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DISCUSSION: LOCAL RADEMACHER COMPLEXITIES AND
ORACLE INEQUALITIES IN RISK MINIMIZATION

BY PETER L. BARTLETT AND SHAHAR MENDELSON

University of California, Berkeley and Australian National University

1. Relating empirical and real structures: additive and multiplicative re-
sults. The key issue investigated in Vladimir Koltchinskii’s paper is the behavior
of an empirical minimizer f̂ ∈ F , that is, a function f in F with minimal sample
average,

Pnf = 1

n

n∑
i=1

f (Xi),

where X1, . . . ,Xn are drawn i.i.d. from a probability measure P on X and F is
a class of real-valued functions defined on X. The study of bounds on the ex-
pectation P f̂ arises in many applied areas, including the analysis of randomized
optimization methods involving Monte Carlo estimates of integrals. Motivated by
prediction problems that arise in machine learning and nonparametric statistics,
the paper makes an important contribution to the study of these bounds, and to the
development of model selection methods that exploit the bounds.

The broad approach taken in this paper, and in much earlier work, is to show
that the empirical structure (i.e., the collection of sample averages, Pnf ) is close
to the real structure (i.e., the collection of expectations, Pf ). If they are close in
the additive sense that ‖Pn − P‖F decreases at some rate, then it is clear that P f̂

approaches inff ∈F Pf at that rate. As the paper recalls, there is a tight relationship
between the Rademacher process indexed by coordinate projections of the class
F and this additive notion of closeness of empirical and real structures. Also, it
can be advantageous to consider these properties only locally, that is, in the set
F(δ) ⊂ F of near-minimizers of Pf . In particular, if the variance of elements of
F(δ) goes to zero with δ, then faster rates are possible through the study of these
local properties.

An alternative, developed in the paper, is closeness in the multiplicative sense
that for 0 < ε < 1, for all functions f in F that have expectations not too small,

(1 − ε)Pnf ≤ Pf ≤ (1 + ε)Pnf.

Again, these results rely on the variance of an element of F decreasing as its
expectation decreases. Let us call a class that has this property a Bernstein class.
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DEFINITION 1.1. We say that F is a (β,B)-Bernstein class with respect to
the probability measure P (where 0 < β ≤ 1 and B ≥ 1), if every f in F satisfies

Pf 2 ≤ B(Pf )β.

This condition arises naturally in many situations, as the paper describes. Obvi-
ously, if F consists of nonnegative functions bounded by b, then F is a Bernstein
class (with β = 1) with respect to any probability measure. Other examples arise
for excess loss classes,

F = {�g − �g∗ : g ∈ G} with �g(x, y) = �(g(x), y),

where � : R
2 → [0,∞) is a loss function and g∗ ∈ G minimizes P�g . For example,

in regression, if α 	→ �(α, y) are uniformly convex Lipschitz bounded functions
and G is convex, then F is a Bernstein class [2, 5, 6]. In pattern classification
with � the discrete loss, if g∗ is the Bayes rule and the conditional probability
Pr(Y = 1|X) is unlikely to be near 1/2, then the excess loss class is Bernstein [10].

Under some mild assumptions on a Bernstein class F , there is a simple proof of
the multiplicative closeness of the empirical and true structures, using Talagrand-
style concentration inequalities for empirical processes [9]. The assumptions are
that functions in F are bounded, and that F is star-shaped around 0, that is, for
every 0 ≤ a ≤ 1 and any f ∈ F , af ∈ F . A generalization of the following result
(for arbitrary Bernstein conditions) appears in [3].

THEOREM 1.2. There exists an absolute constant c for which the following
holds. For F a (1,B)-Bernstein class of functions bounded by b which is star-
shaped around 0, with probability at least 1 − e−x , the empirical minimizer f̂ ∈ F

satisfies

P f̂ ≤ max
{

inf{r > 0 : ξn(r) ≤ r/4}, c(b + B)x

n

}
,

where

ξn(r) = E sup{Pf − Pnf : f ∈ Fr} with Fr = {f ∈ F : Pf = r}.

The proof uses a simple geometric argument: Talagrand’s inequality implies
that, for the subset Fr with r not too small, there is a near-equivalence between the
multiplicative comparison inequality

(1 − ε)Pnf ≤ Pf ≤ (1 + ε)Pnf

holding uniformly over Fr , and the expectation of the supremum of the empirical
process E‖P −Pn‖Fr being less than rε. And then the star-shaped property shows
that this extends to all functions in F that have Pf ≥ r . The reason that the critical
level r cannot be too small is because by the star-shape property, the “relative
complexity” of the sets Fr increases as r decreases.
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Notice that this result is in terms of the fixed point

inf{r > 0 : ξn(r) ≤ r/4},
which is never larger than fixed points of the related functions in Koltchinskii’s
paper. In particular, ξn(r) is bounded by E‖P − Pn‖Fr , the expected supremum
of the empirical process indexed by functions that have expectation r , whereas the
paper considers expected suprema over larger sets, defined by the L2(P ) structure.

2. Data-dependent bounds and model selection. One of the appealing fea-
tures of these kinds of bounds, which is developed in Koltchinskii’s paper, is that
there are empirical versions that show that we can accurately estimate the bounds
using the sample. It turns out that this is also the case for the result of Theorem 1.2;
see [4]. The idea is to replace the quantity ξn(r) = E‖P − Pn‖Fr with a sample-
based estimate of the corresponding Rademacher averages,

ξ̂n(r) = Rn(F̂r) with F̂r = {f ∈ F : c1r ≤ Pnf ≤ c2r},
for some constants c1 < 1 < c2. The same concentration properties that imply the
bounds in terms of the fixed point of ξn(r) show that a fixed point of ξ̂n(r) + c3r

also suffices.
Another interesting contribution in the paper is the application of these bounds

in terms of empirical quantities to model selection problems. It is natural to con-
sider how estimates of expectations (i.e., estimates of risk, in the case of loss
classes) can be used to define penalization methods for model selection. In particu-
lar, define the risk P�f = P�(Y,f (X)), where � is a nonnegative loss function and
(X,Y ) is a covariate/response pair. Suppose that we have a sequence F1,F2, . . . of
function classes defined on X, and we use an estimator that first chooses the em-
pirical minimizer

f̂k = arg min
f ∈Fk

Pn�f ,

from each Fk , and then picks f̂ = f̂
k̂

as the f̂k that minimizes a penalized risk of
the form

Pn�f̂k
+ p̂(k).

A key concern in these problems is proving oracle inequalities of the form

Pr
(
P�

f̂
≥ inf

k≥1

{
inf

f ∈Fk

P �f + p(k)
})

→ 0,

where p(k) is a complexity penalty related to the penalty p̂(k) used by the method.
Notice, in particular, the constant multiplying the risk (P�f ) term is 1. It turns
out that if the classes are ordered by inclusion, then multiplicative bounds for
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the excess loss class immediately give such oracle inequalities. The multiplicative
bounds we need are of the form

∀f ∈ F, (1 − ε)Pnf − r ≤ Pf ≤ (1 + ε)Pnf + r.

(Notice that, although upper bounds of this kind are immediate from the proof of
Theorem 1.2, the lower bounds are not.) The following theorem is elementary;
it is proved in [1]. Define f ∗

k as the element of Fk that minimizes P�f .

THEOREM 2.1. Suppose that

sup
k

sup
f ∈Fk

(
P�f − P�f ∗

k
− 2(Pn�f − Pn�f ∗

k
) − εk

) ≤ 0,

sup
k

sup
f ∈Fk

(
Pn�f − Pn�f ∗

k
− 2(P �f − P�f ∗

k
) − εk

) ≤ 0,

where the classes are ordered by inclusion, and the quantities εk are similarly
ordered, F1 ⊆ F2 ⊆ F3 ⊆ · · ·, ε1 ≤ ε2 ≤ ε3 ≤ · · ·. Then choosing p(k) = 7εk/2
ensures that

P�
f̂

≤ inf
k

(P �f ∗
k

+ 9εk).

3. Lower bounds. It is interesting to consider the tightness of the upper
bounds of the type proved in the paper. Koltchinskii provides examples that
demonstrate optimal rates in several minimax settings. But is it true that, for all
function classes and probability distributions, the upper bounds imply the correct
rate of convergence of P f̂ to its asymptotic value?

It turns out that they are not tight. Indeed, in attempting to prove matching
lower bounds, we were led to the following theorem (see [3]), which uses a direct
analysis of the empirical minimizer to give essentially matching upper and lower
bounds on its expectation, in terms of a related property of the empirical process.
Set

ξn(r) = E sup
f ∈Fr

Pf − Pnf where Fr = {f ∈ F : Pf = r},

and, for ε > 0, define

rε,+ = sup
{
0 ≤ r ≤ b : ξn(r) − r ≥ sup

s

(
ξn(s) − s

) − ε
}
,

rε,− = inf
{
0 ≤ r ≤ b : ξn(r) − r ≥ sup

s

(
ξn(s) − s

) − ε
}
.

These two quantities bracket the range of values of r that ε-approximately maxi-
mize the function ξn(r)− r . The theorem shows that, for ε not too small, they also
bracket the expectation of the empirical minimizer.
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THEOREM 3.1. For any c1 > 0, there is a constant c such that the following
holds. Let F be a (1,B)-Bernstein class that is star-shaped at 0. Define s, rε,+
and rε,− as above, and set

r ′ = max
{

inf{r > 0 : ξn(r) ≤ r/4}, c(b + B)(x + logn)

n

}
.

Let f̂ denote an empirical risk minimizer. If

ε ≥ c

(
max

{
sup
s>0

(
ξn(s) − s

)
, r ′}(B + b)(x + logn)

n

)1/2

,

then:

1. With probability at least 1 − e−x ,

Ef̂ ≤ max
{

1

n
, rε,+

}
.

2. If

ξn(0, c1/n) < sup
s>0

(ξn(s) − s) − ε,

then with probability at least 1 − e−x ,

Ef̂ ≥ rε,−.

The following theorem (see [3]) shows that there is a real gap between this result
and the bounds in terms of fixed points of ξn(r) described in Theorem 1.2 and thus
between this result and the similar bounds in Koltchinskii’s paper.

THEOREM 3.2. There is an absolute constant c for which the following holds.
If 0 < δ < 1 and n > N0(δ), there are a probability measure P and a star-shaped
class F , which consists of functions bounded by 1 and is a (1,2)-Bernstein class,
such that:

1. For every X1, . . . ,Xn there is a function f ∈ F with Ef = 1/4 and
Enf = 0.

2. For the class F , inf{r > 0 : ξn(r) ≤ r/4} = 1/4.
3. If f̂ is a ρ-approximate empirical minimizer, where 0 < ρ < 1/8, then with

probability larger than 1 − δ,

1

n

(
1 − c

√
logn

n
− ρ

)
≤ Ef̂ ≤ 1

n
.

So there is an example in which Theorem 3.1 demonstrates that P f̂ is of order
1/n, but the local Rademacher bounds are constants. Although the example is
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of a class F , it is straightforward to show that, under mild conditions on a loss
function �, this class can be written as an excess loss class {�g − �g∗ : g ∈ G} for
some G and some probability distribution (see [3]).

We have seen that we can obtain a data-dependent version of the local
Rademacher bounds that can be used as complexity penalties in model selection
methods. If the same thing were true for the bounds of Theorem 3.1, we could
improve on these model selection methods. Unfortunately, this is not possible if
one only has access to function values on finite samples. There is an example in [4]
that shows that it is impossible to establish a data-dependent upper bound on the
expectation of the empirical minimizer that is asymptotically better than the fixed
point of ξn(r). The idea is to construct two classes of functions that look identical
when projected on any sample of finite size, but for one class both a typical expec-
tation of the empirical minimizer and the fixed point of ξn(r) are of the order of a
constant, while for the other a typical expectation is of the order of 1/n.

4. The role of concentration. Arguably, the most important contribution to
modern prediction bound techniques is Talagrand’s concentration inequality for
empirical processes [9]. However, it is important to note that its full strength is
rarely used.

Roughly speaking, this inequality ensures that with high probability, the domi-
nant terms in the upper and lower estimates on ‖Pn −P‖F are (1+α)E‖Pn −P‖F

and (1 − α)E‖Pn − P‖F , where α can be made arbitrarily close to 0, at a price of
larger second-order terms. In fact, in the vast majority of results one can take α to
be any fixed constant, 0 < α < 1.

The important point is that in multiplicative-type results (e.g., ratio-limit the-
orems as presented in the paper or similar to Theorem 1.2), the role of this co-
efficient is not important. It is only when one wishes to analyze the behavior of
the empirical minimizer on the set Fr and compare it to its behavior on Fs for
r 
= s that the exact dependency on α is required. This is the case in the proof of
Theorem 3.1.

Moreover, in the vast majority of results that do not involve multiclass analysis,
the actual role of Talagrand’s concentration inequality is restricted to ensuring a
better dependency on the confidence level δ — from polynomial in 1/δ to loga-
rithmic in 1/δ. Indeed, an almost identical result to Theorem 1.2 can be proved
without Talagrand’s inequality, leading to the same order of error rates but with
a worse constant. The dominant term remains the same—the fixed point of the
function E‖Pn − P‖Fr .

One should ask: why not always use Talagrand’s inequality? The reason is that
it is not always available. Concentration of the supremum of an empirical process
is known for a class with a bounded diameter in L∞. Thus, any result which is
truly based on this concentration does not extend to unbounded classes. Of course,
it could be very interesting to develop a similar theory for the unbounded case.
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5. Some questions.

1. Talagrand’s concentration inequality is a “function class” version of Bernstein’s
inequality, with the secondary terms determined by the L2 and L∞ diameters
of F . It could be useful (and not only from the statistical point of view) to prove
a concentration result with the L∞ diameter replaced by the ψ1 diameter (recall
that for α ≥ 1, ‖X‖ψα = inf{c > 0 : E exp(|X|/c) ≤ 2}; the ψ1 norm measures
the subexponential decay of X).

2. The results in the paper are based on the behavior of the Rademacher process
indexed by a random coordinate projection of F (i.e., the restriction of F onto
a random sample). Thus, error bounds are determined using a random (empir-
ical) �n

2 metric on coordinate projections. It should be interesting to develop a
theory of learning which uses “global” metric structures. Clearly, the L2(P )

one, which is the natural candidate, is too weak, for otherwise the supremum of
the empirical process indexed by F could be controlled in terms of the limiting
Gaussian, which is not true. It is more likely that stronger metrics (e.g., the ψα

metrics) will play a central role in such a development, as in [7, 8].
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