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POINT ESTIMATION WITH EXPONENTIALLY
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Parameters defined via general estimating equations (GEE) can be es-
timated by maximizing the empirical likelihood (EL). Newey and Smith
[Econometrica 72 (2004) 219–255] have recently shown that this EL esti-
mator exhibits desirable higher-order asymptotic properties, namely, that its
O(n−1) bias is small and that bias-corrected EL is higher-order efficient. Al-
though EL possesses these properties when the model is correctly specified,
this paper shows that, in the presence of model misspecification, EL may
cease to be root n convergent when the functions defining the moment condi-
tions are unbounded (even when their expectations are bounded). In contrast,
the related exponential tilting (ET) estimator avoids this problem. This paper
shows that the ET and EL estimators can be naturally combined to yield an
estimator called exponentially tilted empirical likelihood (ETEL) exhibiting
the same O(n−1) bias and the same O(n−2) variance as EL, while maintain-
ing root n convergence under model misspecification.

1. Introduction. Statistical models defined via general estimating equations
(GEE) of the form E[g(x, θ)] = 0, where g(x, θ) is a vector-valued nonlinear
function of a random vector x and a parameter vector θ , are very common in
statistics. In such models, the parameter vector θ is traditionally estimated using
two-step efficient generalized method of moments estimators (GMM) [21]. Over
the last two decades, various one-step alternatives to two-step GMM have been
suggested. Perhaps the best known estimators of this class are the empirical like-
lihood (EL), exponential tilting (ET) and GMM with continuous updating (CU)
estimators, which have been previously studied in the econometrics [22, 26, 27,
35, 47] and statistics [37, 45, 48–50, 53] literatures. While all of these alternative
estimators of θ share the first-order efficiency of efficient two-step GMM, their
one-step nature provides them with desirable properties not enjoyed by GMM. In
addition to bypassing the arbitrariness in the choice of first-step estimate (since
any consistent estimate of θ can, in principle, be used as a first step and lead to
slightly different second-step estimates in finite samples), these one-step estima-
tors are also invariant under general parameter-dependent linear transformations
of the vector of moment conditions [30, 50] and possess superior higher-order as-
ymptotic properties [27–29, 47].
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Considerable effort has been devoted to identifying which of these alternative
estimators, EL, ET or CU, is preferable. Since all of these estimators are asymptot-
ically equivalent up to Op(n−1/2) when the overidentifying restrictions are valid,
differences must reside in their higher-order asymptotic properties or in their be-
havior under potential model misspecification. The CU estimator is generally re-
garded as less desirable than EL and ET because its objective function has often
been observed to possess multiple modes [22, 30] and because it lacks the ability
to generate likelihood ratio-based confidence regions whose shape adapts to the
support of the data [4, 50]. Comparing ET and EL proves to be more difficult. On
the one hand, based on a stochastic expansion argument, Newey and Smith [47]
have established that EL should typically have a lower finite-sample bias than both
ET and CU. Also, they have shown that bias-corrected EL is higher-order efficient
than any other regular method of moments estimator. On the other hand, Imbens
and co-workers [27, 30] have indicated that EL, unlike ET, exhibits a singularity
in its influence function, suggesting that ET should be better behaved than EL in
the presence of model misspecification. In addition, ET admits a computationally
convenient treatment of misspecified models [32].

Although it can be argued that model misspecification can always be avoided
through the use of specification tests, an alternative view is that most models are
only approximations to the underlying phenomena and are therefore intrinsically
misspecified. Accordingly, there exists a growing literature devoted to the study
of so-called globally misspecified models (in which the misspecification does
not vanish asymptotically). The classic theory of maximum likelihood estima-
tors (MLE) when the distributional assumptions are misspecified can be found in
[1, 25, 63, 64]. In this context, MLE consistently estimates the so-called pseudo-
true value of the parameter of interest [56], which is defined as the parameter
value associated with the distribution which is the closest to the true data gen-
erating process according to the so-called Kullback–Leibler information criterion
(KLIC) discrepancy.

In recent years, the analysis of misspecified models has been actively extended
to various extremum estimators [2, 13, 44, 51] and, in particular, to overidenti-
fied moment condition models [8, 18, 26, 32, 34, 41]. Overidentified models arise
naturally in a number of applications. For instance, consider a regression model
y = x′θ + ε where ε is correlated with x (so that least squares cannot be used) but
uncorrelated with a vector of so-called instruments (denoted z). This leads to a vec-
tor of restrictions of the form E[(y − x′θ)z] = 0, the dimension of which typically
exceeds the dimension of θ . Given the overidentified (i.e., overdetermined) nature
of the restrictions, it is then possible that no value of θ simultaneously satisfies all
the moment restrictions exactly in the population, resulting in a misspecified model
[41]. A more extensive discussion of misspecified models as well as many refer-
ences to empirical studies that perform inference with models which fail standard
specification tests can be found in [18].

The motivation behind this interest for misspecified models stems from two ob-
servations. First, the imperfections of a model, although statistically detectable,
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may nevertheless be small in absolute terms and consequently have little impact
on the results ([42], pages 1168–1169). Second, a misspecified but parsimoniously
parametrized model may have better predictive power than a more realistic com-
plex model which passes all specification tests ([9], page 596). At fixed sample
size, as the number of parameters increases, their variances tend to increase as
well, while the power of overidentification tests tends to decrease.

This paper is organized as follows. After briefly reviewing the properties of the
EL, ET and CU estimators, we present a simple result that characterizes EL’s poor
behavior under misspecification in order to motivate the need for a new estima-
tor. We then introduce an estimator called exponentially tilted empirical likelihood
(ETEL) that naturally combines EL and ET, extending an approach previously
considered in [10, 31, 40] for constructing likelihood-ratio confidence regions for
the mean to the case of point estimation of parameters defined via general mo-
ment restrictions. The ETEL estimator is shown to be well behaved under model
misspecification, like ET, while preserving the desirable higher-order asymptotic
properties of EL established in [47]. Finally, simulations are used to illustrate the
usefulness of this estimator. All proofs can be found in the Appendix.

2. Existing one-step alternatives to GMM.

2.1. Generalities. We first introduce our notation.

DEFINITION 1. Let θ denote the parameter vector of interest belonging to a
compact subset � of R

Nθ . Let xi be sequence of random vectors taking values
in X ⊂ R

Nx . Let g(xi, θ) denote a vector of moment functions taking value in
R

Ng and satisfying E[g(xi, θ
∗)] = 0 at θ∗ ∈ �. Let n denote sample size and let

all summations be over 1, . . . , n. Let ‖ · ‖ denote any convenient vector or matrix
norm.

The simplest way to summarize the properties of the EL, ET and CU estima-
tors is to embed them in more general families of estimators. All three estimators
admit two convenient representations. They can first be interpreted as minimum
empirical discrepancy (MED) estimators [10, 11],

θ̂ = arg min
θ∈�

(
n−1

∑
i

h(ŵi(θ))

)
,(1)

where ŵi(θ) is the solution to

min
{wi}ni=1

n−1
∑
i

h(wi)(2)

subject to moment and normalization constraints,∑
i

wig(xi, θ) = 0 and
∑
i

wi = 1.(3)
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TABLE 1
The EL, ET and CU estimators as particular cases of MED and GEL estimators (adapted from [47])

Estimator γ h(w) ρ(ξ) τ (ξ)

EL −1 − lnnw ln(1 − ξ) (1 − ξ)−1

ET 0 nw lnnw − exp(ξ) − exp(ξ)

CU 1 (nw)2 −(1 + ξ)2/2 −(1 + ξ)

ECR γ
(nw)γ+1−1

γ (γ+1)
− 1

γ+1 (1 + γ ξ)(γ+1)/γ −(1 + γ ξ)1/γ

(The term empirical discrepancy is used here to emphasize the fact that it is a
discrepancy between measures supported on the sample rather than on a fixed dis-
crete support.) Different choices of the discrepancy measure h(·) yield distinct
estimators, as given in Table 1. Specific choices of h(·) have historically been
given special names. The discrepancy used in EL, h(w) = − lnnw, is known as
the Kullback–Leibler information criterion (KLIC). Also, rewriting the minimiza-
tion problem as an equivalent maximization problem, EL can be thought of as
maximizing the “likelihood.” In a similar fashion, ET, with h(w) = nw ln(nw),
can be interpreted as maximizing a quantity known as entropy.

The minimum discrepancy formulation emphasizes that the estimator seeks to
“reweight” the sample in order to satisfy the moment conditions exactly. The func-
tion h(wi) quantifies the amount of reweighting taking place and penalizes values
that differ from wi = n−1. The point estimate θ̂ is the value that minimizes the dis-
crepancy between ŵi(θ) and uniform weights. The weights ŵi(θ̂ ) are sometimes
called implied probabilities because they can be used to construct more efficient
empirical estimates of the data generating process [3, 26, 53].

EL, ET and CU can also be characterized as particular cases of the so-called
generalized empirical likelihood (GEL) family of estimators [61],

θ̂ = arg min
θ∈�

(
n−1

∑
i

ρ(λ̂(θ)′g(xi, θ))

)
,(4)

where the Ng-dimensional vector λ̂(θ) is given by

λ̂(θ) = arg max
λ

(
n−1

∑
i

ρ(λ′g(xi, θ))

)
.(5)

The choice of the function ρ(·) defines the estimator used, as described in Table
1. The advantage of the GEL formulation is the computational convenience of
solving an (Ng +Nθ )-dimensional optimization problem rather than the (n+Nθ )-
dimensional problem defining an MED estimator.

As pointed out in [47], only specific choices of h(·) lead to an estimator admit-
ting an equivalent GEL representation. A particularly rich class of such discrepan-
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cies is given by the Cressie–Read (CR) discrepancies [11],

h(wi) = (nwi)
γ+1 − 1

γ (γ + 1)
,(6)

where γ is the parameter indexing the family. The corresponding ρ(·) is given in
Table 1. The GEL representation of an MED estimator is called a dual problem be-
cause it amounts to reformulating the optimization in terms of the Lagrange multi-
plier λ of the moment constraints. Newey and Smith [47] conjecture that Cressie–
Read discrepancies may be the only discrepancies admitting a GEL representation.
The weights attributed to the sample points in the original MED estimator can be
recovered from

ŵi(θ) = τ(λ̂(θ)′g(xi, θ))∑
j τ (λ̂(θ)′g(xj , θ))

,(7)

where τ(ξ) = dρ(ξ)/dξ . We will refer to τ(ξ) as the tilting function because, as
seen in equation (7), it indicates how the sample points are reweighted. The EL,
ET and CU estimators are all members of this class (see Table 1) of empirical
Cressie–Read (ECR) estimators. For a more detailed description of these families
of estimators, we refer the reader to the excellent discussions found in [47, 50].

2.2. Comparing the ECR estimators. Let us first give the properties shared
by all ECR estimators. For just-identified models (Ng = Nθ ), all of these estima-
tors are trivially identical because the moment conditions can be satisfied exactly
simply by choosing θ̂ appropriately without the need for tilting (λ̂(θ̂ ) = 0). In over-
identified models for which the over-identifying restrictions are valid, all ECR (and
GEL) estimators possess the same asymptotic variance [47], which is equal to the
asymptotic variance of the two-step efficient GMM estimator. All ECR estimators
also enable the construction of confidence regions for the mean (g(xi, θ) = xi − θ )
through convenient χ2-calibrated likelihood-ratio tests [4]. In light of the results
in [53], Baggerly’s results should extend to general g(xi, θ).

The similarities end at the level of first order asymptotic properties in correctly
specified models, however. As noted in [4], the behavior of the implied proba-
bilities ŵi(θ̂ ) in finite samples differs markedly as a function of the sign of the
parameter γ . For ECR with γ ≤ 0, the implied probabilities ŵi(θ̂ ) are positive by
construction, while for γ > 0, they can take on negative values. In a correctly spec-
ified model (where the implied probabilities converge to n−1 for all ECR), negative
weights become decreasingly likely as sample size grows and it is possible to en-
tirely avoid negative weights via the use of a “shrinkage factor” correction (see
[6]) that vanishes asymptotically and that has no effect on the limiting distribution.
Nevertheless, under misspecification, the “shrinkage factor” correction does not
vanish asymptotically since negative weights remain likely even asymptotically
when γ > 0.
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Positive implied probabilities are associated with likelihood-ratio confidence
regions whose shape better adapts to the data [4, 50]. For instance, confidence re-
gions for the mean then always lie within the convex hull of the support of the
density of the corresponding random variable. Positive implied probabilities are
also important in applications that require empirical estimates of the data gener-
ating process, as in the bootstrap, for instance, [7]. These observations indicate
that EL (with γ = −1) and ET (with γ = 0) should be preferable to CU (with
γ = 1). CU also suffers from a different problem, namely the potential presence of
multiple local maxima in its objective function [22, 30].

Numerous authors have sought to further narrow down the choice of desirable
ECR estimators. EL is often singled out among the ECR because it leads to likeli-
hood ratio tests that are often, though not always, Bartlett correctable [10, 14, 39].
Newey and Smith [47] have recently shown that EL generally exhibits a smaller
O(n−1) bias than any other member of the ECR family [unless the centered third
moments of the distribution of g(xi, θ

∗) happen to all vanish, in which case all
ECR estimators have the same O(n−1) bias]. They have also shown that bias-
corrected EL is higher-order efficient, possessing an O(n−2) variance that is no
greater than that of any other bias-corrected regular method of moments estimator.

2.3. Behavior under misspecification. As mentioned in the Introduction, in
the presence of misspecification, the object of interest is the pseudo-true value
of the parameter vector. In the case of MED estimators, the pseudo-true value is
defined as the value of θ which minimizes the population version of the empirical
discrepancy used in the estimation procedure.

It is important to note that although two different estimators may consistently
estimate the truth in a correctly specified model, they may converge in probabil-
ity to different pseudo-true values in the presence of misspecification. These two
pseudo-true values merely represent the minimizers of two different well-defined
discrepancies. Even though it could be argued that pseudo-true values are gener-
ally “biased,” the literature on estimation under model misspecification considers
estimators of pseudo-true values as valid statistics for the purpose of inference
(see [56], as an early reference). Following the recent literature using various ECR
estimators under model misspecification, we will not argue whether any ECR has
a “better” pseudo-true value than another in a given context. Instead, we will com-
pare the convergence of various ECR estimators toward their respective pseudo-
true values—a property that will be relevant regardless of the context of interest.

Imbens, Spady and Johnson [30] have informally argued that EL may be ill-
behaved under model misspecification due to the fact that its influence func-
tion [20] is proportional to

1

1 − λ′g(xi, θ∗)
∂g′(xi, θ

∗)
∂θ

λ,
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where the denominator (1 − λ′g(xi, θ
∗)) can approach zero. We formalize this

concern by showing that EL suffers from a dramatic degradation of its asymptotic
properties under even the slightest amount of misspecification.

THEOREM 1. Let xi be an i.i.d. sequence and assume g(x, θ) is twice contin-
uously differentiable in θ for all x and all θ ∈ � and such that supθ∈� E[‖g(xi,

θ)‖2] < ∞. If infθ∈� ‖E[g(xi, θ)]‖ �= 0 and supx∈X u′g(x, θ) = ∞ for any θ ∈ �

and any unit vector u, then there exists no θ∗
EL ∈ � such that ‖θ̂EL − θ∗

EL‖ =
Op(n−1/2).

This theorem can be extended to the case where the moment function g(xi, θ)

diverges only along some directions u but not others. In that case, the lack of root
n consistency is avoided only when E[g(xi, θ

∗)] happens to be orthogonal to the
hyperplane along which g(xi, θ) diverges.

While Theorem 1 does not prevent θ̂EL from being a consistent estimator of the
pseudo-true value θ∗

EL, it does preclude θ̂EL from being root n consistent, under
the assumptions of the theorem. The proof of this result, which can be found in the
Appendix, is somewhat involved, because standard asymptotics break down for EL
under misspecification with unbounded g(x, θ). The following heuristic argument
illustrates the nature of the problem: First note that the EL implied probabilities
are given by

ŵi = n−1(
1 − λ̂′g(xi, θ

∗)
)−1(8)

and must be positive [49]. This implies that λ̂
p→ 0, for otherwise, maxi≤n λ̂′g(xi,

θ∗) would become unbounded as n → ∞, causing some ŵi to become negative.
Now, the population version of the first order condition for λ̂ is E[g(xi, θ

∗)/(1 −
λ∗′g(xi, θ

∗))] = 0, where λ∗ and θ∗ denote pseudo-true values. Yet, at the pseudo-
true value λ∗ ≡ plim λ̂ = 0, this expectation takes the value E[g(xi, θ

∗)], which is
not zero, by the assumption of misspecification. Hence, the asymptotics of EL can-
not be determined from a standard expansion of the first-order conditions around
the pseudo-true values that satisfy the first-order conditions in the population. The

limit as n → ∞ and as λ̂
p→ 0 cannot be freely exchanged, indicating that the mo-

ments entering the first-order conditions violate the standard dominance regularity
conditions used to establish the asymptotics of M-estimators [46].

Theorem 1 indicates that, unless one is willing to solely use moment functions
that take values in a compact set [so that supx∈X u′g(x, θ∗) is bounded for any u],
the slightest amount of misspecification can cause the first-order asymptotic prop-
erties of EL to degrade catastrophically. It is important to realize that it is very
common that the function g(x, θ) itself is unbounded even when E[g(x, θ)] is fi-
nite. For instance, if g(x, θ) = (x1 − θ, x2 − 1)′ and x = (x1, x2) is drawn from a
bivariate normal, g(x, θ) is unbounded even though E[g(x, θ)] exists.
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Of course, when the main hypothesis of Theorem 1 (supx∈X ‖g(x, θ)‖ < ∞)
does not hold, root n consistency becomes possible. For instance, the type of
moment conditions advocated in the robustness literature (e.g., [20, 24]) involves
bounded functions and root n consistent estimation under misspecification, there-
fore possible using EL. Nevertheless, Theorem 1 does rule out moment conditions
such as a simple average of random variables drawn from a distribution with un-
bounded support.

Theorem 1 is especially important given the growing literature on minimum em-
pirical discrepancy estimators in misspecified models [8, 23, 26, 32, 34, 54, 61]. In
the nonnested model selection literature using minimum discrepancies, it is often
assumed that the competing models may be all misspecified and one is merely
concerned with choosing the least misspecified model (e.g., [8, 32, 34]). Since the
model that is eventually used for inference may then be misspecified, Theorem 1
is particularly relevant in this context and indicates that EL may not be well suited
to these applications—unless the assumption of bounded g(xi, θ) is made, which
is precisely the assumption that the model selection literature using EL has so far
relied upon [8, 23, 34].

EL’s implied probability weights also exhibit questionable behavior under mis-
specification with unbounded g(xi, θ). Since the EL implied probabilities wi =
n−1(1 − λ̂′g(xi, θ))−1 must be positive [4], it is straightforward to see that λ̂

p→ 0
when g(xi, θ) is unbounded. Then note that the implied probabilities associated
with all points xi such that g(xi, θ̂) ∈ C for a given compact set C converge to n−1

uniformly. Since this result holds for any compact set, this shows that, as sample
size grows, all the adjustments to the implied probabilities become concentrated
on the extreme observations. This would be desirable if the weights of these ex-
treme observations were always decreased to ensure that the moment conditions
are satisfied, but this is not the case. In fact, due to the convexity of EL’s tilting
function τ(ξ) = 1/(1 − ξ), the reweighting of the sample in order to satisfy the
misspecified moment conditions will be achieved by placing a large weight on a
few extreme observations, while slightly reducing the weights (relative to n−1) of
the bulk of the observations. Note that this problem is exacerbated by the fact that
the weights can become extremely large as the singularity in the tilting function is
approached. This feature will be visible in our simulations below.

We conjecture that any ECR estimator with γ < 0 exhibits the same problems
as EL under misspecification due to the presence of a ratio in the tilting func-
tion. Thus, if we focus solely on ECR which preclude negative implied proba-
bilities (γ ≤ 0), we are left with ET (corresponding to γ = 0) as the only candi-
date ECR whose behavior might not degrade dramatically under misspecification.
This is precisely the choice made in [32] for the analysis of misspecified mo-
ment restriction models. The asymptotic variance of ET under misspecification
is finite under reasonable assumptions, the most restrictive of which is slightly
stronger than the requirement of the existence of the moment generating function
Mθ(λ) = E[exp(λ′g(xi, θ))] for θ and λ in some bounded sets.
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3. Exponentially tilted empirical likelihood. Higher-order asymptotic prop-
erties in correctly specified models point to EL, while good behavior under mis-
specification points toward ET. There appear to be significant benefits to be able
to combine EL and ET into a single estimator exhibiting the advantages of both.

It has been suggested [10, 47, 50] that other GEL estimators that exhibit the
same higher-order properties as EL can be devised by simply employing a tilting
function τ(ξ) which admits the same Taylor expansion as the tilting function of
EL in the vicinity of ξ = 0 up to sufficiently high order. The behavior of τ(ξ)

farther away from ξ = 0 could then be independently set to match the behavior of
ET under misspecification. This option is not particularly attractive because (i) the
estimator completely loses its interpretation as a minimum empirical discrepancy
estimator, (ii) the estimator can no longer be seen as either a maximum likelihood
or a maximum entropy estimator, concepts that initially motivated the form of
the EL and ET estimators, and (iii) there still exist an infinite number of ways to
interpolate between EL and ET in order to construct τ(ξ), making the procedure
highly nonunique. For these reasons we focus on a different approach.

3.1. The estimator. We propose to combine the EL and ET estimators in the
following fashion.

DEFINITION 2 (ETEL estimator).

θ̂ = arg min
θ

(
n−1

∑
i

h̃(ŵi(θ))

)
,(9)

where ŵi(θ) is the solution to

min
{wi}ni=1

n−1
∑
i

h(wi)(10)

subject to ∑
i

wig(xi, θ) = 0 and
∑
i

wi = 1,(11)

and where

h̃(wi) = − ln(nwi),(12)

h(wi) = nwi ln(nwi).(13)

The discrepancies used in the above optimization problem correspond to using
ET to find ŵi(θ) and using EL to find θ̂ . Since h(·) belongs to the family of ECR
discrepancies, this type of estimator still admits an (Ng + Nθ )-dimensional dual
optimization problem of the form

θ̂ = arg min
θ

n−1
∑
i

h̃(ŵi(θ)),(14)
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where ŵi(θ) is given by equation (7) with

λ̂(θ) = arg max
λ

(
n−1

∑
i

ρ(λ′g(xi, θ))

)
(15)

and ρ(ξ) = − exp(ξ). This approach yields a unique estimator that combines the
likelihood form of EL [equation (9)] while incorporating the concept of entropy
characterizing ET [equation (10)]. For these reasons, we call this estimator expo-
nentially tilted empirical likelihood (ETEL). Other authors [10, 31, 40] have con-
sidered this combination of EL and ET for the purpose of constructing likelihood-
ratio confidence regions for the mean. It has also been shown that a nonparametric
Bayesian procedure based on a prior on the space of distributions that favors distri-
butions having a large entropy yields a posterior whose maximum would define the
ETEL estimator [58]. This paper’s contribution will be to identify the numerous
desirable asymptotic properties of ETEL point estimates in the case of general mo-
ment functions g(xi, θ) in the context of overidentified and possibly misspecified
models.

The fact that the ETEL point estimate is the solution to two nested optimiza-
tion problems (one of dimension Ng and one of dimension Nθ ) instead of a single
saddle-point problem does not complicate the implementation of the estimator. In-
deed, ECR estimators are often implemented as two nested optimization problems
despite their saddle point form, because it is easier to design robust numerical
methods for locating either a maximum or a minimum that do not break down near
inflection points of the objective function [43].

ETEL represents only one of the many possible combinations between two dif-
ferent discrepancies [one to find the ŵi(θ) and one to find θ̂ ]. However, using
the EL discrepancy to find θ̂ stands out as a particularly attractive choice because
the optimization problem defining θ̂ maintains the maximum likelihood form of
EL, thus making it more likely that EL’s higher-order properties will be preserved,
an issue that will be investigated below. The use of the ET discrepancy to find the
weights ŵi(θ) is also natural. Since the objective function for θ̂ contains ln(ŵi(θ)),
it is imperative that the weights ŵi(θ) be positive by construction and not only as-
ymptotically in correctly specified models. As noted earlier, if we focus on weights
obtained from the ECR family, in order to maintain the low dimensional dual for-
mulation, only ECR with γ ≤ 0 provide positive weights by construction [4]. How-
ever, any ECR with γ < 0 contains a singularity in its influence function, leaving
γ = 0, or ET, as the only sensible choice to find the weights in the presence of
potential model misspecification.

From a conceptual point of view, one may wonder about the interpretation of
the ETEL estimator, since its definition combines two different discrepancies. It is
often pointed out that in the case of discrete distributions, EL provides maximum
likelihood estimates of both θ∗, the true value of the parameter vector of interest,
and the weights. Since ET weights are used in ETEL, ETEL weights are not maxi-
mum likelihood estimates, but in itself this is not a great concern since the weights
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are nuisance parameters and inference focuses on θ∗. Indeed, after solving for all
the parameters in terms of θ , both the ETEL and EL estimators of θ∗ can be cast
into the familiar form of a maximum likelihood estimator of θ∗ (as opposed to
both θ∗ and the weights, as in EL),

θ̂ = arg max
θ

(
n−1

∑
i

ln(ŵi(θ))

)
,(16)

where ŵi(θ) is given by equations (7) and (5). Of course, such an estimator can
only formally be identified as a maximum likelihood estimator in the special case
of a discrete distribution having support consisting of a finite number of points.
More generally, for continuous distributions we can nevertheless refer to θ̂ as a
MED estimator of θ∗ using the KLIC discrepancy (as for maximum likelihood
estimators), an interpretation that will be relevant under model misspecification.
The distinction between EL and ETEL lies in how the estimate of the distribu-
tion of the data generating process ŵi(θ) given θ is constructed. In a parametric
likelihood, ŵi(θ) would be uniquely given by the distributional assumptions of
the model. When moment conditions replace distributional assumptions, however,
there exists no such unique choice of ŵi(θ), due to the nonparametric nature of
the problem. Both EL and ETEL replace parametric distributional assumptions by
a so-called least favorable family of distributions (see, e.g., [15]), that is, a para-
metric family of distributions (indexed by θ ) for which the estimation problem is
as difficult as the original nonparametric problem. In other words, for each θ there
exist an infinite number of distributions satisfying the moment conditions, and
the specific discrete distribution defined by ŵi(θ) represents a worst-case scenario
among them. As pointed out in [15], there exist numerous least favorable families;
EL and ETEL merely employ different ones and, a priori, there is no reason to
favor one over the other.

In the case of ETEL, the least favorable family chosen is the class of distribu-
tions obtained by maximizing entropy under the θ -dependent moment constraints
imposed by the model. Entropy maximization has a long history as a device to con-
struct distributions which properly model lack of prior information under a set of
known constraints (see, e.g., [12, 17, 36, 38, 60]). ETEL thus combines the well-
established concept of entropy maximization to handle the nonparametric part of
the estimation problem, while using likelihood maximization to deal with the para-
metric part of the problem. The idea of substituting nonparametric nonmaximum
likelihood estimates [here, the ŵi(θ)] into a likelihood-type objective function to
avoid the pathological behavior of an approach based solely on maximum likeli-
hood also parallels the work of Fan and co-workers [16].

One may have preferences regarding which estimator of the distribution is the
more appealing, but the choice between EL and ETEL should ultimately be based
on the comparison of the actual asymptotic properties of each estimator and their
performance in simulation experiments, which is what the remainder of this article
is devoted to.
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3.2. Properties.

3.2.1. First-order properties. To simplify the notation, we make the depen-
dence of all quantities on θ implicit and introduce the following definitions.

DEFINITION 3. Let ŵi = ŵi(θ), λ̂ = λ̂(θ), gi = g(xi, θ), ĝ = n−1 ×∑
i g(xi, θ), Gi = ∂g(xi, θ)/∂θ ′, G = E[Gi], Ĝ = n−1 ∑

i Gi , G̃ = ∑
i ŵiGi ,

�̂ = n−1 ∑
i gig

′
i , � = E[gig

′
i] and �̃ = ∑

i ŵigig
′
i . Quantities evaluated at θ = θ∗

are denoted by ∗.

Simple algebraic manipulations yield the following.

THEOREM 2. The ETEL estimator θ̂ETEL maximizes the objective function

ln L̂(θ) = − ln

(
n−1

∑
i

exp
(
λ̂′(gi − ĝ)

))
,(17)

where λ̂ is such that

n−1
∑
i

exp(λ̂′gi)gi = 0.(18)

The first-order conditions for θ̂ETEL can be written as

n−1
∑
i

(1 − nŵi)
d(λ̂′gi)

dθ ′ = 0,(19)

where the total derivative indicates that λ̂ is allowed to vary with θ .

We then establish that ETEL is at least as good as any ECR estimator both in
terms of its first-order asymptotic properties and in terms of its invariance proper-
ties.

ASSUMPTION 1 (Regularity conditions).

1. xi forms an i.i.d. sequence.
2. θ∗ ∈ int(�) is the unique solution to E[g(xi, θ)] = 0, where � is compact.
3. g(xi, θ) is continuous (in θ ) at each θ ∈ � with probability one.
4. E[supθ∈� ‖gi‖2+δ] < ∞ for some δ > 0 and E[supθ∈N ‖Gi‖] < ∞.
5. �∗ is nonsingular and finite and rank(G∗) = Nθ .
6. g(xi, θ) is continuously differentiable (in θ ) in a neighborhood N of θ∗.

These assumptions match those of Theorem 3.2 in [47] and include those of
Theorem 3.4 in [50].
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THEOREM 3 (First-order properties). Under Assumption 1, the ETEL estima-
tor (i) has the same limiting distribution as efficient two-step GMM,

n1/2(θ̂ − θ∗) d→ N(0,),

where  = (G∗′(�∗)−1G∗)−1, (ii) ETEL enables the construction of χ2-calibrated
likelihood-ratio confidence regions for θ ,

−2n ln(L̂(θ)/L̂(θ̂))
d→ χ2

Nθ
,

and (iii) of χ2-calibrated test of the validity of overidentifying restrictions,

−2n ln(L̂(θ̂ ))
d→ χ2

Ng−Nθ
.

THEOREM 4 (Implied probabilities and invariance properties). Whenever the
ETEL estimator is defined, (i) it yields positive implied probabilities (ŵi(θ) ≥ 0),
(ii) it is invariant under arbitrary one-to-one differentiable reparametrization
θ = T (β) of the moment conditions [the estimate β̂ obtained from the repara-
metrized moment conditions satisfies θ̂ = T (β̂)] and (iii) it is invariant under gen-
eral parameter-dependent nonsingular linear transformation A(θ) of the vector
of moment conditions (using E[A(θ)g(xi, θ)] = 0 or E[g(xi, θ)] = 0 as moment
conditions gives the same θ̂ ).

3.2.2. Higher-order asymptotic properties. Estimators having the same (first-
order) asymptotic variance can be compared on the basis of their higher-
order (op(n−1/2)) asymptotic properties [55]. While it has been established that
likelihood-ratio confidence regions of the mean constructed using ETEL do not
share EL’s Bartlett correctability [10, 31], another type of analytic higher-order
correction permits the same improvement in the order of the coverage accuracy
[40]. Moreover, it has been observed in simulation studies [50, 62] that the Bartlett
correction is often ineffective in practice because the “QQ” plots for the EL like-
lihood ratio test statistics are typically curved, making it unlikely that a linear
correction such as Bartlett’s would improve coverage accuracy. Finally, given that
ETEL’s objective function can be interpreted as a posterior for the parameter θ

obtained via a nonparametric Bayesian procedure [58], it may be a more relevant
and interesting topic of future research to verify whether a Bayesian Bartlett cor-
rection [5], which differs from the usual frequentist Bartlett correction, would be
applicable to ETEL.

More importantly, we can show that the ETEL point estimate θ̂ETEL shares all of
the other higher-order properties of EL established in [47]. Higher-order asymp-
totic properties of an estimator θ̂ are defined through a stochastic expansion (see,
e.g., [52, 55]) of the form

(θ̂ − θ∗) = n−1/2ψ̄ + n−1q̄ + n−3/2r̄ + Op(n−2),(20)
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where ψ̄ , q̄ and r̄ are Op(1) and where ψ̄ and r̄ have zero mean. Within this
framework, the O(n−1) bias is defined as E[q̄] and represents the most impor-
tant correction to standard first-order asymptotics based solely on the influence
function ψ̄ . Another important correction to first-order asymptotics is the O(n−2)

variance, defined as

Var[q̄] + Covar[r̄ , ψ̄] + Covar[ψ̄, r̄].(21)

This expression can be informally obtained by computing the variance of equa-
tion (20). In general, it is not meaningful to compare the O(n−2) variances of
two estimators that possess different O(n−1) biases and bias-corrected estimators
should be used to compare efficiency.

We now proceed to compare the stochastic expansions of θ̂ETEL and θ̂EL, using
assumptions found in [47]. Our approach consists of establishing that the differ-
ence θ̂ETEL − θ̂EL is such that the Newey and Smith results for θ̂EL carry over to
θ̂ETEL.

THEOREM 5 (Higher-order equivalence to EL). Under Assumption 1 and if
E[supθ∈N ‖gi‖4] < ∞, E[supθ∈N ‖Gi‖2] < ∞ and for θ ∈ N , G(xi, θ) is Lip-
schitz in θ with prefactor b(xi) such that E[b(xi)] < ∞, then θ̂ETEL − θ̂EL =
Op(n−3/2).

A consequence of this result is that the ETEL estimator has the same O(n−1)

bias as the EL estimator obtained in [47], under their assumptions. (As shown
in [59], this result in fact extends to all estimators constructed by substituting GEL
weights into the EL objective function.)

ASSUMPTION 2. There exists a function b(xi) with E[(b(xi))
6] < ∞ such

that, in a neighborhood N of θ∗, all partial derivatives of g(xi, θ) with respect to
θ up to order four exist, are bounded by b(xi) and are Lipschitz in θ with prefactor
b(xi).

THEOREM 6 (Small bias property). Under Assumptions 1 and 2, ETEL’s
O(n−1) bias is

n−1H(−a + E[GiHgi])
where H = G′�−1 and a is a vector whose elements are aj = tr(E[∂2gj (xi,

θ∗)/∂θ ∂θ ′])/2, where gj (xi, θ
∗) is the j th element of g(xi, θ

∗).

Simple intuition for the small bias of EL is that the EL first-order condition
resembles the first order condition of GMM (ĝ′�̂−1Ĝ = 0) except for the fact that
the Hessian term �̂ and the Jacobian term Ĝ are replaced by efficient averages
that are weighted by the EL implied probabilities [47]. This reweighting removes
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the O(n−1) correlation between the different sample averages entering the first-
order condition, thus reducing the bias. As shown in the Appendix, ETEL also
efficiently weights the Hessian and the Jacobian terms, using only the ET weights.
Since ET and EL implied probabilities are equivalent to a sufficiently high order,
using the ET instead of the EL weights only contributes to a negligible Op(n−3/2)

remainder.
The fact that ETEL and EL are equivalent up to Op(n−1) leads to two impor-

tant simplifications in the comparison of their O(n−2) variances. First, since their
O(n−1) biases are the same, the moments entering the expression for the bias cor-
rection of EL and ETEL are the same. If these moments were estimated in the
same way for EL and for ETEL, then comparing the O(n−2) variance of EL and
ETEL with or without performing a bias correction would obviously give the same
answer. This conclusion remains unchanged if the bias correction is applied using
the EL estimate of θ for the EL bias correction and the ETEL estimate of θ for
the ETEL bias correction since these estimates differ by Op(n−3/2), which would
give rise to a difference of only Op(n−1n−3/2) in the bias correction. Moreover, as
pointed out in [47], whether the moments entering the bias correction are estimated
by sample averages or averages weighted by implied probabilities has no effect on
the higher-order variance of the resulting bias-corrected estimator. Hence, using
EL weights for the EL bias correction and ETEL weights for the ETEL bias cor-
rection makes no difference either. In conclusion, we can meaningfully compare
the O(n−2) variances of EL and ETEL before performing a bias correction.

The second simplification made possible by the equivalence of the Op(n−1)

terms of the EL and ETEL stochastic expansions is that the differences in their
O(n−2) variance must take the form

Covar[r̄ETEL − r̄EL, ψ̄] + Covar[ψ̄, r̄ETEL − r̄EL],(22)

as seen in (21). Hence, it is possible for ETEL and EL to differ by Op(n−3/2),
while still sharing the same O(n−2) variance, as long as that difference is uncorre-
lated with their (identical) influence function ψ̄ . In fact, this is precisely the case,
as shown in the Appendix.

THEOREM 7 (Higher-order efficiency). Under Assumptions 1 and 2, the
O(n−2) variances of ETEL and EL are equal.

Maintaining the maximum likelihood form for the optimization problem defin-
ing θ̂ETEL thus achieves the desired goal, namely, to maintain the higher-order
asymptotic properties of EL found in [47]. It is the fact that (22) vanishes that en-
ables ETEL to be higher-order efficient even though it differs sufficiently from EL
to fail to be Bartlett correctable in the frequentist sense.
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3.2.3. Behavior under misspecification. While in the previous section we have
seen that ETEL inherits the higher-order properties of EL, we will now show that
it also exhibits some of the desirable properties of ET that EL lacks under model
misspecification.

Following the discussion of Section 3.1, ETEL’s pseudo-true value θ∗ mini-
mizes the KLIC discrepancy between the true data generating process and an en-
tropy maximizing least favorable family of distributions parametrized by θ (which
replaces the distributional assumptions in parametric maximum likelihood).

We will now study the first-order asymptotic properties of ETEL under mis-
specification.

THEOREM 8. For a given θ , assume that E[exp(λ′g(xi, θ))] exists in a neigh-
borhood of its minimum. If a subvector of g(xi, θ) is statistically independent of
the remaining elements of g(xi, θ), then the empirical c.d.f. obtained from ETEL
(or ET) implied probabilities at θ converges pointwise (at every point of continuity
of the true c.d.f.) to a c.d.f. that maintains this independence, even under misspec-
ification. EL achieves this only in the absence of misspecification.

This indicates the possibility that using an empirical c.d.f. obtained from the im-
plied probability weights of EL in the hope of improving accuracy could actually
result in the introduction of a spurious dependence among variables. ETEL avoids
this unappealing eventuality. This property could be helpful when the implied
probabilities are employed to improve the efficiency of the bootstrap, as in [7],
when the model happens to be misspecified.

A more important quality that ETEL shares with ET is the nonsingular behavior
of its influence function. As noted by [30], an estimator’s influence function ψ(xi)

is proportional to its first-order conditions. By inspection of ETEL’s first-order
condition [equation (19)] it is clear ETEL’s influence function will not contain any
singularity, unlike EL’s influence function. It will therefore not be surprising that
ETEL avoids EL’s undesirable behavior under misspecification, under regularity
conditions similar to the ones made by [32] for ET, as shown more formally below.

Let λ∗(θ) denote the solution to E[exp(λ′g(xi, θ))g(xi, θ)] = 0, which is
unique by the strict convexity of E[exp(λ′g(xi, θ))] in λ.

ASSUMPTION 3 (Regularity conditions under misspecification).

1. xi forms an i.i.d. sequence.
2. The function lnL(θ) ≡ − ln(E[exp(λ∗′(θ)(g(xi, θ) − E[g(xi, θ)]))]) is maxi-

mized at a unique “pseudo-true” value θ∗ ∈ int(�), where � is compact.
3. g(xi, θ) is continuous (in θ ) at each θ ∈ � with probability one.
4. E[supθ∈� supλ∈�(θ) exp(λ′g(xi, θ))] < ∞ where �(θ) is a compact set such

that λ∗(θ) ∈ int(�(θ)).
5. Sjl(xi, θ) = ∂2g(xi, θ

∗)/∂θj ∂θl is continuous (in θ ) for θ ∈ N , a neighborhood
of θ∗.
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6. There exists b(xi) satisfying E[supθ∈N supλ∈�(θ) exp(k1λ
′g(xi, θ)) ×

(b(xi))
k2] < ∞ for k1 = 1,2 and k2 = 0,1,2,3,4 such that ‖G(xi, θ)‖ ≤ b(xi)

and ‖Sjl(xi, θ)‖ ≤ b(xi) for j, l = 1, . . . ,Nθ for any xi ∈ X and for all θ ∈ N .

The simplest way to describe the asymptotics of ETEL under misspecification is
to introduce an equivalent just-identified GMM estimator involving an augmented
parameter vector β = (τ, κ ′, λ′, θ ′)′. The vector θ ∈ R

Nθ is the parameter vector
of interest, while (τ, κ ′, λ′)′ ∈ R

1+2Ng are auxiliary parameters to be estimated
jointly with θ . The dimension of this augmented parameter vector is higher than
in the case of GEL estimators under misspecification (1 + 2Ng + Nθ instead of
Ng + Nθ ). This is due to the fact that the first-order conditions for θ̂ in ETEL
involve a few additional terms taking the form of a product of sample moments
that are absent in GEL estimators. Each of these products of sample moments can
be linearized by introducing the additional parameters κ and τ . Note that these
additional parameters are merely a device used to simplify the construction of the
covariance matrix of the estimator. The point estimate θ̂ can be obtained without
introducing κ and τ , as seen in Theorem 2.

LEMMA 9. The ETEL point estimate θ̂ is given by the appropriate subvector
of the vector β̂ = (τ̂ , κ̂ ′, λ̂′, θ̂ ′)′, the solution to

n−1
∑
i

φ(xi, β̂) = 0,

where, letting τ̂i = exp(λ̂′gi),

φ(xi, β̂) =




τ̂i − τ̂
∂

∂κ̂
(τ̂ig

′
i κ̂ + τ̂ g′

i λ̂ − τ̂i )

∂

∂λ̂
(τ̂ig

′
i κ̂ + τ̂ g′

i λ̂ − τ̂i )

∂

∂θ̂
(τ̂ig

′
i κ̂ + τ̂ g′

i λ̂ − τ̂i )




(23)

=




τ̂i − τ̂

τ̂igi

(τ̂ − τ̂i)gi + τ̂igig
′
i κ̂

τ̂iG
′
i κ̂ + τ̂iG

′
i λ̂g′

i κ̂ − τ̂iG
′
i λ̂ + τ̂G′

i λ̂


 .

Given the just-identified nature of the estimator defined in Lemma 9, its asymp-
totic distribution follows quite directly.

THEOREM 10 (Asymptotics under misspecification). Let � = E[∂φ(xi, β)/

∂β ′|β=β∗] and � = E[φ(xi, β
∗)φ′(xi, β

∗)]. Under Assumption 3, if � is nonsin-

gular, then n1/2(β̂ − β∗) d→ N(0,�−1�(�′)−1).
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4. Simulations. We first illustrate the fact that ETEL has the same O(n−1)

bias as EL. We use the simple experimental design suggested in [19] and subse-
quently used in [30, 33], slightly expanded to have K moment conditions rather
than two. The moment conditions are

g(xi, θ) = [ r(xi, θ) r(xi, θ)xi2 r(xi, θ)(xi3 − 1) · · · r(xi, θ)(xiK − 1) ]′ ,

where r(xi, θ) = exp(−0.72 − (xi1 + xi2)θ + 3xi2) − 1. These restrictions are sat-
isfied at θ∗ = 3 when (xi1, xi2)

′ ∼ N(0, (0.16)I ) and xik ∼ χ2
1 , for k = 3, . . . ,K .

Note that the third moments of all elements of g(xi, θ) are nonzero and that
g(xi, θ) is nonlinear in θ , so that the O(n−1) bias does not trivially vanish. Fig-
ure 1 shows the c.d.f. of the EL, ET and ETEL estimators of θ obtained from
10,000 replicated samples of the above design (with K = 4 and K = 10), each
containing 200 observations. [Samples for which at least one of the three esti-
mators considered failed to converge were discarded. This happened 14 times for
K = 4 and 32 times for K = 10. The most frequent reason for failure of conver-
gence was that the origin was not contained within the convex hull of the values
of g(xi, θ) for any θ , in which case none of the estimators is even defined. The
number of nondiscarded samples is 10,000.] It is apparent that the ETEL and EL
point estimates have very similar distributions, as expected from their equivalence
up to the Op(n−1) term of their stochastic expansion. The distribution of the ET
point estimates differs noticeably from that of EL and ETEL, and the main dif-
ference takes the form of a bias, which is reported in Table 2. The bias of ET
increases more rapidly with the number of moment conditions than the biases of
both EL and ETEL, as the higher-order asymptotics analyse given in [47] and in
the present work would suggest.

Our next simulation compares the behavior of EL, ET and ETEL under mis-
specification. We consider a simple case where we wish to estimate the mean while

FIG. 1. Cumulative distribution function of the EL, ET and ETEL estimators for the Hall–Horowitz
design with 4 (left) and 10 (right) moment conditions. The sample size is n = 200 and 10000 repli-
cations were used to calculate this empirical c.d.f.
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TABLE 2
The bias of the EL, ETEL and ET estimators for the

Hall–Horowitz design

EL ETEL ET

K = 4 0.063 0.061 0.103
K = 10 0.129 0.103 0.232

imposing a known variance. In this example, the moment conditions are

g(xi, θ) = [xi − θ (xi − θ)2 − 1 ] ,

where xi is drawn either from a correctly specified Model C or a misspecified
model M,

xi ∼ N(0,1) (for Model C),

xi ∼ N(0, (0.8)2) (for Model M).

Note that this experiment is specifically designed so that the pseudo-true value
(θ∗ = 0) for the misspecified model is the same for EL, ET and ETEL, thus en-
abling a meaningful comparison of the variances of these estimators.

Figure 2 shows the c.d.f. of the EL, ET and ETEL estimators of θ for a sample
size of 1000 and a sample size of 5000, evaluated with 10,000 and 2000 replica-
tions, respectively. The variability of the EL estimate is clearly larger than that of
ET and ETEL, as confirmed by the calculated standard deviations given in Table 3.
Interestingly, the distributions (and the standard deviations) of the ET and ETEL
estimators are quite similar. While the ET and ETEL standard deviations shrink by
the expected factor of

√
5 as the sample size is increased from 1000 to 5000, the

standard deviation of EL barely changes, which is not surprising given the results
of Theorem 1. Note that the difference between the distribution of EL and that
of the two other estimators can be made arbitrarily large either by increasing the
amount of misspecification or by increasing the sample size.

We can also use simulations to illustrate the source of EL’s poor behavior under
misspecification. Figure 3 shows the implied probabilities for EL and ETEL in two

TABLE 3
The standard deviations of the EL, ETEL and ET estimators for Models C and M defined in the text.

The number of replications is 10000 for the n = 1000 sample and 2000 for the n = 5000 sample

n = 1000 n = 5000

Estimator EL ETEL ET EL ETEL ET
Model C 0.032 0.032 0.032 0.014 0.014 0.014
Model M 0.054 0.038 0.031 0.052 0.019 0.014
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FIG. 2. Cumulative distribution function of the EL, ET and ETEL estimators for Models C and
M defined in the text. For the top portion of the figure, the sample size is n = 1000 and 10000
replications were used. For the bottom portion of the figure, n = 5000 and 2000 replications were
used.

simulated samples of size n = 1000 and n = 5000 drawn from the misspecified
Model M. It is apparent that the EL implied probabilities attribute an excessive
weight to the extreme observations. As the sample size grows, this trend worsens:
the second graph exhibits an extremely large weight at xi ≈ −3 and nwi ≈ 95.

FIG. 3. EL and ETEL implied probabilities in simulated samples drawn from the misspecified
Model M as a function of sample size. Note the differences in the scale of the vertical axes.
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In contrast, the ETEL implied probabilities distribute the weight more uniformly
over the whole sample and, even more importantly, the weights do not become
increasingly concentrated in the tails as the sample size grows.

These examples, although simple and perhaps not realistic, illustrate how ETEL
matches the low-bias property of the EL estimator and shares the reasonable be-
havior of ET under misspecification.

5. Conclusion. Our first important result is to show that although empirical
likelihood (EL) is known to exhibit numerous desirable higher-order asymptotic
properties in correctly specified models, its first-order asymptotic properties can
degrade catastrophically in the presence of the slightest amount of misspecifica-
tion, causing the loss of root n consistency. Although the use of only bounded
functions g(xi, θ) in the moment conditions E[g(xi, θ)] = 0 avoids this problem,
this is a rather strong constraint. In contrast, exponential tilting (ET) is known to be
inferior to EL in terms of its higher-order properties, but remains well behaved in
the presence of misspecification under relatively weak regularity conditions [32].

Our second main contribution is to show that EL and ET can be combined to
yield an estimator that exhibits the advantages of both. This so-called exponentially
tilted empirical likelihood (ETEL) has the same low O(n−1) bias and the same
O(n−2) variance as EL in correctly specified models, and yet avoids EL’s pitfalls
in misspecified models.

APPENDIX: PROOFS

The quantities given in Definitions 1 and 3 will be used throughout the Appen-
dix. Let C denote a generic constant which may take distinct values in different
contexts. Let CSI stand for Cauchy–Schwarz inequality and let w.p.a. 1 stand for
the phrase “with probability approaching one.”

PROOF OF THEOREM 1. The proof proceeds by constructing a triangular ar-
ray of estimators θ̂k,n indexed by the sample size n and by an auxiliary truncation
parameter k. To define this array, let Gk be an increasing sequence of nested com-
pact subsets of R

Ng such that
⋃∞

k=1 Gk = R
Ng . Then let Ck = {x ∈ X :g(x, θ) ∈

Gk for all θ ∈ �}. Note that Ck is nonempty for k sufficiently large.
Let F∞(x) denote the distribution of x and let θ̂∞,n denote the EL estimator ob-

tained from a sample of size n and let θ∗∞ denote EL’s pseudo-true value, assuming
it exists (for otherwise, θ̂∞,n could not even be consistent).

Let Fk(x) be a sequence of distributions indexed by k ∈ N, each having sup-
port Ck . We choose Fk(x) so that, for all sufficiently large k, the moment con-
ditions are uniformly misspecified (infk≥k̄ infθ∈� ‖EFk

[g(x, θ)]‖ > 0 for some

k̄ ∈ N). Let θ̂k,n denote the EL estimator in a sample size of n when the true data
generating process is Fk(x) and let θ∗

k ∈ � denote the corresponding pseudo-true
value. We then note that it is also always possible to choose a distribution Fk(x)
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with support Ck such that P [|u′(θ̂k,n −θ∗
k )| ≥ ε] ≤ P [|u′(θ̂∞,n −θ∗∞)| ≥ ε] for any

ε > 0, any conformable unit vector u and all n. For instance, one could first con-
struct a distribution F̃k(x) equal to F∞(x) conditional on the event x ∈ Ck . Let θ∗

k

denote the pseudo-true value associated with F̃k(x). Then set Fk(x) to be a mix-
ture of F̃k(x) and a degenerate distribution that would give θ∗

k as an EL estimate
with certainty. In this fashion, Fk(x) is a “truncated” version of F∞(x) designed
to make the estimation of θ∗

k by θ̂k,n easier than the estimation of θ∗∞ by θ̂∞,n.
Obviously, θ̂k,n is an infeasible estimator that uses out of sample information. It
is introduced solely for the purpose of facilitating the proof. Note that θ∗

k �= θ∗∞ in
general, but the proof will never require that θ∗

k = θ∗∞.
For a distribution Fk(x) having compact support, the EL estimator can be

written as a just identified GMM estimator of an augmented parameter vector
β̂ = (θ̂ ′

k,n, λ̂
′
k,n)

′ satisfying the first-order conditions

n−1
∑
i

G′(xi, θ̂k,n)λ̂k,n/
(
1 − λ̂′g(xi, θ̂k,n)

) = 0,(24)

n−1
∑
i

g(xi, θ̂k,n)/
(
1 − λ̂′g(xi, θ̂k,n)

) = 0.(25)

Note that these first-order conditions form a just-identified system of equations,
whether the model is correctly specified or not. Hence, in this formulation the
standard asymptotic theory of just-identified GMM estimators applies [46] (see
also [32] for the application of this idea to ET under misspecification). The as-
ymptotic variance of a just-identified GMM of the form n−1 ∑

i φ(xi, β̂) = 0 is
given by (

E[∂φ′(xi, β)/∂β])−1
(E[φ(β)φ′(β)])(E[∂φ′(xi, β)/∂β])−1

.(26)

For k sufficiently large, we can always choose Fk(x) so as to satisfy the neces-
sary regularity conditions for this expression to hold. In particular, the compact
support of Fk(x) enables E[g(xi, θ)/(1 − λ′g(xi, θ))] to exist for (θ ′, λ′)′ in some
neighborhood of the pseudo-true value (θ∗′

k , λ∗′
k )′. The asymptotic distribution of

(θ̂ ′
k,n, λ̂

′
k,n)

′ is then given by

n1/2(
(θ̂ ′

k,n, λ̂
′
k,n) − (θ∗′

k,n, λ
∗′
k,n)

)′ d→ N(0,H−1
k SkH

−1
k ),

(27)
as n → ∞ for fixed k,

where

Sk = E

[(
τ 2
i G′

iλ
∗
kλ

∗′
k Gi τ 2

i G′
iλ

∗
kg

′
i

τ 2
i giλ

∗′
k Gi τ 2

i gig
′
i

)]
,(28)

Hk = E





 τ̇iG

′
iλ

∗
kλ

∗′
k Gi + τi

∂(G′
iλ

∗′
k )

∂θ ′ τ̇iG
′
iλ

∗
kg

′
i + τiG

′
i

τ̇igiλ
∗′
k Gi + τiGi τ̇igig

′
i





 ,(29)
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and where τi = τ(λ∗′
k gi) = (1 − λ∗′

k gi)
−1, τ̇i = ∂τ(ξ)

∂ξ
|ξ=λ′gi

= (1 − λ∗′
k gi)

−2 = τ 2
i

and where all moments are evaluated at θ∗
k and λ∗

k = plimn→∞ λ̂k,n and assuming
that x is drawn from Fk(x) (i.e., E[·] ≡ EFk

[·]).
We focus on the upper left Nθ × Nθ submatrix of H−1

k SkH
−1
k , denoted by k .

For a given k, the submatrix k provides the asymptotic variance of θ̂k,n. We
will now analyze the behavior of k as k → ∞ (we are not claiming that this
provides the asymptotic variance of EL for infinite support at this point). Since
EL’s implied probabilities must be positive (see, e.g., [4, 50]), it follows that (1 −
λ∗′

k g(x, θ∗
k ))−1 > 0 for all x ∈ Ck , or

max
x∈Ck

(λ∗′
k g(x, θ∗

k )) < 1.(30)

Since {g(x, θ∗
k ) :x ∈ X} is unbounded in every direction, the set {g(x, θ∗

k ) :∈ Ck}
becomes unbounded in every direction as k → ∞. Hence, the only way to satisfy
equation (30) is to have λ∗

k → 0 as k → ∞. Since λ∗
k → 0 as k → ∞, the expres-

sions for Sk and Hk can be simplified by noting that when the product H−1
k SkH

−1
k

is calculated, any term containing λ∗
k will be dominated by terms not containing

λ∗
k . We then obtain [keeping the τi = τ(λ∗′

k gi) prefactors even though λ∗
k → 0 be-

cause the g(x, θ∗
k ) are unbounded and it is not clear whether we necessarily have

τi → 1]

Sk →
[

0 0
0 E[τ 2

i gig
′
i]

]
,

(31)

H−1
k →

[
0 E[τiG

′
i]

E[τiGi] E[τ 2
i gig

′
i]

]−1
≡

[
B11 B12
B21 B22

]
.

(Note that the sequence Fk can be easily chosen so that the smallest eigenvalue
Hk remains bounded away from zero for all k sufficiently large, since the moment
conditions remain the same over k and Gk increases with k. Hence, limk→∞ Hk

can be assumed nonsingular and interchanging the limit as k → ∞ and the matrix
inversion operation is justified.) We then have that

k = B12E[τ 2
i gig

′
i]B21 + ρk,(32)

where ρk is a remainder that vanishes as k → ∞ (its precise form has no bearing
on the rest of the argument). By the partitioned inverse formula,

B21 = (E[τ 2
i gig

′
i])−1E[τiGi](E[τiG

′
i](E[τ 2

i gig
′
i])−1E[τiGi])−1 = B ′

12.(33)

Substituting this expression for B21 into equation (34) yields

k = (E[τiG
′
i](E[τ 2

i gig
′
i])−1E[τiGi])−1 + ρk.(34)

We will now show that k diverges as k → ∞. For EL, λ∗
k is such that

E[g(xi, θ
∗
k )/(1 − λ∗′

k g(xi, θ
∗
k ))] = 0. Since E[g(xi, θ

∗
k )/(1 − λ∗′

k g(xi, θ
∗
k ))] =
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E[g(xi, θ
∗
k )] + E[g(xi, θ

∗
k )g′(xi, θ

∗
k )/(1 − λ∗′

k g(xi, θ
∗
k ))λ∗

k], we have

�kλ
∗
k = −E[g(xi, θ

∗
k )],(35)

where �k = E[g(xi, θ
∗
k )g′(xi, θ

∗
k )/(1 − λ∗′

k g(xi, θ
∗
k ))]. Since infk≥k̄ E[g(xi,

θ∗
k )] > 0 for some k̄ ∈ N by construction, having λ∗

k → 0 as k → ∞ is only pos-
sible if at least one of the eigenvalues of �k diverges as k → ∞. Let v be a (unit)
eigenvector associated with one of these eigenvalues. Then, by the CSI v′�kv

equals

E

[
v′g(xi, θ

∗
k )

(1 − λ∗′
k g(xi, θ

∗
k ))

v′g(xi, θ
∗
k )

]
(36)

≤
(
E

[
(v′g(xi, θ

∗
k ))2

(1 − λ∗′
k g(xi, θ

∗
k ))2

]
E[(v′g(xi, θ

∗
k ))2]

)1/2

.

Since E[(v′g(xi, θ
∗
k ))2] ≤ supθ∈� E[‖g(xi, θ)‖2] < ∞, (36) therefore implies that

E[ (v′g(xi ,θ
∗
k ))2

(1−λ∗′
k g(xi ,θ

∗
k ))2 ] = E[τ 2

i v′gig
′
iv] diverges and thus that E[τ 2

i gig
′
i] has a diver-

gent eigenvalue. Since E[τ 2
i gig

′
i] enters the expression of k [given by equa-

tion (34)], k has at least one divergent eigenvalue as k → ∞. Note that the
other terms entering the expression of k cannot compensate for the explo-
sive behavior of E[τ 2

i gig
′
i], since a simple application of the CSI shows that,

as k → ∞, ‖E[τiGi]‖ = ‖E[(1 + τiλ
∗′
k gi)Gi]‖ = O(E[τi‖gi‖‖λ∗

k‖‖Gi‖]) =
O((E[τ 2

i ‖gi‖2])1/2)(E[‖Gi‖2])1/2‖λ∗
k‖ = o((E[τ 2

i ‖gi‖2])1/2) = o((E[τ 2
i ×

‖gig
′
i‖])1/2) = o((E[τ 2

i v′gig
′
iv])1/2).

We will now show that the divergent behavior of k implies that EL is not
root n consistent. We start by calculating the probability that θ̂k,n lies outside of
a root n neighborhood of the pseudo-true value θ∗

k . Let Pk,n be the finite sample
distribution of n1/2(u′ku)−1/2u′(θ̂k,n − θ∗

k ) for some conformable unit vector
u such that u′ku → ∞ as k → ∞ (u is an eigenvector associated with one of
the divergent eigenvalues of k). Let Pk,∞ denote the corresponding asymptotic
distribution, the c.d.f. of a N(0,1) for all k. For a given ξ < 0, the probability that
u′(θ̂k,n − θ∗

k ) ≤ n−1/2ξ is Pk,n((u
′ku)−1/2ξ).

Let nk = min{n : supm≥n |Pk,m((u′ku)−1/2ξ) − Pk,∞((u′ku)−1/2ξ)| ≤ k−1}.
This defines the sample size beyond which the difference [at (u′ku)−1/2ξ ] be-
tween the finite sample and asymptotic distribution is less than k−1. Such a finite
n can always be found, since Pk,n converges pointwise to Pk,∞. Now define the
“inverse” sequence kn = max{k :nk ≤ n}. Note that kn → ∞, as n → ∞, since
nk → ∞ as k → ∞.

Since P [|u′(θ̂∞,n − θ∗∞)| ≥ ε] ≥ P [|u′(θ̂k,n − θ∗
k )| ≥ ε] for all ε > 0 and any n,

by the construction of Fk , P [u′(θ̂∞,n − θ∗∞) ≤ n−1/2ξ ] ≥ P [u′(θ̂k,n − θ∗
k ) ≤

n−1/2ξ ] = Pk,n((u
′ku)−1/2ξ) for any k and any n and any ξ < 0. In particular,
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for k = kn,

P [u′(θ̂∞,n − θ∗∞)
(37)

≤ n−1/2ξ ] ≥ Pkn,n((u
′knu)−1/2ξ)

= Pkn,∞((u′knu)−1/2ξ)
(38)

+ (
Pkn,n((u

′knu)−1/2ξ) − Pkn,∞((u′knu)−1/2ξ)
)

≥ Pkn,∞((u′knu)−1/2ξ) − k−1
n(39)

by the definition of kn. As n → ∞, k−1
n → 0. Since Pk,∞ is the same for all k and is

continuous [it is the c.d.f. of a N(0,1)], for any k we have limn→∞ Pkn,∞((u′kn ×
u)−1/2ξ) = limn→∞ Pk,∞((u′knu)−1/2ξ) = Pk,∞(limn→∞(u′knu)−1/2ξ) =
Pk,∞(0) = 1/2, where we have used the fact that (u′knu)−1/2 → 0 since u′ku

diverges as k → ∞. We then have limn→∞ P [u′(θ̂∞,n − θ∗∞) ≤ n−1/2ξ ] ≥ 1/2 for
any ξ < 0. A similar reasoning for ξ > 0 implies that limn→∞ P [u′(θ̂∞,n − θ∗∞) ≥
n−1/2ξ ] ≥ 1/2. It follows that θ̂∞,n lies outside a n−1/2 neighborhood of θ∗∞ with
probability approaching 1/2 + 1/2 = 1 as n → ∞, thus ruling out root n conver-
gence.

To summarize, for any EL estimator θ̂∞,n based on a distribution F∞(x) with
unbounded support, there exists a family of other estimators θ̂k,n based on com-
pactly supported distributions Fk(x) all having a narrower distribution than EL for
each n. Yet the asymptotic variance of θ̂k,n diverges as k → ∞. By a standard diag-
onal argument, there exists an estimator sequence θ̂kn,n that is not root n consistent
but whose distribution is narrower than the one of EL at each n. Hence EL is not
root n consistent. �

PROOF OF THEOREM 2.

ln L̂ ≡ n−1
∑
i

lnnŵi = n−1
∑
i

ln

(
exp(λ̂′gi)

/(
n−1

∑
j

exp(λ̂′gj )

))

= n−1
∑
i

λ̂′gi − ln

(
n−1

∑
j

exp(λ̂′gj )

)

= − ln

(
n−1

∑
j

exp
(
λ̂′(gj − ĝ)

))
,

d ln L̂

dθ ′ = n−1
∑
i

d(λ̂′gi)

dθ ′ −
(
n−1

∑
j

exp(λ̂′gj )

)−1

n−1
∑
i

exp(λ̂′gi)
d(λ̂′gi)

dθ ′

= n−1
∑
i

d(λ̂′gi)

dθ ′ − n−1
∑
i

nŵi

d(λ̂′gi)

dθ ′ = n−1
∑
i

(1 − nŵi)
d(λ̂′gi)

dθ ′ .
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From (15), the first order condition for λ̂ is
∑

i gi exp(λ̂′gi) = 0. �

PROOF OF THEOREM 3. Expanding the ETEL first-order conditions for θ̂ and
λ̂ around θ = θ∗ and λ = 0 reveals an expansion identical to that of EL at least up
to Op(n−1/2) in an O(n−1/2) neighborhood of θ = θ∗ and λ = 0,

n−1
∑
i

[
0

g(xi, θ
∗)

]

+ n−1
∑
i

(
0 G′(xi, θ

∗)
G(xi, θ

∗) g(xi, θ
∗)g′(xi, θ

∗)

)[
θ − θ∗

λ

]
= op(n−1/2).

Calculational details can be found in [57]. In addition, in a O(n−1/2) neighborhood
of θ = θ∗, both the ETEL and the EL objective functions for θ̂ share the same
expansion in (θ − θ∗) at least up to Op(n−1),

−1
2(θ − θ∗)′

(
n−1

∑
i

G′(xi, θ
∗)

)
(�̂∗)−1

(
n−1

∑
i

G(xi, θ
∗)

)
(θ − θ∗)+ op(n−1),

where �̂∗ = n−1 ∑
i g(xi, θ

∗)g′(xi, θ
∗). It is known (see, e.g., [47, 49]) that the

EL estimator is asymptotically such that the solutions λ̂EL and θ̂EL lie within
the O(n−1/2) neighborhood where the remainder terms of these expansions are
negligible. Hence, asymptotically, λ̂EL and θ̂EL also solve the ETEL first-order

conditions, apart from negligible remainders. Since λ̂EL
p→ 0, and since both the

EL and the ETEL objective functions for θ̂ converge to their maximum possible

value when λ̂EL
p→ 0 and λ̂ETEL

p→ 0, respectively, the existence of another solu-
tion outside of the neighborhood of validity of the above expansions can be ruled
out. ETEL thus inherits all the first-order properties of EL established in [47, 49].

�

PROOF OF THEOREM 4. The first conclusion follows from the fact that the
implied probabilities are given by

ŵi(θ) = exp(λ̂(θ)′g(xi, θ))
/(∑

j

exp(λ̂(θ)′g(xj , θ))

)
,

a necessarily positive quantity for any λ̂ and θ . The second conclusion holds for
any estimator where θ is the extremum of a differentiable objective function:

∂ ln L̂(T (β))

∂β
= ∂T (β)′

∂β

∂ ln L̂(θ)

∂θ
= 0

if and only if ∂ ln L̂(θ)/∂θ = 0 since ∂T (β)′/∂β has full rank [T (β) being one-
to-one]. The third conclusion can be shown by noting that any invertible linear
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transformation of the moment function A(θ)g(xi, θ) simply causes the Lagrange
multiplier λ̂(θ) to become ((A(θ))−1)′λ(θ). Indeed, under these two transforma-
tions, the first-order conditions for both θ̂ and λ̂(θ̂ ) remain satisfied,

n−1
∑
i

(
1 − nŵi(θ̂ )

)
d(λ̂′(A(θ))−1A(θ)gi)/dθ

= n−1
∑
i

(
1 − nŵi(θ̂ )

)
d(λ̂′gi)/dθ = 0,

where ŵi(θ̂ ) = exp(λ̂′(A(θ))−1A(θ)gi)/(
∑

j exp(λ̂′(A(θ))−1A(θ)gj )) =
exp(λ̂′gi)/(

∑
j exp(λ̂′gj )) and n−1 ∑

i exp(λ̂′(A(θ))−1A(θ)gi)A(θ)gi =
A(θ)n−1 ∑

i exp(λ̂′gi)gi = 0 if and only if n−1 ∑
i exp(λ̂′gi)gi = 0 since A(θ)

is invertible. �

PROOF OF THEOREM 5. By Theorem 2, the first order condition for θ̂ is

d ln L̂

dθ ′ = n−1
∑
i

(1 − nŵi)

(
g′

i

∂λ̂

∂θ ′ + λ̂′Gi

)

= n−1
∑
i

g′
i

∂λ̂

∂θ ′ + λ̂′n−1
∑
i

Gi −
(∑

i

ŵig
′
i

)
∂λ̂

∂θ ′ − λ̂′ ∑
i

ŵiGi(40)

= ĝ′ ∂λ̂

∂θ ′ + λ̂′Ĝ − 0 − λ̂′G̃.

To find ∂λ̂/∂θ ′, we note that the total differential of
∑

i exp(λ̂′gi)gi = 0 yields∑
i

exp(λ̂′gi)gig
′
i dλ̂ + ∑

i

exp(λ̂′gi)Gi dθ + ∑
i

gi exp(λ̂′gi)λ̂
′Gi dθ = 0,

∑
i

gig
′
i ŵi dλ̂ + ∑

i

ŵi(I + giλ̂
′)Gi dθ = 0,

implying that

∂λ̂

∂θ ′ = −�̃−1

(∑
i

ŵi(I + giλ̂
′)Gi

)
.(41)

Substituting this result into equation (40) gives

∂ ln L̂(θ)

∂θ ′ = −ĝ′�̃−1

(∑
i

ŵi(I + giλ̂
′)Gi

)
+ λ̂′Ĝ − λ̂′G̃

= −ĝ′�̃−1G̃ − ĝ′�̃−1
∑
i

ŵigi λ̂
′Gi + λ̂′Ĝ − λ̂′G̃(42)

= −ĝ′�̃−1G̃ − ĝ′�̃−1
∑
i

ŵigi λ̂
′Gi + n−1

∑
i

(1 − nŵi)λ̂
′Gi.
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By the first-order equivalence between EL and ETEL established in Theorem 3 and
using Theorem 3.1 in [47], λ̂(θ̂ ) = Op(n−1/2) and ĝ = Op(n−1/2) for θ̂ such that
‖θ −θ∗‖ = Op(n−1/2). These facts, along with the fact that supθ∈� maxi≤n ‖gi‖ =
op(n1/2) by part 4 of Assumption 1, provide us with asymptotic expansions for
nŵi and λ̂,

nŵi = exp(λ̂′gi)

n−1 ∑
j exp(λ̂′gj )

= 1 + λ̂′gi + O((λ̂′gi)
2)

1 + λ̂′ĝ + Op(n−1)
(43)

= 1 + λ̂′gi + Op(n−1)‖gi‖2

1 + Op(n−1) + Op(n−1)

= 1 + λ̂′gi + Op(n−1)‖gi‖2.

An expansion for λ̂ is obtained by noting that the left-hand side of n−1 ∑
i gi ×

exp(g′
i λ̂) = 0 can be written as

n−1
∑
i

gi(1 + g′
i λ̂) + R0 = n−1

∑
i

gi +
(
n−1

∑
i

gig
′
i

)
λ̂ + R0

= n−1
∑
i

gi +
(
n−1

∑
i

nŵigig
′
i

)
λ̂ + R0 + R1

= ĝ + �̃λ̂ + R0 + R1,

implying that

λ̂ = −�̃−1ĝ − �̃−1(R0 + R1),(44)

where the remainder terms R0,R1 can be bounded using the assumption
E[supθ∈N ‖gi‖4] < ∞ and (43): ‖R0‖ = Op(n−1)n−1 ∑

i ‖gi‖3 = Op(n−1) and
‖R1‖ ≤ n−1 ∑

i (nŵi − 1)‖gi‖2‖λ̂‖ = n−1 ∑
i O(‖λ̂‖‖gi‖)‖gi‖2 ×

‖λ̂‖ = O(‖λ̂‖2)n−1 ∑
i ‖gi‖3 = Op(n−1).

Substituting the expansion (43) into the last term of (42) yields

∂ ln L̂(θ)

∂θ ′ = −ĝ′�̃−1G̃ − ĝ′�̃−1
∑
i

ŵigi λ̂
′Gi

(45)
+ n−1

∑
i

λ̂′giλ̂
′Gi + R2,

where ‖R2‖ ≤ Op(n−1)n−1 ∑
i ‖gi‖2‖λ̂‖‖Gi‖ ≤ Op(n−3/2)n−1 ∑

i ‖gi‖2‖Gi‖ ≤
Op(n−3/2)(n−1 ∑

i ‖gi‖4)1/2(n−1 ∑
i ‖Gi‖2)1/2 = Op(n−3/2), after using the CSI
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and the facts that E[supθ∈N ‖gi‖4] < ∞ and E[supθ∈N ‖Gi‖2] < ∞. Then (45)
becomes

∂ ln L̂(θ)

∂θ ′ = −ĝ′�̃−1G̃ − ĝ′�̃−1
∑
j

ŵj gj λ̂
′Gj

− (λ̂)′n−1
∑
j

gj λ̂
′Gj + Op(n−3/2),

where the λ̂ in parentheses can be replaced by expansion (44),

∂ ln L̂(θ)

∂θ ′ = −ĝ′�̃−1G̃ − ĝ′�̃−1
∑
j

ŵj gj λ̂
′Gj

(46)
+ ĝ′�̃−1n−1

∑
j

gj λ̂
′Gj + R3 + Op(n−3/2),

where ‖R3‖ = Op(n−1)n−1 ∑
j ‖gj‖‖λ̂‖‖Gj‖ = Op(n−3/2)n−1 ∑

j ‖gj‖‖Gj‖ ≤
Op(n−3/2)(n−1 ∑

j ‖gj‖2)1/2(n−1 ∑
j ‖Gj‖2)1/2 = Op(n−3/2) by the CSI,

E[supθ∈N ‖gi‖4] < ∞ and E[supθ∈N ‖Gi‖2] < ∞. Then (46) becomes

∂ ln L̂(θ)

∂θ ′ = −ĝ′�̃−1G̃ + ĝ′�̃−1n−1
∑
j

(1 − nŵj )gj λ̂
′Gj

+ Op(n−3/2)
(47)

= −ĝ′�̃−1G̃ − ĝ′�̃−1n−1
∑
j

(λ̂′gj )gj λ̂
′Gj + R4

+ Op(n−3/2),

where we have used the expansion (43) again and where ‖R4‖ ≤ ‖ĝ′�̃−1‖n−1 ×∑
j O((λ̂′gj )

2)‖gj‖‖λ̂‖‖Gj‖ = ‖ĝ‖‖λ̂‖3‖�̃−1‖n−1 ∑
j ‖gj‖2‖gj‖‖Gj‖ ≤

Op(n−2)(maxi≤n ‖gj‖)n−1 ∑
j ‖gj‖2‖Gj‖ = Op(n−2)Op(n1/2)n−1 ∑

j ‖gj‖2 ×
‖Gj‖ = Op(n−3/2) by the CSI, the assumptions that E[supθ∈N ‖gi‖4] < ∞
and E[supθ∈N ‖Gi‖2] < ∞ and the fact that E[‖gi‖2] < ∞ ⇒ maxi≤n ‖gi‖ =
Op(n1/2) (as in [47], Lemma A1). Finally (47) becomes

∂ ln L̂(θ)

∂θ ′ = −ĝ′�̃−1G̃ + Op(n−3/2).

Now, the term ĝ′�̃−1G̃ is similar to the first-order conditions for EL, except
that the weights used in �̃ and G̃ are the ET rather than the EL weights. How-
ever, by (43) and a similar expansion for the EL weights, n(ŵi,ET − ŵi,EL) =
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Op(n−1)‖gi‖2. This fact, along with ĝ = Op(n−1/2), implies that

ĝ′
(∑

i

ŵi,ETgig
′
i

)−1(∑
i

ŵi,ETGi

)

= ĝ′
(
n−1

∑
i

nŵi,ELgig
′
i + R5

)−1(
n−1

∑
i

nŵi,ELGi + R6

)

= ĝ′
(∑

i

ŵi,ELgig
′
i

)−1(∑
i

ŵi,ELGi

)
+ Op(n−1/2)Op(n−1)

by the differentiability of the inverse and the fact that ‖R5‖ ≤ n−1 ∑
i Op(n−1) ×

‖gi‖2‖gi‖2 = Op(n−1)n−1 ∑
i ‖gi‖4 = Op(n−1) and ‖R6‖ ≤ n−1 ×∑

i Op(n−1)‖gi‖2‖Gi‖ = Op(n−1).
This implies that the first-order condition for ETEL is the same as that of EL up

to Op(n−3/2). The continuous differentiability of ĝ in θ implies ‖θ̂ETEL − θ̂EL‖ =
Op(n−3/2) by a standard expansion of the first-order condition around θ = θ∗. �

PROOF OF THEOREM 7. Lemma A4 in [47] establishes that under regularity
conditions implied by the ones given in the statement of the present theorem, a just-
identified GMM estimator β̂ defined by n−1 ∑

i φ(xi, β̂) = 0 admits a stochastic
expansion of the form

β̂l − β∗
l = n−1/2�̄l + n−1Q̄l + n−3/2R̄l + Op(n−2),(48)

where

Q̄l = ∑
j

�̄l,j �̄j + 1
2

∑
j,k

�l,jk�̄j �̄k,

R̄l = ∑
j

�̄l,j Q̄j + ∑
j,k

�l,jk�̄j Q̄k

+ 1
2

∑
j,k

�̄l,jk�̄j �̄k + 1
6

∑
j,k,h

�l,jkh�̄j �̄k�̄h,

�̄l = ∑
q

�−1
lq �̄q, �̄l,j = ∑

q

�−1
lq �̄q,j , �̄l,jk = ∑

q

�−1
lq �̄q,jk,

�l = ∑
q

�−1
lq �q, �l,j = ∑

q

�−1
lq �q,j , �l,jk = ∑

q

�−1
lq �q,jk,

�l,jkh = ∑
q

�−1
lq �q,jkh,

�−1 =
(
E

[
∂φ(xi, β)

∂β ′
∣∣∣∣
β=β∗

])−1

,



664 S. M. SCHENNACH

�l,j = E

[
∂φl(xi, β)

∂βj

∣∣∣∣
β=β∗

]
, �l,jk =

[
∂2φl(xi, β)

∂βj ∂βk

∣∣∣∣
β=β∗

]
,

�l,jkh =
[

∂3φl(xi, β)

∂βj ∂βk ∂βh

∣∣∣∣
β=β∗

]
,

�̄l = n−1/2
∑
i

φl(xi, β
∗), �̄l,j = n−1/2

∑
i

(
∂φl(xi, β)

∂βj

∣∣∣∣
β=β∗

− �l,j

)
,

�̄l,jk = n−1/2
∑
i

(
∂2φl(xi, β)

∂βj ∂βk

∣∣∣∣
β=β∗

− �l,jk

)
.

(We have adapted Newey and Smith’s result to follow our notation and slightly
simplified it using the fact that �l,jk = �l,kj .) We now write the ETEL and EL esti-
mators as just identified GMM estimators that can be easily compared. As shown in
Lemma 9, and as discussed in Section 3.2.3 in the text, the ETEL estimator can be
written as a subvector θ̂ of an augmented parameter vector β̂ = (τ̂ , κ̂ ′, λ̂′, θ̂ ′)′ that
solves a just-identified vector of moment conditions n−1 ∑

i φ
ETEL(xi, β̂ETEL) = 0,

where φETEL(xi, β̂) is given by (23).
It is well known that EL can also be written as a subvector θ̂ of an augmented

parameter vector (κ̂ ′, θ̂ ′)′ that solves a just-identified vector of moment conditions

n−1
∑
i

[
ε̂igi

ε̂iG
′
iκ

]
= 0,(49)

where ε̂i = (1 − κ̂ ′gi)
−1 and κ̂ is the Lagrange multiplier of the moment con-

straints, which has been relabelled κ̂ to simplify the comparison with ETEL.
Once again, to further simplify the comparison, we augment the vector in (49)
by 1 + dimκ additional moment conditions and introduce the same number of
additional parameters (τ̂ , λ̂), where τ ∈ R and λ ∈ R

dimκ ,

n−1
∑
i

[ (τ̂i − τ̂ ) τ̂ig
′
i ε̂ig

′
i (ε̂iG

′
i κ̂)′ ]′ = 0,

where τ̂i = exp(λ̂′gi). In this fashion, the dimension of the vector of moment con-
ditions and the number of parameters are the same in ETEL, as in EL. The addi-
tional moment conditions merely define the values of the new parameters (τ̂ , λ̂)

and do not change the values of (κ̂ ′, θ̂ ′)′. Indeed, whenever (κ̂ ′, θ̂ ′)′ are such
that the bottom two subvectors are zero, one can always find a value of (τ̂ , λ̂)

that will make the top two subvectors vanish as well. (There exists λ̂ such that
n−1 ∑

i τ̂igi = 0 w.p.a. 1. Then, we can just set τ̂ = n−1 ∑
i τ̂i .)

Finally, since just-identified GMM is invariant under linear transformations of
the vector of moment conditions, the moment conditions for EL can equivalently
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be written as n−1 ∑
i φ

EL(xi, β̂EL) = 0, where

φEL(xi, β̂) =




τ̂i − τ

τ̂igi

ε̂igi − τ̂igi

ε̂iG
′
i κ̂


 .(50)

Equipped with (23) and (50), we can construct a stochastic expansion of the form
(48) for each estimator. The O(n−2) covariance between two elements of the pa-
rameter vector, θ̂l and θ̂m, is given by

Wlm ≡ Covar[Q̄lθ+l , Q̄lθ+m]+ Covar[R̄lθ+l , �̄lθ+m]+ Covar[�̄lθ+l , R̄lθ+m],(51)

where lθ = 1 + 2 dimλ. The quantities associated with each estimator will be dis-
tinguished by an “ETEL” or “EL” superscript.

We provide below the sequence of equalities that need to be established in order
to show, as directly as possible, that ETEL and EL have the same O(n−2) variance.
The tedious yet straightforward calculational details that prove each statement are
omitted below but can be found in [57].

(1) �̄ETEL
l = �̄EL

l and �ETEL
l,j = �EL

l,j ≡ �l,j ⇒ �̄ETEL
j = �̄EL

j .

(2) (1) ⇒ Q̄ETEL
l −Q̄EL

l = ∑
j (�̄

ETEL
l,j − �̄EL

l,j )�̄j + 1
2

∑
j,k(�

ETEL
l,jk −�EL

l,jk)×
�̄j �̄k .

(2a) (�̄ETEL
l,j − �̄EL

l,j )�̄j = ∑
q,j �−1

lq (�̄ETEL
q,j − �̄EL

q,j )�̄j , where
∑

j (�̄
ETEL
q,j −

�̄EL
q,j )�̄j = 0.

(2b) (�ETEL
l,jk − �EL

l,jk)�̄j �̄k = ∑
q,j,k

�−1
lq (�ETEL

q,jk − �EL
q,jk)�̄j �̄k , where

∑
j,k(�

ETEL
q,jk − �EL

q,jk)�̄j �̄k = 0.

(3) (2), (2a) and (2b) ⇒ Q̄ETEL
l − Q̄EL

l = 0.

(4) (1) and (3) ⇒ WETEL
lm − WEL

lm = Covar[R̄ETEL
lθ+l − R̄EL

lθ+l , �̄lθ+m] +
Covar[�̄lθ+l , R̄

ETEL
lθ+m − R̄EL

lθ+m].
(5) (1) and (3) ⇒ R̄ETEL

l − R̄EL
l = ∑

j (�̄
ETEL
l,j − �̄EL

l,j )Q̄,j +∑
j,k(�

ETEL
l,jk − �EL

l,jk)�̄j Q̄k + 1
2

∑
j,k(�̄

ETEL
l,jk − �̄EL

l,jk)�̄j �̄k +
1
6

∑
j,k,h(�

ETEL
l,jkh − �EL

l,jkh)�̄j �̄k�̄h.

(5a)
∑

j (�̄
ETEL
lθ+l,j − �̄EL

lθ+l,j )Q̄,j = 1
2

∑
j Hlj ḡj ḡ

′P ḡ, where ḡ = n−1/2 ∑
i gi ,

H = (G′�−1G)−1G′�−1 and P = �−1 − �−1G(G′�−1G)−1G′�−1.
(5b) (�ETEL

lθ+l,jk − �EL
lθ+l,jk)�̄kQ̄j = −1

2
∑

j Hlj ḡj ḡ
′P ḡ + �1,l with

E[�l�̄lθ+m] = o(n−2).
(5c) �̄j (�̄

ETEL
l,jk − �̄EL

l,jk)�̄k = 0

(5d) E[(�ETEL
lθ+l,jkh − �EL

lθ+l,jkh)�̄j �̄k�̄h�̄
EL
lθ+m] = o(n−2).

(6) (5a) through (5d) ⇒ Covar[R̄ETEL
lθ+l − R̄EL

lθ+l , �̄lθ+m] = o(n−2).
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(7) (3) and (6) ⇒ ETEL and EL share the same O(n−2) variance. �

PROOF OF THEOREM 8. Let gi,a and gi,b denote the subvectors of gi that are
mutually independent and let λa and λb denote the corresponding subvectors of the
Lagrange multiplier. Independence holds if and only if for any measurable func-
tions a(gi,a) and b(gi,b), E[a(gi,a)b(gi,b)] = E[a(gi,a)]E[b(gi,b)] whenever these
expectations are defined. The exponentially tilted empirical distribution estimates
the moment E[a(gi,a)] by

Q̂a =
(
n−1

∑
j

exp(λ̂′gj )

)−1

n−1
∑
i

a(gi,a) exp(λ̂′gi)

p→ (E[exp(λ′gj )])−1E[a(gi,a) exp(λ′gi)]
= (E[exp(λ′

agi,a) exp(λ′
bgi,b)])−1E[a(gi,a) exp(λ′

agi,a) exp(λ′
bgi,b)]

= E[a(gi,a) exp(λ′
agi,a)]E[exp(λ′

bgi,b)]
E[exp(λ′

agi,a)]E[exp(λ′
bgi,b)]

= E[a(gi,a) exp(λ′
agi,a)]

E[exp(λ′
agi,a)] ≡ Qa,

and similarly for E[b(gi,b)]. The exponentially tilted empirical distribution esti-
mates the moment E[a(gi,a)b(gi,b)] by

Q̂ab =
(
n−1

∑
j

exp(λ̂′gj )

)−1

n−1
∑
i

a(gi,a)b(gi,b) exp(λ̂′gi)

p→ (E[exp(λ′
agi,a) exp(λ′

bgi,b)])−1E[a(gi,a) exp(λ′
agi,a)b(gi,b) exp(λ′

bgi,b)]

= E[a(gi,a) exp(λ′
agi,a)]

E[exp(λ′
agi,a)]

E[b(gi,b) exp(λ′
bgi,b)]

E[exp(λ′
bgi,b)] = QaQb ≡ Qab

by the independence of gi,a and gi,b under the true untilted distribution. Hence
plim Q̂ab = plim Q̂a plim Q̂b as claimed. A similar result does not hold for EL

because (1 − λ′gi)
−1 �= (1 − λ′

agi,a)
−1(1 − λ′

bgi,b)
−1, unless maxi≤n |λ′gi | p→ 0,

which is impossible under global misspecification. �

PROOF OF LEMMA 9. From (42), the first-order condition for θ̂ is

−G̃′�̃−1ĝ − ∑
i

ŵiG
′
i λ̂g′

i�̃
−1ĝ + n−1

∑
i

G′
i λ̂ − ∑

i

ŵiG
′
i λ̂ = 0(52)

(after transposition), where λ̂ satisfies∑
i

exp(λ̂′gi)gi = 0.(53)
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Equation (52) contains products of sample moments which are difficult to analyze.
Our goal is thus to define auxiliary parameters that will allow us to rewrite the
first-order conditions as a linear function of sample moments.

Let us introduce the quantity τ̂i = exp(λ̂′gi) and

τ̂ = n−1
∑
i

τ̂i .(54)

Noting that ŵi = n−1τ̂i/τ̂ , (52) becomes

−
(
n−1

∑
i

τ̂iG
′
i

)(
n−1

∑
i

τ̂igig
′
i

)−1

ĝ

− n−1
∑
i

τ̂iG
′
i λ̂g′

i

(
n−1

∑
i

τ̂igig
′
i

)−1

ĝ(55)

+ n−1
∑
i

G′
i λ̂ − 1

τ̂
n−1

∑
i

τ̂iG
′
i λ̂ = 0.

Now, we introduce κ̂ = −(n−1 ∑
i (τ̂i/τ̂ )gig

′
i )

−1ĝ, or equivalently,(
n−1

∑
i

τ̂igig
′
i

)
κ̂ + τ̂ n−1

∑
i

gi = 0.(56)

Substituting the κ̂ whenever it appears in (55), after multiplying through by τ̂ ,
yields

n−1
∑
i

τ̂iG
′
i κ̂ + n−1

∑
i

τ̂iG
′
i λ̂g′

i κ̂ + n−1
∑
i

τ̂G′
i λ̂ − n−1

∑
i

τ̂iG
′
i λ̂ = 0.(57)

Equation (57) is now linear in the sample moments. Equations (54), (53),
(56) and (57) can be collected into a single vector of moment conditions
n−1 ∑

i φ(xi, β̂) = 0, where β̂ = (τ̂ , κ̂ ′, λ̂′, θ̂ ′)′ and

φ(xi, β̂) =




τ̂i − τ̂

τ̂igi

(τ̂ − τ̂i )gi + τ̂igig
′
i κ̂

τ̂iG
′
i κ̂ + τ̂iG

′
i λ̂g′

i κ̂ − τ̂iG
′
i λ̂ + τ̂G′

i λ̂


 .(58)

[For convenience, the third block is obtained by subtracting (53) from (56).] Noting
that ∂τ̂i

∂λ
= τ̂igi , ∂τ̂

∂λ
= 0 and ∂τ̂i

∂θ
= τ̂iG

′
iλ, the first expression for φ(xi, β̂) in (23)

also follows. �

PROOF OF THEOREM 10. We first establish consistency of β̂ in three steps:

(i) Show that λ̂(θ)
p→ λ∗(θ) uniformly for θ ∈ �. (ii) Show that θ̂

p→ θ∗ and there-

fore that λ̂(θ̂ )
p→ λ∗(θ∗). (iii) Show that this implies τ̂

p→ τ ∗ and κ̂
p→ κ∗.
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Step 1. By Lemma 2.4 in [46], continuity of exp(λ′g(xi, θ)) in λ and θ , parts

1 and 4 of Assumption 3 imply that M̂θ (λ) ≡ n−1 ∑
i exp(λ′g(xi, θ))

p→ Mθ(λ) ≡
E[exp(λ′g(xi, θ))] uniformly over the compact set {(λ′, θ ′)′ :λ ∈ �(θ), θ ∈ �},
where �(θ) is as in part 4 of Assumption 3. We can then show that for any
η > 0, P [supθ∈� ‖λ̄(θ) − λ∗(θ)‖ ≤ η] → 1, where λ̄(θ) = arg minλ∈�(θ) M̂θ (λ)

as follows. For a given η > 0, select ε = infθ∈� infλ∈�(θ):‖λ−λ∗(θ)‖≥η(Mθ(λ) −
Mθ(λ

∗(θ))), which is nonzero by the strict convexity of Mθ(λ) in λ and the
fact that � is compact. By the definition of ε, whenever supθ (Mθ(λ̄(θ)) −
Mθ(λ

∗(θ))) ≤ ε, then supθ∈� ‖λ̄(θ) − λ∗(θ)‖ ≤ η. However, using the fact that
(M̂θ (λ̄(θ)) − M̂θ (λ

∗(θ))) < 0, we have

sup
θ

(
Mθ(λ̄(θ)) − Mθ(λ

∗(θ))
)

≤ sup
θ

(
Mθ(λ̄(θ)) − M̂θ (λ̄(θ))

) + sup
θ

(
M̂θ (λ̄(θ)) − M̂θ (λ

∗(θ))
)

+ sup
θ

(
M̂θ (λ

∗(θ)) − Mθ(λ
∗(θ))

)
≤ sup

θ

|Mθ(λ̄(θ)) − M̂θ (λ̄(θ))| + sup
θ

|M̂θ (λ
∗(θ)) − Mθ(λ

∗(θ))|

≤ ε

2
+ ε

2
= ε

w.p.a. 1. Hence, supθ∈� ‖λ̄(θ) − λ∗(θ)‖ ≤ η w.p.a. 1. In order to obtain the same
conclusion for λ̂(θ) rather than λ̄(θ), we employ an argument similar to the proof
of Theorem 2.7 in [46]. Since M̂θ (λ) is convex in λ for any θ , if the minimum
λ̄(θ) lies in the interior of �(θ), no other points in the complement of �(θ) can
achieve a lower value and thus minimizing M̂θ (λ) over �(θ) or R

Ng yields the

same answer asymptotically. This establishes supθ∈� ‖λ̂(θ) − λ∗(θ)‖ p→ 0.

Step 2. ln L̂(θ) ≡ − ln(n−1 ∑
i exp(λ̂′(θ)g(xi, θ))) + λ̂′(θ)ĝ(θ)

p→ lnL(θ)

uniformly for θ ∈ �, because (i) supθ∈� ‖λ̂(θ)−λ∗(θ)‖ p→ 0; (ii) supθ∈� ‖ĝ(θ)−
E[g(xi, θ)]‖ p→ 0 since g(xi, θ) is continuous in θ and E[supθ∈� ‖g(xi, θ)‖] < ∞
by part 4 of Assumption 3 and by the inequality |s| ≤ exp(−s)+exp(s) for any s ∈
R; and (iii) exp(λ′g(xi, θ)) is continuous in θ and E[supθ∈� supλ∈�(θ) exp(λ′g(xi,

θ))] < ∞ by part 4 of Assumption 3 (using Lemma 2.4 in [46]). Since lnL(θ) is
uniquely maximized at θ∗, this implies, along with the uniform convergence of

ln L̂(θ) and its continuity, that θ̂
p→ θ∗. Since supθ∈� ‖λ̂(θ)−λ∗(θ)‖ p→ 0 we also

have that λ̂(θ̂ )
p→ λ∗(θ∗).

Step 3. As we have shown that θ̂
p→ θ∗ and λ̂

p→ λ∗ and since τ̂ and κ̂

can be written as explicit continuous functions of λ̂ and θ̂ , by (54) and (56), it



EMPIRICAL LIKELIHOOD 669

follows that τ̂
p→ E[τi] ≡ τ ∗ and κ̂

p→ (E[τigi(xi, θ
∗)g′

i (xi, θ
∗)])−1(τ ∗E[gi(xi,

θ∗)]) ≡ κ∗, where the fact that E[τigi(xi, θ
∗)g′

i (xi, θ
∗)] is invertible is implied by

the assumption that � is nonsingular.

Having established that β̂
p→ β∗, we now turn to asymptotic normality.

Since Lemma 9 defines a just-identified GMM estimator, we can use Theo-
rem 3.4 in [46], specialized to the just-identified case, if we can show that
(i) E[supβ∈B ‖∂φ(xi, β)/∂β‖] < ∞ for some neighborhood B of β∗ and that
(ii) E[φ(xi, β

∗)φ′(xi, β
∗)] exists.

The matrix ∂φ(xi, β)/∂β ′ consists of terms of the form α exp(kτ λ
′gi)g

kgGkG ×
SkS for 0 ≤ kg + kG + kS ≤ 3 and kτ = 0,1, and where g, G, and S, respectively,
denote elements of gi , Gi , and Sjl(xi, θ) and where α denotes products of ele-
ments of β that are necessarily bounded for β ∈ B. By part 6 of Assumption 3,
we can establish (i): exp(kτλ

′gi)|g|kg |G|kG |S|kS ≤ exp(kτλ
′gi)|b(xi)|kg+kG+kS ⇒

E[supβ∈B exp(kτλ
′gi)|g|kg |G|kG |S|kS ] ≤ E[supβ∈B exp(kτλ

′g(xi, θ)) ×
(b(xi))

k2] = E[supθ∈N supλ∈�(θ) exp(kτλ
′g(xi, θ))(b(xi))

k2] < ∞. The matrix
φ(xi, β)φ′

i(xi, β) has elements of the form α exp(kτλ
′gi)|g|kg |G|kG with kτ =

0,1,2 and 0 ≤ kg + kG ≤ 4 and similar reasoning implies (ii). �
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