, we simulate {Wij : j = 1,2, i = −1, . . . ,−m} according to
the representative replication scheme described in Section 7. For each of the nine
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TABLE 1
Comparison of different surrogate dimension reduction methods

σε σδ SIR pHd CR

0.2 1.26 ± 0.63 1.35 ± 0.56 0.12 ± 0.07
0.2 0.4 1.33 ± 0.58 1.56 ± 0.51 0.16 ± 0.09

0.6 1.46 ± 0.53 1.57 ± 0.46 0.32 ± 0.21

0.2 1.44 ± 0.57 1.41 ± 0.51 0.12 ± 0.08
0.4 0.4 1.34 ± 0.57 1.5 ± 0.5 0.20 ± 0.13

0.6 1.36 ± 0.59 1.62 ± 0.48 0.34 ± 0.19

0.2 1.36 ± 0.62 1.50 ± 0.55 0.13 ± 0.08
0.6 0.4 1.44 ± 0.53 1.53 ± 0.49 0.21 ± 0.19

0.6 1.48 ± 0.53 1.70 ± 0.45 0.32 ± 0.18

combinations of the values of σε and σδ , 100 samples of {(Xi, Yi)} and {Wij } are
generated according to the above specifications.

The estimation error of a dimension reduction method is measured by the fol-
lowing distance between two subspaces of R

p . Let S1 and S2 be subspaces of R
p ,

and P1 and P2 be the projections onto S1 and S2 with respect to the usual inner
product 〈a, b〉 = aT b. We define the (squared) distance between S1 and S2 as

ρ(S1,S2) = ‖P1 − P2‖2,

where ‖ · ‖ is the Euclidean matrix norm. The same distance was used in Li, Zha
and Chiaromonte [18], which is similar to the distance used in Xia et al. [25].

For SIR, the response is partitioned into eight slices, each having 50 observa-
tions. For CR, the cutting point c is taken to be 0.5, which roughly amounts to
including 12% of the

(400
2

) = 79800 vectors Ûi − Ûj corresponding to the low-
est increments in the response. The results are presented in Table 1. The symbol
a ± b in the last three columns stands for mean and standard error of the distances
ρ(ŜY |X,SY |X) over the 100 simulated samples. We can see that CR achieves sig-
nificant improvement over SIR and pHd across all the combinations of σδ and σε .
This is because the regression model (16) contains a symmetric component in the
β1 direction, which SIR cannot estimate accurately, and a roughly monotone com-
ponent in the β2 direction, which pHd cannot estimate accurately. In contrast, CR
accurately captures both component.

To provide further insights, we use one simulated sample to see the comparison
among different estimators. Figure 3 compares the performance of SIR, pHd and
CR in estimating SY |U (or SY |X). We see that SIR gives a good estimate for β2 but
a poor estimate for β1, the opposite of the case for pHd, but CR performs very well
in estimating both components.
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FIG. 3. Surrogate dimension reduction by SIR, pHd and CR. Left panels: Y versus the second
(upper) and the first (lower) predictors by SIR. Middle panels: Y versus first (upper) and second
(lower) predictors by pHd. Right panels: the second (upper) and the first (lower) predictors by CR.

9. Analysis of a managerial role performance data. In this section we ap-
ply surrogate dimension reduction to a role performance data set studied in Warren,
White and Fuller [24] and Fuller [15]. To study managerial behavior, n = 98 man-
agers of Iowa farmer cooperatives were randomly sampled. The response is the
role performance of a manager. There are four predictors: X1 (knowledge) is the
knowledge of the economic phases of management directed toward profit-making,
X2 (value orientation) is the tendency to rationally evaluate means to an economic
end and X3 (role satisfaction) is gratification obtained

(training) is the amount of formal education. The predictors X1, X2 and X3,
and the response Y are measured with questionnaires filled out by the managers,
and contain measurement errors. The amount of formal education, X4, is measured
without error. Through dimension reduction of this data set we wish to see if the
linear assumption in Fuller [15] is reasonable, if there are linear combinations of
the predictors other than those obtained from the linear model that significantly af-
fect the role performance, and how different surrogate dimension reduction meth-
ods perform and compare in a real data set.

The sampling scheme is a variation of the second one described in Section 7.
A split halves design of the questionnaires yields two observations on each item
with measurement error for each manager, say

(Vi1,Vi2), (Wi11,Wi12), . . . , (Wi31,Wi32), i = 1, . . . , n,
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where (Vi1,Vi2) are the two measurements of Yi and (Wij1,Wij2), j = 1,2,3, are
the two measurements of Xij . The surrogate predictors for Xij , j = 1,2,3, are
taken to be the averages Wij = (Wij1 + Wij2)/2. Similarly, the surrogate response
for Yi is taken to be Vi = (Vi1 + Vi2)/2. Since the measurement error in Y does
not change the regression model, we can treat V as the true response Y . As in
Fuller [15], we assume:

1. Vik = Yi + ξik , Wijk = Xij + ηijk , i = 1, . . . , n, j = 1,2,3, k = 1,2, where

{(ξik, ηi1k, ηi2k, ηi3k) : i = 1, . . . , n, k = 1,2}
⊥⊥ {(Yi,Xi1, . . . ,Xi4) : i = 1, . . . , n}.

2. The random vectors {(ξik, ηi1k, ηi2k, ηi3k) : i = 1, . . . , n} are i.i.d. 4-dimension-
al normal with mean 0 and variance matrix

diag(σ 2
ξ , σ 2

η,1, σ
2
η,2, σ

2
η,3).

3. {(Xi1, . . . ,Xi4) :n = 1, . . . , n} are i.i.d. N(µX,�X).

From these assumptions it is easy to see that, for j = 1, . . . ,4 and i = 1, . . . , n,
Wij = Xij + δij , where

{(δi1, . . . , δi4) : i = 1, . . . , n} ⊥⊥ {(Xi1, . . . ,Xi4, Yi) : i = 1, . . . , n}.
and {(δi1, . . . , δi4) : i = 1, . . . , n} are i.i.d. mean 0 and variance matrix

�δ = diag(σ 2
δ,1, σ

2
δ,2, σ

2
δ,3,0), σ 2

δ,j = 1
4 var(Wij1 − Wij2),

(38)
j = 1,2,3.

Thus, at the population level, our measurement error model can be summarized as

W = X + δ, δ ⊥⊥ (X,V ), δ ∼ N(0,�δ), X ∼ N(µX,�X),

where �δ is given by (38). Note that, unlike in Fuller [15], no assumption is im-
posed on the relation between Y and X.

The measurement error variance �δ is estimated using the moment estimator of
(38) based on the sample {(Wij1,Wij2) : i = 1, . . . ,98, j = 1, . . . ,3}, as

�̂δ = diag(0.0203,0.0438,0.0180,0).

The variance matrix �W of Wi = (Wi1, . . . ,Wi4)
T is estimated from the sample

{Wi : i = 1, . . . ,98} as
0.0520 0.0280 0.0044 0.0192
0.0280 0.1212 −0.0063 0.0353
0.0044 −0.0063 0.0901 −0.0066
0.0192 0.0353 −0.0066 0.0946

 .

The correction coefficients �XW�−1
W are then estimated by I4 − �̂δ�̂

−1
W , and the

surrogate predictor Wi corrected as Ûi = (I4 − �̂δ�̂
−1
W )Wi .
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FIG. 4. Scatter plots of role performance versus the first predictor by SIR (left) and versus the first
predictor by CR (right).

We apply SIR and contour regression to the surrogate regression problem of Vi

versus Ûi . As in Fuller [15], a portion of the data (55 out of 98 subjects) will be
presented. For SIR, the responses of 55 subjects are divided into five slices, each
having 11 subjects. For CR, the cutting point c is taken to be 0.1, which amounts to
including 552 of the

(55
2

) = 1485 (roughly 37%) differences Ûi −Ûj corresponding
to the lowest increments |Yi − Yj | of the response. In fact, varying the number of
slices for SIR or the cutting point c for CR within a reasonable range does not
seem to have a serious effect on their performance.

Figure 4 shows the scatter plots of Y versus the first predictors calculated by SIR
(left) and CR (right). None of the scatter plots of Y versus the second predictors by
SIR and CR shows any discernible pattern, and so they are not presented. Because
there is no U -shaped component in the data, the accuracy of SIR and CR are
comparable. These plots show that the linear model postulated in Warren, White
and Fuller [24] and Fuller [15] does fit this data, and there do not appear to be other
linear combinations of the predictors that significantly affect the role performance.
The directions obtained from CR, SIR, and that using the maximum likelihood
estimator for a linear model, are presented in Table 2 (the vectors are rescaled to
have lengths 1).

TABLE 2

β̂1 β̂2 β̂3 β̂4

Fuller [15] 0.881 0.365 0.286 0.098
SIR (Carroll and Li) 0.952 0.219 0.187 0.102

CR 0.935 0.291 0.126 0.159
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Note that SIR, as applied to the adjusted surrogate predictor Û , is the estimator
proposed in Carroll and Li [3]. We can see that for this data set the three meth-
ods are more or less consistent, though CR gives more weight to past education
than the other methods. Of course, the significance of these parameters should be
determined by a formal test based on the relevant asymptotic distributions. Such
asymptotic results are available for pHd and SIR, and are under development for
CR.

APPENDIX

PROOF OF LEMMA 5.1. Note that the conditions for equality (9) are still sat-
isfied. Multiply both sides of (9) by h(Y ) and then take expectation, to obtain

E[h(Y )eitT U∗]e(1/2)tT �U∗ t = E[h(Y )eitT V ∗ |Y ]e(1/2)tT �V ∗ t .

To prove the first assertion, suppose there is a V ∗
3 such that V ∗

3 ⊥⊥ (V ∗
1 −V ∗

3 ,V ∗
2 )

and E[h(Y )|V ∗,V ∗
3 ] = E[h(Y )|V ∗

3 ]. Then

E(h(Y )eitT V ∗
) = E

(
E[h(Y )|V ∗,V ∗

3 ]eitT1 (V ∗
1 −V ∗

3 )eitT2 V ∗
2 eitT1 V ∗

3
)

= E
(
E[h(Y )|V ∗

3 ]eitT1 (V ∗
1 −V ∗

3 )eitT2 V ∗
2 eitT1 V ∗

3
)

= E
(
eitT1 (V ∗

1 −V ∗
3 )eitT2 V ∗

2
)
E(h(Y )eitT1 V ∗

3 ).

Follow the steps that lead to (13) in the proof of Lemma 3.1 to obtain

E(h(Y )eitT U∗
) = E(h(Y )eitT1 U∗

1 )e
−tT2 �U∗

2
t2
.

The equation can be rewritten as

E(E[h(Y )|U∗]eitT U∗
) = E(E[h(Y )|U∗

1 ]eitT1 U∗
1 )e

−tT2 �U∗
2
t2
.

Because U∗
1 ⊥⊥ U∗

2 , the right-hand side is

E(E[h(Y )|U∗
1 ]eitT1 U∗

1 +itT2 U∗
2 ) = E(E[h(Y )|U∗

1 ]eitT U∗
).

It follows that

E
({E[h(Y )|U∗] − E[h(Y )|U∗

1 ]}eitT U∗) = 0

for all t . In other words, the Fourier transform of E[h(Y )|U∗] − E[h(Y )|U∗
1 ] is

zero. Thus E[h(Y )|U∗] − E[h(Y )|U∗
1 ] = 0 almost surely.

The proof of the second assertion will be omitted. �

PROOF OF LEMMA 6.1. 1. That (22) implies φp(t;βp)
P→ ω(t) is well

known. Now suppose φp(t;βp)
P→ ω(t). Then |φp(t;βp)|2 P→ |ω(t)|2. Because

both φp(t;βp) and |φp(t;βp)|2 are bounded, (22) holds.
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2. Because Rp ⊥⊥ Sp|Tp,βp , we have

E(eitT R∗
eiuT S∗ |T ∗)

= E(eitT R∗ |T ∗)E(eiuT S∗ |T ∗)

+ [E(eitT Rp |Tp,βp)E(eiuT Sp |Tp,βp) − E(eitT R∗ |T ∗)E(eiuT S∗ |T ∗)]
+ [E(eitT R∗

eiuT S∗ |T ∗) − E(eitT RpeiuT Sp |Tp,βp)].
Because (Rp,Sp,Tp)|βp → (R∗, S∗, T ∗) w.i.p., the last two terms on the right-
hand side are oP (1). Hence the left-hand side equals the first term on the right-hand
side because the former is a nonrandom quantity independent of p. �

PROOF OF LEMMA 6.2. It suffices to show that, if Ap and Bp are regu-
lar sequences of random vectors in R

p such that Ap ⊥⊥ Bp and E(Ap) = 0,
E(Bp) = 0, then p−1AT

pBp = oP (1). If this is true then we can take Ap = Xp,Up ,

or �U�−1
X Xp and Bp = X̃p, Ũp , or �U�−1

X X̃p to prove the desired equality.
By Chebyshev’s inequality,

P(p−1|AT
pBp| > ε) ≤ 1

ε2p2 E(AT
pBp)2.(39)

The expectation on the right-hand side is

E

( p∑
i=1

Ai
pBi

p

)2

=
p∑

i=1

p∑
j=1

E(Ai
pBi

pAj
pBj

p)

=
p∑

i=1

p∑
j=1

�A,ij�B,ij ≤ ‖�A‖F ‖�B‖F ,

where the inequality is from the Cauchy–Schwarz inequality. By assumption,
‖�A‖F = o(p) and ‖�B‖ = o(p). So the right-hand side of (39) converges to
0 as p → ∞. Hence AT

pBp = oP (1). �
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