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A FREQUENCY DOMAIN EMPIRICAL LIKELIHOOD FOR
SHORT- AND LONG-RANGE DEPENDENCE

BY DANIEL J. NORDMAN AND SOUMENDRA N. LAHIRI

Iowa State University

This paper introduces a version of empirical likelihood based on the pe-
riodogram and spectral estimating equations. This formulation handles de-
pendent data through a data transformation (i.e., a Fourier transform) and is
developed in terms of the spectral distribution rather than a time domain prob-
ability distribution. The asymptotic properties of frequency domain empiri-
cal likelihood are studied for linear time processes exhibiting both short- and
long-range dependence. The method results in likelihood ratios which can be
used to build nonparametric, asymptotically correct confidence regions for
a class of normalized (or ratio) spectral parameters, including autocorrela-
tions. Maximum empirical likelihood estimators are possible, as well as tests
of spectral moment conditions. The methodology can be applied to several
inference problems such as Whittle estimation and goodness-of-fit testing.

1. Introduction. The main contribution of this paper is a new formulation
of empirical likelihood (EL) for inference with two fundamentally different types
of dependent data: time series exhibiting either short-range dependence (SRD)
or long-range dependence (LRD). Let {Xt }, t ∈ Z, be a stationary sequence of
random variables with mean µ and spectral density f on � = [−π,π ], where

f (λ) ∼ C(α)|λ|−α, λ → 0,(1)

for α ∈ [0,1) and a constant C(α) > 0 involving α (with ∼ indicating that the
terms have a ratio of one in the limit). When α = 0, we classify the process {Xt }
as short-range dependent (SRD). For α > 0, the process will be called long-range
dependent (LRD). This classification resembles that of [25] and encompasses the
formulation of LRD described in [4, 40].

Originally proposed by [33, 34] for independent samples, EL allows for non-
parametric likelihood-based inference with a broad range of applications [36]. An
important benefit of EL inference is that confidence regions for parameters may
be calibrated through log-likelihood ratios, without requiring any direct estimates
of variance or skewness [19]. However, a difficulty with extending EL methods to
dependent data is then to ensure that “correct” variance estimation occurs automat-
ically within EL ratios under the data dependence structure. This is an important
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reason why the EL version for i.i.d. data from [34] does not apply to dependent
data (see [23], page 2085).

Recent extensions of EL to time series in [23, 31] have relied exclusively on a
SRD structure with rapidly decreasing process correlations. In particular, [23] pro-
vided a breakthrough formulation of EL for weakly dependent data based on data
blocks rather than individual observations. Under SRD, the resulting blockwise EL
ratios correctly perform variance estimation of sample means within their mechan-
ics. Data blocking has also proven to be crucial in extending other nonparametric
likelihoods to weakly dependent processes, such as the block bootstrap and resam-
pling methods described in [26], Chapter 2.

In comparison to weak dependence, the rate of decay of the covariance function
r(k) = Cov(Xj ,Xj+k) is characteristically much slower under strong dependence
α > 0, namely,

r(k) ∼ C̃(α)k−(1−α), k → ∞,(2)

with a constant C̃(α) > 0, which is an alternative representation of LRD (with
equivalence to (1) if the covariances converge quasimonotonically to zero; see
page 1632 of [40]). This autocovariance behavior implies that statistical proce-
dures developed for SRD may not be applicable under LRD, often due to com-
plications with variance estimation. For example, the moving block bootstrap is
known to be invalid under strong dependence for inference on the process mean
EXt = µ [24], partly because (2) implies that the variance Var(X̄n) = O(n−1+α)

of a size n sample mean exhibits a slower, unknown rate of decay compared to the
O(n−1) rate associated with SRD data. For this reason, the blockwise EL formu-
lation of [23] will also break down under strong dependence for inference on the
mean.

In this paper, we formulate an EL based on the periodogram combined with cer-
tain estimating equations. Using this data transformation to weaken the underlying
dependence structure, the resulting frequency domain empirical likelihood (FDEL)
provides a common tool for nonparametric inference on both SRD and LRD time
series. Because this EL version involves the spectral distribution of a time process
rather than a time domain probability distribution, inference is restricted to a class
of normalized spectral parameters described in Section 2. The frequency domain
bootstrap (FDB) of [11], developed for SRD, targets the same class of parameters.
Hence, for parameters not defined in terms of the spectral density (e.g., the process
mean µ), the FDEL is inapplicable, while the time domain blockwise EL in [23]
may still be valid if the process exhibits SRD (i.e., is valid for a larger class of
parameters under weak dependence).

Our main result is the asymptotic distribution of FDEL ratio statistics, which
are shown to have limiting chi-square distributions under both SRD and LRD for
setting confidence regions. That is, FDEL shares the strength of EL methods to
incorporate “correct” variance estimation for spectral parameter inference auto-
matically in its mechanics. For normalized spectral parameters where both the
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FDB and blockwise EL may be applicable under SRD (e.g., autocorrelations), the
FDEL requires no kernel density estimates of f (as with the FDB) and no block
selection (as with the blockwise EL). Our FDEL results also refine some EL theory
given in [31], wherein periodogram-based EL confidence regions for Whittle-type
estimation with SRD linear processes were proposed. We additionally consider
FDEL tests based on maximum EL estimation, which are helpful for assessing
both parameter conjectures and the validity of (spectral) moment conditions, as in
the independent data EL formulation [34, 38].

The methodology presented here is applicable to linear processes with spectral
densities satisfying (1), which includes two common models for LRD processes:
the fractional Gaussian processes of [29] with spectral density

fH,σ 2(λ) = 4σ 2�(2H − 1)

(2π)2H+2 cos(πH − π/2) sin2(λ/2)

×
∞∑

k=−∞
|λ/(2π) + k|−1−2H , λ ∈ �,

(3)

1/2 < H < 1, and the fractional autoregressive integrated moving average
(FARIMA) processes of [1, 18, 21] with spectral density

fd,ρ,�,σ 2(λ) = σ 2

2π
|1 − eıλ|−2d

∣∣∣∣
∑p

j=0 ρj (e
ıλ)j∑q

j=0 �j (eıλ)j

∣∣∣∣
2

, λ ∈ �,(4)

based on parameters 0 < d < 1/2, ρ = (ρ1, . . . , ρp), � = (�1, . . . , �q) with ρ0 =
�0 = 1 and ı = √−1. These models satisfy (1) with α = 2H − 1 and α = 2d ,
respectively.

The rest of the paper is organized as follows. Section 2 describes the role of
spectral estimating equations for FDEL inference and provides several examples.
In Section 3, we explain the construction of EL in the frequency domain. Section 4
contains the assumptions and the main results on the distribution of FDEL log-
ratios for confidence region estimation and simple hypothesis testing. In Section 5,
we consider maximum EL estimation in the frequency domain. We describe the
application of FDEL to Whittle estimation in Section 6, while Section 7 considers
goodness-of-fit testing with FDEL. Section 8 offers some conclusions. Proofs of
the results are given in Section 9 and the Appendix.

2. Spectral estimating equations. Consider inference on a parameter θ ∈

 ⊂ R

p based on a time stretch X1, . . . ,Xn. Following the EL framework of [38,
39] with i.i.d. data, we suppose that information about θ exists through a system
of general estimating equations. However, we will use the process spectral distri-
bution to define moment conditions as follows. Let

Gθ(λ) = (g1,θ (λ), . . . , gr,θ (λ))′ : � × 
 → R
r(5)
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denote a vector of even, estimating functions with r ≥ p. For the case r > p, the
above functions are said to be “overidentifying” for θ . We assume that Gθ satisfies
the spectral moment condition∫ π

0
Gθ0(λ)f (λ) dλ = M(6)

for some known M ∈ R
r at the true value θ0 of the parameter. As distribu-

tional results in Section 4 indicate, we will typically require M = 0, which
places some restrictions on the types of spectral parameters considered. How-
ever, the FDEL framework is valid for estimating normalized spectral means,
θ = ∫ π

0 Gf dλ/
∫ π

0 f dλ, based on a vector function G. The FDB targets the same
parameters under SRD; [11] comments on the importance, and often complete
adequacy, of population information expressed in this ratio form. The FDEL con-
struction in Section 3 combines the periodogram with the estimating equations
in (6).

2.1. Examples. We provide a few examples of useful estimating functions for
inference, some of which satisfy (6) with M = 0.

EXAMPLE 1 (Autocorrelations). Consider interest in the autocorrelation func-
tion ρ(·) at arbitrary lags m1, . . . ,mp , that is, θ = (ρ(m1), . . . , ρ(mp))′, where

ρ(m) = r(m)/r(0) =
∫ π

0
cos(mλ)f (λ)dλ

/∫ π

0
f (λ)dλ, m ∈ Z.

One can select Gθ(λ) = (cos(m1λ), . . . , cos(mpλ))′ − θ for autocorrelation infer-
ence, fulfilling (6) with M = 0 ∈ R

p and r = p.

EXAMPLE 2 (Spectral distribution function). For ω ∈ [0, π], denote the spec-
tral distribution function by F(ω) = ∫ ω

0 f (λ)dλ. Suppose θ = (F (τ1)/F (π), . . . ,

F (τp)/F (π))′ for some τ1, . . . τp ∈ (0, π). This normalized parameter θ often suf-
ficiently characterizes the spectral distribution F for testing purposes [9]. For in-
ference on θ , we can pick Gθ(λ) = (1{λ ≤ τ1}, . . . ,1{λ ≤ τp})′ − θ where 1{·}
denotes the indicator function. Then (6) holds with spectral mean M = 0 ∈ R

p .

EXAMPLE 3 (Goodness-of-fit tests). There has been increasing interest in
frequency-domain-based tests to assess model adequacy [2, 37]. Consider a test
involving a simple null hypothesis H0 : f = f0 against an alternative H1 : f 
= f0
for some candidate density f0. With EL techniques, one immediate test for H0 is
based on the function G0(λ) = 1/f0(λ) with spectral mean π under H0; here, we
treat r = 1 and the dimension p of θ as 0. We show in Section 7 that this results in
an EL ratio test which resembles a spectral goodness-of-fit test statistic proposed
by [30] and shown by [3] to be useful for LRD Gaussian series. The more interest-
ing and complicated problem of testing the hypothesis that f belongs to a given
model family can also be addressed with FDEL, as discussed in Section 7.
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EXAMPLE 4 (Whittle estimation). We denote a parametric collection of spec-
tral densities by

F = {fθ (λ) : θ ∈ 
}(7)

and assume the densities are positive on � and identifiable [e.g., for θ 
= θ̃ ∈ 
,
the Lebesgue measure of {λ : fθ (λ) 
= fθ̃ (λ)} is positive]. For fitting the model
fθ to the data, Whittle estimation [42] seeks the θ -value at which the theoretical
“distance” measure

W(θ) = (4π)−1
∫ π

0

{
logfθ (λ) + f (λ)

fθ (λ)

}
dλ(8)

achieves its minimum [13]. The model class may be misspecified (possibly
f /∈ F ), but Whittle estimation aims for the density in F “closest” to f , as mea-
sured by W(θ).

To consider a particular parameterization of (7), suppose

fθ (λ) = σ 2kϑ(λ),

θ = (σ 2, ϑ ′)′,
 ⊂ (0,∞) × R
p−1, ϑ = (ϑ1, . . . , ϑp−1)

′,
(9)

with kernel density kϑ , and that Kolmogorov’s formula holds with (2π)−1 ×∫ π
−π logfθ(λ) dλ = log[σ 2/(2π)] (e.g., taking σ 2 as the innovation variance in

a linear model). The model class in (9) is commonly considered in the context
of Whittle estimation for both SRD and LRD time series, including those LRD
processes formulated in (3) and (4) (see [10, 15, 17, 20]). Under appropriate con-
ditions, the true minimum argument θ0 = (σ 2

0 , ϑ ′
0)

′ of W(θ) is determined by the
stationary solution of ∂W(θ)/∂θ = 0 or∫ π

0
f (λ){∂f −1

θ (λ)/∂ϑ}dλ = 0, π−1
∫ π

0
f (λ)f −1

θ (λ) dλ = 1,(10)

where f −1
θ (λ) ≡ 1/fθ (λ). The moment conditions in (10) give a set of estimating

functions for FDEL inference on θ defining the densities in (9). Namely, the choice

Gw
θ (λ) = (f −1

θ (λ), ∂f −1
θ (λ)/∂ϑ1, . . . , ∂f

−1
θ (λ)/∂ϑp−1

)′
,

Mw = (π,0, . . . ,0)′ ∈ R
p,

(11)

fulfills (6). The FDB uses similar estimating equations for Whittle parameter in-
ference [11]. To treat σ 2 as a nuisance parameter, which is common for densities
as in (9), estimating functions

Gw∗
ϑ (λ) = ∂k−1

ϑ (λ)/∂ϑ, Mw∗ = 0 ∈ R
p−1,(12)

provide structure for inference on the remaining parameters ϑ determining kϑ

in fθ .
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3. Definition of frequency domain empirical likelihood. Denote the peri-
odogram of the sequence X1, . . . ,Xn by In(λ) = (2πn)−1|∑n

t=1 Xt exp(−ıtλ)|2,
λ ∈ � = [−π,π ], where ı = √−1. Using estimating functions Gθ as in (5), the
profile FDEL function for θ ∈ 
 is given by

Ln(θ) = sup

{
N∏

j=1

wj : wj ≥ 0,

N∑
j=1

wj = π,

N∑
j=1

wjGθ(λj )In(λj ) = M

}
,(13)

where λj = 2πj/n, j ∈ Z, are Fourier frequencies and N = (n − 1)/2�. Point
masses wj assigned to each ordinate λj create a discrete measure on [0, π] with the
restriction that the integral of GθIn based on this measure equals M. The largest
possible product of these point masses determines the FDEL function for θ ∈ 
.
When the conditioning set in (13) is empty, we define Ln(θ) = −∞. If M is inte-
rior to the convex hull of {πGθ(λj )In(λj )}Nj=1, then Ln(θ) is a positive constrained
maximum solved by optimizing

L(w1, . . . ,wN,γ, t) =
N∑

j=1

log(wj ) + γ

(
π −

N∑
j=1

wj

)

− Nt ′
(

N∑
j=1

wjGθ(λj )In(λj ) − M

)
,

with Lagrange multipliers γ and t = (t1, . . . , tr )
′ as in [33, 34]. Then (13) may be

written as

Ln(θ) = πN
N∏

j=1

pj (θ),

pj (θ) = N−1[1 + t ′θ {πGθ(λj )In(λj ) − M}]−1 ∈ (0,1),

(14)

where tθ is the stationary point of the function q(t) =∑N
j=1 log(1+ t ′{πGθ(λj )×

In(λj ) − M}). (See [34, 38] for further computational details on EL.) Without
the integral-type linear constraint in (13),

∏N
j=1 wj has a maximum when each

wj = π/N , so we can form a profile EL ratio

Rn(θ) = Ln(θ)/(πN−1)N =
N∏

j=1

[
1 + t ′θ {πGθ(λj )In(λj ) − M}]−1

.(15)

3.1. A density-based formulation of empirical likelihood. To help relate the
EL results here to those in [31], we give an alternative, model-based formulation
of FDEL. This version requires a density class F as in (7) and involves approxi-
mating the expected value E(In(λj )) with fθ (λj ), using a density fθ ∈ F . Namely,
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let

Ln,F (θ) = sup

{
N∏

j=1

wj : wj ≥ 0,

N∑
j=1

wj = π,

N∑
j=1

wjGθ(λj )[In(λj ) − fθ (λj )] = 0

}
,

Rn,F (θ) = (N/π)NLn,F (θ).

(16)

We consider the densities fθ and prospective functions Gθ as dependent on the
same parameters, which causes no loss of generality. An exact form for Ln,F (θ)

can be deduced as with Ln(θ), obtained by replacing In(λj ),M with In(λj )−fθ ,0
in (14).

Section 6 discusses the model-based EL ratio in (16) for refining results in [31]
on confidence interval estimation of Whittle parameters. Additionally, this version
of FDEL may be suitable for conducting goodness-of-fit tests with respect to a
family of spectral densities.

4. Main result: distribution of empirical likelihood ratio. Before describ-
ing the distributional properties of FDEL, we provide some assumptions on the
time process under consideration and the potential vector of estimating functions
Gθ in (5).

4.1. Assumptions. In the following, let θ0 denote the unique (true) parameter
value which satisfies (6).

ASSUMPTION A.1. {Xt } is a real-valued, linear process with a moving aver-
age representation of the form

Xt = µ +
∞∑

j=−∞
bj εt−j , t ∈ Z,

where {εt } are i.i.d. random variables with E(εt ) = 0, E(ε2
t ) = σ 2

ε > 0, E(ε8
t ) < ∞

and fourth order cumulant denoted by κ4,ε ≡ E(ε4
t ) − 3σ 4

ε , {bt } is a sequence
of constants satisfying

∑
t∈Z b2

t < ∞ and b0 = 1, and f (λ) = σ 2
ε |b(λ)|2/(2π),

λ ∈ �, with b(λ) =∑j∈Z bj e
ıjλ. It is assumed that f (λ) is continuous on (0, π]

and that f (λ) ≤ C|λ|−α , λ ∈ �, for some α ∈ [0,1), C > 0.

ASSUMPTION A.2. Each component gj,θ0 of Gθ0 is an even, integrable func-
tion such that |gj,θ0(λ)| ≤ C|λ|β , λ ∈ �, where 0 ≤ β < 1, α − β < 1/2, j =
1, . . . , r .

ASSUMPTION A.3. For each gj,θ0(λ), j = 1, . . . , r , one of the following is
satisfied:
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CONDITION 1. gj,θ0 is Lipschitz of order greater than 1/2 on [0, π].
CONDITION 2. gj,θ0 is continuous on � and |∂gj,θ0(λ)/∂λ| ≤ C|λ|βj−1 for

some 0 ≤ βj < 1, 2α − βj < 1.
CONDITION 3. gj,θ0 is of bounded variation on [0, π] with finite discontinu-

ities and α < 1/2, with |r(k)| ≤ Ck−υ for some υ > 1/2 (e.g., υ = 1 − α).

ASSUMPTION A.4. The r × r matrix Wθ0 = ∫� f 2(λ)Gθ0(λ)G′
θ0

(λ) dλ is
positive definite.

ASSUMPTION A.5. On (0, π], either (i) f is differentiable and |∂f (λ)/∂λ| ≤
C|λ|−α−1 or (ii) each f (λ)gj,θ0(λ) is of bounded variation or is piecewise Lip-
schitz of order greater than 1/2 on [0, π], j = 1, . . . , r . As n → ∞, P(0 ∈
ch◦{πGθ0(λj )[In(λj )−f (λj )]}Nj=1) → 1, where ch◦A denotes the interior convex
hull of a finite set A ⊂ R

r .

We briefly discuss the assumptions. The bound on f in Assumption A.1 allows
for the process {Xt } to exhibit both SRD and LRD and is a slight generaliza-
tion of (1). The behavior of Gθ0 in Assumption A.2 controls the growth rate of
the scaled periodogram ordinates, Gθ0(λj )In(λj ), at low frequencies under LRD
and ensures that Wθ0 is finite. Important processes are permissible under A.1 and
for these, useful estimating functions often satisfy A.2. Assumption A.3 outlines
smoothness criteria for the estimating functions. The estimating functions treated
by the FDB in [11] satisfy A.3, including those for autocorrelations and normal-
ized spectral distribution in Section 2.1. The functions f −1

θ and ∂f −1
θ /∂θ from

Examples 3 and 4 satisfy A.3 for use in Whittle-like estimation and goodness-of-
fit testing with many SRD and LRD models in the FDEL framework. For example,
Hannan [20] considers Whittle estimation for ARMA densities for which functions
Gw

θ in (11) satisfy Condition 1. The functions f −1
θ and ∂f −1

θ /∂θ associated with
the fractional Gaussian and FARIMA LRD densities in (3) and (4) fulfill Condi-
tion 2 [10, 15, 17]. Process dependence that is not extremely strong, so that f 2 is
integrable, allows greater flexibility in choosing more general estimating functions
in Condition 3.

For EL inference exclusively with the model-based functions Ln,F or Rn,F

from Section 3.1, we introduce the additional assumption A.5 which is gener-
ally not restrictive. The probabilistic condition in A.5 implies only that the EL
ratio Rn,F can be finitely computed at θ0, resembling EL assumptions from [31]
and [35].

4.2. Asymptotic distribution of empirical likelihood ratio and confidence re-
gions. We now establish a nonparametric recasting of Wilks’ theorem [43] for
FDEL ratios under SRD and LRD, useful for setting confidence regions and mak-
ing simple hypothesis tests, as in [33–35]. Define two scaled log-profile FDEL
ratio statistics,

�n(θ) = −4 logRn(θ) and �n,F (θ) = −2 logRn,F (θ),(17)
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using (15) and (16). The difference in the scalar adjustments to log-likelihoods
in (17) is due to the assumption that the periodogram ordinates are “mean-
corrected” in the construction of �n,F (θ). In the following theorem, χ2

ν denotes
a chi-square distribution with ν degrees of freedom:

THEOREM 1. Suppose Assumptions A.1–A.4 hold. If M = 0 ∈ R
r , then as

n → ∞,

(i) �n(θ0)
d−→ χ2

r .

(ii) Additionally, if A.5 holds and f = fθ0 , then �n,F (θ0)
d−→ χ2

r .
(iii) If κ4,ε = 0, statement (ii) remains valid, even if M 
= 0 ∈ R

r .

REMARK 1. For a Gaussian {Xt } process, the fourth order innovation cumu-
lant κ4,ε = 0.

Due to the data transformation aimed at weakening the time dependence struc-
ture, FDEL ratios closely resemble EL ratios with i.i.d. data [34, 38]. The formu-
lation of estimating equations satisfying M = 0 in (6) is generally necessary for
�n(θ0) to have a chi-square limit and is a consequence of this EL based on the
periodogram. A similar moment restriction is shared by the FDB, as detailed in
[11] (page 1938), due to difficulties in estimating the variance of empirical spec-
tral means. Similar complications arise in the inner mechanics of FDEL, requiring
M = 0. As the proof of Theorem 1 shows [see (24) and (27)], variance estimators
intrinsic to FDEL ratios are asymptotically of the form given in Lemma 7 of Sec-
tion 9 (i.e., setting gh = GG′ there) and these target the asymptotic variance V

of an empirical spectral mean appearing in Lemma 6 so that variance estimation
within FDEL is consistent if M = 0 (or if the innovation cumulant κ4,ε = 0); see
[32] for details. However, Section 2.1 gives some important estimating equations
for which M = 0 and, importantly, estimating functions may be chosen with more
flexibility for inference on Gaussian processes.

If the true density f belongs to F in (7), then a confidence region can be cal-
ibrated with �n,F (θ) as well. Monti [31] suggests similar confidence regions for
Whittle estimation with SRD linear processes and spectral densities parameter-
ized as in (9) (e.g., ARMA models). However, if the candidate density class F
is incorrect, confidence regions based on �n,F (θ) become conservative to a de-
gree dependent on the misspecification. This closely parallels the behavior of the
EL ratio with misspecified regression models, as described in Section 5.4 of [35].
Confidence regions set with �n do not generally require specification of a model
density class F , but for the case of inference on Whittle parameters where a class
of densities F may be involved, Section 6 describes how �n (unlike �n,F ) may be
used, even if F is misspecified.
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5. Extensions to maximum empirical likelihood estimation. We shall refer
to the maximum of Rn(θ) from (15) as the maximum empirical likelihood estima-
tor (MELE) and denote it by θ̂n; we denote the maximum of Rn,F (θ) from (16)
by θ̂n,F . We next show that with both SRD and LRD linear time series, maximum
empirical likelihood estimates (MELE’s) θ̂n and θ̂n,F have properties resembling
those available in EL frameworks involving independent data.

5.1. Consistency and asymptotic normality. We first consider establishing the
existence, consistency and asymptotic normality of a sequence of local maximums
of FDEL functions Rn(θ) and Rn,F (θ), along the lines of the classical arguments
of [7]. The assumptions involved are very mild and have the advantage of being
typically simple to verify and apply to both versions of FDEL Rn(θ) and Rn,F (θ).
Qin and Lawless [38] adopt a similar approach to study MELE’s in the i.i.d. data
scenario.

Let ‖ · ‖ denote the Euclidean norm. For n ∈ N, define the open neighbor-
hood Bn = {θ ∈ 
 : ‖θ − θ0‖ < n−η}, where η = max{1/3,1/4 + (α − β)/2,

(1 + α + δ)/4} < 1/2 for δ < 1 defined below in Theorem 2 and α, β from As-
sumptions A.1–A.2.

THEOREM 2. Assume A.1–A.4 hold and M = 0. Suppose, in a neighbor-
hood of θ0, ∂Gθ(λ)/∂θ , ∂2Gθ(λ)/∂θ∂θ ′ are continuous in θ and ‖∂Gθ(λ)/∂θ‖,
‖∂2Gθ(λ)/∂θ∂θ ′‖ are bounded by C|λ|−δ for some δ < 1, δ +α < 1. Suppose fur-
ther that ∂Gθ0/∂θ is Riemann integrable and that Dθ0 ≡ ∫� f (λ)∂Gθ0(λ)/∂θdλ

has full column rank p.

(i) As n → ∞, there exists a sequence of statistics {θ̂n} such that P (θ̂n is a
maximum of Rn(θ) and θ̂n ∈ Bn) → 1 and

√
n

(
θ̂n − θ0

t
θ̂n

− 0

)
d−→ N

(
0,

[
Vθ0 0
0 Uθ0

])
,

where Vθ0 = 4π(D′
θ0

W−1
θ0

Dθ0)
−1 and Uθ0 = π−1W−1

θ0
(Ir×r − (4π)−1Dθ0Vθ0 ×

D′
θ0

W−1
θ0

).
(ii) Additionally, suppose A.5 and f = fθ0 hold, that ∂fθ0/∂θ is Riemann in-

tegrable, that P(0 ∈ ch◦{πGθ(λj )[In(λj ) − fθ (λj )]}Nj=1, θ ∈ Bn) → 1 for the

closure Bn, and that in a neighborhood of θ0,
∫ π

0 Gθ(λ)fθ (λ) dλ = M and
‖∂fθ/∂θ‖,‖∂2fθ(λ)/∂θ∂θ ′‖ ≤ C|λ|−α , λ ∈ (0, π]. Then there exists a sequence of
statistics {θ̂n,F } such that P (θ̂n,F is a maximum of Rn,F (θ) and θ̂n,F ∈ Bn) → 1
as n → ∞ and the distributional result in (i) is valid for

√
n(θ̂n,F − θ0, t

θ̂n,F
/2)′.

(iii) If κ4,ε = 0, then Theorem 2(ii) holds, even if M 
= 0 ∈ R
r .

REMARK 2. When assuming f ∈ F in Theorem 2(ii), a constant function∫ π
0 Gθ(λ)fθ (λ) dλ = M of θ represents a natural relationship between the chosen
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estimating functions and F [e.g., the Whittle estimating equations Gw
θ in (11)].

The probabilistic assumption on the closure Bn in Theorem 2(ii) is similar to As-
sumption (A.5) and implies the FDEL ratio �n,F (θ) exists finitely in a neighbor-
hood of θ0.

As pointed out by a referee, Theorem 2 establishes consistency of a local max-
imizer of the EL function only. In the event that the likelihood Rn or Rn,F has
a single maximum with probability approaching 1 [e.g., by concavity of Rn(θ)],
the sequence {θ̂n} or {θ̂n,F } corresponds to a global MELE. In many cases, the
consistency of global maximizers can also be established using additional condi-
tions. In Theorem 3 below, we give conditions for the consistency of θ̂n; similar
conditions for θ̂n,F can be developed. Note that these conditions are satisfied by
the estimating functions given in Section 2.

THEOREM 3. Suppose Assumption A.1 holds.

(i) Assume θ0 lies in the interior of 
, Gθ(λ) is a (componentwise) contin-
uous and monotone function of θ for λ ∈ � and, for θ ∈ 
, |Gθ(λ)| is Riemann
integrable and bounded by C|λ|−δ for some δ < 1, α + δ < 1. Then as n → ∞,

P
(
θ̂n = arg max

θ∈

Rn(θ) exists

)
−→ 1 and θ̂n

p−→ θ0.(18)

(ii) Suppose 
 is compact, Gθ(λ) ≡ Gw
θ from (11) [or Gθ(λ) ≡ Gw∗

ϑ (λ) from
(12)] is continuous at all (λ, θ) ∈ � × 
 and W(θ) from (8) attains its minimum
on the interior of 
. Then (18) holds as n → ∞.

5.2. Empirical likelihood tests of hypotheses. EL ratio test statistics with θ̂n

and θ̂n,F are possible for both parameter and moment hypotheses. Similarly to
parametric likelihood, we can use the log-EL ratio �n(θ0) − �n(θ̂n) to test the pa-
rameter assumption H0 : θ = θ0. For testing the null hypothesis that the true para-
meter θ0 satisfies the spectral mean condition in (6), the log-ratio statistic �n(θ̂n)

is useful. Analogous tests are possible with �n,F (θ0) and �n,F (θ̂n,F ). These EL
log-ratio statistics have limiting chi-square distributions for testing the above hy-
potheses.

THEOREM 4. Under the assumptions of Theorem 2 with the sequences {θ̂n}
and {θ̂n,F },

(i) �n(θ0) − �n(θ̂n)
d−→ χ2

p , �n(θ̂n)
d−→ χ2

r−p and these are asymptotically
independent;

(ii) �n,F (θ0)−�n,F (θ̂n,F )
d−→ χ2

p , �n,F (θ̂n,F )
d−→ χ2

r−p and these are asymp-
totically independent, if the assumptions in Theorem 2(ii) are additionally satis-
fied;
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(iii) if κ4,ε = 0, Theorem 4(ii) remains valid, even if M 
= 0 ∈ R
r .

In Sections 6 and 7, Theorems 1–4 will be applied to Whittle estimation and
goodness-of-fit testing in the FDEL framework.

5.2.1. Parameter restrictions and nuisance parameters. Qin and Lawless [39]
introduced constrained EL inference for independent samples and [23] provided a
blockwise version for time domain EL under SRD. We can also consider FDEL
estimation subject to the following system of parameter constraints on θ :ψ(θ) =
0 ∈ R

q , where q < p and �(θ) = ∂ψ(θ)/∂θ is of full row rank q . By maximizing
the EL functions in (15) or (16) under the above restrictions, we find constrained
MELE’s θ̂

ψ
n or θ̂

ψ
n,F .

COROLLARY 1. Suppose the conditions in Theorem 2 hold and, in a neigh-
borhood of θ0, ψ(θ) is continuously differentiable, ‖∂2ψ(θ)/∂θ∂θ ′‖ is bounded

and �(θ0) is rank q . If H0: ψ(θ0) = 0 holds, then �n(θ̂
ψ
n ) − �n(θ̂n)

d−→ χ2
q and

�n(θ0) − �n(θ̂
ψ
n )

d−→ χ2
p−q as n → ∞.

We can then sequentially test H0 :ψ(θ0) = 0 with a log-likelihood ratio statistic
�n(θ̂

ψ
n ) − �n(θ̂n) and, if failing to reject H0, make an approximate 100(1 − γ )%

confidence region for constrained θ values {θ :ψ(θ) = 0, �n(θ) − �n(θ̂
ψ
n ) ≤

χ2
p−q,1−γ }.

Profile FDEL ratio statistics can also be developed to conduct tests in the pres-
ence of nuisance parameters (see Corollary 5 of [38] for the i.i.d. case). Suppose
θ = (θ ′

1, θ
′
2)

′, where θ1 and θ2 are q × 1 and (p − q) × 1 vectors, respectively. For
fixed θ1 = θ0

1 , suppose that θ̂0
2 and θ̂0

2,F maximize the EL functions Rn(θ
0
1 , θ2) and

Rn,F (θ0
1 , θ2) with respect to θ2.

COROLLARY 2. Under the conditions in Theorem 2, if H0 : θ1 = θ0
1 holds,

then �n(θ
0
1 , θ̂0

2 ) − �n(θ̂n)
d−→ χ2

q as n → ∞.

If the assumptions in Theorem 2(ii) are also satisfied, Corollaries 1 and 2 hold
using �n,F (·), θ̂n,F , θ̂

ψ
n,F and θ̂0

2,F .

6. Whittle estimation.

EXAMPLE 4 (Continued). With SRD linear processes, Monti [31] suggested
EL confidence regions for Whittle-like estimation of parameters θ = (σ 2, ϑ ′)′
characterizing fθ ∈ F from (9). Theorem 1 provides two refinements of [31].
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Refinement 1. Monti [31] develops an EL function for θ by treating the standard-
ized ordinates In(λj )/fθ (λj ), j = 1, . . . ,N , as approximately i.i.d. random vari-
ables, similarly to the FDB. The EL ratio in (4.1) of [31] asymptotically corre-
sponds to �n,F (θ) when using the estimating functions Gw

θ from (11). With this
choice of functions, the nonzero spectral mean Mw 
= 0 in (11) is due to the first
estimating function f −1

θ intended to prescribe σ 2. Note that the use of �n,F (θ)

and Gw
θ for setting confidence regions requires the additional assumption that the

fourth order innovation cumulant κ4,ε = 0, by Theorem 1. Valid joint confidence
regions are otherwise not possible here because Mw 
= 0. This complication due
to σ 2-inference is related to the inconsistency of the FDB Whittle estimate of σ 2

when κ4,ε 
= 0, as described by [11]. While valid for SRD Gaussian series with
κ4,ε = 0, periodogram-based EL formulation in [31] may not be applicable to gen-
eral SRD linear processes.

Refinement 2. Treating σ 2 as a nuisance parameter and concentrating it out of the
Whittle likelihood, Monti [31] suggests an EL ratio statistic for estimation of the
remaining p − 1 parameters ϑ in (9) via confidence regions. The statistic (6.1)
of [31] appears to be asymptotically equivalent to −2 logRn(ϑ) = 1/2 · �n(ϑ),
based on the p − 1 estimating functions Gw∗

ϑ from (12) and the N = (n − 1)/2�
periodogram ordinates. Note that for the function Gw∗

ϑ , we have Mw∗ = 0 so that
Theorem 1(i) applies to �n(ϑ).

For Whittle-like estimation of ϑ in the parameterization from (9), the EL log-
ratio �n(ϑ) based on the functions Gw∗

ϑ in (12) appears preferable to �n,F (ϑ). This
selection results in asymptotically correct confidence regions for ϑ under both
SRD and LRD, even for misspecified situations (f 
∈ F ) where the moments in
(10) still hold.

7. Goodness-of-fit tests.

7.1. Simple hypothesis case.

EXAMPLE 3 (Continued). We return to the simple hypothesis test H0 :f = f0
for some possible density f0. To assess the goodness-of-fit, Milhøj [30] and Be-
ran [3] proposed the test statistic Tn = πAn/B

2
n for mixing SRD linear processes

(with κ4,ε = 0) and long-memory Gaussian processes, respectively, and estab-
lished the limiting bivariate normal law of

√
n{(An,Bn)

′ − (2π,π)′} under H0 for
An = 2π/n

∑N
j=1 I 2

n (λj )/f
2
0 (λj ), Bn = 2π/n

∑N
j=1 In(λj )/f0(λj ). Since these

linear processes involve κ4,ε = 0, under Theorem 1(iii) we can construct a sin-
gle statistic �n,F to test H0 by treating F = {f0} in (7) and employing a sin-
gle estimating function f −1

0 satisfying (6) with M = π under H0. In expanding
�n,F = n(Bn − π)2/(πAn) + op(1), we find the FDEL ratio statistic asymptoti-
cally incorporates much of the same information in Tn under H0 (with better power
when f = cf0, c 
= 1).
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For testing the special hypothesis H0 : {Xt } is white noise (constant f ),
a FDEL goodness-of-fit test based on the process autocorrelations can be ap-
plied, similar to some Portmanteau tests [28, 27]. The estimating functions
G(λ) = (cos(λ), . . . , cos(mλ))′ satisfy (6) with M = 0 ∈ R

m under this H0 (see
Example 1) and yield a single EL ratio �n which pools information across m

EL-estimated autocorrelation lags.

7.2. Composite hypothesis case. To test the composite hypothesis H0 :f ∈ F
for a specified parametric class F , various frequency domain tests have been pro-
posed by [3, 30, 37] which use Whittle estimation to select the “best” fitting model
in F and then compare the fitted density to the periodogram across all ordinates.
We show that FDEL techniques can produce similar goodness-of-fit tests, while
expanding our EL theory slightly.

Suppose {Xt } is a Gaussian time series and that we wish to test if f ∈ F for
some parametric family as in (9), which includes densities (3) or (4). This scenario
is considered by [3] and [37] for LRD and SRD Gaussian models, respectively.
FDEL methods may simultaneously incorporate both components of model fitting
and model comparison through estimating equations∫ π

0
Gw

θ f dλ = Mw,

∫ π

0
(f/fθ )

2 dλ = π,(19)

where Gw
θ = (f −1

θ , ∂f −1
θ /∂ϑ ′)′ are the Whittle estimating functions from (11)

for the parameters θ = (σ 2, ϑ ′)′ ∈ R
p in fθ . Note that we introduce an over-

identifying moment restriction on f in (19) so that r = p + 1. We then ex-
tend the log-likelihood statistic �n,F in (17) to include I 2

n ordinates by defining
�I 2

n ,F (θ) = −2 logRI 2
n ,F (θ) for RI 2

n ,F (θ) = (N/π)NLI2
n ,F (θ) and

LI2
n ,F (θ) = sup

{
N∏

j=1

wj : wj ≥ 0,

N∑
j=1

wj = π,

N∑
j=1

wj

(
I 2
n (λj )/{2f 2

θ (λj )} − 1

Gw
θ (λj )[In(λj ) − fθ (λj )]

)
= 0

}
,

using fθ , f 2
θ above to approximate E(In), E(I 2

n/2) for each ordinate.
To evaluate H0 :f ∈ F , we test if the moment conditions in (19) hold for some

θ value. Following the test prescribed by Theorem 4, we find the argument maxi-
mum of LI2

n ,F (θ), say θ̂I2
n ,F , and form a test statistic �I 2

n ,F (θ̂I2
n ,F ) for this H0. The

subsequent extension of Theorem 4 gives the distribution for our test statistic.

THEOREM 5. Suppose {Xt } is Gaussian and the assumptions in Theorem 4(ii)
hold for fθ0 and Gw

θ0
with α − β < υ for each arbitrarily small υ > 0. Under the

null hypothesis f ≡ fθ0 ∈ F , �I 2
n ,F (θ̂I2

n ,F )
d−→ χ2

1 as n → ∞.
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The distributional result is valid even with nonzero spectral mean conditions in
(19) because the process is Gaussian. We make a few comments about model mis-
specification. Suppose f /∈ F , but θ0 still represents the parameter value which
minimizes the asymptotic distance measure W(θ) in (8) and fθ0 satisfies (10) (i.e.,∫ π

0 Gw
θ0
f dλ = Mw holds). A test consistency property can then be established: as

n → ∞,

n−1�I 2
n ,F (θ̂I2

n ,F )
p−→ a0

{∫ π

0

(
f (λ)

fθ0(λ)
− 1
)2

dλ

}2

> 0,

where a0 > 0 depends on f and fθ0 . We are assured that the test statistic can
determine if H0 :f ∈ F is true as the sample size increases.

8. Conclusions. We have introduced a frequency domain version of empirical
likelihood (FDEL) based on the periodogram, which allows spectral inference, in a
variety of applications, on both short- and long-range dependent linear processes.
Further numerical study and development of FDEL will be considered in future
communications. See [32] for extensions of FDEL using the tapered periodogram
in (13) under weak dependence. A valuable area of potential research includes
Bartlett corrections to the EL ratios in (17) (see [12] for i.i.d. data). Second- and
higher-order correct FDEL confidence regions may be possible without the kernel
estimation or stringent moment assumptions required with the frequency domain
bootstrap of [11].

9. Proofs. We only outline some proofs here for reasons of brevity. Detailed
proofs can be found in [32] and we shall refer to relevant results given there. We
require some additional notation and lemmas to facilitate the proofs. In the fol-
lowing, C or C(·) will denote generic constants that depend on their arguments (if
any), but do not depend on n, including ordinates {λj }Nj=1.

Define the mean-corrected discrete Fourier transforms dnc(λ) = ∑n
t=1(Xt −

µ)e−ıtλ, λ ∈ �. Note that 2πnInc(λ) = |dnc(λ)|2 = dnc(λ)dnc(−λ) and Inc(λj ) =
In(λj ) for j = 1, . . . ,N . Let Hn(λ) = ∑n

t=1 e−ıtλ, λ ∈ R, and write Kn(λ) =
(2πn)−1|Hn(λ)|2 to denote the Fejér kernel. The function Kn is nonnegative and
even with period 2π on R and satisfies

∫
� Kn dλ = 1 (see page 71 of [6]). We adopt

the standard that an even function g : � −→ R can be periodically (period 2π )
extended to R by g(λ) = g(−λ), g(λ) = g(λ + 2π) for λ ∈ R. We make extensive
use of the following function from [8]. Let Lns : R −→ R be the periodic extension
of

Lns(λ) =:



e−sn, |λ| ≤ es/n,

logs(n|λ|)
|λ| , es/n < |λ| ≤ π,

λ ∈ �, s = 0,1.
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For each n ≥ 1, s = 0,1, Lns(·) is decreasing on [0, π] and

|Hn(λ)| ≤ C Ln0(λ), Ln0(λ) ≤ 3πn

1 + |λmod 2π |n, λ ∈ R.(20)

In the following, cum(Y1, . . . , Ym) denotes the joint cumulant of random variables
Y1, . . . , Ym. We often refer to cumulant properties from Section 2.3 of [5], includ-
ing the product theorem for cumulants (cf. Theorem 2.3.2).

We remark that Lemma 5 to follow ensures that the log-likelihood ratio �n(θ0)

exists asymptotically. Lemmas 6 and 7 establish important results for Riemann
integrals based on the periodogram under both LRD and SRD; Lemma 6 considers
the distribution of empirical spectral means and Lemma 7 is required for variance
estimation.

LEMMA 1. Let 1 ≤ i ≤ j ≤ N and 0 < d < 1. If ai ∈ {±λi}, aj ∈ {±λj } and
ai + aj 
= 0, then

Ln0(ai + aj ) ≤ ncijn

2π
,

cijn =



(j − i)−1, sign(ai) 
= sign(aj ),

(j + i)−1, sign(ai) = sign(aj ), i + j ≤ n/2,

(n − j − i)−1, sign(ai) = sign(aj ), i + j > n/2;

(i)

Ln1(ai + aj ) ≤ min
{
log(nπ)Ln0(ai + aj ), nC(d)[cijn]d};(ii)

∫
�

Lm
n0(λ) dλ ≤ C(m)[log(n) + nm−1], m ≥ 1 ∈ Z;(iii)

∫
�

Lm
n0(r1 + λ)Lm

n0(r2 − λ)dλ

≤



CLn1(r1 + r2), m = 1,
r1, r2 ∈ R.

CnL2
n0(r1 + r2), m = 2,

(iv)

PROOF. Parts (iii)–(iv) are from Lemmas 1 and 2 of [8]. Lemma 1(i)–(ii) fol-
low from the fact that |(ai + aj )mod 2π | ≥ 2π/n if ai + aj 
= 0, along with the
definition of Ln0. �

LEMMA 2. Suppose Assumption A.1 holds. Let �ρ = [ρ,π] for 0 < ρ < π . If
a1, a2 ∈ �, |a1| ≤ |a2| and |a2| ∈ �ρ , then cum(dnc(a1), dnc(a2)) = 2πHn(a1 +
a2)f (a2) + Rnρ(a1, a2) and Rnρ = o(n) holds for Rnρ ≡ sup{|Rnρ(a1, a2)| :
a1, a2 ∈ �, |a1| ≤ |a2|, |a2| ∈ �ρ}.
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PROOF. We modify the proof of Theorem 1(a) of [8]; see [32], Lemma 5 for
details. �

LEMMA 3. Let 1 ≤ i ≤ j ≤ N (n ≥ 3) and a1, . . . , ak ∈ {±λi,±λj }, |a1| ≤
|a2| ≤ · · · ≤ |ak|, with 2 ≤ k ≤ 8. Under Assumption A.1,∣∣cum(dnc(a1), dnc(a2))

∣∣
≤ C

{
|a1|−α

(|a2|−1 + Ln1(a1 + a2)
)
, if α > 0,

Ln1(a1 + a2), if α = 0;
(i)

∣∣cum(dnc(a1), . . . , dnc(ak))
∣∣

≤ C
{|ak|α/2−1|ak−1|−1/2 + n logk−1(n)

} k∏
j=1

|aj |−α/2.
(ii)

PROOF. We show Lemma 3(ii); the proof of (i) can be similarly shown with
details given in [32], Lemma 1. From [25, 41], the kth order joint cumulant (2 ≤
k ≤ 8) may be expressed as cum(dnc(a1), . . . , dnc(ak)) = (2π)−k+1κε,kν(�k−1)

using the kth order innovation cumulant κε,k and a function ν of Borel measurable
sets A ⊂ �k−1 defined as

ν(A) =
∫
A

Hn

(
k∑

j=1

aj −
k−1∑
j=1

zj

)
b

(
k−1∑
j=1

aj − zj

)

×
k−1∏
j=1

{Hn(zj )b(zj − aj )}dz1 . . . dzk−1.

On B =⋂k−1
j=1{(z1, . . . , zk−1) ∈ �k−1 : |zj − aj | ≤ |aj |/2k}, we have |Hn(zj )| ≤

C|aj |−1, |Hn(
∑k

j=1 aj −∑k−1
j=1 zj )| ≤ C|ak|−1 by (20) and, by applying Hölder’s

inequality,

∫
|zk−1−ak−1|
≤|ak−1|/2k

∣∣∣∣∣b
(

k−1∑
j=1

aj − zj

)
b(zk−1 − ak−1)

∣∣∣∣∣dzk−1 ≤ C|ak−1|(1−α)/2,

while
∫
|zj−aj |≤|aj |/2k |b(zj − aj )|dzj ≤ C|aj |1−α/2 for 1 ≤ j ≤ k − 2. By

these inequalities, |ν(B)| ≤ C|ak|−1|ak−1|−1/2∏k−1
j=1 |aj |−α/2. Now, on Bj =

{(z1, . . . , zk−1) ∈ �k−1 : |zj − aj | > |aj |/2k} for fixed 1 ≤ j ≤ k − 1, we find
|b(zj − aj )| ≤ C|aj |−α/2, |Hn(zj )| ≤ Cn and
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∫
�

∣∣∣∣∣Hn

(
k∑

�=1

a� −
k−1∑
�=1

z�

)
b

(
k−1∑
�=1

a� − z�

)∣∣∣∣∣dzj

≤
∫

|λ|≤|ak |/2

C|ak|−1|λ|−α/2 dλ +
∫

|λ|>|ak |/2

C |ak|−α/2Ln0(ak − λ)dλ

≤ C|ak|−α/2 log(n),

by Lemma 1(iii), while
∫
� |Hn(z�)||b(z� − a�)|dz� ≤ C |a�|−α/2 log(n) for each

� 
= j . Since �k−1 \ B = ⋃k−1
j=1 Bj , we have |ν(�k−1\B)| ≤ ∑k−1

j=1 |ν(Bj )| ≤
Cn logk−1(n)

∏k
j=1 |aj |−α/2. �

LEMMA 4. Under Assumption A.1, r̂(k) = r̂(−k) = n−1∑n−k
j=1(Xj − µ)×

(Xj+k − µ)
p−→ r(k) = Cov(Xj ,Xj+k) as n → ∞ for each k ≥ 0.

PROOF. r̂(k) is asymptotically unbiased and Var(r̂(k)) = o(1), by Lemma 3.3
of [22]. �

LEMMA 5. Under Assumption A.1, suppose G = (g1, . . . , gr)
′ ≡ Gθ0 is even

with finite discontinuities on [0, π] and satisfies Assumptions A.2 and A.4. If∫
� Gf dλ = 0 ∈ R

r , then P(0 ∈ ch◦{πG(λj )In(λj )}Nj=1) → 1 as n → ∞.

PROOF. See [32] for details. It can be shown that inf‖y‖=1
∫
� 1{y′G(λ)>0}y′ ×

Gf dλ ≥ C > 0 and that P(inf‖y‖=1
4π
n

∑N
j=1 In(λj )y

′G(λj )1{y′G(λj )>0} ≥ C/2)

→ 1 follows using Lemma 4 with arguments from Lemma 1 of [20]. When the
event in this probability statement holds, the separating/supporting hyperplane the-
orem implies that 0 ∈ ch◦{πG(λj )In(λj )}Nj=1. �

LEMMA 6. Suppose Assumptions A.1–A.3 hold with respect to an even
function G = (g1, . . . , gr)

′ ≡ Gθ0 and let Jn = (2π/n)
∑N

j=1 G(λj )In(λj ). Then
√

n
(
Jn − ∫ π

0 f Gdλ
) d−→ N (0,V ) as n → ∞, where

V = π

∫
�

f 2GG′ dλ + κ4,ε

4σ 4
ε

(∫
�

f Gdλ

)(∫
�

f Gdλ

)′
.

If, in addition, A.5 holds, then
√

nJ̃n
d−→ N (0,V ) for J̃n = (2π/n)

∑N
j=1 G(λj )×

[In(λj ) − f (λj )].

PROOF. By Assumptions A.1–A.2, we have that
√

n(
∫ π

0 GInc dλ −
E
∫ π

0 GInc dλ)
d−→ N(0,V ) from Theorem 2 and Lemma 6 of [17] and the
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Cramér–Wold device. To show the result for Jn in Lemma 6, it suffices to establish
that ∥∥∥∥E

∫ π

0
G(Inc − f )dλ

∥∥∥∥= o(n−1/2),

(21) ∥∥∥∥Jn −
∫ π

0
GInc dλ

∥∥∥∥= op(n−1/2).

The distribution of J̃n then also follows, using ‖(2π/n)
∑N

j=1 G(λj )f (λj ) −∫ π
0 f Gdλ‖ = o(n−1/2), which can be established with straightforward arguments;

see [32], Lemma 10.
Without loss of generality, we assume that G = g (i.e., r = 1) and establish (21)

under Condition 2 of Assumption A.3; see [32] for proofs under Conditions 1 or
3 of A.3. Proving (21) under Condition 1 of A.3 involves using the nth Cesàro
mean cng(λ) = ∫� Kn(λ− y)g(y) dy, λ ∈ �, for which supλ∈� |g(λ)− cng(λ)| =
o(n−1/2), by Theorem 6.5.3 of [14], and using 2π

n

∑n/2�
j=−N cng(λj )Inc(λj ) =∫

� cngInc dλ, E
∫
� gInc dλ = ∫� cngf dλ. The proof under Condition 3 relies on

Theorem 3.2 and Lemma 3.1 of [9] and Lemma 4 of [8].
We show the first convergence in (21) here; Lemma A.1 in the Appendix gives

the second part of (21). Using the evenness of Kn,
∫
� Kn(λ − y)dy = 1 and

E(Inc(λ)) = ∫� Kn(λ − y)f (y) dy, we have

√
n

∣∣∣∣E
∫
�

gInc dλ −
∫
�

gf dλ

∣∣∣∣≤ √
n

∫
�2

Kn(λ − y)f (y)|g(λ) − g(y)|dy dλ

(22)

≤ Cn3/2
∫
(0,π ]2

f (y)|g(λ) − g(y)|
(1 + |λ − y|n)2 dy dλ,

where the last inequality follows from (20) and |(λ − y)mod2π | ≥ ||λ| − |y||, λ,
y ∈ �. We now modify an argument from [17] (page 99). Under Condition 2 of A.3
(with respect to β1 > 0), we may pick 0 < γ < 1/2 so that 0 < γ ∗ ≡ γ + β1(1 −
γ )−α < 1 and f (y)|g(λ)−g(y)| ≤ C(min{y,λ})−1+γ ∗ |λ−y|1−γ , λ, y ∈ (0, π].
We then bound (22) by

Cn−1/2−γ ∗+γ
∫ nπ

0

(∫ ∞
0

y−1+γ ∗

(1 + |λ − y|)1+γ
dy

)
dλ ≤ Cn−1/2+γ = o(1),

using the fact that there exists a C > 0 such that
∫∞

0 y−1+γ ∗
(1+|λ−y|)−1−γ dy ≤

C|λ|−1+γ ∗
for any λ ∈ R. �

LEMMA 7. Under Assumption A.1, suppose g and h are real-valued, even
Riemann integrable functions on � such that |g(λ)|, |h(λ)| ≤ C|λ|β , 0 ≤ β < 1,
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α − β < 1/2. Then as n → ∞,

2π

n

N∑
j=1

g(λj )h(λj )I
2
n (λj ) and 2 · 2π

n

N∑
j=1

g(λj )h
(
λj )(In(λj ) − f (λj )

)2
p−→
∫
�

ghf 2 dλ.

PROOF. We consider the first Riemann sum above; convergence of the sec-
ond sum can be similarly established. Since (2π/n)

∑N
j=1 g(λj )h(λj )f

2(λj ) →∫ π
0 ghf 2 dλ by the Lebesgue dominated convergence theorem, it suffices to estab-

lish

Bn ≡
∣∣∣∣∣E(Sn) − 4π

n

N∑
j=1

g(λj )h(λj )f
2(λj )

∣∣∣∣∣= o(1), Var(Sn) = o(1),

for Sn = (2π/n)
∑N

j=1 g(λj )h(λj )I
2
n (λj ). We show that Bn = o(1); Lemma A.2

in the Appendix shows that Var(Sn) = o(1). By E(dnc(λ)) = 0 and the product
theorem for cumulants,

(2πn)2E(I 2
n (λj )) = cum2(dnc(λj ), dnc(λj )) + 2 cum2(dnc(λj ), dnc(−λj ))

(23) + cum
(
dnc(λj ), dnc(λj ), dnc(−λj ), dnc(−λj )

)
.

Then Bn ≤ B1n + B2n + B3n for terms Bin defined in the following.
Using the fact that n−12πLn0(2λj ) ≤ (2j)−11{j≤n/4�} + (n−2j)−11{j>n/4�},

by Lemma 1, and the fact that cum(dnc(λj ), dnc(λj )) ≤ Cλ−α
j (λ−1

j +
log(n)Ln0(2λj )), by Lemma 3(i), we have, for B1n = n−3∑N

j=1 |g(λj )h(λj )|×
cum2(dnc(λj ), dnc(λj )), that

B1n ≤ Cn−1+max{0,2α−2β} log2(n)

( n/4�∑
j=1

j−2 +
N∑

j=n/4�+1

(n − 2j)−2

)
= o(1).

By Lemma 3(ii), |cum(dnc(λj ), dnc(λj ), dnc(−λj ), dnc(−λj ))| ≤ Cn(n1/2 +
log3(n))λ−2α

j so that B2n = n−3∑N
j=1 |g(λj )h(λj )cum(dnc(λj ), dnc(λj ),

dnc(−λj ), dnc(−λj ))| = o(1). Choose 0 < ρ < π . Using Lemma 3(i) and Lem-
ma 2, for an arbitrarily small ρ, we may bound

limB3n ≤ lim
(

C

n

∑
λ1≤λj<ρ

λ
2β−2α
j + Rnρ

n
· C

n

∑
ρ≤λj≤λN

λ
2β−α
j

)

≤ C

∫ ρ

0
λ2β−2α dλ

for B3n = |4π/n
∑N

j=1 g(λj )h(λj )[cumj −f (λj )][cumj +f (λj )]|, where we de-
note cumj = cum(dnc(λj ), dnc(−λj ))/(2πn). As C does not depend on ρ above,
B3n = o(1) follows. �
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LEMMA 8. Suppose Assumption A.1 holds and 0 ≤ β < 1, α − β < 1/2.
Let ω = max{1/3,1/4 + (α − β)/2}. Then max1≤j≤N In(λj )λ

β
j = op(nω) and

max1≤j≤N f (λj )λ
β
j = o(nω).

PROOF. It holds that E(I 4
n (λj )) = cum(I 2

nc(λj ), I
2
nc(λj )) + [E(I 2

nc(λj ))]2 ≤
Cλ−4α

j , by the product theorem for cumulants; see (33), (23) and Lemma 3. For
each ε > 0, we then have

P
(

max
1≤j≤N

In(λj )λ
β
j > εnω

)
≤ 1

εnω

(
N∑

j=1

λ
4β
j E(I 4

nc(λj ))

)1/4

= o(1),

which follows from n−4ω∑N
j=1 λ

4β−4α
j = o(1). �

PROOF OF THEOREM 1. We give a detailed argument for Theorem 1(i);
parts (ii)–(iii) of Theorem 1 follow with some minor modifications. By Lemma 5,
0 ∈ ch◦{πGθ0(λj )In(λj )}Nj=1 ⊂ R

r with probability approaching 1 as n → ∞, so
that a positive Rn(θ0) exists in probability. In view of (15), we can express the
extrema Rn(θ0) =∏N

j=1(1 + γj )
−1 with γj = t ′θ0

πGθ0(λj )In(λj ), |γj | < 1, where
tθ0 ∈ R

r satisfies Q1n(θ0, tθ0) = 0 for the function Q1n(·, ·) on 
 × R
r defined

in (28). Let

Wnθ0 = 2π

n

N∑
j=1

Gθ0(λj )G
′
θ0

(λj )I
2
n (λj ),

(24)

Jnθ0 = Q1n(θ0,0) = 2π

n

N∑
j=1

Gθ0(λj )In(λj ).

By Lemma 6 with
∫
� Gθ0f dλ = M = 0 and Lemma 7, we have

|Jnθ0 | = Op(n−1/2), ‖Wnθ0 − Wθ0‖ = op(1),(25)

so that Wnθ0 is nonsingular in probability. Using Assumption A.2 and Lemma 8, it
holds that

Yn = max
1≤j≤N

π‖Gθ0(λj )‖In(λj ) = op(n1/2), ‖tθ0‖ = Op(n−1/2),(26)

where the order of ‖tθ0‖ follows as in [33, 34]. Note that by (26), max1≤j≤N |γj | ≤
‖tθ0‖Yn = Op(n−1/2)op(n1/2) = op(1) holds. Algebraically, we write
0 = Q1n(θ0, tθ0) = Jnθ0 − πWnθ0 tθ0 + (2π/n)

∑N
j=1 Gθ0(λj )In(λj )γ

2
j /(1 + γj )

and solve for tθ0 = (πWnθ0)
−1Jnθ0 + φn, where

‖φn‖ ≤ Yn‖tθ0‖2‖W−1
nθ0

‖
(

2π

n

N∑
j=1

‖Gθ0(λj )‖2I 2
n (λj )

){
max

1≤j≤N
(1 + γj )

−1
}

= op(n−1/2),
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by Lemma 7, (26) and the fact that max1≤j≤N |γj | = op(1). When ‖tθ0‖Yn < 1,
we apply a Taylor expansion log(1 + γj ) = γj − γ 2

j /2 + �j for each 1 ≤ j ≤ N .
Then

�n(θ0) = 4
N∑

j=1

log(1 + γj ) = 2

[
2

N∑
j=1

γj −
N∑

j=1

γ 2
j

]
+ 4

N∑
j=1

�j,

(27)

2

[
2

N∑
j=1

γi −
N∑

j=1

γ 2
j

]
= nJ ′

nθ0
(πWnθ0)

−1Jnθ0 − nφ′
n(πWnθ0)φn.

By Lemma 6 and (25), nJ ′
nθ0

(πWnθ0)
−1Jnθ0

d−→ χ2
r . We also have nφ′

n(πWnθ0)×
φn = op(1) and we may bound

∑N
j=1 |�j | by

n‖tθ0‖3Yn

(1 − ‖tθ0‖Yn)3

1

n

N∑
j=1

‖πGθ0(λj )‖2I 2
n (λj ) = nOp(n−3/2)op(n1/2)Op(1)

= op(1),

from Lemma 7 and (26). Theorem 1(i) follows by Slutsky’s Theorem.
Under Theorem 1(ii)–(iii), fθ0 = f holds and Rn,F (θ0) exists in probability as

n → ∞, by Assumption A.5. We repeat the same arguments as above, replacing
each occurrence of In(λj ) with In(λj ) − f (λj ) instead; we denote the resulting
quantities with a tilde:

W̃nθ0 = 2π

n

N∑
j=1

Gθ0(λj )G
′
θ0

(λj )
(
In(λj ) − f (λj )

)2
,

J̃nθ0 = 2π

n

N∑
j=1

Gθ0(λj )
(
In(λj ) − f (λj )

)
,

γ̃j , �̃j , φ̃n, etc. All the previous points follow except for two, which are straight-
forward to remedy: by Lemma 7, ‖2W̃nθ0 − Wθ0‖ = op(1) instead of (25), and in
(27), we must write

�n,F (θ0) = 2
N∑

j=1

log(1 + γ̃j )

= nJ̃ ′
nθ0

(2πW̃nθ0)
−1J̃nθ0 − nφ̃′

n(2
−1πW̃nθ0)φ̃n + 2

N∑
j=1

�̃j ,

where nJ̃ ′
nθ0

(2πW̃nθ0)
−1J̃nθ0

d−→ χ2
r by Lemma 6, nφ̃′

n(2
−1πW̃nθ0)φ̃n = op(1)

and
∑N

j=1 �̃j = op(1). �



SPECTRAL EMPIRICAL LIKELIHOOD 3041

PROOF OF THEOREM 2. We require some additional notation. Define the fol-
lowing functions on 
 × R

r :

Q1n(θ, t) = 2π

n

N∑
j=1

Gθ(λj )In(λj )

1 + t ′πGθ(λj )In(λj )
,

(28)

Q2n(θ, t) = 2π

n

N∑
j=1

In(λj )
(
∂Gθ(λj )/∂θ

)′
t

1 + t ′πGθ(λj )In(λj )
.

Also, define versions Q̃1n(θ, t) and Q̃2n(θ, t) by replacing each In(λi) with
In(λi) − fθ (λi) in (28) and adding the extra term −(∂fθ (λi)/∂θ)G′

θ (λi)t to the
numerator of Q2n. We use the following MELE existence result to prove Theo-
rem 2; see [32] for its proof:

LEMMA 9. Under the assumptions of Theorem 2,

(i) the probability that Rn(θ) attains a maximum θ̂n, which lies in the ball
Bn and satisfies Q1n(θ̂n, tθ̂n

) = 0 and ∂�n(θ)/∂θ
∣∣
θ=θ̂n

= 2nQ2n(θ̂n, tθ̂n
) = 0, con-

verges to 1 as n → ∞;
(ii) under the assumptions of Theorem 2(ii) or (iii), result (i) above holds for

Rn,F (θ) with respect to θ̂n,F , �n,F , Q̃1n(θ̂n,F , t
θ̂n,F

), 2−1Q̃2n(θ̂n,F , t
θ̂n,F

) [replac-

ing θ̂n, �n, Q1n(θ̂n, tθ̂n
), Q2n(θ̂n, tθ̂n

)].

We now establish the asymptotic normality of θ̂n, following arguments in [38].
Expanding Q1n(θ̂n, tθ̂n

), Q2n(θ̂n, tθ̂n
) at (θ0,0) with Lemma 9, we have that

�n

(
t
θ̂n

θ̂n − θ0

)
=
[−Jnθ0 + E1n

E2n

]
,

�n =
[
∂Q1n(θ0,0)/∂t ∂Q1n(θ0,0)/∂θ

∂Q2n(θ0,0)/∂t 0

]
,

Q1n(θ0,0) = Jnθ0,
∂Q1n(θ0,0)

∂t
= −πWnθ0,

∂Q2n(θ0,0)

∂t
=
[
∂Q1n(θ0,0)

∂θ

]′
,

∂Q2n(θ0,0)

∂θ
= 0,

with Jnθ0,Wnθ0 as in (24). In addition, it can be shown that

∂Q1n(θ0,0)

∂θ
= 2π

n

N∑
j=1

∂Gθ0(λj )

∂θ
In(λj )

p−→ 1

2

∫
�

∂Gθ0(λ)

∂θ
f (λ)dλ = Dθ0

2
,
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using (2π/n)
∑N

j=1 f (λj )∂Gθ0(λj )/∂θ → Dθ0/2 by the dominated convergence
theorem and a modification of the proof of Lemma 7. Applying this convergence
result with (25),

�−1
n =

[
A11n A12n

A21n A22n

]
p−→ 1

2π

[ −2πUθ0 W−1
θ0

Dθ0Vθ0

Vθ0D
′
θ0

W−1
θ0

2πVθ0

]
(29)

holds. One may verify that ‖E1n‖, ‖E2n‖ = Op(δnn
−1−η∑N

j=1 �jn ×
max{I 2

n (λj ), In(λj )}) = op(δn) for δn = ‖t
θ̂n

‖ + ‖θ̂n − θ0‖ and �jn = n−ηλ−2δ
j +

λ
β−δ
j + λ

2β
j . By Lemma 6,

√
nJnθ0

d−→ N (0, πWθ0), and so it follows that

δn = Op(n−1/2). We then have that

√
n(θ̂n − θ0) = −√

nA21nJnθ0 + op(1)
d−→ N (0,Vθ0),√

n(t
θ̂n

− 0) = −√
nA11nJnθ0 + op(1)

d−→ N (0,Uθ0).
(30)

To show the normality of θ̂n,F − θ0 under the conditions of Theorem 2(ii), we
substitute Q̃1n, Q̃2n for Q1n,Q2n above and, using Lemma 9, repeat the same ex-
pansion with an analogously defined matrix �̃n (having components Ãijn in �̃−1

n ).
Note that ∂Q̃1n(θ0,0)/∂θ = ∂Q1n(θ0,0)/∂θ − D̃nθ0 where, by the Lebesgue dom-
inated convergence theorem, as n → ∞,

D̃nθ0 = 2π

n

N∑
i=1

∂[Gθ(λi)fθ (λi)]
∂θ

∣∣∣∣
θ=θ0

→ 1

2

∂

∂θ

[∫
�

fθGθ dλ

]∣∣∣∣
θ=θ0

= 0,

since the theorem’s conditions justify exchanging the order of differentiation/
integration of fθGθ at θ0 and

∫
� fθGθ dλ = M is constant in a neighborhood of θ0.

The convergence result in (29) follows for �̃−1
n upon replacing “−2πUθ0,2πVθ0”

with “−4πUθ0, πVθ0 .” By Lemma 6,
√

nJ̃nθ0 = √
nQ̃1n(θ0,0)

d−→ N (0, πWθ0)

so that (30) holds for
√

n(θ̂n,F − θ0) and
√

n(t
θ̂n,F

− 0)/2 after replacing Jnθ0 ,

A21n, A11n with J̃nθ0 , Ã21n, Ã11n/2. �

PROOF OF THEOREM 3. To establish (i), assume without loss of generality
that Gθ(λ) is real-valued and increasing in θ (i.e., r = 1). For θ ∈ 
, define En,θ =
1
N

∑N
j=1{πIn(λj )Gθ(λj ) − M}, where M = ∫ π

0 Gθ0f dλ. Following the proof of

Lemma 7, En,θ
p−→ ∫ π

0 Gθf dλ − M holds for each θ so that, for an arbitrarily
small ε > 0, P(En,θ0−ε < 0 < En,θ0+ε) → 1 by the monotonicity of Gθ . When
the event in the probability statement holds, there exists θ̂n ∈ 
 where E

n,θ̂n
= 0,

by the continuity of Gθ , and Ln(θ̂n) = (π/N)N follows in (13). For any θ with
|θ −θ0| ≥ ε, we have that En,θ 
= 0, implying that Ln(θ) < Ln(θ̂n). Hence, a global
maximum θ̂n satisfies P(|θ̂n − θ0| < ε) → 1.
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For (ii), we consider Gθ ≡ Gw
θ and M ≡ Mw from (11). Suppose θ∗

n and θ∗

denote the minima of Wn(θ) = 1
4 log σ 2

2π
+ 1

4πN

∑N
j=1 πIn(λj )f

−1
θ (λj ) and W(θ),

respectively. Using Lemma 4 with arguments as in Theorem 1 of [20], it follows

that θ∗
n

p−→ θ∗. Since θ∗ is interior to 
, it holds that ∂Wn(θ
∗
n )/∂θ = 0, which

implies that En,θ∗
n

= 0 under the above definition of En,θ with Gw
θ ,Mw . Hence,

Ln(θ
∗
n ) = (π/N)N and, using Lemma 4 with arguments of Lemma 1 of [20], 0 =

En,θ∗
n

p−→ ∫ π
0 Gθ∗f dλ−M holds, whereby θ∗ = θ0, by uniqueness. We then have

a global maximum θ̂n = θ∗
n , for which θ̂n

p−→ θ0. �

PROOF OF THEOREM 4. Considering Theorem 4(i), let PX = X(X′X)−1X′
and Ir×r denote the projection matrix for a given matrix X and the r × r

identity matrix. Writing (πWθ0/n)1/2Znθ = Jnθ0 + Dθ0(θ − θ0)/2, it holds that
|�(θ) − Z′

nθZnθ | = op(1 + n‖θ − θ0‖2) uniformly for θ ∈ Bn (see [32], Theo-
rem 3), so that �n(θ̂n) = Z′

nθ0
(Ir×r − P

W
−1/2
θ0

Dθ0
)Znθ0 + op(1), using (29)–(30).

By (27), �n(θ0) = Z′
nθ0

Znθ0 + op(1), where Znθ0

d−→ N (0, Ir×r ), by Lemma 6.
Theorem 4 follows since P

W
−1/2
θ0

Dθ0
, Ir×r − P

W
−1/2
θ0

Dθ0
are orthogonal idempotent

matrices with ranks r , r − p. �

PROOFS OF COROLLARIES 1 AND 2. Nordman [32] gives a detailed proof
of Corollary 1 and Corollary 2 follows by modifying arguments from Corollary 5
of [38]. �

PROOF OF THEOREM 5. Nordman [32] provides details where the most im-

portant additional distributional results required are (2π/
√

n)
∑N

j=1 Ynθ0,j
d−→

N (0, πWθ0), (2π/n)
∑N

j=1 Ynθ0,j Y
′
nθ0,j

p−→ Wθ0/2 for Ynθ0,j = (I 2
nc(λj )/

[2f 2
θ0

(λj )] − π, Inc(λj )G
w
θ0

(λj ) − Mw)′ and

Wθ0 =
[

W ∗
θ0

0
0 W ∗∗

θ0

]
, W ∗

θ0
=
[

10π 4π

4π 2π

]
,

W ∗∗
θ0

=
(∫

�
f 2

θ0

∂f −1
θ0

∂ϑi

∂f −1
θ0

∂ϑj

dλ

)
i,j=1,...,p−1

.

The convergence results can be shown using arguments in [3] and [16]. �

APPENDIX

LEMMA A.1. Suppose Assumptions A.1–A.2 hold for a real-valued, even
function g satisfying Condition 2 of Assumption A.3. Define the nth Cesàro mean
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of the Fourier series of g as cng(λ) = ∫� Kn(λ − y)g(y) dy, λ ∈ �, and let
Cn = ∫ π

0 cng(λ)Inc(λ) dλ. Then as n → ∞,

√
n

∣∣∣∣Cn −
∫ π

0
g(λ)Inc(λ) dλ

∣∣∣∣= op(1),

(31)
√

n

∣∣∣∣∣2π

n

N∑
j=1

g(λj )In(λj ) − Cn

∣∣∣∣∣= op(1).

PROOF. Assume that g satisfies A.1 and Condition 2 with respect to β

and β1, respectively. We establish the first part of (31). Using
∫
� Kn(λ − y)dy

= 1, E(Inc(λ)) = ∫
� Kn(λ − y)f (y) dy and Fubini’s Theorem, we write

2E| ∫ π
0 (cng − g)Inc dλ| as

E
∣∣∣∣
∫
�

Inc(λ)

[∫
�

Kn(λ − y)[g(y) − g(λ)]dy

]
dλ

∣∣∣∣
≤
∫
�3

Kn(λ − z)Kn(λ − y)f (z)|g(y) − g(λ)|dzdy dλ ≤ t1n + t2n,

t1n = ∫�2 Kn(λ−z)f (z)|g(z)−g(λ)|dzdλ, t2n = ∫�3 Kn(λ−z)Kn(y −λ)f (z)×
|g(y) − g(z)|dλdzdy. It suffices to show that

√
nt2n = o(1) since arguments

from (22) provide
√

nt1n = o(1). Applying Lemma 1(iv) and (20) sequentially,
we bound

∫
� Kn(λ − z)Kn(y − λ)dλ by

C

n2

∫
�

L2
n0(λ − z)L2

n0(y − λ)dλ ≤ Cn

(1 + |(y − z),mod 2π |n)2 .

From this and arguments from (22), we have

√
nt2n ≤ Cn3/2

∫
�2

f (z)|g(y) − g(z)|
(1 + |(y − z)mod 2π |n)2 dzdy = o(1).

For the second part of (31), we use (2π/n)
∑n/2�

j=−N cng(λj )Inc(λj ) = 2Cn and
write

2
√

n

∣∣∣∣∣2π

n

N∑
j=1

g(λj )In(λj ) − Cn

∣∣∣∣∣≤ 4π
√

n(t3n + t4n),

t3n = n−1∑N
j=1 In(λj )|cng(λj ) − g(λj )|, t4n = n−1(|cng(0)|Inc(0) + |cng(π)|×

Inc(π)). We have
√

nt4n = op(1) from E[Inc(0)] ≤ Cnα , |cng(0)| ≤ Cn−β and
|cng(π)|E[Inc(π)] ≤ C by Assumptions A.1–A.2. For a C > 0 independent of
1 ≤ j ≤ N (n > 3), if we establish

|cng(λj ) − g(λj )| ≤ Cλ
β1
j

(
log(n)

j
+ 1{j>n/4}

n − 2j

)
, 1 ≤ j ≤ N,(32)
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then it will follow that
√

nt3n ≤ Cn−1/2 log(n)(max1≤j≤N In(λj )λ
β1
j )
∑n

j=1 j−1 =
op(1) from Lemma 8.

Fix 1 ≤ j ≤ N . To prove (32), we decompose the difference

|cng(λj ) − g(λj )| =
∣∣∣∣
∫
�

Kn(y)[g(λj − y) − g(λj )]dy

∣∣∣∣
≤
∣∣∣∣
∫ π

0
d+
jn(y) dy

∣∣∣∣+
∣∣∣∣
∫ π

0
d−
jn(y) dy

∣∣∣∣,
where d+

jn(y) = Kn(y)[g(λj + y) − g(λj )], d−
jn(y) = Kn(y)[g(λj − y) − g(λj )].

We separately bound the last two absolute integrals using (20), |g(y) − g(z)| ≤
C |y|−1+β1 |z − y| for 0 < |y| ≤ |z| ≤ π and the fact that λj > π/2 if and only if
j > n/4. Using Lemma 1, we bound∣∣∣∣

∫ 1/n

0
d+
jn(y) dy

∣∣∣∣≤ Cλ
−1+β1
j

∫ 1/n

0
Ln0(y)y dy ≤ Cj−1λ

β1
j ,

∣∣∣∣
∫ π−λj

1/n
d+
jn(y) dy

∣∣∣∣≤ Cλ
−1+β1
j

∫ π−λj

1/n

ny

(1 + ny)2 dy ≤ Cj−1 log(n)λ
β1
j ,

and if λj ≤ π/2,∣∣∣∣
∫ π

π−λj

d+
jn(y) dy

∣∣∣∣≤ Cn−1L2
0(π/2)

∫ π

π−λj

1dy ≤ Cn−1λj .

If λj > π/2, we use a substitution u = 2π − λj − y and the fact that 1 ≤ n − 2j ≤
N to find∣∣∣∣
∫ 2π−2λj

π−λj

d+
jn(y) dy

∣∣∣∣=
∣∣∣∣
∫ π

λj

Kn(2π − u − λj )[g(u) − g(λj )]du

∣∣∣∣
≤ Cλ

β1
j

∫ π

λj

(u − λj )n

(1 + (2π − u − λj )n)2 du ≤ Cn−1 log(n)λ
β1
j ,

∣∣∣∣
∫ π

2π−2λj

d+
jn(y) dy

∣∣∣∣ ≤ C

∫ λj

π−λj

Kn(2π − u − λj ) du ≤ C(n − 2j)−1λ
β1
j .

Hence, the bound in (32) applies to | ∫ π
0 d+

jn dy|; the same can be shown

for | ∫ π
0 d−

jn dy| by considering separate integrals over the intervals (0,1/n],
(1/n,λj/2], (λj /2, λj ] and (λj ,π] if λj > π/2, or (λj ,2λj ] and (2λj ,π] if
λj ≤ π/2. See Lemma 12 of [32]. �

LEMMA A.2. Under Assumption A.1, suppose g,h are real-valued, even Rie-
mann integrable functions on � such that |g(λ)|, |h(λ)| ≤ C|λ|β , 0 ≤ β < 1,
α−β < 1/2. Then as n → ∞, Vn = Var[(2π/n)

∑N
j=1 g(λj )h(λj )I

2
n (λj )] = o(1).
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PROOF. We expand Vn and then bound Vn ≤ V1n + V2n with V1n and V2n

defined as

C

n6

N∑
j=1

(λj )
4βcum

(|dnc(λj )|4, |dnc(λj )|4),
C

n6

∑
1≤i<j≤N

(λiλj )
2β
∣∣cum

(|dnc(λi)|4, |dnc(λj )|4)∣∣,
respectively. Let P be the set of all indecomposable partitions P of the labels in the
two row table {ast }, s = 1,2, t = 1,2,3,4 ([5], Section 2.3). We write the elements
of a partition P = (P1, . . . ,Pm), 1 ≤ m ≤ 7, with each Pi ⊂ {ast } =⋃m

i=1 Pi , Pi ∩
Pj = ∅ if i 
= j . For 1 ≤ i ≤ j ≤ N , we define a

ij
11 = a

ij
12 = −a

ij
13 = −a

ij
14 = λi ,

a
ij
21 = a

ij
22 = −a

ij
23 = −a

ij
24 = λj . By the product theorem for cumulants,

cum
(|dn(λi)|4, |dn(λj )|4)= ∑

P∈P

cumijn(P ),

(33)

cumijn(P ) =
m∏

u=1

cum
(
dnc(a

ij
st ) : ast ∈ Pu

)
.

Because E(dnc(λ)) = 0, we need only consider those partitions P ∗ ≡ {P =
(P1, . . . ,Pm) ∈ P : 1 < |P1| ≤ · · · ≤ |Pm|, 1 ≤ m ≤ 6} where each set in the
partition has two or more elements ast , using |B| to denote the size of a fi-
nite set B . Defining U1n(P ) = n−6∑N

j=1(λj )
4β |cumjjn(P )| and U2n(P ) =

n−6∑
1≤i<j≤N(λiλj )

2β |cumijn(P )|, we can bound Vin ≤ C
∑

P∈P ∗ Uin(P ),
i = 1,2, so that it suffices to show

Uin(P ) = o(1), P ∈ P ∗, i = 1,2.(34)

By Lemma 3, we have |cumjjn(P )| ≤ Cn4λ−4α
j for P ∈ P ∗,1 ≤ j ≤ N so that

U1n(P ) ≤ Cnmax{0,2α−2β}−1(n−1∑N
j=1 λ

2β−2α
j ) = o(1) since α−β < 1/2. Hence,

(34) is established for U1n and V1n = o(1).
We now show (34) for U2n(P ) by bounding |cumijn(P )| over 1 ≤ i < j ≤ N ,

for several cases of P = (P1, . . . ,Pm) ∈ P ∗. These cases are m = 1; m = 2, |P2| =
6; m = 2, |P2| = 5; m = 2, |P2| = 4; m = 3, |P3| = |P2| = 3; m = 3, |P3| = 4,
|P2| = 2. The last (seventh) case m = 4, |P1| = |P2| = |P3| = |P4| = 2 has the
following subcases:

(7.1) there exist k1 
= k2 where
∑

ast∈Pk1
a

ij
st = 0 =∑ast∈Pk2

a
ij
st ;

(7.2) there exists exactly one k where
∑

ast∈Pk
a

ij
st = 0;

(7.3) for each k,
∑

ast∈Pk
a

ij
st 
= 0 holds and for some k1, k2, |∑ast∈Pk1

a
ij
st | = 2λi ,

|∑ast∈Pk2
a

ij
st | = 2λj ;
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(7.4) for each k, |∑ast∈Pk
a

ij
st | 
∈ {0,2λi,2λj }.

The first six cases follow from Lemma 3 and (20). For example, under cases
3 or 4, we apply Lemma 3(ii) and (20) twice to bound |cumijn(P )| ≤ C{n3/2 +
n log4(n)}2(λiλj )

−2α and then U2n(P ) ≤ Cn−1(n−1∑N
j=1 λ

2β−2α
j )2 = o(1). See

Lemma 13 of [32] for details.
To treat case 7, we define some sets. For 0 < ρ < π/2, let A = {(i, j) : 1 ≤ i <

j ≤ N}, Aρ = {(i, j) ∈ A : λj < ρ}, Aρ = {(i, j) ∈ A : λj ≥ ρ}, An/2 = {(i, j) ∈
A : i + j > n/2} and An/2 = {(i, j) ∈ A : i + j ≤ n/2}. We will also use the fact
that for integers j > i ≥ 1,

1

i(j − i)
≤ 2

j
if i = 1 or j (i − 1) > i2, otherwise,

1

i
<

2

j
.(35)

For subcase 7.1, define Aρ1 = {(i, j) ∈ Aρ : i = 1 or j (i − 1) > i2} and Aρ2 =
Aρ \ Aρ1.

Subcase (7.1). Without loss of generality, say k1 = 1, k2 = 2. We have
|∑ast∈P3

a
ij
st | = |∑ast∈P4

a
ij
st | ∈ {λj − λi, λj + λi} and by Lemma 3(i),

∏2
k=1 ×

|cum(dnc(a
ij
st ) : ast ∈ Pk)| ≤ Cn2(λiλj )

−α . Fix 0 < ρ < π/2. If |∑ast∈Pk
a

ij
st | =

λj − λi , k = 3,4, then by Lemma 1(i), Lemma 2 and (20) (for the sum involving
λj ≥ ρ) or Lemma 1(i), Lemma 3(i) and (20) (for the sum involving λj < ρ),

U2n(P ) ≤ C(ρ)

n4

∑
Aρ

λ
β−α
i

[
n

j − i
+ Rnρ

]2

+ C

n4

∑
Aρ

λ
2β−3α
i λ

2β−α
j

[
λ−1

j + n

(j − i)d

]2

≡ u1n(ρ) + u2n(ρ),

u1n(ρ) ≤ C(ρ)

(
n−1+max{0,α−β}

n∑
j=1

j−2 + (n−1Rnρ)2

(
1

n

N∑
j=1

λ
β−α
j

))
= o(1),

with some fixed max{α,1/2} < d < 1. Using (35) on the sums over Aρ1 and Aρ2,
we have

u2n(ρ) ≤ C

(
1

n

∑
λ1≤λi<ρ

λ
2β−2α
i

)2

+ C

n2

∑
Aρ1

(λiλj )
2β−2α

(j − i)d−α
+ C

n2

∑
Aρ2

(λiλj )
2β−2α

(j − i)d

≤ C

(
1

n

∑
λ1≤λi<ρ

λ
2β−2α
i

)2

.

Then lim (u1n(ρ) + u2n(ρ)) ≤ C(
∫ ρ

0 λ2β−2α dλ)2 = Cρ2+4β−4α for a C that does
not depend on 0 < ρ < π/2. Hence, U2n(P ) = o(1) since 2 + 4β − 4α > 0.
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If |∑ast∈Pk
a

ij
st | = λi + λj , k = 3,4, we essentially repeat the same steps as

above to show U2n(P ) ≤ u3n(ρ) + u4n(ρ), where u4n(ρ) ≤ Cu2n(ρ), and, using
Lemma 1(i) to expand u3n(ρ) = C(ρ)/n4∑

Aρ λ
β−α
i [Ln0(λi + λj ) + Rnρ]2,

u3n(ρ) ≤ C(ρ)

n2

(∑
An/2

λ
β−α
i

(n − j − i)2 + ∑
An/2

λ
β−α
i

(j + i)2 + (Rnρ)2

(
1

n

N∑
j=1

λ
β−α
i

))

≤ C(ρ)

(
n−1+max{0,α−β}

n∑
j=1

j−2 + (n−1Rnρ)2

(
1

n

N∑
j=1

λ
β−α
i

))
= o(1).

Thus, U2n(P ) = o(1) in this case.

Subcase (7.2). Without loss of generality, we assume |∑ast∈P1
a

ij
st | = λj +

λi , |∑ast∈P2
a

ij
st | = λj − λi . Applying Lemma 1(ii) with Lemma 3(i) gives∏4

k=3 |cum(dnc(a
ij
st ) : ast ∈ Pk)| ≤ Cn2(λiλj )

−α . Using this, along with Lemma 2,
Lemma 3(i) and (20) for a fixed 0 < ρ < π/2, we may bound U2n(P ) ≤ u5n(ρ) +
u6n(ρ), where

u5n = C(ρ)

n4

∑
Aρ

λ
β−α
i [Ln0(λi + λj ) + Rnρ]

[
n

j − i
+ Rnρ

]

and u6n(ρ) = Cn−4∑
Aρ

(λiλj )
2β−αλ−2α

i [λ−1
j + Ln1(λi + λj )][λ−1

j +
Ln1(λi − λj )]. By Lemma 1(ii), we can show u6n(ρ) ≤ Cu2n(ρ) while, for large
n, u5n(ρ) is bounded by

C(ρ)

n2

(∑
An/2

λ
β−α
i

n − j − i

[
1

j − i
+ Rnρ

n

]
+ ∑

An/2

λ
β−α
i

i + j

[
1

j − i
+ Rnρ

n

]

+ Rnρ

N∑
j=1

λ
β−α
j

)

≤ C(ρ)

(
n−1+max{0,α−β}

n∑
j=1

j−2 + Rnρ

n

(
1

n

N∑
j=1

λ
β−α
i

))
= o(1),

using n − j − i ≥ j − i above. Hence, U2n(P ) = o(1).

Subcases (7.3)–(7.4). For Subcase (7.3), there exists some k such that
|∑ast∈Pk

a
ij
st | = λj −λi or λj +λi . Note that |cum(dnc(a

ij
st ) : ast ∈ Pk1)| ≤ Cnλ−α

i ,

|cum(dnc(a
ij
st ) : ast ∈ Pk2)| ≤ Cnλ−α

j by Lemma 3(i). For Subcase (7.4), the pos-

sible partitions P are |∑ast∈Pk
a

ij
st | = λj + λi for each k (or λj − λi for each k) or

there exist k1, k2 where |∑ast∈Pk1
a

ij
st | = λj + λi , |∑ast∈Pk2

a
ij
st | = λj − λi . Argu-

ments as in Subcases (7.1)–(7.2) can show that (34) holds; see Lemma 13 of [32].
�



SPECTRAL EMPIRICAL LIKELIHOOD 3049

Acknowledgments. The authors wish to thank two referees and an Asso-
ciate Editor for many constructive comments and suggestions that significantly
improved an earlier draft of this paper.

REFERENCES

[1] ADENSTEDT, R. K. (1974). On large-sample estimation for the mean of a stationary random
sequence. Ann. Statist. 2 1095–1107. MR0368354

[2] ANDERSON, T. W. (1993). Goodness of fit tests for spectral distributions. Ann. Statist. 21 830–
847. MR1232521

[3] BERAN, J. (1992). A goodness-of-fit test for time series with long range dependence. J. Roy.
Statist. Soc. Ser. B 54 749–760. MR1185220

[4] BERAN, J. (1994). Statistics for Long-Memory Processes. Chapman and Hall, London.
MR1304490

[5] BRILLINGER, D. R. (1981). Time Series: Data Analysis and Theory, 2nd ed. Holden-Day, San
Francisco. MR0595684

[6] BROCKWELL, P. J. and DAVIS, R. A. (1991). Time Series: Theory and Methods, 2nd ed.
Springer, New York. MR1093459

[7] CRAMÈR, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press, Princeton,
NJ. MR0016588

[8] DAHLHAUS, R. (1983). Spectral analysis with tapered data. J. Time Ser. Anal. 4 163–175.
MR0732895

[9] DAHLHAUS, R. (1985). On the asymptotic distribution of Bartlett’s Up-statistic. J. Time Ser.
Anal. 6 213–227. MR0824665

[10] DAHLHAUS, R. (1989). Efficient parameter estimation for self-similar processes. Ann. Statist.
17 1749–1766. MR1026311

[11] DAHLHAUS, R. and JANAS, D. (1996). A frequency domain bootstrap for ratio statistics in
time series analysis. Ann. Statist. 24 1934–1963. MR1421155

[12] DICICCIO, T. J., HALL, P. and ROMANO, J. P. (1991). Empirical likelihood is Bartlett-
correctable. Ann. Statist. 19 1053–1061. MR1105861

[13] DZHAPARIDZE, K. (1986). Parameter Estimation and Hypothesis Testing in Spectral Analysis
of Stationary Time Series. Springer, New York. MR0812272

[14] EDWARDS, R. E. (1979). Fourier Series: A Modern Introduction 1, 2nd ed. Springer, New
York. MR0545506

[15] FOX, R. and TAQQU, M. S. (1986). Large-sample properties of parameter estimates
for strongly dependent stationary Gaussian time series. Ann. Statist. 14 517–532.
MR0840512

[16] FOX, R. and TAQQU, M. S. (1987). Central limit theorems for quadratic forms in random
variables having long-range dependence. Probab. Theory Related Fields 74 213–240.
MR0871252

[17] GIRAITIS, L. and SURGAILIS, D. (1990). A central limit theorem for quadratic forms in
strongly dependent linear variables and its application to asymptotical normality of Whit-
tle’s estimate. Probab. Theory Related Fields 86 87–104. MR1061950

[18] GRANGER, C. W. J. and JOYEUX, R. (1980). An introduction to long-memory time series
models and fractional differencing. J. Time Ser. Anal. 1 15–29. MR0605572

[19] HALL, P. and LA SCALA, B. (1990). Methodology and algorithms of empirical likelihood.
Internat. Statist. Rev. 58 109–127.

[20] HANNAN, E. J. (1973). The asymptotic theory of linear time-series models. J. Appl. Probability
10 130–145. Correction 10 913. MR0365960

[21] HOSKING, J. R. M. (1981). Fractional differencing. Biometrika 68 165–176. MR0614953

http://www.ams.org/mathscinet-getitem?mr=0368354
http://www.ams.org/mathscinet-getitem?mr=1232521
http://www.ams.org/mathscinet-getitem?mr=1185220
http://www.ams.org/mathscinet-getitem?mr=1304490
http://www.ams.org/mathscinet-getitem?mr=0595684
http://www.ams.org/mathscinet-getitem?mr=1093459
http://www.ams.org/mathscinet-getitem?mr=0016588
http://www.ams.org/mathscinet-getitem?mr=0732895
http://www.ams.org/mathscinet-getitem?mr=0824665
http://www.ams.org/mathscinet-getitem?mr=1026311
http://www.ams.org/mathscinet-getitem?mr=1421155
http://www.ams.org/mathscinet-getitem?mr=1105861
http://www.ams.org/mathscinet-getitem?mr=0812272
http://www.ams.org/mathscinet-getitem?mr=0545506
http://www.ams.org/mathscinet-getitem?mr=0840512
http://www.ams.org/mathscinet-getitem?mr=0871252
http://www.ams.org/mathscinet-getitem?mr=1061950
http://www.ams.org/mathscinet-getitem?mr=0605572
http://www.ams.org/mathscinet-getitem?mr=0365960
http://www.ams.org/mathscinet-getitem?mr=0614953


3050 D. J. NORDMAN AND S. N. LAHIRI

[22] HOSOYA, Y. (1997). A limit theory for long-range dependence and statistical inference on
related models. Ann. Statist. 25 105–137. MR1429919

[23] KITAMURA, Y. (1997). Empirical likelihood methods with weakly dependent processes. Ann.
Statist. 25 2084–2102. MR1474084

[24] LAHIRI, S. N. (1993). On the moving block bootstrap under long range dependence. Statist.
Probab. Lett. 11 405–413. MR1247453

[25] LAHIRI, S. N. (2003). A necessary and sufficient condition for asymptotic independence of
discrete Fourier transforms under short- and long-range dependence. Ann. Statist. 31 613–
641. MR1983544

[26] LAHIRI, S. N. (2003). Resampling Methods for Dependent Data. Springer, New York.
MR2001447

[27] LI, W. K. and MCLEOD, A. I. (1986). Fractional time series differencing. Biometrika 73 217–
221. MR0836451

[28] LJUNG, G. M. and BOX, G. E. P. (1978). On a measure of lack of fit in time series models.
Biometrika 65 297–303.

[29] MANDELBROT, B. B. and VAN NESS, J. W. (1968). Fractional Brownian motions, fractional
noises and applications. SIAM Rev. 10 422–437. MR0242239

[30] MILHØJ, A. (1981). A test of fit in time series models. Biometrika 68 177–187. MR0614954
[31] MONTI, A. C. (1997). Empirical likelihood confidence regions in time series models. Bio-

metrika 84 395–405. MR1467055
[32] NORDMAN, D. J. (2002). Frequency domain empirical likelihood for short- and long-range

dependent processes. Ph.D. dissertation, Dept. Statistics, Iowa State Univ.
[33] OWEN, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional.

Biometrika 75 237–249. MR0946049
[34] OWEN, A. B. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90–120.

MR1041387
[35] OWEN, A. B. (1991). Empirical likelihood for linear models. Ann. Statist. 19 1725–1747.

MR1135146
[36] OWEN, A. B. (2001). Empirical Likelihood. Chapman and Hall/CRC, Boca Raton, FL.
[37] PAPARODITIS, E. (2000). Spectral density based goodness-of-fit tests for time series models.

Scand. J. Statist. 27 143–176. MR1774049
[38] QIN, J. and LAWLESS, J. (1994). Empirical likelihood and general estimating equations. Ann.

Statist. 22 300–325. MR1272085
[39] QIN, J. and LAWLESS, J. (1995). Estimating equations, empirical likelihood and constraints

on parameters. Canad. J. Statist. 23 145–159. MR1345462
[40] ROBINSON, P. M. (1995). Gaussian semiparametric estimation of long range dependence. Ann.

Statist. 23 1630–1661. MR1370301
[41] YAJIMA, Y. (1989). A central limit theorem of Fourier transforms of strongly dependent sta-

tionary processes. J. Time Ser. Anal. 10 375–383. MR1038470
[42] WHITTLE, P. (1953). Estimation and information in stationary time series. Ark. Mat. 2 423–

434. MR0060797
[43] WILKS, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite

hypotheses. Ann. Math. Statist. 9 60–62.

DEPARTMENT OF STATISTICS

IOWA STATE UNIVERSITY

AMES, IOWA 50011
USA
E-MAIL: dnordman@iastate.edu

snlahiri@iastate.edu

http://www.ams.org/mathscinet-getitem?mr=1429919
http://www.ams.org/mathscinet-getitem?mr=1474084
http://www.ams.org/mathscinet-getitem?mr=1247453
http://www.ams.org/mathscinet-getitem?mr=1983544
http://www.ams.org/mathscinet-getitem?mr=2001447
http://www.ams.org/mathscinet-getitem?mr=0836451
http://www.ams.org/mathscinet-getitem?mr=0242239
http://www.ams.org/mathscinet-getitem?mr=0614954
http://www.ams.org/mathscinet-getitem?mr=1467055
http://www.ams.org/mathscinet-getitem?mr=0946049
http://www.ams.org/mathscinet-getitem?mr=1041387
http://www.ams.org/mathscinet-getitem?mr=1135146
http://www.ams.org/mathscinet-getitem?mr=1774049
http://www.ams.org/mathscinet-getitem?mr=1272085
http://www.ams.org/mathscinet-getitem?mr=1345462
http://www.ams.org/mathscinet-getitem?mr=1370301
http://www.ams.org/mathscinet-getitem?mr=1038470
http://www.ams.org/mathscinet-getitem?mr=0060797

	Introduction
	Spectral estimating equations
	Examples

	Definition of frequency domain empirical likelihood
	A density-based formulation of empirical likelihood

	Main result: distribution of empirical likelihood ratio
	Assumptions
	Asymptotic distribution of empirical likelihood ratio and confidence regions

	Extensions to maximum empirical likelihood estimation
	Consistency and asymptotic normality
	Empirical likelihood tests of hypotheses
	Parameter restrictions and nuisance parameters


	Whittle estimation
	Goodness-of-fit tests
	Simple hypothesis case
	Composite hypothesis case

	Conclusions
	Proofs
	Appendix
	Subcase (7.1)
	Subcase (7.2)
	Subcases (7.3)-(7.4)

	Acknowledgments
	References
	Author's Addresses

