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SEMIPARAMETRIC ESTIMATION OF FRACTIONAL
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We consider a common-components model for multivariate fractional
cointegration, in which the s > 1 components have different memory parame-
ters. The cointegrating rank may exceed 1. We decompose the true cointegrat-
ing vectors into orthogonal fractional cointegrating subspaces such that vec-
tors from distinct subspaces yield cointegrating errors with distinct memory
parameters. We estimate each cointegrating subspace separately, using appro-
priate sets of eigenvectors of an averaged periodogram matrix of tapered, dif-
ferenced observations, based on the first m Fourier frequencies, with m fixed.
The angle between the true and estimated cointegrating subspaces is op(1).
We use the cointegrating residuals corresponding to an estimated cointegrat-
ing vector to obtain a consistent and asymptotically normal estimate of the
memory parameter for the given cointegrating subspace, using a univariate
Gaussian semiparametric estimator with a bandwidth that tends to co more
slowly than n. We use these estimates to test for fractional cointegration and
to consistently identify the cointegrating subspaces.

1. Introduction. Fractional cointegration has been the subject of much re-
cent attention; see, for example, the work of Robinson [16], Robinson and Marin-
ucci [18, 19] and Chen and Hurvich [3]. All of these papers assume either that the
observed series is bivariate or that the cointegrating rank is 1. Arguably the most
interesting case, from an econometric point of view, is the situation where the se-
ries is multivariate and has cointegrating rank which may exceed 1. This situation
was covered by Robinson and Yajima [20], who considered methods for determin-
ing the cointegrating rank, and also by Chen and Hurvich [4], who focused on
estimation of the space of cointegrating vectors.

Chen and Hurvich [4] studied the properties of eigenvectors of an averaged pe-
riodogram matrix of differenced, tapered observations, averaging over the first m
Fourier frequencies, where m is held fixed as the sample size grows. They showed
that the eigenvectors corresponding to the r smallest eigenvalues (where r is the
cointegrating rank) lie close to the space of true cointegrating vectors with high
probability. They also presented an empirical analysis of fractional cointegration
in U.S. interest rates for bonds of seven different maturities. They found evidence
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that the cointegrating rank was greater than one and, furthermore, that the memory
parameter of the cointegrating errors may take on a variety of values that dif-
fer substantially if cointegrating vectors corresponding to substantially different
eigenvalues are used. This last finding, while of apparent interest from an econo-
metric point of view, could not be explained directly from the theoretical results
presented in [4] since they did not attempt in their theory to separate the space of
cointegrating vectors into subspaces yielding different memory parameters.

The goals of the present paper are to exhibit a model that allows us to highlight
these subspaces, to show that the subspaces and their corresponding memory pa-
rameters can be estimated individually and to show how to use the residual-based
Gaussian semiparametric estimates of the memory parameters to consistently iden-
tify the cointegrating subspaces and to test for fractional cointegration. By contrast,
Chen and Hurvich [4] did not consider either testing for cointegration or estimation
of the degree of cointegration.

We first present, in Section 2, a semiparametric common-components model in
which the components have different memory parameters, while the entries of the
observed multivariate series have just one common memory parameter. Next, we
show that the space of cointegrating vectors can be decomposed into a direct sum
of orthogonal cointegrating subspaces such that vectors from distinct subspaces
yield cointegrating errors with distinct memory parameters.

In Section 5, we show that each of these cointegrating subspaces can be sep-
arately estimated using sets of eigenvectors of the averaged periodogram matrix.
Since m is held fixed, we are able to obtain a rate of convergence for the estimated
cointegrating vectors that depends only on the difference between the memory pa-
rameters in the given and adjacent subspaces and is not hampered by the rate of
increase of m, as in other related work (cf. [18], in the bivariate case).

To each true cointegrating subspace, there corresponds an estimated cointegrat-
ing subspace spanned by an orthonormal set of eigenvectors of the averaged peri-
odogram matrix, where membership in the set is determined by a partitioning of the
sorted observed eigenvalues into contiguous groups of sizes that match the dimen-
sions of the corresponding true cointegrating subspaces. In Section 4, we show that
the eigenvalues for the kth estimated cointegrating subspace are O, (n%%), where
n is the sample size and d is the memory parameter of the cointegrating error for
the kth true cointegrating subspace. This result and its refinements play a key role
in our subsequent theory.

We will show in Theorem 1 that any vector in the kth estimated cointegrating
subspace is, with high probability, close to the kth true cointegrating subspace, in
the sense that the norm of the sine of the angle between these two subspaces con-
verges in probability to zero. The norm of the sine of this angle is O, (n~%), where
oy is the shortest distance between the memory parameters corresponding to the
given and adjacent subspaces. This implies that the sine of the angle between any
vector in the kth estimated cointegrating subspace and the kth true cointegrating
subspace is O, (n~%). (We provide more details on the notion of the sine of the
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angle between subspaces, and also the sine of the angle between a vector and a
subspace, in Section 5.) This convergence rate, which improves as oy increases,
is at least as fast as the rates obtained for existing semiparametric estimators of
cointegrating vectors in the bivariate case (see, e.g., [18] and the discussion in
[3]), but not as fast as the parametric rate obtained by Hualde and Robinson [7]
of 0, (n~'/2) in the bivariate asymptotically stationary case if the difference (o)
between the memory parameters of the observed series and the cointegrating error
is less than 1/2. Furthermore, we show in Lemma 15 that the normalized eigen-
vectors of the averaged periodogram matrix converge in distribution to random
vectors that lie in the corresponding cointegrating subspace.

We then show in Section 6 that the cointegrating residuals corresponding to an
estimated cointegrating vector can be used to obtain a consistent and asymptoti-
cally normal estimate of the memory parameter for the given cointegrating sub-
space, using a univariate Gaussian semiparametric estimator with a bandwidth
that tends to co more slowly than n. We also describe a procedure for consis-
tently identifying the cointegrating subspaces, that is, for determining the number
of subspaces and their dimensions. In Section 7, we provide a test for fractional
cointegration which is appropriate for our model.

2. A fractional common components model. Suppose that the original data
are a g x 1 time series such that the (p — 1)th differences {y,} are weakly stationary
with a common memory parameter dy € (—p + 1/2,1/2), where p > 1 is a fixed
integer. The use of (p — 1)th differences converts any additive polynomial trend
of order p — 1 in the original series into an additive constant. The value of this
constant is irrelevant for our purposes since the estimators considered here are
functions of the discrete Fourier transform at nonzero Fourier frequencies. We
can, therefore, take the mean of {y;} to be zero, without loss of generality, and our
estimators are invariant to polynomial trends of order p — 1 in the original series.

In order to guarantee that the cointegrating relationships in the stochastic com-
ponent of the levels are preserved in the differences, we apply a taper to the dif-
ferences, that is, we multiply the differences by a sequence of constants prior to
Fourier transformation. This prevents detrimental leakage effects due to poten-
tial overdifferencing and allows us to obtain uniform results over a wide range of
memory parameters. A convenient family of tapers for use on the differences, and
which we will use here, was given in Hurvich and Chen [8]. The exact form of the
taper is given below.

The fractional common-components model for the (g x 1) series {y;} with coin-
tegrating rank r (1 <r < g) and s cointegrating subspaces (1 <s <r) is given by

(1) ve=Aou” + Ayl 4+ Au,

where A; (0 <k <s) are g x a full-rank matrices with ag =g — r and a; +
-+-+ ag = r such that all columns of Ao, ..., Ay are linearly independent, and
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{ufk)}, k=0,...,s,are (ax x 1) processes with memory parameters {dy};_, with
—p+1/2<ds <--- <dp < 1/2. Equation (1) can be written as

() e = Az,

where z; = Vec(ut(o), e uﬁ”) and A =[Ap ... A]. We will make additional as-

sumptions on {z;} in Section 3. These assumptions guarantee that {z;} is not coin-
tegrated. The methodology presented in this paper does not require either r or s to
be known.

REMARK 1. Our assumption that all entries of {y;} have memory parameter
d implies that all rows of Ag are nonzero. The model (1), without the assumption
that all entries of {y;} have a common memory parameter, could also be entertained
(though we do not pursue this here) and would then include the model considered
by Robinson and Yajima [20].

Next, we exhibit the cointegrating subspaces. For any matrix A, let M(A) de-
note the column space of A and let M (A) denote the orthogonal complement
of A. Note that fork=1,...,s,

ME(Ao, ..., A) C ME(Ag, ..., Ar_)).
Let Bg = M(Ag) and By, k=1, ..., s, be the subspace such that
MJ‘(A(), LA = MJ‘(A(), . Ap) B By

and B¢ L ML (Ao, ...,Ax). Hence, a nonzero vector B € B, k € {1,...,s},
satisfies /Ay =0, £ =0,....k — 1, and B'Ay # 0. Also, B; L By for j #k,
(j,k)€{0,...,s} and

3) RI=8By®B @D By.

It can be seen from (1) and the preceding discussion that any nonzero vector 8 €
By with k € {1, ..., s} produces a cointegrating error series {8’y,;} with memory
parameter di. Thus, 81, ..., B, are the cointegrating subspaces. The space By,
on the other hand, is the space spanned by any basis of non-cointegrating vectors
in RY. Equation (3) shows that R? may be written as a direct sum of the space of
non-cointegrating vectors and the space of cointegrating vectors, and that the latter
space may be further decomposed into a direct sum of cointegrating subspaces.

3. Assumptions. Here, we specify a linear model for the series z; = Vec(ugo),

., u,(s)). As stated in the previous section, we assume that {ugk)}, k=0,...,s,are
(ar x 1) processes with memory parameters {dy};_, with —p +1/2 <dy < --- <
dop < 1/2. Define No ={1,...,a0} and Ny = {(ap + --- +ar—-1) + 1,..., (ap +
---4ay)} fork =1,...,s.Ourresults in this paper assume s > 0, unless explicitly
stated otherwise.
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Let i be a sequence of ¢ x g matrices such that

1 = .
Yk = — / ek () dw,
27'[ -7
where for each w € [—m, ], ¥ (w) is a complex-valued matrix such that ¥ (—w) =
W (w) and where v is an identity matrix.

Define the ¢ x 1 vector process {z,} as

o
4) = ). Ykt
k=—o00
where {&; = (& 1,..., st,q)/} ~1id(0, 27 X), X is a symmetric positive definite
matrix with entries oy, a,b € {1,...,q}, and E|/&|* < oo, where || - || denotes

the Euclidean norm. The spectral density matrix of {z;} is
f(w) = ¥ (0)ZV¥* (w), w € [—m, 7],

where the superscript * denotes conjugate transposition. We further assume that
for w € [—m, ], the (a, b)th entry of ¥ (w) is given by

®) Wop(w) = (1 — e7'0)dab g, ()Pt @)

where d,, = dj for a € Ni, d;p < min(dg, dy) fora € Ny, be Ny, b#a, k,h =
0,...,s,and for all a,b € {1, ..., q}, tap(-) are positive even real-valued func-
tions and ¢, (-) are odd real-valued functions, all continuously differentiable in
an interval containing zero. It follows from (5) that the first derivatives of W, (w)
satisfy

(6) W (@) = O(|Waq (@) Wpp (@) 7).

In keeping with (5), we assume that we can write the spectral density matrix of
{z:} as

(7) f(w) = Y ()f (0)T* (),

where Y (w) = diag{(1—e®)~%, .. (1—e @)~  (1—e7i®)y"% . (1-
e~i®)~%)  that is, the ath diagonal entry is (1 — e~®)~% for all a € Ng,
k=0,...,s,and

(8) tf(w) = ™ () ZT¥ (w)

is positive definite, Hermitian, continuous at zero frequency and, therefore, real-
valued at zero frequency with \I'Zb () = Tap(w)e'Pb@  Thus, {z,} is not fraction-
ally cointegrated (see [19]).
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4. The averaged periodogram matrix and its eigenvalues. For any vector
sequence of observations {£}}_, define the tapered discrete Fourier transform by

1 n _ .
YA e ——— T ] WL

V2r SR 2

where w; = 2mj/n is the jth Fourier frequency and {A;} is the complex-valued
taper of Hurvich and Chen [8],

hy=0.5(1—€?/"y,  t=1,...,n.
Note that p = 1 yields the no-tapering case. Next, define the tapered cross-
periodogram matrix of two vector sequences {;}"_; and {¢;}}_, by
Ier (w)) = J;(a)j)lg*(a)j).
We will work with the (real part of the) averaged periodogram matrix of a sample
of n observations {y/};_,,

m
In = Z Re{lyy(w;)},
j=1
where m is a fixed positive integer, m > g + 3. (This condition is motivated in the
proof of Lemma 8.)
Define 1,,(&, &) = Z?:l Re{lg; (w;)}. We first focus on the asymptotic distri-
bution of I,,(z;, z;). Define the function (for x € R)

o\ —l2p] _
Ap(x) = (2;_ 12) > (”k 1)(—1)"A(x+27rk),

k=0

where

1 e —1
Ax) = ——

2rix

Now, define

)
vj(x) = E[Ap(—x +21j) + Ap(x +27))],

vj(x) = %[Ap(—x F2)) — Ap(x +27))].

Define the Hermitian positive definite ¢ x g matrix-valued measure Gg on R by

9) Go(dx) = O (0)IT* (x) dx
for x > 0 and Go(—dx) = Go(dx), where
I (x) = diag(e ™"/ x| ™o, e=imdo/2| x| =do o=imds/2y=ds

e—l'ﬂds/2|x|—ds)‘
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Let U, and V,, be ¢ x m matrices given by

(100 U,=d;'Re(Jo.1,....Jom) and V,=d,'Im(J,1,..., Jom).

LEMMA 1. Let d, be a g x q diagonal matrix with ith diagonal entry n%,
i €N, k=0,...,5s and Q, = d;llm(Zz, Zt)d;l = U, V))U,,V,) . If m > q,
then
Q. 2 UU +VV,

where U=(Uy,...,Uy) and V=(Vy,...,Vy), Uj, Vi are g x 1 vectors and
vec(U, V) is a 2mgq-variate normal random variable with zero mean and covari-
ance matrix E determined by

E(U,U)) = /R v} ()R Go(dx),
E(V; V) = fR b (VD Goldx),
E(Uij/)=/];£vj(x)vk(x)Go(dx).

Furthermore, UU' +VV' is positive definite and has distinct eigenvalues with prob-
ability 1.

PROOF. The proof is identical to the proof of Lemma 1, Corollary 1 and 2
of [4]. O

We next derive upper and lower bounds for the eigenvalues of I, (y;, y;). We
will use the notation A ;(-) for the jth eigenvalue of a given Hermitian matrix,
Aj(-) = Aj41(-). Also, we let A; = A (L, (ys, yr)). We have the following lemma:

LEMMA 2. ;= O,(n*%) for j € Ny, k=0,...,s.

In the case k > 1, the upper bound in Lemma 2 strengthens Lemma 4 of [4].

LEMMA 3. Let ji =max{j: j € Ni} and let Qﬁ,k) be the leading ji x ji
principal submatrix of Q, for k =0, ...,s. Then

-2d by D &)
n k)\j,j‘zck)\j]j‘(Q; ))—>17J.I:<,

where ¢ > 0 and 175.? is a random variable that has no mass at 0.
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5. Estimation of the cointegrating subspaces. Let X(-) =[x1(-) ... x4()]
be an orthogonal matrix such that x;(-) is the eigenvector corresponding to the
Jjth largest eigenvalue A ;(-) of a given symmetric ¢ x ¢ matrix and let X (-) be a
matrix with columns (), j € Ni,fork =0, ..., s. Also, let x; = x;j (Inn(Yr» ¥1)),
X=XUn s, y)) and X = Xy (Ly (¢, v¢)). Fork=0,1,...,s,let By beag x ai
matrix with orthonormal columns such that M(B;) = By andlet B=[Bg ... B;].
Since B'B =1, it follows that for any g x g matrix P, B'PB is similar to P, that is,
Aj(P)=x;(B'PB) and x;(P) =B'x;(B'PB).

Define

®=B'I,(, y)B

and partition ® into (s + 1)? blocks such that the (k, £) block ®;, has dimension
(ag xay) fork, £ =0,...,s.Define ®p = diag[®qp, ..., Pss] and A®P =D — D p,
so that

d=>0pH+ AD.
We have
I,(y;,v:) =B®B' =B®,pB’ + BA®B' =: H+AH,

so we can think of 7,,(y;, y;) as a perturbed version of H. Using results of Bar-
low and Slapnicar [2] on perturbation theory for eigenvalues and eigenvectors of
nonrandom Hermitian matrices, we will show in Lemma 4 that the kth estimated
cointegrating subspace M (Xy) is close to M (X (H)) in the sense that the norm of
the sine of the angle between the two subspaces converges to 0 in probability.

Let ®(-, -) denote the matrix of canonical angles between two subspaces of the
same dimension (see, e.g., [22], page 43). The notion of the sine of the angle be-
tween two subspaces of the same dimension is given in [5]. For simplicity, suppose
that S and T are both real ¢ x a matrices (¢ > a) with orthonormal columns. Then
the orthogonal projector into M (T) is given by TT’ and the projector into the or-
thogonal complement M~ (T) of M(T) is given by I — TT', where Iis a ¢ x ¢
identity matrix. The sine of the angle between M (S) and M (T) is an a x a matrix
defined in [5] and denoted by sin @ (M (S), M (T)). It follows from [5], page 10 that
Isin @ (M(S), M(T))||F = ||(I — TT')SS'|| r, where ||| is the Frobenius norm.
It follows from [22], Corollary 5.4, page 43 that

(11) | sin @ (M(S), M) = | (TH)'S|

F>
where T+ is a matrix with orthonormal columns spanning M1 (T), so that
| (T+)’S|| is the square root of the sum of the squared lengths of the residuals
from the orthogonal projections of the columns of S on the space M (T).

For any nonzero vector x € M(S), the sine of the angle between x and the
subspace M (T) is a real number defined as
I(X=TT)x|

’

sinf(x, M(T)) = il
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see [24], page 274. It then follows from (11) that
max_|sinf(x, M(T))| < [(TH)'S| .
xE€M(S)

In Lemma 5, we show that under the additional assumption that the process
is Gaussian, M (X;(H)) is equal to &B; with probability approaching one, for
k=0,...,s. Lemmas 4 and 5, taken together, imply our Theorem 1, stating that
if the process is Gaussian, then the kth estimated cointegrating subspace M (X)
is close to the corresponding true cointegrating subspace Bk, in the sense that
| sin O{M(Xy), Bi}llF = Op(n~%), where ay is the shortest distance between
the memory parameters corresponding to the given and adjacent subspaces, that is,

dO_dl, k=05
oy = ymin{(dx—1 — di), (dx — di+1)}, k=1,...,s =1,
de_1 — dg, k=s.

LEMMA 4. The sine of the angle between M(Xy) and M (Xy(H)) satisfies
|| sin @{M Xy (H)), MX)}|F = Op(n~%).
The following Gaussianity assumption is sufficient for obtaining a rate at which
P(M(Xx(H)) # Bi) converges to zero. More specifically, the assumption allows
us to bound the inverse second moment of eigenvalues of Q,,. We believe that such

bounds, and therefore Lemma 5, hold without the Gaussianity assumption, but we
will not pursue this here.

ASSUMPTION 1. The process {g;} in (4) is Gaussian.

LEMMA 5. Under Assumption 1, P(MXy(H)) # By) = O(n=2%), k =
0,...,s.

The following theorem is a corollary of Lemmas 4 and 5:

THEOREM 1. Under Assumption 1,

|| Sln@{M(Xk)v£k}”F: Op(n_ak)v k:()a"'vs'

6. Estimation of the memory parameters using cointegrating residuals.
Let b = x4, where a € {1, ..., g}. Recall that x, is the eigenvector of I, (ys, yt)
corresponding to the ath largest eigenvalue of the matrix. Then there exists a
uniquely defined value k € {0, ..., s} such that a € Ni. Note that k is fixed but
unknown. We then use this vector b to construct the residual process {v;}, where

(12) v =0y =b'Aou® + A + -+ B A+ DAL,
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The periodogram of {v} is Iyy(w;) = D'AI, (a)j)A/b. We consider the Gaussian
semiparametric estimator, or GSE (see [10, 17]), for d,, [see (5)] based on {v;},

my
1 lya = inR(d) = in(log G(d) — 2d 1
(13) d, argglel(l_)l (d) argglel(l_)l(ogG(d) ( Z ogws ))

where ® = [A], Az], —p+ 0.5 < A; < Ay <0.5, a)j=2nj/n, j =j+(p—-
1)/2 and

_ L& L) 1 2 WAL (0p)A'D
Gd)= o Z 54— Z =21 :
"=t Y @

Here, we use slightly shifted Fourier frequencies w= to parallel corresponding
shifts inherent in our tapering scheme and thereby reduce finite-sample bias, as
was also done in [8].

The two theorems below establish the consistency and the limiting distribution
of the dAaaa under some additional conditions on the transfer function \IJZb (w) =
Tap (w)e!?a (@) see (5). Following [9], we define a smoothness class for transfer
functions as follows. For u > 1 and 1 < p <2, let £L*(u, p) be the set of continu-
ously differentiable functions u# on [—, 7] such that for all x, y with |x| € (0, 7],
Iyl € (0, ],

maxg<z<x |u(2)] - lu(x) —u(y)l - ly — x|
ming< <y [u(z)| ~ ’ ming<;<x |u(z)| —  min(|x], |y|)’

') -l ly -«
mino<:<x lu(z)] ~ " [min(lx[, [y)1"’

It follows from the discussion in [9] that if \IJZa (w) is the transfer function of a
stationary and invertible autoregressive moving average process, or of the short-
memory component of a stationary and invertible fractional Gaussian noise with a
suitable choice of the moving average representation, then \IJZM (w) € L*(u, p) for
some u, with p =2.

We now state an assumption on W',

ASSUMPTION 2. Forall a,be{l,...,q}, \le € L*(u, p) for some p > 1
and some p € (1, 2].

Note that this assumption is global in that it pertains to the behavior of W at
all frequencies. By contrast, our estimation of the d,, is based on frequencies in a
shrinking neighborhood around zero. It seems plausible, then, that a local version
of Assumption 2 would suffice for our purposes, although we do not pursue this
here.

The following standard assumption is needed to establish the consistency of dya:
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ASSUMPTION 3A. Asn — o0,
1

ny
— 4+ ——=0.
my, n

A

THEOREM 2. Under Assumptions 1,2 and 3A, fora € {1, ...,q},da LS daa-

The next assumption is used for establishing the asymptotic normality of
/2,5
mn/ (daa — daa)-

ASSUMPTION 3B. Suppose that a € Ng.
(1) Ifkefl,...,s},thendy_1 —dy > 1/2.
(1) Ifke{0,...,s — 1}, then as n — o0,
1 m,11+2(dk—dk+l) 10g2 "y,

m, T 2d—din — 0.

Note that part (i) is vacuous if k = 0 and part (ii) is vacuous if k = s. As-
sumption 3B may be compared with the assumptions in Theorems 2 and 4 of Ve-
lasco [23], which the author required for residual-based estimators of the memory
parameters of a bivariate fractionally cointegrated system. The problem here is
that a linear combination of series with slightly different memory parameters will
typically have an irregular short-memory component in its spectral density.

To present the asymptotic variance of dya, we define

_T@p—3Irip)
PToTtep-1

THEOREM 3. Under Assumptions 1,2 and 3B, fora € {1,...,q},

A D
mY (g — dag) —> N(O, @ ,/4).

Note that in Theorem 3, the limiting distribution of m,l/ 2 (ﬁaa — dyq) has mean
zero. This asymptotic unbiasedness is ensured by Assumption 3B, which places
strong restrictions on the separation between the memory parameters and also
places a potentially stringent upper bound on the bandwidth m,,. A much weaker
and, indeed, more standard assumption involving only m, is the following:

ASSUMPTION 3C. Asn — 00,

142
1 mn+ plog2 my
my n=P
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If we account for the asymptotic bias, which can be determined from Lemma 20,
and use Assumption 3C, we obtain the following result:

COROLLARY 1. Suppose a € Ny, where k € {0, ..., s}. Under Assumptions 1,
2 and 3C, we have

A D
mY (g — dag — pn) —> N(O, @, /4),

di—dy— di—d, di—di— . .
where |1, = OP(mnk k=l +wmkn K the Op(mnk *1Y term is vacuous if k =0

di—d, . .
and the O (a)mkn **1Y term is vacuous ifk = s.

Here, we present some results on the vector of GSE-estimated memory pa-
rameters, d = (di1, ..., dyq)’, which is an estimate of d = (d1,...,dyq) . Let

w; = X'y, be the g x 1 residual vector so that the entries of d are based on those

of w;. Note that by Lemma 15, X N X, where X is a continuous function of U
and V in Lemma 1. We will need the following assumption for our results:

ASSUMPTION 3D. (i) Forall k € {0,...,s}, ax > 1/2.
(i) As n — 00,

1426, 2
1 lo
+ = 2Sg =0,
my n

where £ = min{miny o, p}.
COROLLARY 2. Under Assumptions 1, 2 and 3D,
n d
m%%d—d)lgA(Q—fﬂﬁgﬁY*oﬂoﬂo@hgﬁfv,

where

Q =E(X'AfT (0)A'X).

REMARK 2. Simulation results not shown here reveal that the small-sample
bias is reduced and the variance is stabilized if the GSE estimators omit the first
m + p — 1 frequencies. This does not affect the validity of Corollary 2. Note that
if no frequencies are omitted, then the first m 4+ p — 1 frequencies are used twice:
once for estimating the cointegrating vector and once for estimating the memory
parameter. If the frequencies are omitted, the finite-sample approximation to the
variance in [8] is quite accurate.

Corollary 2 yields the following result on the asymptotic distribution of

m,l,/ z(ﬁaa — cibb — (dya — dpp)), under conditions that ensure asymptotic unbi-
asedness:
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COROLLARY 3. Under the assumptions of Corollary 2, for a,b € {1, ..., q},

a#b,

o R o Q]
mY 2 (dya — dpy — (dua — dpp)) — N(O’ TP(l B m)>'

Next, we modify Corollary 3 to include a bias term, thereby allowing for weaker
assumptions.

COROLLARY 4. Ifa € Ny, b € Ny, for k,h € {0, ...,s}, then under the as-
sumptions of Corollary 1,

. . D @ Q2
m%%¢m—dM—«¢m—dw)—ua——>NQxif<L—§—%ﬁ))
ada

where

~ di—dy—1 dp—dp—1 dy—di+1 dp—dp1
Wy = 0p(my +my T om, T o, ).

Given data from model (1), assumed to possess fractional cointegration, the
number s > 0 of cointegrating subspaces and their dimensions ay, ..., ag, as well
as the dimension ag of the non-cointegrating space, will be unknown in general.
Here we assume Gaussianity. Let * > 0 be the minimum separation between
the memory parameters, §* = min(dy — d1, ..., ds—1 — ds), and assume first that
8* > 1/2. We can compare the GSE estimators c?jj and cij+1,j+1 forj=1,...,q
using a bandwidth m, satisfying Assumption 3D, part (ii), with & = min{§*, p}.
Fix an ¢ € (0,1/2) and a C > 0. Then, for each j € {1,...,q — 1}, we declare
that d;; — dj+1.j+1 # 0 if and only if d;j — dj1.j+1 > Cmy />, This leads
to a procedure for consistently identifying s, ao, ..., as, which can be justified by
Corollary 3. A more complicated identification procedure, justified by Corollary 4,
may be constructed if §* < 1/2. This requires further tuning parameters which de-
pend on §*, owing to the presence of the nonstandard term fi,,, which increases as
the separation of the relevant memory parameters decreases. Unfortunately, such
procedures are of limited practical value as §* will be unknown in practice. Nev-
ertheless, we note that lower bounds on §* (assuming s = 1) arise implicitly or
explicitly in other work on semiparametric fractional cointegration. (See [20], As-
sumption D and [23], Theorems 2 and 4.)

7. Testing for fractional cointegration. In model (1), used throughout the
paper thus far, we have assumed that s > 1 so that cointegration exists. Here, we
expand model (1) to include the case of no cointegration (s = 0, or equivalently,
r =0), that is,

(14) i =Aoul,
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where Ag is ¢ x g with linearly independent columns and all entries of u,(o) have
memory parameter dg.

In practice, it is of interest to test for the presence of fractional cointegration.
Such a test was proposed by Marinucci and Robinson ([13], pages 236-237),
following on from an idea originally suggested in a different context by Haus-
man [6], using a comparison of two estimates of dy, one based on a multivariate
Gaussian semiparametric estimator (see [11]) using {y;};_; with an imposed re-
striction that all entries have the same memory parameter, and the other estimator
based on a univariate Gaussian semiparametric estimator of dy using (say) the first
entry {y1} of {y;}. It seems possible to use this idea, together with differenc-
ing and tapering, to yield a test for fractional integration in the current context,
although we do not pursue this here. We focus instead on residual-based meth-
ods in which estimated memory parameters based on the various cointegrating
residual series are compared. In a bivariate context, Velasco [23] has considered
properties of semiparametric memory parameter estimates based on cointegrat-
ing residuals under certain assumptions on the rate of convergence of the semi-
parametric estimator of the cointegrating parameters. However, the author did not
present a test for cointegration since his assumptions ruled out the no-cointegration
case.

For our GSE estimators d based on cointegrating residuals, we have the follow-
ing extensions of Corollary 2 and Corollary 3 to the no-cointegration case (14):

THEOREM 4. Under Assumptions 1, 2 and 3C, if there is no cointegration,
then

n P
m,ﬁ/z(d —d) b, N(O, Tp(diag ) 'oQoQo (diag SZ)_1>.

COROLLARY 5. Under Assumptions 1, 2 and 3C, if there is no cointegration,
then fora,be{l,...,q},

R R ) Q2
V200 — dpp) -2 N(O —P<1—7ab>).
m, (daa bb) —> " o s

Corollaries 4 and 5 justify a conservative hypothesis test for the null hypothesis
of no cointegration based on the test statistic 7,, = m,l/ 2 (c? 11— ciqq) whereby, for
a nominal level « test, the null hypothesis is rejected in favor of the cointegration
alternative hypothesis if and only if 7,, > (®,/ 2122, 2. Here, a bandwidth m,,
satisfying Assumption 3C should be used. The test is conservative since (®,/2) is
an upper bound for the asymptotic variance of T},.
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8. Proofs.
8.1. Proofs for Section 4.

PROOF OF LEMMA 2. Note that
® = B/Alm (2, Zt)A/B,

where B’A is an upper triangular block matrix. We first partition @ into (s + 1) x
(s + 1) blocks such that the (k,£) block has dimension (a; x a¢). Let z(k)
(u(k), e ,S)) and A = [Ar ... Agl,k=0,1,...,s. We have

@ =B AP, (P, 2 )AOB,,  fork<t, k,£=0,1,...,5,

15)
@y =9,

Fix a value of k € {0, ..., s}. Note that by Lemma 1, all the elements in the kth
block, ®y, are OP(nde). Now

S
DAE 2 a = u(®u) =0, ).
jeNk JEN;U---UN; v=k
See, for example, Theorem 14 of Magnus and Neudecker ([12], page 211). We
have A; = O, (n*¥) for j € Np. O

PROOF OF LEMMA 3. Following from Lemma 1, Q,(qk) converges in distribu-
tion to a matrix that is positive definite with probability one. Since an eigenvalue
of a matrix is a continuous function of the entries of the matrix, we conclude that
A J (Q,(f) ), the smallest eigenvalue of Q,(jk), converges in distribution to a random

variable that has no mass at zero. To prove n 2% ) Jt = Ckhjy (Qf,k)), we construct

another, similar, matrix for 1,,, (yr, y). Let Cs = M(Ay) and C, k=0, ...,5s — 1,
be the subspaces such that

MEApt1s - A) = ME(Ag, ..., Ay) @ G

and Cx LML (Ag, ..., Ay).Fork €{0,...,s)},let Cx be a g X ax matrix with ortho-
normal columns such that M(Cy) = C; and C =[Cy ... C,]. By this construction,
P = C’A is a lower triangular block matrix and P1,,(z;, 2, )P = C' I, (y;, y;)C :=
W is similar to Ly (yr, y,). Let P®, W& and @ k = 0,1,....,s, be the
leading j; x j; principal submatrices of P, W and d,, respectively. Also, let
20— W@ u®), k=0,1,...,s. Note that WK = P®'f, G0 30)pk),
By Corollary 2.2.1 of Anderson and Das Gupta [1],

k ~k / k ~k
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and
Mgl @G 20)) = 25 {APQPAR Y = 0 @)1 (@) (@)
= ndeij (Qflk)).
Applying the Sturmian separation theorem ([15], page 64), we have
hoje = Ajr (W) 2 e (WO) > eed o {1 (30, 20)) = cxn® @50 Q). O
8.2. Proofs for Section 5.

PROOF OF LEMMA 4. Since XkL(H) =[XoH) ... Xp—1(H) X1 (H) ...
X, (H)], we have
I sin ©{M X (), MX)H F < [(Xi D) Xe|p < Y 1K) Xl r
£=0,0+£k

= 0”(?;2/? n_ldk_d“) =0,(n"%),
by Lemma 7. [
PROOF OF LEMMA 5. Fork=1,...,s — 1, we have
P(M(Xy(H)) = By)

:P({Mxk(H)ﬂ b £g:0]ﬂ{MXk(H)ﬂ &y £g=0}).

£<k—1 0=k+1
Hence,
P (M (X (H)) # By)

:P({MXk(H)ﬂ P 3 #O}U{Mxk(H)ﬂ P 3 ;Ao})

L<k—1 £>k+1

§P(MXk(H)ﬂ &y £g;é0>+P(MXk(H)ﬂ P JBHAO)

L<k—1 >k+1
_ O(n—de,l—l—de +n—2dk+2dk+1)’
by Lemma 10. Similarly,
P(M(Xo(H)) # By) = O (n~2do+2d1)
and
P(MX;(H)) # By) = O (n~ 21124,
We have thus completed the proof. [J
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We will need the following lemma for the proof of Lemma 7. First we write U
and V defined in Lemma 1 as

U=[U;...U], V=[V,...V],
where U, and V; are a; X m matrices.
LEMMA 6. Let K =diag(ByAy, ..., B;A,). Then
-1 -1 D
d,'®d, — K(UU + VV)K/,
where d,, is defined as in Lemma 1. Furthermore,
d'®pd ! 2 KUU + VV) K,

where (UU" 4+ VV')p = diag(UgU;, + VoVy, ..., U,U; + V,V}) and K(UU' +
VV)pK' is positive definite and has distinct eigenvalues with probability 1.

PROOF. We write ® = K1,,(z;, z:)K + R, where R is a symmetric matrix with
its (k, £)th entry given by

k {+1 k+1 4
Rio =BiA L, P, 2T A B, + BA®HD L, (25D u{P)AB,
+ B;(A(k_H)Im (Zt(k—H), Z;E—i—1))A(£+1)’BZ

fork<£,£=0,1,..., (s — 1), R = BLA®TD L, 5D 29)A/B; for k < s and
R,; = 0. Thus,

d,'®d,' =d,'KI,,(z;, z)K'd; ' +d,'Rd; .
By Lemma 1,
d; 'Kl (2, z)K'd; ' 25 K(UU + VV)K/
and the (k, £)th entry of d;'Rd; ! is
n U AR = 0, (17 4 gt =d) = o (1) fork < €.

We have proved the first limiting distribution of the lemma. It follows that the kth
diagonal block of @ has the limiting distribution

n~ 2@y 25 Ky (UpUp + ViV K,

and by is positive definite, having distinct eigenvalues with probability 1 by
Okamoto [14]. O

LEMMA 7. [XiH)XkllF = O,(n~1%=ly for all ¢,k € {0,1,...,s} with
0+k.
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PROOF.  Since | Xj(H)X |l F = X} (@ p)B'BXk(®)|lr = [IX}(®p) Xk () £,
we prove this lemma by showing that

IX3 (@)X (®) | = Op(n~ Il

Let A =diag{’;,j=1,...,q} and A® = {x;, j € Nx}. We define A(®p) and
A(k)(<1> p) similarly for ® p. We will use the bound for the error in two subspaces
within the nonzero space from Theorem 4.1 of Barlow and Slapnicar [2] (which
can be shown to apply in our context with probability one), that is,

IA=Y2(®p)X* (@ p) AGX(®)A~/2||

X (P p) Xy (P <
X7 (®p) Xk (P F < relgap(A© (@), AD)

’

where

Ai (D) — A (P
relgap(A© (@), A©) = min | (®) =4 (®D)

ieNe N 32 (@p)r (@)
It is sufficient to show that
(16) |ATY2(®p)X* (@ p)AGX(®)A™?| . = 0,(1)
and
1
(17) = 0, (n~ldkddl)

relgap(A© (@ p), A®)

By Lemmas 2, 3 and 6, relgap(A©(®p), A®) = 0, (nl%—dly and p~ld—d]
X relgap(A(E) (®p), A(k)) > ¢y .k, Where ¢y  is arandom variable that has no mass
at 0. We thus have (17). We next prove (16). Note that by Lemmas 1 and 6,

d, @ 'd, 2 K-'(UU + VV) 1K,

Hence, d,X(®)A~/? = 0,(1) since d,®~'d, = d,X(®)A~/?A~1/2X/(®)d,
= 0,(1). Similarly, A=1/2(®p)X*(®p)d, = O, (1). We have

|A~V2(@p)X* (@) AGX(®)A ™2
= |A"2(®p)X*(®p)d, d;  Add; d, X(®)A 2|,
< [AV2(@p)X*(@p)d, | plld; Ak £ |, X(@)A .
= Op(l)s
by Lemma 6. Hence | X} (®p)Xx(®) | F = O,(n~1%—4ly, O

We need the following two lemmas for the proof of Lemma 10:

LEMMA 8. Under Assumption 1, there exists a finite constant C not depending
on n such that for all sufficiently large n,

Ex3(Q,;Hl<C.
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PROOF. Note that

Qn = (U, Vn)(Unv Vn)/»
where U,, and V,, are defined in (10). Let

T (Wa) =23(Q, 1,

where W,= vec(U,,V,). By Assumption 1, W, ~ N(0, E,), where E, =
cov(W,) and E, — E, the covariance matrix of vec(U, V) in Lemma 1. It was
shown in [4] that E is positive definite. Thus, for all sufficiently large n, E, is
invertible and A1 (E,) = A1(E) > 0.

For all sufficiently large n,

Bz, [T W)l = @m) 12,172 [ T (e =" 24

R2mq
Since x/Erjlx’ > x'x/A1(E,), we have
—x'E1x/2 < o ¥X/2M(En)

Since A1 (Z,) = A1(E) > 0 and since |E,|~'/2 — |E|~Y/2 > 0, there exist con-
stants C1 > 0 and C, > 0 such that for all sufficiently large n,
Ez, [T (W] < C /2 T (x)e~ X2 gy = C,
R2mq
a finite constant which does not depend on n. The above integral is the second mo-

ment of the largest eigenvalue of an inverse Wishart matrix and is hence bounded
by a finite constant [21], in view of our assumption that m > g + 3. [

LEMMA 9. Define Eyy to be an event, Eyg = {Aq (Pri) > A1 (Pre)}, 0 <k <
¢ <s. Then under Assumption 1,
P(ES,) = O(n—2d+2de,
PROOF. Forf >k, ¢ =1,...,s, we have, by Chebyshev’s inequality and the
Cauchy—-Schwarz inequality,

P(Eg;) = P{hg (®ir) < A1 (Pre)}

—2d;+2d; n =240 (@ep) - }
n=% g (®pr) ~

< nfzdk+2dgE1/2 [A%(nfzdg <I>gg)]El/2 [)»% (n2dk (I)l:kl )]

Since IE[)\% (n=2P,)] < Eltrace?(n 24 ®,y)] < C by Assumption 1 and Lem-
ma 1, the lemma follows if

=P{n

B[ (n** @y)] < €
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for all sufficiently large n. Let J = B;A(k)dﬁ,k), d = diag(n®, ..., n%, ... nd,
.., n%s)  We write

@ =J{(dX) " 1 (20, 20 @) .

We will use the inequality of Exercise 19 on page 238 of Magnus and Neudecker
[12]. That is,

oy <31 P10, ) a0y gy

It follows that

trace ®' < A {dP 11 (=0, 29)d®} race{ JF) IV II) ")

=2 {dP 11 (z® 9)a®) trace[(JT) ).
Since there exists a finite constant C such that E[A%{d,gk)l,gl(zgk), zt(k))df,k)}] <C
for all sufficiently large n by Lemma 8, we complete the proof by showing that
trace{(JJ) 7'} = O (n2%).
We write
3y = nZd"B;(AkA;CBk + BZA(Hl)dflkﬂ)d,(lkH)A(kH)Bk1{k<s}.

Since both matrices on the right-hand side are symmetric and positive definite,
a3V > ha, [nzd’fBLAkA;Bk], and we have

{37 < a0 {[BLAABKI T = O (n %), O
LEMMA 10. Under Assumption 1,

(18) PIMXcH)N P B; #0 = O(n~ 2 +2%)
L<hy

forhy <k, k=1,...,5s and

(19) PIMX (H) N @D B; #0} = O(n2dk+2dnr)

>hy

forhy >k, k=0,...,5s — 1.
PROOF. Since H=B®pB’, we have X;(H) =BX,(®p). Since ®p is a block
diagonal matrix,
Ai(®p) € {Aj(Pr)lk=0,...,s, j=1,...,a}
and for A; (®p) such that 1;(®p) = A ; (Pi),
Xi(®p)=(0,...,0, x;(®x),0,...0),
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that is, the first j,jll entries are all zero. Define Ejy to be an event, Ejy =
{Aa, (®rp) > A1 (Pge)}, 0 <h < € <s. We first prove (18).

P!MXk(H) NP 3 7&0} — P(Xc(®p) £ [0 YT),

<h

where the 0 in [0 Y] has dimension j;l"l x ar and Y has full rank. We have for
hi <k, k=1,...,s,

P(Xk(<1>D)7é[0Y]’)=P< U Egk> <> P(Egk)=0< 3 n_Zdl"'zd")

L:0<hy 0:0<hy L:4<hy

— O(n_Zdh1+2dk),

by Lemma 9. Similarly, for (19),

P{Mxk<H) NP 8 # 0} = P(Xi(®p) #[Z0]),

£>hy

where the 0 in [Z 0] has dimension (g — j;l"z) X ay and Z has full rank. We have
forhy) >k, k=0,...,s — 1,

P(Xi(®p) #[Z 0]/):P< U E,fg> <> P(E;fg)=0( 3 n—2dk+2d@)

L:4>hy L:8>hy L:4>h)

— O(H_de+2d]12). 0

8.3. Proofs for Sections 6 and 7. In this section, we will use the following
decomposition and notation for the proofs. We write

(20) DAl (wj)A'b— b’Af(a)Jv)A/b =b'AR(w;)A'b + b'AS(w;)A'b,
where
R()) = L)) — ¥(07) Lee (0,) ¥ (@)
and
S(wj) =¥ (@) lee(w)) ¥ (w5) — f(w)).

We will also use the notation
1 & o
L, (@)= - 12::1 03 D' AR(@))A'D,
1 2
2d
21) M, (d) = . ; w’ b'AS(w)A'D,
mp
Fon () = > 0¥ b Af(0))A
my mn ]:1 _/ ] .
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8.3.1. Proof of Theorem 2. Here and in the following subsections, suppose
that a € Ng, where k € {0, ..., s}. Write d,, = di. Note that d,, = di. For 1/4 >
§>0,let Ny =1{d:|d—di| <38}. Then for S(d) = R(d) — R(d}), we have

P(ldy — di| > 8) = P(dy € N3 N ©O)

=P< inf_R(@) < jn R(d)) ( inf S(d)sO).
N NO Ns€NO

Define ®1 ={d: A <d < Ay}, where A= A;whend;, <1/2+Ajanddy > A >
di — 1/2 otherwise. Note thatd —dy > —1/2 foralld € ®1. Whendy > 1/2+ Ay,
define ®, ={d : A; <d < A} and otherwise take ®; to be empty. Hence,

P(d—dilz8) < P( inf 5@ <0) + P(infS@) =0) =000,
NsCNOy (C2]
by Lemmas 11 and 12 below. [

LEMMA 11.  Under the assumptions of Theorem 2, P (inf yeng, S(d) < 0) =
o(1).

PROOF. Let
U(d)=2(d —dy) —log{2(d — di) + 1}

and

T (d) =log g —log G(d)

ny

G (dy) G(d) {2(d di) + 1 m,,< >2(a’ dk)}
—log ———— Z 2
j=1 "
1
+2(d—dk){ Zlogj—(logmn—l)}
nj=1
where § = b'A¢f7(0)A, b, as in (31), and
Gd) = g 30 2
- Tm, o J )

Then S(d) =U(d) — T (d). We have

P( inf S(d)f())f < inf U(d)<sup|T(d)|>
Ny NOy N0

Following the same arguments as those on page 1635 of Robinson [17], it is suffi-

cient to show that

Gd)-GW@)| _
G(d)

op(1).

(C2
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Note that by Lemma 20, we have
(22) G(d) = nggn(j—dk) > (1 — 8k)w2(d do) |

where gy = O, (n~*). By Lemma 21, for d € ©y,

1Gd) = G(d)| = Loy, (d) + Mo, () + Fony () — G 3" 24~
m J

(23) n 5

_Op( 2d dem )

where £,,,, My, and F,, are defined in (21). We have thus completed the proof.
O

LEMMA 12.  Under the assumptions of Theorem 2, P (infg, S(d) <0) =o(1).

PROOF. Following from the proof on pages 1638—1639 of Robinson [17], we
write

S(d) =log{D(d)/D(d)},

. 1 mpy ] Z(d—dk)~ 1 mpy B
D(d)=— Z(—) J %Ly (@) and v= —— > logJ.
n ]:1

v
mn iZp\e

Note that e ~ m,, /e. Denote

¥\ 2(A—dy) =\ 2(A—dy)
J ej .
= ~ [ — , 1<j<e’,
(24) o) = <e) <’") o
T 2@\ 2(B—d)
<—> ~ <—> , e’ < j<my.
ev my

By choosing A < dy — 3 + g so that m; ' ¥ (a; — 1) > 1 for all sufficiently
large m,,, we have

: LSS - 12w,
P(l(ngSw)sO)sP(m Y (aj—1)j Ivv(w,)so)

< Ly (@))
= ( Z(O‘J_l)g —2izk— )
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Now, by (20),
1 2 Lyy(w;) Ly(w)) Ly (@)
o 2@ = 1)( g 1) _Z( i 1)( —zilk b/Af(wT;A/b>
j=1 9’ j J
il N AR(a) DA
(25) + Z< “ = Dy AtwAD

M b AS(wj)A'b
+ Z( @ b/Af(a);)A/b'

We will show that all three terms in (25) are 0, (1). For the first term, we begin by
showing that

(26)  Ly(@)) =bAR@))A'b + b'AS(0))A’b + b'Af(w))A'b = 0,(w; %),
Let Ry¢(w;) denote the (4, £)th block of R(w;). By Lemmas 16 and 18,

—d— —dp—dp .—
0p(7l2dk dj dgwj h— L’ p/2) h,t <k,
b AnRue (@)ALh = 0p(; W% j=0/2), ht >k,
27 i
7 Op(nhdngy; B j=r/2), h<k >k,

=0,(w —dej—p/Z)
Also, by Lemmas 16 and 19,
b'AS(wj)A'b
k—1
:0P<Z jdh de ok —dn— d@_i_Z —d dz+ Z dh —dg = dh)
h, =0 h,t=k h<k, >k

_ Op(wj—de(jde—de,] +1 +J'dk_dk—l)).

By (54) in the proof of Lemma 20, b'Af(w;)A’'b = O, (e; *%). Thus, the bound
in (26) follows. Together with Lemma 20, we have

Lyy(wi)
vv_zék = ()p(l)
(OF
J
and
gw—de de(]d" dy_ l+a)dk diet1 —i—a)'?)
_ _ @; J DA (jdk_dk—l)_
b/Af(w DAL P w2k b

J
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Thus, the first term of (25) is

—2dy

AL Go- Lp(@)) AL

- D1 = J warll oL — S 1) j9— -

m Z((Xj )( b/Af(a)jf)A/b) 9,(1):2[1]‘ P - jX_:l(Olj +1)j
E =

L m (12
(28) = 0,,(— (Z af) +mﬁk“”<'>
mn \iZ{

=o0,(1)

since Z;’Zl a% = O(mﬁ(d"_m + mlogm), by (3.24) of Robinson [17]. Applying
(27) and (26), the second term of (25) is

| | m (12
0,,<m— Y o+ 1)j—0/2) = op<m—<2a§.> +m;P/2> =0,(1),

by the same argument as for (28). The third term of (25) is bounded by

1l b'AS(w)A'b 1 Im b'AS(w:)A'b
‘_Z(“f_l) pATND | |y 2= @7V yATaoan |
Mn j=1 wj Mn j=lev]+1 @j

Following from (24) and the lower bound of b'Af(w jf)A’ b in Lemma 20, the first
term of the above equation is

1 [ev]
0, <w,%{jk—A>— > a)?Ab/AS(a) J-)A/b> = 0, (g% My, (A))

n ]=1

= 0p (BN wi A7) = 0, (1),

by (ii) of Lemma 21, because 0 > A — d; > —1/2. We will complete the proof by
showing that

1 & |\ 2417 ) AS(w))A'D
( / ) T 6, (1).

29 D VAR@)A'D

M jferipr N

Note that ¢” ~ m,, /e. Following the similar computation for (55),

’2
mpy

_ —4dy+2dy+2dy , 2(2d—2A1—1 AN —2dyp—2d

—O(n +2dp emn( k 1—D Z jAA1—2dn e)

Jj=0my

13 TV TWSh(w))
my dek

E’
mpy j=lev]+1 CI)J

— 0 (a)4dk —2dh —2a'g

i my").
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Hence,

& J AT S (w))
— . 24,
j=lel+1 ;

‘ — Op(w%,k_dh d@m—l/Z)'

By Lemma 16, we have

1 mpy j 2(A— dk)She(a))
(il (L))

Mn j_[ev+1 \Mn j
0, (m> 2dj— dg—l/z), hot <k,
=1 0, (wpli=dh=dey, "1/2y hot>k,
0 (i~ 24—y <k 0>k,
=0,(1).

Equation (29) follows from the triangle inequality. [J

8.3.2. Proof of Theorem 3. By Theorem 2, dy satisfies

OR(d) _ IR(dy) N 32R(d)
ad ~  od dd?

where |d — di| < |di — d|. Let

(30) 0= (dy — dy).

My Mp
Zy=2m;'"? Y " vi(lse(w)) — X), vi=logj— mi > logj
j=1 " j=1
and
3= gb’A W (0)Z, %] (0)A}b
where
G1) G = b'Avf (0)A,b = b' AW, (0)S W, (0)A}b

and ¥, () is a g x a; submatrix of W' (w) = [¥{(w) ... W ()] in (8). We show
in Lemmas 13 and 14 that

2R(d)
G2 Tad?
and
(33) MV XLSCONE S

" ad
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From Lemmas 0 and 8 of Hurvich and Chen [8], the (u, v)th entry of Z,, satisfies

D
Znuw — N(0,4®,02).

Using a similar computation for the variance above and (53) in the proof of Lemma
19, we obtain

E(Zn,ulvlzn,ugvz) - 4q)pau1v20u2v1 .
Using the Cramér—Wold device, we have vec Z, £> vecZ~N(0,49,X ® X). By
Lemma 15, b g l;, thus
D DAY (0)ZW](0)ALb
- - - - — =
b'ALY] (0)S W] (0)A,b

(34)

Let o = (@1,...,99) = \IIZ/(O)A;CZ;. Then 3|b is a normal random variable with
mean zero and variance

N>
pw — 4,
(¢’ X9)?

Thus, 3 is independent of b and 3~N(0,4®,). Together with (30) and (32)—(34),
we have proved the theorem. [J

var(3|b) = 4®

LEMMA 13. Let d be such that |c? —di| < |dAk — di|. Then under the assump-
tions of Theorem 2,
2R(d) »
—— 54
dd>
PROOF. Define

R 1 My
Cald) = - Zl(log ;) @¥ Ly(@;)
J=

and

~ ] I - . 1 I -
Fod)=—3 (log '@ L()),  Ea(d)=— 3 (log )*}* v ().

n iz npy i=1
Then
?R(d)  MHGa(d)G(d) — GHd))  MHF(d)Fo(d) — Fi(d)}
) ad?r G2(d) - F3(d)

_ MExd)Eo(d) — E}(d))
B E}(d) '
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We first show that
(36) Fo(d) = Fy(d) +0,p(1),  a=1,2,3,

by showing that E,(d) = E,(dx) + 0,(n>%) for a = 0,1,2. Let M = {d :
log3 m, X |d — di| < e}, where ¢ > 0 is fixed to be such that 2¢ < log2 m, with a
proper n. Following the same line of proof as on page 1642 of Robinson [17], for

n>0,
~ o~ ~ 277\ ~2dk
P(|Ea<d> — Buld)] > 77(7) )

< P(é(dk) > %(k)gmn)z—a) + P(log>my,|d — di| > €).

(37)

The first probability is bounded by

P(|G<dk> g/~ %(logmmz—“) + P(a > &aogmnﬁ—“).

Both probabilities in the above equation tend to 0 for ¢ sufficiently small since
|G (di) —§| =0p(1) and § < C, by Lemma 20. To show that the second probabil-
ity in (37) tends to 0, we only have to verify that

Gd)-GW@)]|_
O1NN;s G(d)

From (22) and (23) in the proof of Lemma 11,
Gd)-G@) G(d)—G()
sup |———| <sup|———

O1NN; G(d) 0, G(d)
We have established (36). Combining this with (35), we have
3?R(d) _ A{Fx(di) Fo(dy) — FE(di))

ad2 FZ(dy)
By Lemma 21,

op(log™ mn)

=o0p(m,®).

+op(1) asn — o0.

- &, (@)
Fa(dk)—gm—ng j ‘—Zlo Z_zdi —9>‘

< log® mp|Lm, (di) + M, (di) + Fm, (di) = G
= Op(m,,*log" my).

By the same reasoning as that used in (4.10) of Robinson [17], we obtain

32R(d)

2
1 el e 1 el v P
Y =4{m_nZ;10g2J_<m—nX;logj> }(l+0p(l))+0p(l)—>4. g
Jj= Jj=
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LEMMA 14. Under the assumptions of Theorem 3,

ARy 1
129R@) _ —b' A (0)Z, W] ()AL b = 0, (1),

" T9d T g
where
np B 1 np B
Zy=2m;'"?Y vi(lee(wj) — %) and vj=logj— — > logj.
j=1 nj=1

PROOF. Note that
OR(d) 2 Vj vv(wj)

__Z_

Since G(dk) — 4 =o0,(1), by (23), and y i v = 0, we have

]/23Ra(ddk) o _1/22": (vv(“’f 1)(1+op(1))
J

and
OR(dy) 1
2R Ly 0)2, %] 0)ALb
d §
My Iy(w;) WA TR
_ VU
wam S (1) - 52 asuceono)
=1 G9; =159
(38)

n 2m—1/2 ! Z é "b’AkSkk (0))A}b) — b’Ak\Il,t*(O)Zn\Il,t(O)ALb}

+ Op(l)s
where Sy¢(w;) is the (h, £)th block of S(w;) defined in (20). Let

1 &
Mo, (d) = — 3 5D AnSne (@) ALb.
nj=1
The first term of (38) is then

om —1/2 Z _de vv(wj) - 9»w~2d" + Z b/AhSM(a)J)Agb”

j= 19(,() u,v=0
v#£k

1/2 q
2m,’ “logm
s ==t S Ly (d) + Fny (i) — G D MO ()
u,v=0

v#£k

=0p(1).
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by (20), (21), Lemma 22 and Assumption 3B. Since
Skk(@)) = |1 — €172 [* () [ (w)) — Z]¥; (@)
:wf@w?mnu%q—mwym+oAgf@“y

the second term in (38) is

L8\ g (e
Op|\m, Z”J""; =0p|———— ) =0p(D),
j=1

nP

by Lemma 16 and Assumption 3B. We have shown that both terms on the right-
hand side of (38) are 0, (1) and, hence, have completed the proof. []

LEMMA 15. Under Assumption 1, the matrix X = X{I,,(y;, y;)} satisfies
X 3 X =BX{KUU + VV)pK},

where X{K(UU' + VV') K’} is the matrix of normalized eigenvectors of K(UU' +
VV)pK' in Lemma 6 and U, V are defined as in Lemma 1. Thus, X is a continuous
function with respect to vec(U, V).

PROOF. It suffices to show that
(39) Xk (H) — Xk llp = Op(n~)
and that the eigenvectors of H satisfy
D o :
(40) Xj(H)—>$j(VeC(U’V))7 J=19---7qa

where & ;j are continuous functions of vec(U, V).
We first show (39). Note that since both H and [,,, are symmetric, we can assume
that X}Xj (H) > 0. We have

Xk (H) — X ||% < ax max || x; (H) — x;[I* < C maxsin®6(x;, x; (H))
JENK JENK
< C| sin O{M Xy (H)), M(X)} %,

by the definition of the sin ® bound. Equation (39) follows from Lemma 4.
Next, we derive (40). Since x; (H) = By j(®p), it is sufficient to show that

D . .
Xxj(®p) —> ¢;(vec(U, V)), j=1....q,
where ¢&; are continuous functions of vec(U, V). Let ®p =d; ' ®pd; !. Then

®p =X (®p)A(®p)X(®p).
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First, note that the eigenvalues of ®p are distinct, with probability 1, by
Okamoto [14]. Since both ® p and ®p are block diagonal matrices, we have

@p =d,'X'(®p)A(®p)X(®p)d, ' =X'(®p)d, ' A(®p)d;, ' X(®p).
This implies that
X'(®p)=X(®p) and A(®p)=d,'A(®p)d; "'
We now let K be defined as in Lemma 6 and rewrite U,, and V,, in (10) as
U, =[U,, ... U1, Va=[V,g... V.1,

where U,  and V,, x are ax x m matrices. Since K is a block diagonal matrix, we
have

®p =K diag(U,,0U,, o + Uy 0U,, . ... Uy s U, + U, U, DK
It follows that
= ° D
Xxj(®p) = x;(®p) :=¢j(vec(Uy,, V,)) —> ¢j(vec(U, V)),

where ¢;(-) is a continuous function because the eigenvalues of @ are distinct
with probability 1 and

xjH)=B'x;(®p) 2, B'¢j(vec(U,V)) = é'j (vec(U, V)). U

REMARK 3. Let X =[Xp ... X,]. Since X{K(UU' + VV') 5K’} is a block
diagonal matrix, Xy = B'X;{K(UU' + VV’) pK'} € B;.

8.3.3. Proof of Theorem 4. In case of no cointegration, we have
Ci=21(AA)) > [b'A|* = ('AA'D) = 4y (AA) = Cs
and
Ci = 11(AAYL (7 (0)) = § = b'AFT (0)A'D > 1, (AA )1, (F7(0) = C,
where Ci, Ca, C 1 and C‘g are positive constants. Furthermore, by Assumption 2,
VAf(0))A'D — 0, 20G = 0, (w; >0F),

for 1 < j <m,. Following along the lines of the proofs of Theorems 2 and 3, we
have m,l,/z(ciaa —dua) g N, ®,/4) fora=1,...,q. The theorem follows. []
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9. Technical lemmas. We will need the following two lemmas.

LEMMA 16. Ifb = x,, where a € N, then under Assumption 1,
b'Ajp = 0p(n~ )
forh <k, k=1,...,5s and
b'Ax = 0,(1),
fork=0,...,s.

LEMMA 17. Ifb = x4, where a € Ni, then under Assumption 1,
16" Akl = C(1 — &),
where C > 0and e = 0,(n"%), k=0, ...,s.

PROOF OF LEMMA 16. Since X(H) is an orthogonal matrix and MX(H) =
R?, we have

s
(41) b= X¢Hc,
=0
where
co =X, (H)b = O, (n~I—del)
by Lemma 7. Furthermore, for £ > h,
ELIX; (H) A1 = E[[IX; DAL 1px, @0 ceo,.n8;)]
+ E[I1X5 (DAL (A, ()@, <1, 8,20 ]
< 0+ E[IX; (M)A 1 {acx, )<, 8,70}]
= Etrace'/* (A}, X¢ (H)X, (H)Ap) 1 X, (H)N@ < 8,0} ]

(42) 1/2, A7 1/2 /
< E[trace (AhAh) trace/ (X, (H)X, (H))I{sz(H)ﬂGngh!Bj#O}]

12 1/2

=a, ||Ah||‘P{MXg(H) NP B; # 0}

j=h

= O(T’l_dh—’_dz),
by Lemma 10. For £ < h,
(43) E[IX, (H)A[I] = O(1).
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We have, for h <k,

S
b'Ay =) ;X (H)A,

£=0
= 2. X AL+ Y XA,
L:4<h L:4>h
- 0p< Z pdetdi 4 Z p~dntde—detde Z n_dlz+d€_dk+d€)
L4<h Lh<t<k L A>k

= O, (n~i k).

For h = k, the above equation is O, (1) since ¢y = O, (1) and E[||X§{(H)Ak||] =
o). O

PROOF OF LEMMA 17. Note that

R
I6'AN? = | XA+ Y )X, (H)A,
£=0,0+£k
(44) )
> e X AL — | > X A
£=0,0£k

Using (41), we have

N N S
=612 = " IXe eel? =D lleel* = llex >+ D> lleel?
=0 =0

£=0,0£k

and
S

(45) Yo lleel? = 0,72,

0=0,05k
by Lemma 4. Thus

(46) lekl> =1— 0, (n~2%).
By (45), (42) and (43),

S
> XA,
£=0,0k

s s 1/2
5( Yo olleel® Y ||X2<H>Ak||2)

£=0,¢+#k £=0,0+#k

47)
= 0,(n"%).

Furthermore, if MX;(H) = Bk, then there exists an ax x ai orthogonal matrix D
such that

X (H) = B;D,
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since both X (H) and B; are matrices with orthonormal columns. We have
llck|I* = trace[c; DB, Ax (B} Ax) " (A} Br) ' A} BiD ¢ )
< | BAD ™! llc; DB A1
= | B A P lle; X} (DAL,
It follows that
e X DAL > | BrAD) ™| lleil? = C(1 = ),

where §; = O) (n—2o), by (46). By (44), (47) and the above equation, ||b'Ax| >
C(1 — 8k — &), where & = O, (n~*). We have thus completed the proof. []

LEMMA 18. Let Ryp(wj) be the (a, b)th entry of R(w}),

E|Rup(w;)] < C|1 — ¢ 7|~ aatdon) j=p/2
a,b=1,....,qand 1< j <[n/2],

under Assumption 2.

PROOF. Let J;,(w;) be the jth element of J;(w;), the discrete Fourier trans-
form of z;. By (4),

(48) T (@)) = Z 2y (@)

where

o0

1 1
Joy (@) = ————=—=>) h{~ (
S Y 1|2; k:Zoo

Yk, abEi—k b)elw’
Hence

Rap(@)) = Jo, (@) 7 (@) — Z Woau (@7) e, (@;) Z V(@) J e, (@))

(49) , u=1
= Z (qjau(a)j)wbv(wj)(Aau,ijv,j — By,jBy,j)),
u,v=1
where
(50) Aauj= 5" == 2 () and B, j=Je, (®)).

Wau (w,)
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From Lemmas 9 and 10 of Hurvich, Moulines and Soulier [9],

T W, (w)
51y EMAani = Bu = C(/_n .

2 12
7—1‘ |Dp, (a)~—a))|2da))
"I’au(a)j) P
<Cj~*%.

By the Cauchy—Schwarz inequality,
E|Aau.jAbv,j — Bu,jBv.j|* = E|(Aau.j — Bu.j)(Apv.j — Bu.j)
+ Bu,j (va,j - Ev,j) + Ev,j(Aau,j - Bu,j)l2

<3(E|Aau.; — BujI*E|Apy.j — By j|H'/?
(52)
+ (B By j|*E|Apy.j — By j|H'?

+ (E|By, j|'ElAgu,j — BujIH'"?
=ClG™iN 2+ GNP ="
We have, from (49) and Assumption 2,

q
ElRab| < )" Wau(@)Wpy(@7) (Bl Agu,j Abv,j — Bu,j B j1H)"
u,v=1
q .
<C Y |1 —e | ki) g () Tay (0)) TP
u,v=1

<C|l— e—iwjr(danrdbb)j*P/Z’

where the constant C does not depend on n. [

LEMMA 19. Let Sqp(w) be the (a, b)th entry of S(w;). Then for 1 < j, k <
[n/2],
CI(1 — e ") (1 — et~ Caatd) | j k| < p,

E|Sap(@;) Sap(wr)| < ,
n, otherwise,

under Assumptions 1 and 2.
PROOF. Note that El¢.(w;) = X and Sy (w;) = Z,v:l \Ijau(a)j”')abv(a)j)
X (Isa,uv(a)j) — o). Now

q
E|Sap (wj)Sab (wi)| = Z \'Ijaul (wlz)waug (a)k)wbvl (a)j)lpbvz (a)]})

uy,uy,vy,v2=1

X E[(Ies,ulvl (wj) - Julvl)(lss,uzvz (wk) - Uuzvz)]-
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Note that E(J,, (@) Je, (@) =0, 1 < j,k <n/2, and E(Jy, (@), (@r)) = 0 if
|j — k| > p and

_ oy i 2p—2
63 B @)Ta@) =2 20 ) e

2p—2
c"z(p—l);

E[(Tee.u v @5) = 0uyon) Teeuzn (@) — Guyey)]
= Elee.u0, (@) Lot (@)1 = 0y Oy
= cum(Je, (@)). Je,, (@), Te,, (@), T, (@0)
+E(Je,, @) Te,, @O)E(J,, @) e, (@1))

= Clyjj—k|<p)

where

see [9]. Hence,

because (53) holds and the cumulant is 0 under Assumption 1. We have, by (5),

E|Sap(@;)Sap(wi)]

g
<C Y (W @)[Wau, (@)W, (@) Whos (@) 11 j—k1<p)

uy,uz,vy, =1

<C|l - e_iwf|*(daa+dbb)|l _ e*iw,;|*(daa+dbb)1{| 0

Jj—kl<p}:

LEMMA 20. Under Assumptions 1 and 2,

—2dj,

b'Af(@))A'D — b Al (0)ALb = Op () % (j4d1 4 of 7))

J
and
—2d —2di+
b At (@) Al — §o; "% = 0p(0;77)
for 1 < j <my. Furthermore, there exist a constant C such that
Y Af(@j)A'b > Co 2% (1 — &)
for 1 < j <my, and two constants, C1 and C», such that

C1>4>Co(l —¢p),

where g = Op(n~%).
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PROOF. Since by Lemma 16

Op(w;dejde—dh—d@)’ h < k’ < k’
(54) D' Anfue(@)ALb = 0p(w; 4", hot >k,
Op (e & jli=dny, h<k. >k,

we have

N S
b Af(@)A'b = b At ()AL + Y > b Apfe())Ab
=0

= b'Aifi (@) ALb + O, (wjfzdk =it wadeH v w;dk—dk—H)

= b At (@) ALh + O (0] (j4 74 4 0.
Since (7) and Assumption 2 imply that £z (w) = fltk (0w 2% + O(w2d+P) ag
o — 0, we have, by Lemma 16,

b A (@) Arb = D' A} ()AL bo % + 0, (I Ar[Pe) %)

We have shown the first two equations of the lemma. For the third equation, we
have, by (54),

k
b'Af(w))A'D = b,( > Anfie (wj)A/e>b + Op(w;d"_d“' ).
h,€=0
By Assumption 2 and Lemmas 16 and 17,

k k
b’( 3 Ahfhe(wj)A;>b = b’( > w;d”_d[AhfZlg(O)AZ)b

h, =0 h,e=0

k
+0, (w;d”"”p 3 b’AhAgb>
h,£=0

k
> 0, % aminlf’ (0} Y bARALbA) + Op (o)
h, =0
> Caw 2% (1 = g0) + 0,°)
= b k p\&;).
For the last inequality,

G = b'ALt] (ALbo % > 07 % din (1 ) I6'AL]? = Coo; (1 — &),
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by Lemma 17. The upper bound for § is due to the fact that
9 <Amax (Bl O) AL D] = hanax (£ 0)) [ A O

LEMMA 21. Let £, (d), My, (d) and Fp,,(d) be defined as in (21). Then if
d—di > —%, there exists an & > 0 such that

) Lin, (d) = 0p(wpd=2m; <),
(ii) M, (d) = 0p (07> m, €,
(iii) Fong (d) — G2 =2 = o, (2 =2k %),

under Assumptions 1 and 2.

PROOF. We will only prove (ii); (1) and (iii) can be shown in a similar fashion
using Lemmas 16, 18 and 20. Let Sy¢(d) be the (&, £)th block matrix of S(d). By
Lemma 19,

2

PR
E|— “S ;
o jElej ne(wj)

o K 2d~dy~d, 2d dy—d,
h— Z h—ag
~o(n Xy )

”JlkJ

< 1 %l:[gaﬁd 2y — 2@)
2

nj=lk=j
_[omPt2de=tdy 2 l0gmy,),  4d —2d), —2dp < —1,
T O (w722 1) 4d —2dy — 2dy > —1.

Hence, we have
15 o
— Zw~. She(w;)
my =

Op(n dh+de—24m—l log'?my,),  2d—dy—dy <—1/2,
| 0p (@B e VY, 2d —dy —dy > —1/2.

(55)

Let

1 &
MO (d) = b'Ay <m— > XS <w;>)Azb-
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By Lemma 19 and (55), we have, for h, £ < k,

M, ()
(56) O (wpl 2y 12024 1661121y 2d —djy — dp < —1/2,
0 (a2, 112y 2d —dy —dy > —1/2,

where ¢ > 0. By the same lemma and (55), we have, for i, £ > k,
(5T) ML) = 0o 12) = 0, (- 1),

and for h <k, £ >k,

M, ()
(58) 0p (=2, 124 2k 1001/ ) 2d —dy —dy < —1/2,
B [Op(wr%fi Mo ey VAT 2d —dy —dy > —1)2.
Hence,

Moy @ = 3 5 MO = 0 (024 2em ),

h=0¢=0
since 2dy —dp —dy > 01in (57) and —1 — 2d + 2d; < 0 in (56) and (58). [

LEMMA 22. Under the assumptions of Theorem 2, if d — dy, > —%, then

OCmn(d)—op( 2d dem—l/Z 8)

and
(h 0 Op (w%l_wkm;l/z), h=0=k,
@ = 2d-2dy _—1/2—¢ ,
op(wm, “my ) otherwise,

Furthermore, under the assumptions of Theorem 2,

= di—dy_ di—d
Fn, () — G = Op(mnk g 1+C0rr{(,, k+1),

di—di 11

where the O, (mZ =) term is vacuous if k = 0 and the O p(@m, ) term is

vacuous if k =s.
PROOF. This lemma is a corollary of Lemma 21. [
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