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ON THE Lp-ERROR OF MONOTONICITY
CONSTRAINED ESTIMATORS

BY CÉCILE DUROT

Université Paris Sud

We aim at estimating a function λ : [0,1] → R, subject to the constraint
that it is decreasing (or increasing). We provide a unified approach for study-
ing the Lp-loss of an estimator defined as the slope of a concave (or convex)
approximation of an estimator of a primitive of λ, based on n observations.
Our main task is to prove that the Lp-loss is asymptotically Gaussian with
explicit (though unknown) asymptotic mean and variance. We also prove that
the local Lp-risk at a fixed point and the global Lp-risk are of order n−p/3.
Applying the results to the density and regression models, we recover and
generalize known results about Grenander and Brunk estimators. Also, we
obtain new results for the Huang–Wellner estimator of a monotone failure
rate in the random censorship model, and for an estimator of the monotone
intensity function of an inhomogeneous Poisson process.

1. Introduction. A frequently encountered problem in nonparametric statis-
tics is to estimate a monotone function λ on a compact interval, say, [0,1]. Grenan-
der [5], Brunk [2] and Huang and Wellner [9] propose estimators defined as the
slope of a concave (or convex) approximation of an estimator of a primitive of λ,
in the cases where λ is a monotone density function, a monotone regression mean
and a monotone failure rate, respectively. These estimators have aroused great in-
terest since they are nonparametric, data driven (they do not require the choice of
a smoothing parameter) and easy to implement using, for example, the pool adja-
cent violators algorithm; see [1]. Moreover, Reboul [14] provides nonasymptotic
control of their L1-risk, which proves that they are optimal in some sense. From
an asymptotic point of view, Prakasa Rao [13], Brunk [3] and Huang and Well-
ner [9] prove cube-root convergence of these estimators at a fixed point and obtain
the pointwise asymptotic distribution; Groeneboom, Hooghiemstra and Lopuhaä
[8] and Durot [4] prove a central limit theorem for the L1-error of the Grenander
and Brunk estimators, respectively, and Kulikov and Lopuhaä [11] generalize the
result in [8] to the Lp-error of the Grenander estimator.

In this paper we consider the problem of estimating a monotone function
λ : [0,1] → R in a general model. We provide a unified approach for studying the
Lp-error of estimators defined as the slope of a concave (or convex) approximation
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of an estimator of a primitive of λ. We prove that, at a point that may depend on
the number n of observations and is far enough from 0 and 1, the local Lp-risk is
of order n−p/3. We also provide control of the local Lp-risk near the boundaries
and derive the result that the global Lp-risk is of order n−p/3. Our main result is a
central limit theorem for the Lp-error; see Theorem 2: we prove that the Lp-error
is asymptotically Gaussian with explicit (though unknown) asymptotic mean and
variance. Applying the results to the regression and density models, we recover the
results of [4, 8, 11] about Brunk and Grenander estimators. Also, we obtain new
results for the Huang–Wellner estimator in the random censorship model, and for
an estimator of a monotone intensity function based on n independent copies of
an inhomogeneous Poisson process. We believe that our method applies to other
models.

Our main motivation for proving asymptotic normality of the Lp-error relies
on goodness-of-fit tests. Assume indeed we wish to test H0 :λ = λ0 for a given
decreasing (resp. increasing) λ0, against the nonparametric alternative that λ is
decreasing (resp. increasing). Using asymptotic normality and proper estimators
for the asymptotic mean and variance, we can draw from the observations a nor-
malization of the Lp-distance between λ̂n and λ0 that converges under H0 to the
standard Gaussian law. The test that rejects H0 if this normalization exceeds the
(1 − α)-quantile of the standard Gaussian law has asymptotic level α. With addi-
tional effort, Theorem 2 can also be used to test a composite null hypothesis. This
will be detailed elsewhere.

The paper is organized as follows. In Section 2 we define and study our estima-
tor in a general model. In Section 3 we apply the results of Section 2 to the random
censorship, inhomogeneous Poisson process, regression and density models. The
results of Section 2 are proved in Sections 4 and 5 and the results of Section 3 are
proved in Section 6.

2. Main results. We aim at estimating a function λ : [0,1] → R subject to the
constraint that it is nonincreasing (or nondecreasing), on the basis of n observa-
tions. Assume we have at hand a cadlag (i.e., right continuous with left-hand limits
at every point) step estimator �n of

�(t) =
∫ t

0
λ(u)du, t ∈ [0,1].

We define the monotone estimator of λ as follows:

DEFINITION 1. Let �n : [0,1] → R be a cadlag step process. If λ is nonin-
creasing (resp. nondecreasing), then the monotone estimator λ̂n based on �n is
defined as the left-hand slope of the least concave majorant (resp. greatest convex
minorant) of �n, with λ̂n(0) = limt↓0 λ̂n(t).
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Thus, the monotone estimator is a step process that can jump only at the jump
points of �n; it is monotone and left-continuous.

Hereafter, Mn denotes the process defined on [0,1] by Mn = �n −�. We make
the following assumptions.

(A1) λ is monotone and differentiable on [0,1] with inft |λ′(t)| > 0 and
supt |λ′(t)| < ∞.

(A2) There exists C > 0 such that, for all x ≥ n−1/3 and t ∈ [0,1],
E

[
sup

u∈[0,1], x/2≤|t−u|≤x

(
Mn(u) − Mn(t)

)2
]

≤ Cx

n
.(1)

(A2′) Inequality (1) holds for all x > 0 and t ∈ {0,1}.
First, we give a control of the local Lp-risk of λ̂n at a time t that is allowed to
depend on n: it is of order n−p/3 if t is far enough from 0 and 1 [in particular, if
t ∈ (0,1) does not depend on n]. We obtain a control of larger order if t is near a
boundary and derive a control of the global Lp-risk:

THEOREM 1. Assume (A1), (A2), (A2′) and let p ∈ [1,2). Then there exists
K > 0, which depends only on λ, C and p, such that

E|λ̂n(t) − λ(t)|p ≤ Kn−p/3

for all t ∈ [n−1/3,1 − n−1/3], and

E|λ̂n(t) − λ(t)|p ≤ K
[
n
(
t ∧ (1 − t)

)]−p/2(2)

for all t ∈ (0, n−1/3] ∪ [1 − n−1/3,1).

COROLLARY 1. Assume (A1), (A2), (A2′) and let p ∈ [1,2). Then

E

[∫ 1

0
|λ̂n(t) − λ(t)|p dt

]
= O(n−p/3).

Note that Theorem 1 does not provide a control of the risk at t ∈ {0,1}. In fact,
it is known that the monotone estimator is not consistent at the points 0 and 1
in particular models; see [17] for the density model. To control the error at the
boundaries, we assume the following.

(A3) λ̂n(0) and λ̂n(1) are stochastically bounded.

The following lemma provides a sufficient condition for (A3), which will be useful
for applications.

LEMMA 1. Assume (A1), (A2) and (A2′). If for every ε > 0 there exists δ > 0
such that the probability that �n jumps in (0, δ/n) or in (1− δ/n,1) is less than ε,
then (A3) holds.
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PROOF. Let x, δ and ε be fixed positive numbers. One has

P
(|λ̂n(0)| > x

) ≤ P
(|λ̂n(δ/n)| > x

) + P
(
λ̂n(0) 
= λ̂n(δ/n)

)
.

From Theorem 1, λ̂n(δ/n) is stochastically bounded. Moreover, λ̂n(0) can differ
from λ̂n(δ/n) only if �n jumps in (0, δ/n). Hence, both probabilities in the above
upper bound are less than ε, provided δ is small enough and x is large enough,
whence λ̂n(0) = OP(1). Likewise, λ̂n(1) = OP(1). �

To compute the asymptotic distribution of the Lp-error, we assume that Mn can
be approximated in distribution by a Gaussian process. Specifically, we assume the
following.

(A4) Let Bn be either a Brownian bridge or a Brownian motion. There exist
q > 12, Cq > 0, L : [0,1] → R and versions of Mn and Bn such that

P

(
n1−1/q sup

t∈[0,1]
|Mn(t) − n−1/2Bn ◦ L(t)| > x

)
≤ Cqx−q

for all x ∈ (0, n]. Moreover, L is increasing and twice differentiable on [0,1] with
supt |L′′(t)| < ∞ and inft L′(t) > 0.

We also need to define the following process X:

X(a) = arg max
u∈R

{−(u − a)2 + W(u)}, a ∈ R,(3)

where W is a standard two-sided Brownian motion (see [6, 7] for a precise de-
scription of this process). It is known that, for every p > 0, E|X(0)|p is finite and
the following number kp is well defined and finite:

kp =
∫ ∞

0
cov

(|X(0)|p, |X(a) − a|p)
da.

We are now in position to state our main result.

THEOREM 2. Assume (A1), (A2′), (A3) and (A4). Assume, moreover, there
are C′ > 0 and s > 3/4 with

|λ′(t) − λ′(x)| ≤ C′|t − x|s for all t, x ∈ [0,1].(4)

Let p ∈ [1,5/2). Then with mp = E|X(0)|p ∫ 1
0 |4λ′(t)L′(t)|p/3 dt ,

n1/6
(
np/3

∫ 1

0
|λ̂n(t) − λ(t)|p dt − mp

)

converges in distribution as n → ∞ to the Gaussian law with mean zero and vari-
ance σ 2

p = 8kp

∫ 1
0 |4λ′(t)L′(t)|2(p−1)/3L′(t) dt.



1084 C. DUROT

Note that our proof of Theorem 2 is partly inspired by [4, 8, 11]. As in those
papers, a key step consists in proving that the Lp-error of λ̂n is asymptotically
equivalent to an Lp-error of Ûn, the inverse process of λ̂n. In the present approach,
the proof is quite simple (even for p > 1) thanks to the use of Theorem 1. Another
key step consists in approximating a proper normalization of Ûn(a) by the location
of the maximum of a drifted Brownian motion. In the present approach, thanks to
Proposition 1 in [4], we deal with a parabolic drift independent of n, whereas in [8]
and [11] the considered drift depends on n and is only close to parabolic (which
brings about technicalities, e.g., in the computation of asymptotic moments). Fi-
nally, asymptotic normality is proved using Bernstein’s method of big blocks and
small blocks, as in [8] and [11].

Let us comment on the assumptions in Theorem 2. On one hand, the contribu-
tion of the boundaries of the Lp-error is not negligible for p ≥ 5/2 because λ̂n

converges slowly to λ near 0 and 1 (this was already stressed for the density model
in [11]). This is the reason why we restrict ourself to p < 5/2. On the other hand,
our proof of Theorem 2 relies on Proposition 1 of [4], which provides a control
of the error we make when we approximate the location of the maximum of a
given process by that of a drifted Brownian motion. The assumptions q > 12 and
s > 3/4 emerge when using this proposition; see Lemma 5 below. We believe that
the proposition can be improved with the assumptions q > 12 and s > 3/4 being
weakened.

To conclude this section, we comment on a slight modification of λ̂n. Let Cn be
the set consisting of 0, 1 and the jump points of �n, and let Cn be the “cumula-
tive sum diagram” consisting of the points (t,�n(t)), t ∈ Cn. If λ is nonincreasing
(resp. nondecreasing), let λ̃n be the left-hand slope of the least concave majorant
(resp. greatest convex minorant) of Cn. Then λ̂n and λ̃n are identical if �n is non-
decreasing and λ is nonincreasing, but they may differ otherwise. In some applica-
tions, λ̃n may be preferred to λ̂n since, for instance, the least-squares estimator of a
monotone regression mean takes the form λ̃n. Therefore, we now describe the as-
ymptotic behavior of λ̃n. Let �̃n be the continuous piecewise-affine version of �n,
which means that �̃n(t) = �n(t) at every t ∈ Cn, and �n is affine in between two
consecutive such points. Assume

sup
t∈[0,1]

E
[(

�̃n(t) − �n(t)
)2] ≤ Cn−4/3(5)

for some C > 0. Then Theorem 1 and Corollary 1 remain true with λ̂n replaced by
λ̃n. On the other hand, assume

E

[
sup

t∈[0,1]
|�̃n(t) − �n(t)|q

]
≤ Cn1−q(6)

for some q > 12 and C > 0. Then Theorem 2 remains true with λ̂n replaced by λ̃n.
The proof of these results is omitted. It is worth noticing that the extra assump-
tions (5) and (6) hold in every application we consider in Section 3.
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3. Applications. In this section we consider several models where it may be
interesting to estimate a function λ on [0,1] subject to a monotonicity constraint.
In each model we propose an estimator �n of �, we give sufficient conditions for
the assumptions (A2), (A2′), (A3) and (A4), and we make explicit the function
L in (A4). In particular, this provides sufficient conditions for the Lp-error of
the monotone estimator to be asymptotically Gaussian with explicit asymptotic
mean and variance. It is worth noticing that, in each considered application, (A2)
and (A2′) follow from Doob’s inequality and the fact that a proper modification
of Mn is a martingale. Also, (A4) follows from an embedding argument similar to
that of Komlós, Major and Tusnády [10].

3.1. The random censorship model. Assume we observe a right-censored
sample (X1, δ1), . . . , (Xn, δn). Here, Xi = min(Ti, Yi) and δi = 1Ti≤Yi

, where
the Ti’s are nonnegative i.i.d. failure times and the Yi’s are i.i.d. censoring times in-
dependent of the Ti’s. Assume that the common distribution function F of the Ti’s
is absolutely continuous with density function f and that we aim at estimating
the failure rate λ = f/(1 − F) on [0,1]. Let Nn be the Nelson–Aalen estimator,
defined as follows: if t1 < · · · < tk are the distinct times when we observe uncen-
sored data and ni is the number of Xj that are greater than or equal to ti , then Nn

is constant on each [ti , ti+1) with

Nn(ti) = ∑
j≤i

1

nj

.

Moreover, Nn(t) = 0 for all t < t1 and Nn(t) = Nn(tk) for all t ≥ tk . Let �n be the
restriction of Nn to [0,1] and G be the common distribution function of the Yi ’s.
The monotone estimator based on �n is the Huang–Wellner estimator and we have
the following.

THEOREM 3. Assume (A1), F(1) < 1 and limt↑1 G(t) < 1.

(i) Then (A2), (A2′) and (A3) hold.

(ii) Assume, moreover, inft∈[0,1] λ(t) > 0 and G has a bounded continuous first
derivative on (0,1). Then (A4) holds with

L(t) =
∫ t

0

λ(u)

(1 − F(u))(1 − G(u))
du, t ∈ [0,1].(7)

Note that in the case of nonrandom censoring times Yi ≡ 1, one has G(u) = 0 for
all u < 1, so L reduces to L = (1 − F)−1 − 1.

3.2. The Poisson process model. Assume we observe i.i.d. inhomogeneous
Poisson processes N1, . . . ,Nn, and their common mean function � is differen-
tiable on [0,1] with derivative λ. Let �n be the restriction of

∑
i Ni/n to [0,1].

Then we have the following.
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THEOREM 4. Assume (A1), �(1) < ∞ and inft∈[0,1] λ(t) > 0. Then (A2),
(A2′), (A3) and (A4) hold with L = �.

3.3. The regression model. Assume we observe yi,n = λ(i/n) + εi,n, i =
1, . . . , n, where the εi,n’s are independent random variables with mean zero. Let

�n(t) = 1

n

∑
i≤nt

yi,n, t ∈ [0,1].

Then the monotone estimator based on �n is (a slight modification of) the Brunk
estimator and we have the following.

THEOREM 5. Assume (A1) and supi,n E|εi,n|q ≤ cq for some q ≥ 2 and
cq > 0.

(i) Then (A2), (A2′) and (A3) hold.
(ii) Assume, moreover, q > 12 and var(εi,n) = σ 2(i/n) for some σ 2 : [0,1] →

R+. If σ 2 has a bounded first derivative and satisfies inft σ 2(t) > 0, then (A4)
holds with L(t) = ∫ t

0 σ 2(u) du.

In particular, if the εi,n’s are i.i.d. with a finite moment of order q > 12 and
variance σ 2 > 0, then L reduces to L(t) = tσ 2. Thus, we recover Theorems 1
and 2 of [4].

3.4. The density model. Assume we observe independent random variables
X1, . . . ,Xn ∈ [0,1] with common distribution function � and density function
λ = �′. Then, the monotone estimator based on the empirical distribution function
of X1, . . . ,Xn is the Grenander estimator and we have the following.

THEOREM 6. Assume (A1) and inft λ(t) > 0. Then (A2), (A2′), (A3) and (A4)
hold with L = �.

In particular, we recover Theorem 1.1 of [8] and Theorem 1.1 of [11].

4. Proof of Theorem 1. We assume here λ is decreasing. The similar proof in
the increasing case is omitted. We denote by K or K ′ (resp. c) a positive number
that depends only on λ, C and p and that can be chosen as large (resp. small) as
we wish. The same letter may denote different constants in different formulas.

First, we give upper bounds for the tail probabilities of the inverse process.
Recall that for every nonincreasing left-continuous function h : [0,1] → R, the
(generalized) inverse of h is defined as follows: for every a ∈ R, h−1(a) is the
greatest t ∈ [0,1] that satisfies h(t) ≥ a, with the convention that the supremum
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of an empty set is zero. Let �+
n be the upper version of �n defined as follows:

�+
n (0) = �n(0) and for every t ∈ (0,1],

�+
n (t) = max

{
�n(t), lim

u↑t
�n(u)

}
.

Setting Ûn = (λ̂n)
−1, one can check that

Ûn(a) = arg max
u∈[0,1]

{�+
n (u) − au} for all a ∈ R,(8)

where arg max denotes the greatest location of the maximum (which is achieved).
Moreover, for any a ∈ R and t ∈ (0,1], one has Ûn(a) ≥ t if and only if a ≤ λ̂n(t).
Hereafter, g = λ−1.

LEMMA 2. There exists K > 0 such that, for every a ∈ R and x > 0,

P[|Ûn(a) − g(a)| ≥ x] ≤ K

nx3 .(9)

PROOF. Fix a ∈ R, x ≥ n−1/3 and denote by Px the probability in (9). By (8),
we can have |Ûn(a)− g(a)| > x/2 only if there exists u ∈ [0,1] with |u− g(a)| >
x/2 and �+

n (u) − au ≥ �+
n (g(a)) − ag(a), whence

Px ≤ P

[
sup

|u−g(a)|>x/2
{�+

n (u) − au} ≥ �+
n (g(a)) − ag(a)

]
.

But �n is cadlag and �+
n ≥ �n, so the previous inequality remains true with �+

n

replaced by �n. Let c satisfy 0 < c < inft |λ′(t)|/2. If λ(g(a)) 
= a, then either
a > λ(g(a)) and g(a) = 0, or a < λ(g(a)) and g(a) = 1. Hence, from Taylor’s
expansion,

�(u) − �(g(a)) ≤ (
u − g(a)

)
a − c

(
u − g(a)

)2(10)

for all u ∈ [0,1], whence

Px ≤ P

[
sup

|u−g(a)|>x/2

{
Mn(u) − Mn(g(a)) − c

(
u − g(a)

)2} ≥ 0
]
.(11)

It then follows from Markov’s inequality and (A2) that

Px ≤ ∑
k≥0

P

[
sup

|u−g(a)|∈[x2k−1,x2k]
{Mn(u) − Mn(g(a))} ≥ c(x2k−1)2

]

≤ C
∑
k≥0

x2k/n

(cx222k−2)2 .

But
∑

k 2−3k is finite so (9) holds for all x ≥ n−1/3. This inequality clearly extends
to all x > 0 since the upper bound is greater than one for all x < n−1/3, provided
K ≥ 1. �
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LEMMA 3. There exists K > 0 such that, for every x > 0 and a /∈ λ([0,1]),
P[|Ûn(a) − g(a)| ≥ x] ≤ K

nx(λ(g(a)) − a)2 .(12)

PROOF. We argue as above except that we use (A2′) instead of (A2), and
instead of (10), we use the fact that �(u) − �(g(a)) ≤ (u − g(a))λ(g(a)). �

Now we prove Theorem 1. Let t ∈ (0,1). By the Fubini theorem,

I1 := E
[(

λ̂n(t) − λ(t)
)
+

]p =
∫ ∞

0
P[λ̂n(t) − λ(t) > x]pxp−1 dx,

where for all x ∈ R, x+ = max(x,0). We have Ûn(λ(t)+x) ≥ t whenever λ̂n(t) >

λ(t) + x, whence

I1 ≤
∫ ∞

0
P[Ûn(λ(t) + x) ≥ t]pxp−1 dx.

By (A1), there exists c > 0 such that g(λ(t) + x) ≤ t − cx for every number x

that satisfies λ(t) + x ∈ (λ(1), λ(0)). As a probability is no more than one, it thus
follows from Lemma 2 that

I1 ≤ Kn−p/3 +
∫ ∞
λ(0)−λ(t)

P
[
Ûn

(
λ(t) + x

) ≥ t
]
pxp−1 dx.(13)

One has g(λ(t) + x) = 0 for all x > λ(0) − λ(t), so Lemma 2 yields

P
[
Ûn

(
λ(t) + x

) ≥ t
] ≤ K

nt3 .

Assume t ≥ n−1/3. Combining this with (12) yields

I1 ≤ Kn−p/3 +
∫ ∞
λ(0)−λ(t)+n−1/3

K

nt(λ(0) − λ(t) − x)2 pxp−1 dx.

As p < 2, we obtain I1 ≤ Kn−p/3. Now assume t ≤ n−1/3. Then n−1/3 ≤
(nt)−1/2. A probability is no more than one, so (13) and (12) yield

I1 ≤ K(nt)−p/2 +
∫ ∞
λ(0)−λ(t)+(nt)−1/2

K

nt(λ(0) − λ(t) − x)2 pxp−1 dx.

As p < 2, we obtain I1 ≤ K(nt)−p/2. In both cases,

I1 ≤ K
(
n−p/3 + (nt)−p/2)

.

Similarly,

I2 := E
[(

λ(t) − λ̂n(t)
)
+

]p ≤ K
(
n−p/3 + (

n(1 − t)
)−p/2)

and the result follows.
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5. Proof of Theorem 2. We assume here λ is decreasing. The similar proof in
the increasing case is omitted. We denote by K or K ′ (resp. c) a positive number
that depends only on λ, C, p, Cq , q , L, and that can be chosen as large (resp. small)
as we wish. The same letter may denote different constants in different formulas.
Moreover, we denote by Ûn the inverse process (8) and we set g = λ−1. We first
provide in Lemma 4 an upper bound for the tail probability of Ûn, which is sharper
than (9). Then, thanks to Proposition 1 in [4], we prove two lemmas that will be
useful to approximate a properly normalized version of Ûn(a) with the location of
the maximum of a drifted Brownian motion. Finally, we prove Theorem 2.

LEMMA 4. There exists K > 0 such that, for every a ∈ R and x > 0,

P[|Ûn(a) − g(a)| ≥ x] ≤ K(nx3)1−q .(14)

PROOF. Fix a ∈ R, x ∈ (0,1] and denote by Px the probability in (14).
From (11), one has Px ≤ P ′

x + P ′′
x , where P ′

x is equal to

P

(
sup

|u−g(a)|>x/2

{
n−1/2(

Bn ◦ L(u) − Bn ◦ L(g(a))
) − c

2

(
u − g(a)

)2
}

≥ 0
)

and

P ′′
x = P

(
sup

u∈[0,1]
|Mn(u) − n−1/2Bn ◦ L(u)| ≥ cx2

16

)
.

One can derive from the properties of Brownian motion and the Brownian bridge
(see, e.g., (24) below and the proof of Theorem 4 in [4]) that, for all x ∈ (0,1],

P ′
x ≤ K exp(−cnx3) ≤ K ′(nx3)1−q .

Now by (A4), there exists K > 0 with

P ′′
x ≤ Kx−2qn1−q ≤ K(nx3)1−q .

Hence, (14) holds for all x ∈ (0,1]. It clearly extends to all x > 0 since both Ûn(a)

and g(a) belong to [0,1]. �

LEMMA 5. Let Tn > 0, Wn be a standard two-sided Brownian motion,
Dn : [−Tn,Tn] → R a nonrandom function and Rn a process indexed by [−Tn,Tn].
Furthermore, let

Un = arg max
[−Tn,Tn]

{Dn + Wn + Rn} and Vn = arg max
[− logn,logn]

{Dn + Wn}.

Assume Dn continuously differentiable, Dn(0) = 0 and there exist positive A and c

such that |D′
n(u)| ≤ A|u| and Dn(u) ≤ −cu2 for all u ∈ [−Tn,Tn]. Assume, more-

over, either (i) or (ii), where:
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(i) Tn = n1/(3(6q−11)) for some q > 12 and there exists K > 0 such that

P

[
sup

u∈[−Tn,Tn]
|Rn(u)| > x

]
≤ Kx−qn1−q/3 for all x ∈ (0, n2/3].(15)

(ii) Tn = logn and there exist K > 0 and s > 3/4 with

sup
u∈[−Tn,Tn]

|Rn(u)| ≤ Kn−s/3(logn)3.

Let r = 2(q −1)/(2q −3) under (i) and r < 2s under (ii). Then there exists K ′ > 0
that depends only on K , A, c and r such that

E|Un − Vn|r ≤ K ′
(

n−1/6

logn

)r

.

PROOF. Assume (i). Assume, moreover, n is large enough so that Tn ≥ logn.
If V ′

n denotes the greatest location of the maximum of Dn + Wn on [−Tn,Tn],
then Vn can differ from V ′

n only if |V ′
n| > logn. It thus follows from Proposition 1

in [4] (see also the comments just above this proposition) that there exists an ab-
solute constant C such that the probability that |Un − Vn| > δ is no more than

P

[
sup

u∈[−Tn,Tn]
|Rn(u)| > xδ3/2

2

]
+ Cx logn + 2P(|V ′

n| > logn)

for every (x, δ) that satisfies

δ ∈ (0, logn], x > 0, A2(logn)2 ≤ 1

2δ log(1/2xδ)
.(16)

Moreover, for every x ≥ 0,

P(|V ′
n| ≥ x) ≤ 2 exp(−c2x3/2);(17)

see, for example, Theorem 4 in [4]. Let ε > 0 and for every δ > 0, set

xδ = (logn)−1/(q+1)δ−3q/(2(q+1))n(3−q)/(3(q+1)).

Then (16) holds for every (δ, xδ) with δ ∈ (n−1/6/ logn,n−ε), provided n is large
enough. By (15), there thus exists K ′ > 0 such that, for every such δ,

P(|Un − Vn| > δ) ≤ K ′xδ logn.(18)

Now, |Un − Vn| ≤ 2Tn, so from Fubini’s theorem

E|Un − Vn|r =
∫ 2Tn

0
P(|Un − Vn| > δ)rδr−1 dδ.

But for every δ > n−ε , |Un −Vn| can exceed δ only if it exceeds n−ε and therefore,
the above integral is no more than(

n−1/6

logn

)r

+ K ′ logn

∫ n−ε

n−1/6/ logn
xδrδ

r−1 dδ + K ′xn−ε logn(2Tn)
r .
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Since r < 3q/(2(q + 1)), straightforward computations prove that this is of order
O((n−1/6/ logn)r), provided q > 12 and ε is small enough. This completes the
proof in the case (i).

Assume (ii). For every δ > 0, let

xδ = 2Kδ−3/2n−s/3(logn)3.

Arguing as above, we get (18) for every δ ∈ (n−1/6/ logn,n−ε). We conclude with
the same arguments, since s > 3/4 and r < 2s. �

LEMMA 6. Let Un and Vn be processes indexed by Jn ⊂ [x0, x1] for some
real numbers x0 and x1 independent of n. Let p ≥ 1, r > 1 and let r ′ satisfy 1/r =
1 − 1/r ′. Assume there are q ′ and K such that

sup
a∈Jn

E|Un(a)|q ′ ≤ K and sup
a∈Jn

E|Vn(a)|q ′ ≤ K(19)

for all n. Assume, moreover, either (i) or (ii), where:

(i) q ′ = (p − 1)r ′ and supa∈Jn
E|Un(a) − Vn(a)|r = o(n−r/6).

(ii) q ′ = pr ′ and there exist γ > r/6 and K ′ > 0 such that, for every n and
a ∈ Jn, P(Un(a) 
= Vn(a)) ≤ K ′n−γ .

Then ∫
Jn

|Un(a)|p da =
∫
Jn

|Vn(a)|p da + oP(n−1/6).

PROOF. It follows from Taylor’s expansion that

|xp − yp| ≤ p|x − y|(x ∨ y)p−1 ≤ p|x − y|(xp−1 + yp−1)(20)

for all positive numbers x and y. Hence, for every a ∈ Jn,

E
∣∣|Un(a)|p − |Vn(a)|p∣∣ ≤ pE

[|Un(a) − Vn(a)|(|Un(a)|p−1 + |Vn(a)|p−1)]
.

Also,

E
∣∣|Un(a)|p − |Vn(a)|p∣∣ ≤ E

[
1Un(a) 
=Vn(a)

(|Un(a)|p + |Vn(a)|p)]
.

Hence, the result follows from Hölder’s inequality. �

Now we turn to the proof of the theorem. Hereafter,

Jn = np/3
∫ 1

0
|λ̂n(t) − λ(t)|p dt.

• Step 1. First we express Jn in terms of Ûn. Precisely, we prove

Jn = np/3
∫ λ(0)

λ(1)
|Ûn(a) − g(a)|p|g′(a)|1−p da + oP(n−1/6).(21)
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For every x ∈ R, let x+ = max(x,0). Moreover, let

I1 =
∫ 1

0

[(
λ̂n(t) − λ(t)

)
+

]p
dt, I2 =

∫ 1

0

[(
λ(t) − λ̂n(t)

)
+

]p
dt

and

J1 =
∫ 1

0

∫ (λ(0)−λ(t))p

0
1

λ̂n(t)≥λ(t)+a1/p da dt.

We have λ̂n(t) < λ(0) for all t > Ûn(λ(0)), so

0 ≤ I1 − J1 =
∫ Ûn(λ(0))

0

∫ ∞
(λ(0)−λ(t))p

1
λ̂n(t)≥λ(t)+a1/p da dt

≤
∫ Ûn(λ(0))

0

[(
λ̂n(t) − λ(t)

)
+

]p
dt.

Hence, by monotonicity

I1 − J1 ≤
∫ n−1/3 logn

0

(
λ̂n(t) − λ(t)

)p
+ dt + |λ̂n(0) − λ(1)|p1

n1/3Ûn(λ(0))>logn
.

Let p′ ∈ (p − 1/2,2) be such that 1 ≤ p′ ≤ p (such a p′ exists since p ∈ [1,5/2)).
By assumption, λ is bounded and λ̂n(0) is stochastically bounded, so, from
Lemma 4,

I1 − J1 ≤ |λ̂n(0) − λ(1)|p−p′
∫ n−1/3 logn

0
|λ̂n(t) − λ(t)|p′

dt + oP(n−p/3−1/6).

Now, note that the results in Theorem 1 remain true under the assumptions of
Theorem 2 (since one can use Lemma 4 instead of Lemma 2 in the proof). As
p′ ∈ [1,2), we get

E

(∫ n−1/3 logn

0
|λ̂n(t) − λ(t)|p′

dt

)
≤ Kn−(1+p′)/3 logn.

But p′ > p − 1/2, so∫ n−1/3 logn

0
|λ̂n(t) − λ(t)|p′

dt = oP(n−p/3−1/6).

Therefore, I1 = J1 + oP(n−p/3−1/6). The change of variable b = λ(t) + a1/p then
yields

I1 =
∫ λ(0)

λ(1)

∫ Ûn(b)

g(b)
p

(
b − λ(t)

)p−11
g(b)<Ûn(b)

dt db + oP(n−p/3−1/6).

By Taylor’s expansion, (A1) and (4), there exists K > 0 such that∣∣[b − λ(t)]p−1 − [(
g(b) − t

)
λ′ ◦ g(b)

]p−1∣∣ ≤ K
(
t − g(b)

)p−1+s(22)
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for all b ∈ (λ(1), λ(0)) and t ∈ (g(b),1). As a probability is no more than one,
integrating (14) proves that, for every q ′ < 3(q − 1), there exists Kq ′ > 0 with

E
[(

n1/3|Ûn(a) − g(a)|)q ′] ≤ Kq ′ for all a ∈ R.(23)

Thus, I1 equals∫ λ(0)

λ(1)

∫ Ûn(b)

g(b)
p

(
t −g(b)

)p−1|λ′ ◦g(b)|p−11
g(b)<Ûn(b)

dt db+R+oP(n−p/3−1/6),

where R = OP(n−(p+s)/3). Hence,

I1 =
∫ λ(0)

λ(1)
|Ûn(b) − g(b)|p|λ′ ◦ g(b)|p−11

g(b)<Ûn(b)
db + oP(n−p/3−1/6).

Likewise,

I2 =
∫ λ(0)

λ(1)
|g(b) − Ûn(b)|p|λ′ ◦ g(b)|p−11

g(b)>Ûn(b)
db + oP(n−p/3−1/6)

and the result follows, since Jn = np/3(I1 + I2).

• Step 2. Now we approximate a proper normalization of Ûn by Ṽ , defined as
follows. We have the representation

Bn(t) = Wn(t) − ξnt,(24)

where Wn is a standard Brownian motion, ξn ≡ 0 if Bn is a Brownian motion and ξn

is a standard Gaussian variable independent of Bn if Bn is a Brownian bridge. Let
d = |λ′|/2(L′)2, and for every t ∈ [0,1] let

Wt(u) = n1/6[
Wn

(
L(t) + n−1/3u

) − Wn(L(t))
]
,(25)

so that Wt is a standard Brownian motion. For every t ∈ [0,1], we define Ṽ (t)

as the location of the maximum of the drifted Brownian motion u �→ −d(t)u2 +
Wt(u) over [− logn, logn]. We aim at proving

Jn =
∫ 1

0

∣∣∣∣Ṽ (t) − n−1/6 ξn

2d(t)

∣∣∣∣
p∣∣∣∣ λ

′(t)
L′(t)

∣∣∣∣
p

dt + oP(n−1/6).(26)

For every a ∈ R, let aξ = a − n−1/2ξnL
′(g(a)). The process Ûn is nonincreasing

and |ξn| is less than logn with probability greater than 1−exp(−(logn)2/2). As L′
is bounded, we derive from Lemma 4 that

P
(|L(Ûn(a

ξ )) − L(g(a))| > x
) ≤ K(nx3)1−q(27)

for all x ∈ [n−1/3,L(1) − L(0)] and large enough n. With a modification of K ,
this inequality holds for all x > 0 and n ∈ N. As a probability is no more than one,
integrating this inequality yields

sup
a∈R

E
[(

n1/3|L(Ûn(a
ξ )) − L(g(a))|)q ′] ≤ K,(28)
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provided q ′ < 3(q − 1). Recall (21). Then Lemma 6(i) with, for example, r = r ′ =
2 combined with Hölder’s inequality and the change of variable a → aξ proves
that

Jn = np/3
∫ λ(0)

λ(1)

∣∣∣∣L(Ûn(a)) − L(g(a))

L′(g(a))

∣∣∣∣
p

|g′(a)|1−p da + oP(n−1/6)

= np/3
∫
Jn

|L(Ûn(a
ξ )) − L(g(aξ ))|p |g′(a)|1−p

(L′(g(a)))p
da + oP(n−1/6),

where

Jn = [λ(1) + n−1/6/ logn,λ(0) − n−1/6/ logn].
Let a ∈ R. By (8),

L(Ûn(a
ξ )) = arg max

u∈[L(0),L(1)]
{(�+

n ◦ L−1 − aξL−1)(u)}.

The location of the maximum of a process {Z(u), u ∈ I } is also the location of the
maximum of {AZ(u) + B, u ∈ I } for any A > 0 and B ∈ R. Therefore,

n1/3(
L(Ûn(a

ξ )) − L(g(a))
) = arg max

u∈In(a)

{
Dn(a,u) + Wg(a)(u) + Rn(a,u)

}
,

where Wg(a) is given by (25),

In(a) = [−n1/3(
L(g(a)) − L(0)

)
n1/3(

L(1) − L(g(a))
)]

,

Dn(a,u) = n2/3(� ◦ L−1 − aL−1)
(
L(g(a)) + n−1/3u

) − n2/3(
�(g(a)) − ag(a)

)
and Rn(a,u) is equal to

n2/3(a − aξ )
(
L−1(

L(g(a)) + n−1/3u
) − g(a)

) − n−1/6ξnu + R̃n(a, u)

for some R̃n which satisfies

sup
a∈R,u∈In(a)

|R̃n(a, u)| ≤ n2/3 sup
t∈[0,1]

|�+
n (t) − �(t) − n−1/2Bn ◦ L(t)|.

We will use Lemma 5 to show that Rn is negligible. For this task, we need to
localize. Let Tn = n1/(3(6q−11)) and

Ũn(a) = arg max
u∈[−Tn,Tn]

{
Dn(a,u) + Wg(a)(u) + Rn(a,u)

}
.

If n is large enough, then [−Tn,Tn] ⊂ In(a) for all a ∈ Jn, so

n1/3(
L(Ûn(a

ξ )) − L(g(a))
)

can differ from Ũn(a) only if its absolute value exceeds Tn. It thus follows
from (27) and (28) that we can apply Lemma 6(ii) with some r ′ < 3(q − 1)/p,
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r ′ as close as possible to 3(q − 1)/p. We get

Jn =
∫
Jn

∣∣Ũn(a) + n1/3(
L(g(a)) − L(g(aξ ))

)∣∣p |g′(a)|1−p

(L′(g(a)))p
da + oP(n−1/6)

=
∫
Jn

∣∣∣∣Ũn(a) − n−1/6 ξn

2d(g(a))

∣∣∣∣
p |g′(a)|1−p

(L′(g(a)))p
da + oP(n−1/6).

Now let

˜̃
Un(a) = arg max

u∈[− logn,logn]
{
Dn(a,u) + Wg(a)(u)

}
.

By Taylor’s expansion, there are positive K and c with∣∣∣∣ ∂

∂u
Dn(a,u)

∣∣∣∣ ≤ K|u| and Dn(a,u) ≤ −cu2

for every a ∈ Jn and u ∈ [−Tn,Tn]. Moreover, there exists K > 0 with

|Rn(a,u)| ≤ Ku2n−1/2|ξn| + n2/3 sup
t∈[0,1]

|�n(t) − �(t) − n−1/2Bn ◦ L(t)|,

since �n is cadlag. By (A4), (15) thus holds with Rn(u) replaced by Rn(a,u). Due

to Theorem 4 in [4], ˜̃
Un(a) has bounded moments of any order, so we can apply

Lemmas 5 and 6 both with condition (i) to get

Jn =
∫
Jn

∣∣∣∣ ˜̃
Un(a) − n−1/6 ξn

2d(g(a))

∣∣∣∣
p |g′(a)|1−p

(L′(g(a)))p
da + oP(n−1/6).

Now we approximate ˜̃
Un(a) by Ṽ (g(a)). By Taylor’s expansion and (4), there

exists K such that, for all |u| ≤ logn,

|Dn(a,u) − d(g(a))u2| ≤ Kn−s/3(logn)3.

It follows from (17) that Ṽ (t) has bounded moments of any order so Lemma 5(ii)
and Lemma 6(i) show that

Jn =
∫
Jn

∣∣∣∣Ṽ (g(a)) − n−1/6 ξn

2d(g(a))

∣∣∣∣
p |g′(a)|1−p

(L′(g(a)))p
da + oP(n−1/6),

and (26) follows from the change of variable t = g(a).
• Step 3. Now we prove that, although Bn could be a Brownian bridge in (A4),

everything works as if it were a Brownian motion. This is similar to Corollary 3.3
in [8] and Lemma 2.2 in [11], but the present argument takes a simpler form since
we deal with Ṽ . Precisely, we show that ξn can be removed from (26), that is,

Jn =
∫ 1

0
|Ṽ (t)|p

∣∣∣∣ λ
′(t)

L′(t)

∣∣∣∣
p

dt + oP(n−1/6).(29)
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This is precisely (26) if Bn is a Brownian motion since, in that case, ξn ≡ 0. Hence,
we assume here that Bn is a Brownian bridge. Therefore, ξn is a standard Gaussian
variable. Let

Dn = n1/6
{∫ 1

0
|Ṽ (t)|p

∣∣∣∣ λ
′(t)

L′(t)

∣∣∣∣
p

dt −
∫ 1

0

∣∣∣∣Ṽ (t) − n−1/6 ξn

2d(t)

∣∣∣∣
p∣∣∣∣ λ

′(t)
L′(t)

∣∣∣∣
p

dt

}
.

We will show that Dn = oP(1). Hereafter, for every t , V (t) denotes the location of
the maximum of the process u �→ −d(t)u2 +Wt(u) over R. Then for every t , V (t)

can differ from Ṽ (t) only if |V (t)| > logn, so similar to (17),

P
(
Ṽ (t) 
= V (t)

) ≤ 2 exp(−c2(logn)3).(30)

Moreover,

d(t)2/3V (t) = arg max
u∈R

{−u2d(t)−1/3 + Wt(ud(t)−2/3)},

which, by scaling, is distributed as X(0); see (3). Fix γ ∈ (0,1/12). Corollaries 3.4
and 3.3 in [7] show that X(0) has a bounded density function, so from (30),

P
(|Ṽ (t)| ≤ n−γ ) ≤ Kn−γ .

Here, K does not depend on t since d is bounded. Moreover, ξn and Ṽ (t) possess
uniformly bounded moments of any order and the probability that |ξn| exceeds
logn is less than exp(−(logn)2/2). Expanding x �→ xp around |Ṽ (t)| then proves
that Dn is asymptotically equivalent to

pn1/6
∫ 1

0

{
|Ṽ (t)| −

∣∣∣∣Ṽ (t) − n−1/6 ξn

2d(t)

∣∣∣∣
}
|Ṽ (t)|p−1

∣∣∣∣ λ
′(t)

L′(t)

∣∣∣∣
p

1An(t) dt,

where An(t) is the intersection of the events {|Ṽ (t)| > n−γ } and {|ξn| ≤ logn}.
Hence,

Dn = pξn

∫ 1

0

Ṽ (t)

2d(t)
|Ṽ (t)|p−2

∣∣∣∣ λ
′(t)

L′(t)

∣∣∣∣
p

dt + oP(1).

Now, Ṽ (t) has a symmetric distribution, so

E

(∫ 1

0

Ṽ (t)

2d(t)
|Ṽ (t)|p−2

∣∣∣∣ λ
′(t)

L′(t)

∣∣∣∣
p

dt

)2

= var
(∫ 1

0

Ṽ (t)

2d(t)
|Ṽ (t)|p−2

∣∣∣∣ λ
′(t)

L′(t)

∣∣∣∣
p

dt

)

and one can prove, arguing as in Step 5 below, that this tends to zero as n → ∞.
Thus, the above integral converges to zero in probability. As ξn is stochastically
bounded, we get Dn = oP(1).

• Step 4. Now, we prove that it is sufficient to show

n1/6
∫ 1

0
Yn(t) dt → N (0, σ 2

p) in distribution,
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where

Yn(t) = (|Ṽ (t)|p − E|Ṽ (t)|p)∣∣∣∣ λ
′(t)

L′(t)

∣∣∣∣
p

.

We have seen that d(t)2/3V (t) is distributed as X(0), so (30) implies∫ 1

0
E|Ṽ (t)|p

∣∣∣∣ λ
′(t)

L′(t)

∣∣∣∣
p

dt = E|X(0)|p
∫ 1

0
d(t)−2p/3

∣∣∣∣ λ
′(t)

L′(t)

∣∣∣∣
p

dt + o(n−1/6)

= mp + o(n−1/6).

Thus, by (29),

n1/6(Jn − mp) = n1/6
∫ 1

0
Yn(t) dt + oP(1),

which proves the stated result.
• Step 5. In this step we show

lim
n→∞ var

(
n1/6

∫ 1

0
Yn(t) dt

)
= σ 2

p.(31)

Let vn = var(
∫ 1

0 Yn(t) dt). From Fubini’s theorem,

vn = 2
∫ 1

0

∫ 1

s

∣∣∣∣ λ
′(t)

L′(t)
× λ′(s)

L′(s)

∣∣∣∣
p

cov(|Ṽ (t)|p, |Ṽ (s)|p) dt ds.

Let cn = 2n−1/3 logn/ inft L′(t). The increments of Wn are independent, so Ṽ (t)

and Ṽ (s) are independent for all |t − s| ≥ cn. Moreover, |Ṽ (t)| possesses bounded
moments of any order, so

vn = 2
∫ 1

0

∫ min(1,s+cn)

s

∣∣∣∣ λ
′(s)

L′(s)

∣∣∣∣
2p

cov(|Ṽ (t)|p, |Ṽ (s)|p) dt ds + o(n−1/3).(32)

For every s and t , let Ṽt (s) be the location of the maximum of the process
u �→ −d(s)u2 + Wt(u) over [− logn, logn] and let Vt(s) be the location of the
maximum of this process over the whole real line. By (17), Vt(s) and Ṽt (s) have
bounded moments of any order. Hölder’s inequality combined with (20) thus yields∣∣cov(|Ṽt (t)|p, |Ṽs(s)|p) − cov(|Ṽt (s)|p, |Ṽs(s)|p)

∣∣ ≤ KE
1/r |Ṽt (t) − Ṽt (s)|r ,

where r > 1 is arbitrary. Since Ṽt (t) = Ṽ (t), Lemma 5(ii) yields

vn = 2
∫ 1

0

∫ min(1,s+cn)

s

∣∣∣∣ λ
′(s)

L′(s)

∣∣∣∣
2p

cov(|Ṽt (s)|p, |Ṽs(s)|p) dt ds + o(n−1/3).

For every fixed s, Vt(s) can differ from Ṽt (s) only if |Vt(s)| > logn, so similar
to (17), we get

P
(
Ṽt (s) 
= Vt(s)

) ≤ 2 exp(−c2(logn)3).
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Thus, Ṽt (s) and Ṽs(s) can be replaced by Vt(s) and Vs(s) in the above integral.
Now, fix s and t in [0,1] and let X be given by (3), where

W(u) = n1/6d(s)1/3(
Wn

(
L(s) + n−1/3d(s)−2/3u

) − Wn(L(s))
)
.

Then

d(s)2/3Vt(s) = X
(
n1/3d(s)2/3(

L(t) − L(s)
)) − n1/3d(s)2/3(

L(t) − L(s)
)
.

The change of variable a = n1/3d(s)2/3(L(t) − L(s)) and straightforward compu-
tations then yield (31).

• Step 6. It remains to prove asymptotic normality of n1/6 ∫ 1
0 Yn(t) dt . We will

use Bernstein’s method of big blocks and small blocks, as in [8] and [11]. Let Ln =
n−1/3(logn)5, L′

n = n−1/3(logn)2 and denote by Nn the integer part of (Ln +
L′

n)
−1. Let a0 = 0, a2Nn+1 = 1 and for all n ∈ N and all j ∈ {0, . . . ,Nn − 1}, let

a2j+1 = a2j +Ln and a2j+2 = a2j+1 +L′
n. Finally, let ξn,j = n1/6 ∫ a2j+1

a2j
Yn(t) dt .

By definition, EYn(t) = 0, so

E

(
Nn−1∑
j=0

∫ a2j+2

a2j+1

Yn(t) dt

)2

= ∑
i,j

∫ a2j+2

a2j+1

∫ a2i+2

a2i+1

cov(Yn(t), Yn(s)) dt ds.

By independence, the terms with i 
= j are equal to zero for large enough n, so the
above expectation is of order o(n−1/3). Hence, n1/6 ∫ 1

0 Yn(t) dt is asymptotically
equivalent to

∑
j ξn,j , and by Step 5, var(

∑
j ξn,j ) tends to σ 2

p as n → ∞. By
Hölder’s and Markov’s inequalities, we have, for all δ > 0,

Nn∑
j=0

E
(
ξ2
n,j1|ξn,j |>δ

) ≤
Nn∑
j=0

E(|ξn,j |3)δ−1.

This tends to zero as n → ∞, so the central limit theorem with the Lindeberg
condition shows that

∑
j ξn,j tends to a centered Gaussian distribution with vari-

ance σ 2
p . By Step 4, this completes the proof of the theorem. �

6. Proof of the results of Section 3. Here again, K , K ′, c, denote positive
numbers that do not depend on n and may change from line to line.

6.1. Proof of Theorem 3. (i) Let M∗
n be the stopped process

M∗
n(t) = Mn

(
t ∧ X(n)

) = �n(t) − �
(
t ∧ X(n)

)
, t ∈ [0,1],

where X(n) = maxi Xi. We have X(n) < 1 with probability γ n, where

γ = 1 − lim
t↑1

(
1 − F(t)

)(
1 − G(t)

)
< 1.(33)
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Recall (a + b)2 ≤ 2a2 + 2b2 for all real numbers a and b. As M∗
n is identical to

Mn if X(n) ≥ 1, we get

E

[
sup

t≤u≤t+x

(
Mn(u) − Mn(t)

)2
]

≤ 2E

[
sup

t≤u≤t+x

(
M∗

n(u) − M∗
n(t)

)2
]

+ 2(Kx)2γ n

for every t ∈ [0,1] and x ≥ 0. Here, K denotes the supremum norm of λ. By Theo-
rem 7.5.2 in [16], M∗

n is a square integrable mean zero martingale with predictable
variation process

〈M∗
n〉(u) = 1

n

∫ u

0

λ(s)

1 − Hn−(s)
1s≤X(n)

ds,(34)

where Hn−(s) = n−1 ∑
i 1Xi<s. By Doob’s inequality,

E

[
sup

t≤u≤t+x

(
M∗

n(u) − M∗
n(t)

)2
]

≤ 4E
[(

M∗
n

(
1 ∧ (t + x)

) − M∗
n(t)

)2]

= 4E
[(

M∗
n

(
1 ∧ (t + x)

))2 − (M∗
n(t))2]

= 4

n
E

[∫ 1∧(t+x)

t

λ(s)

1 − Hn−(s)
1s≤X(n)

ds

]
.

Let N be the number of Xi ’s that are greater than or equal to 1. For every s ≤
1∧X(n), n(1−Hn−(s)) is greater than or equal to 1∨N . Hence, by monotonicity,

E

[
sup

t≤u≤t+x

(
M∗

n(u) − M∗
n(t)

)2
]

≤ 4xλ(0)E

(
1

1 ∨ N

)
≤ Kx

n
,

since N has a binomial distribution with parameter n and probability of success
1 − γ > 0. Also, γ n ≤ K/n for some K > 0, and x2 ≤ x for all x ∈ [0,1]. Hence,
for every t ∈ [0,1] and x ≥ 0, we have

E

[
sup

t≤u≤t+x

(
Mn(u) − Mn(t)

)2
]

≤ Kx

n
.(35)

To handle the case u < t , we derive from (35) that

E

[
sup

t−x≤u≤t

(
Mn(u) − Mn(t)

)2
]

≤ 2E
[(

Mn(t) − Mn

(
(t − x) ∨ 0

))2]
+ 2E

[
sup

t−x≤u≤t

(
Mn(u) − Mn

(
(t − x) ∨ 0

))2
]

≤ Kx

n
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for every t ∈ [0,1] and x ≥ 0. Combining this with (35) yields (A2) and (A2′).
Now, �n jumps only at times ti when we observe uncensored data. Hence, for
every δ > 0, the probability that �n jumps in (0, δ/n) or in (1− δ/n,1) is no more
than

nP
(
T1 ∈ (0, δ/n) ∪ (1 − δ/n,1)

)
.

This is no more than 2Kδ, where K is the supremum norm of f on [0,1], so (A3)
follows from Lemma 1.

(ii) Let L be defined by (7), and denote the supremum distance on [0,1] by ‖ . ‖.
We will prove that there exist versions of Mn and the standard Brownian motion Bn

such that, for all x ∈ [0, n],
P

[
n sup

t∈[0,1]
|Mn(t) − n−1/2Bn ◦ L(t)| > x + K logn

]
≤ K ′ exp(−cx),(36)

where K , K ′ and c depend only on F and G. This indeed suffices to prove (A4).
We consider the limit-product estimator Fn of Kaplan and Meier,

Fn(t) = 1 − ∏
i≤k

(
ni − 1

ni

)1ti≤t

, t ≥ 0,

and we set �̄n = − log(1 − Fn). By Corollaries 1 and 2 of [12], there are versions
of Fn and Bn such that

P[n‖Fn − F − n−1/2(1 − F)Bn ◦ L‖ > x + K logn] ≤ K ′ exp(−cx)(37)

for all x ≥ 0. Here, K , K ′ and c depend only on F and G. As L is bounded on
[0,1], we have

P[‖Bn ◦ L‖ ≥ x] ≤ exp(−c′x2)

for some c′ > 0 and all x ≥ 0. But F(1) < 1 and we have (37), so we can assume
without loss of generality that Fn(1) < 1 and, therefore, �̄n is well defined on the
whole interval [0,1]. As � = − log(1 − F), expanding u �→ exp(−u) proves that
there are positive c, K and K ′, which depend only on F and G, such that

P[n‖(�̄n − �) exp(−�) − n−1/2(1 − F)Bn ◦ L‖ > x + K logn] ≤ K ′e−cx,

for all x ∈ [0, n]. Hence,

P[n‖�̄n − � − n−1/2Bn ◦ L‖ > x + K logn] ≤ K ′ exp(−cx),

and it remains to show that �̄n is close enough to �n. By Taylor’s expansion, one
has, for all i with ti ∈ [0,1],

0 ≤ �̄n(ti) − �n(ti) ≤ ∑
j≤i

1

2(nj − 1)2 ≤ n

2(N ∨ 1 − 1)2 ,
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where we recall that N is the number of Xi’s that are greater than or equal to 1.
Both �n and �̄n are constant on the intervals [ti , ti+1). As N is a binomial variable
with parameter n and probability of success 1 − γ [see (33)], one can then derive
from Hoeffding’s inequality that

P[n‖�̄n − �n‖ > x] ≤ K exp(−cn) ≤ K exp(−cx),

for some K > 0, c > 0 and all x ∈ (K ′, n]. The result follows.

6.2. Proof of Theorem 4. Fix t ∈ [0,1] and x > 0. As �n − � is a martingale,
Doob’s inequality yields

E

[
sup

t≤u≤t+x

(
Mn(u) − Mn(t)

)2
]

≤ 4E
((

Mn

(
1 ∧ (t + x)

) − Mn(t)
)2)

.(38)

But n(�n(1 ∧ (t + x)) − �n(t)) has a Poisson distribution with expectation
n(�(1 ∧ (t + x)) − �(t)). Thus, its variance is bounded by Knx, where K is
the supremum norm of λ on [0,1], and (35) holds for all x > 0 and t ∈ [0,1]. We
can handle the case u < t as in the proof of Theorem 3, whence (A2) and (A2′).
Now, �n can jump in (1 − δ/n,1) only if at least a process Ni jumps in this inter-
val. But the jumps of Ni have height 1, so for every δ > 0,

P
(
�n jumps in (1 − δ/n,1)

) ≤ nP
(
N1(1) − N1(1 − δ/n) ≥ 1

)
.

The variable N1(1) − N1(1 − δ/n) has a Poisson distribution with expectation
�(1) − �(1 − δ/n), so by Markov’s inequality,

P
(
�n jumps in (1 − δ/n,1)

) ≤ Kδ.

We can proceed likewise to control the probability that �n jumps in (0, δ/n), so
(A3) follows from Lemma 1. It remains to prove (A4). For this task, fix q ≥ 2 and
for every k = 0, . . . , n, let tk = k/n. We have

E|Mn(tk) − Mn(tk−1)|q ≤ Kn−q(39)

for all k ≥ 1 and some K > 0. The increments of Mn are independent, so by Theo-
rem 5 in [15], there are versions of Mn and the standard Brownian motion Bn such
that

E

[
max

1≤k≤n
|Mn(tk) − n−1/2Bn(�(tk))|q

]
≤ Kn1−q

for some K > 0. One then obtains, using (39), monotonicity of �n and properties
of Brownian motion, that there is a K > 0 such that

E

[
sup

t∈[0,1]
|Mn(t) − n−1/2Bn(�(t))|q

]
≤ Kn1−q.

This holds for any q ≥ 2, hence, in particular, for some q > 12. Thus, from
Markov’s inequality, (A4) holds with L = �. �
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6.3. Proof of Theorem 5. (i) We have (u + v)2 ≤ 2(u2 + v2) for all real num-
bers u and v. Hence, for all t ∈ [0,1] and x > 0,

E

[
sup

|u−t |≤x

(
Mn(u) − Mn(t)

)2
]

≤ 2

n2 E

[
sup
|u|≤x

( ∑
i≤n(t+u)

εi,n − ∑
i≤nt

εi,n

)2]
+ K

n2

for some K > 0, which depends only on λ. By Doob’s inequality, this is no more
than

8

n2 E

( ∑
nt<i≤n(t+x)

εi,n

)2

+ 8

n2 E

( ∑
n(t−x)<i≤nt

εi,n

)2

+ K

n2 ≤ K ′x
n

for all x ≥ 1/n, whence (A2). By definition, �n jumps at times i/n, i = 1, . . . , n.
If t ∈ {0,1}, we thus have for every x ∈ (0,1/n) that

sup
|t−u|≤x

|Mn(u) − Mn(t)| = sup
|t−u|≤x

|�(u) − �(t)| ≤ Kx,

whence (A2′). Moreover, it is clear from Lemma 1 that (A3) holds.
(ii) From Theorem 5 in [15], there exist versions of (εi,n) and the standard

Brownian motion Bn such that

E

[
sup

t∈[0,1]

∣∣∣∣∣1

n

∑
i≤nt

εi,n − n−1/2Bn

(
1

n

∑
i≤nt

σ 2(i/n)

)∣∣∣∣∣
q]

≤ Kn1−q.

Thanks to Markov’s inequality, one can then derive (A4) from properties of Bn

and the regularity assumptions on σ 2.

6.4. Proof of Theorem 6. Fix t ∈ [0,1], x > 0, and define

Mn(u) = �n(u) − �n(t)

�(u) − �(t)
, u ∈ [0,1],

where we recall that �n is the empirical distribution function of the sample
X1, . . . ,Xn. By Lemma 2.2 in [8], the process {Mn(u), u ∈ (t,1]} is a reverse
time martingale conditionally on �n(t). Since � is increasing and λ is bounded,
Doob’s inequality yields

E

[
sup

x/2≤u−t≤x

(
Mn(u) − Mn(t)

)2
]

≤ Kx2
E

(
Mn(t + x/2) − Mn(t)

�(t + x/2) − �(t)

)2

.

But n(�n(t + x/2) − �n(t)) is a binomial variable with parameter n and prob-
ability of success �(t + x/2) − �(t). Moreover, λ is bounded away from zero,
whence

E

[
sup

x/2≤u−t≤x

(
Mn(u) − Mn(t)

)2
]

≤ Kx

n
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for all x > 0 and t ∈ [0,1]. To handle the case u < t , we use the fact that the process
{Mn(u), u ∈ [0, t)} is a forward time martingale conditionally on �n(t) (see
Lemma 2.2 in [8]). Whence, (A2) and (A2′). Now, �n jumps at times X1, . . . ,Xn.
As λ is bounded, the probability that �n jumps in (0, δ/n) or in (1 − δ/n,1) is no
more than

nP
(
X1 ∈ (0, δ/n) ∪ (1 − δ/n,1)

)
for every δ > 0. This is no more than 2Kδ, where K is the supremum norm of λ,
so (A3) follows from Lemma 1. Finally, it follows from the Hungarian embedding
of [10] that (A4) holds with L = � and Bn a Brownian bridge.
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