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ON THE LIMITING DISTRIBUTIONS OF MULTIVARIATE
DEPTH-BASED RANK SUM STATISTICS AND RELATED TESTS

BY YIJUN ZUO1 AND XUMING HE2

Michigan State University and University of Illinois at Urbana-Champaign

A depth-based rank sum statistic for multivariate data introduced by Liu
and Singh [J. Amer. Statist. Assoc. 88 (1993) 252–260] as an extension of the
Wilcoxon rank sum statistic for univariate data has been used in multivariate
rank tests in quality control and in experimental studies. Those applications,
however, are based on a conjectured limiting distribution, provided by Liu
and Singh [J. Amer. Statist. Assoc. 88 (1993) 252–260]. The present paper
proves the conjecture under general regularity conditions and, therefore, vali-
dates various applications of the rank sum statistic in the literature. The paper
also shows that the corresponding rank sum tests can be more powerful than
Hotelling’s T 2 test and some commonly used multivariate rank tests in de-
tecting location-scale changes in multivariate distributions.

1. Introduction. The key idea of data depth is to provide a center-outward
ordering of multivariate observations. Points deep inside a data cloud are assigned
high depths, while those on the outskirts are assigned lower depths. The depth of
a point decreases when the point moves away from the center of the data cloud.
Applications of depth-induced ordering are numerous. For example, Liu and Singh
[12] generalized, via data depth, the Wilcoxon rank sum statistic to the multivari-
ate setting. Earlier generalizations of the statistic are due to, for example, Puri and
Sen [18], Brown and Hettmansperger [2] and Randles and Peters [19]. More re-
cent ones include Choi and Marden [3], Hettmansperger, Möttönen and Oja [7]
and Topchii, Tyurin and Oja [23]. A special version of the Liu–Singh depth-based
rank sum statistic (with a reference sample) inherits the distribution-free property
of the Wilcoxon rank sum statistic. The statistic discussed in this paper, like most
other generalizations, is only asymptotically distribution-free under the null hy-
pothesis. For its applications in quality control and experimental studies to detect
quality deterioration and treatment effects, we refer to [10–12]. These applications
relied on a conjectured limiting distribution, provided by Liu and Singh [12], of the
depth-based rank sum statistic. Rousson [20] made an attempt to prove the conjec-
ture, but did not handle the differentiability of the depth functionals for a rigorous
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treatment. The first objective of the present paper is to fill this mathematical gap
by providing regularity conditions for the limiting distribution to hold and by ver-
ifying the conditions for some commonly used depth functions. Empirical process
theory and, in particular, a generalized Dvoretzky–Kiefer–Wolfowitz theorem in
the multivariate setting, turn out to be very useful here.

Our second objective is to investigate the power behavior of the test based on
the Liu–Singh rank sum statistic. The test can outperform Hotelling’s T 2 test and
some other existing multivariate tests in detecting location-scale changes for a
wide range of distributions. In particular, it is very powerful for detecting scale
changes in the alternative, for which Hotelling’s T 2 test is not even consistent.

Section 2 presents the Liu–Singh depth-based rank sum statistic and an asymp-
totic normality theorem. Technical proofs of the main theorem and auxiliary lem-
mas are given in Section 3. The theorem is applied to several commonly used depth
functions in Section 4. Section 5 is devoted to a study of the power properties of
the rank sum test. Concluding remarks in Section 6 end the paper.

2. Liu–Singh statistic and its limiting distribution. Let X ∼ F and Y ∼ G

be two independent random variables in R
d . Let D(y;H) be a depth function of

a given distribution H in R
d evaluated at point y. Lin and Singh [12] introduced

R(y;F) = PF (X : D(X;F) ≤ D(y;F)) to measure the relative outlyingness of y

with respect to F and defined a quality index

Q(F,G) :=
∫

R(y;F)dG(y)

(2.1)
= P {D(X;F) ≤ D(Y ;F) | X ∼ F,Y ∼ G}.

Since R(y;F) is the fraction of the F population that is “not as deep” as
the point y, Q(F,G) is the average fraction over all y ∈ G. As pointed out by
Proposition 3.1 of Liu and Singh [12], R(Y ;F) ∼ U [0,1] and, consequently,
Q(F,G) = 1/2 when Y ∼ G = F and D(X;F) has a continuous distribution.
Thus, the index Q(F,G) can be used to detect a treatment effect or quality deteri-
oration. The Liu–Singh depth-based rank sum statistic

Q(Fm,Gn) :=
∫

R(y;Fm)dGn(y) = 1

n

n∑
j=1

R(Yj ;Fm)(2.2)

is a two-sample estimator of Q(F,G) based on the empirical distributions Fm

and Gn. Under the null hypothesis F = G (e.g., no treatment effect or quality
deterioration), Liu and Singh [12] proved in one dimension d = 1 that

(
(1/m + 1/n)/12

)−1/2(
Q(Fm,Gn) − 1/2

) d−→ N(0,1),(2.3)

and in higher dimensions they proved the same for the Mahalanobis depth under
the existence of fourth moments, conjecturing that the same limiting distribution
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holds for general depth functions and in the general multivariate setting. In the next
section, we prove this conjecture under some regularity conditions and generalize
the result to the case F �= G in order to perform a power study.

We first list assumptions that are needed for the main result. They will be veri-
fied in this and later sections for some commonly used depth functions. Assume,
without loss of generality, that m ≤ n hereafter. Let Fm be the empirical version of
F and D(· ; ·) be a given depth function with 0 ≤ D(x;H) ≤ 1 for any point x and
distribution H in R

d .

(A1) P {y1 ≤ D(Y ;F) ≤ y2} ≤ C|y2 − y1| for some C and any y1, y2 ∈ [0,1].
(A2) supx∈Rd |D(x;Fm) − D(x;F)| = o(1), almost surely, as m → ∞.
(A3) E (supx∈Rd |D(x;Fm) − D(x;F)|) = O(m−1/2).
(A4) E(

∑
i piX(Fm)piY (Fm)) = o(m−1/2) if there exist ci such that piX(Fm) > 0

and piY (Fm) > 0 for piZ(Fm) := P(D(Z;Fm) = ci | Fm), i = 1,2, . . . .

Assumption (A1) is the Lipschitz continuity of the distribution of D(Y ;F) and
can be extended to a more general case with |x2 − x1| replaced by |x2 − x1|α for
some α > 0, if (A3) is also replaced by E (supx∈Rd |D(x;Fm) − D(x;F)|)α =
O(m−α/2). The following main result of the paper still holds true:

THEOREM 1. Let X ∼ F and Y ∼ G be independent and X1, . . . ,Xm and
Y1, . . . , Yn be independent samples from F and G, respectively. Under (A1)–(A4),

(σ 2
GF /m + σ 2

FG/n)−1/2(
Q(Fm,Gn) − Q(F,G)

) d−→ N(0,1), as m → ∞,

where

σ 2
FG =

∫
P 2(

D(X;F) ≤ D(y,F )
)
dG(y) − Q2(F,G),

σ 2
GF =

∫
P 2(

D(x;F) ≤ D(Y,F )
)
dF(x) − Q2(F,G).

Assumption (A2) in the theorem is satisfied by most depth functions such as
the Mahalanobis, projection, simplicial and halfspace depth functions; see [9, 15,
25] for related discussions. Assumptions (A3)–(A4) also hold true for many of the
commonly used depth functions. Verifications can be technically challenging and
are deferred to Section 4.

REMARK 1. Under the null hypothesis F = G, it is readily seen that
Q(F,G) = 1/2 and σ 2

GF = σ 2
FG = 1/12 in the theorem.

REMARK 2. Note that (A1)–(A4) and, consequently, the theorem hold true for
not only common depth functions that induce a center-outward ordering in R

d , but
also other functions that can induce a general (not necessarily center-outward) or-
dering in R

d . For example, if we define a function D(x,F ) = F(x) in R
1, then the

corresponding Liu–Singh statistic is equivalent to the Wilcoxon rank sum statistic.
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3. Proofs of the main result and auxiliary lemmas. To prove the main the-
orem, we need the following auxiliary lemmas. Some proofs are skipped. For the
sake of convenience, we write, for any distribution functions H , F1 and F2 in R

d ,
points x and y in R

d and a given (affine invariant) depth function D(· ; ·),
I (x, y,H) = I {D(x;H) ≤ D(y;H)},

I (x, y,F1,F2) = I (x, y,F1) − I (x, y,F2).

LEMMA 1. Let Fm and Gn be the empirical distributions based on indepen-
dent samples of sizes m and n from distributions F and G, respectively. Then:

(i)
∫∫

I (x, y,F )d(Gn(y) − G(y)) d(Fm(x) − F(x)) = Op(1/
√

mn),
(ii)

∫∫
I (x, y,Fm,F )d(Fm(x)−F(x)) dG(y) = op(1/

√
m) under (A1)–(A2)

and
(iii)

∫∫
I (x, y,Fm,F )dFm(x) d(Gn − G)(y) = Op(m−1/4n−1/2) under (A1)

and (A3).

PROOF. We prove (iii). The proofs of (i)–(ii) are omitted. Let Imn :=∫∫
I (x, y,Fm,F )dFm(x) d(Gn − G)(y). Then

E(Imn)
2 ≤ E

{∫ [∫
I (x, y,Fm,F )d(Gn − G)(y)

]2

dFm(x)

}

= E

[∫
I (X1, y,Fm,F )d(Gn − G)(y)

]2

= E

[
E

{(
1

n

n∑
j=1

(
I (X1, Yi,Fm,F )

− EY I (X1, Y,Fm,F )
))2∣∣∣X1, . . . ,Xm

}]

≤ 1

n
E[EY {(I (X1, Y1,Fm,F ))2|X1, . . . ,Xm}]

= 1

n
E[EY {|I (X1, Y1,Fm,F )||X1, . . . ,Xm}].

One can verify that

|I (x, y,Fm,F )| ≤ I

(
|D(x;F) − D(y;F)| ≤ 2 sup

x∈Rd

|D(x;Fm) − D(x;F)|
)
.

By (A1) and (A3), we have

E(Imn)
2 ≤ 4C

n
E

(
sup
x∈Rd

|D(x;Fm) − D(x;F)|
)

= O
(
1/(m1/2n)

)
.

The desired result then follows from Markov’s inequality. �
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LEMMA 2. Assume that X ∼ F and Y ∼ G are independent. Then under (A4)
we have

∫∫
I (D(x;Fm) = D(y;Fm))dF (x) dG(y) = o(m−1/2).

PROOF. Let I (Fm) = ∫∫
I (D(x;Fm) = D(y;Fm))dF (x) dG(y). Condition-

ally on X1, . . . ,Xm (or equivalently on Fm), we have

I (Fm) =
∫
{y : P(D(X;Fm)=D(y;Fm)|Fm)>0}

P
(
D(X;Fm) = D(y;Fm) | Fm

)
dG(y)

= ∑
i

∫
{y : P(D(X;Fm)=D(y;Fm)=ci |Fm)>0}

P
(
D(X;Fm) = ci | Fm

)
dG(y)

= ∑
i

P
(
D(X;Fm) = ci | Fm

)
P

(
D(Y ;Fm) = ci | Fm

)

= ∑
i

piX(Fm)piY (Fm),

where 0 ≤ ci ≤ 1 such that P(D(X;Fm) = ci | Fm) = P(D(Y ;Fm) = ci | Fm) >

0. (Note that there are at most countably many such ci ’s.) Taking expectation with
respect to X1, . . . ,Xm, the desired result follows immediately from (A4). �

LEMMA 3. Let X ∼ F and Y ∼ G be independent and let X1, . . . ,Xm and
Y1, . . . , Ym be independent samples from F and G, respectively. Under (A1)–(A4),

Q(Fm,Gn) − Q(F,Gn) =
∫ ∫

I (x, y,F )dG(y)d
(
Fm(x) − F(x)

) + op(m−1/2)

and, consequently,
√

m(Q(Fm,Gn) − Q(F,Gn))
d−→ N(0, σ 2

GF ).

PROOF. It suffices to consider the case F = G. First, we observe that

Q(Fm,Gn) − Q(F,Gn) =
∫

R(y;Fm)dGn(y) −
∫

R(y;F)dGn(y)

=
∫ ∫

I (x, y,Fm)dFm(x) dGn(y)

−
∫ ∫

I (x, y,F )dF (x) dGn(y)

=
∫ ∫

[I (x, y,Fm) − I (x, y,F )]dFm(x) dGn(y)

+
∫ ∫

I (x, y,F )d
(
Gn(y) − G(y)

)
d
(
Fm(x) − F(x)

)

+
∫ ∫

I (x, y,F )dG(y)d
(
Fm(x) − F(x)

)
.

We shall call the last three terms Imn1, Imn2 and Im3, respectively. From Lemma 1,
it follows immediately that

√
mImn2 = op(1). By a standard central limit theorem,
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we have
√

mIm3
d−→ N(0, σ 2

GF ).(3.4)

We now show that
√

mImn1 = op(1). Observe that

Imn1 =
∫ ∫

I (x, y,Fm,F )dFm(x) d(Gn − G)(y)

+
∫ ∫

I (x, y,Fm,F )dFm(x)dG(y)

=
∫ ∫

I (x, y,Fm,F )dF (x) dG(y) + op(1/
√

m),

by Lemma 1 and the given condition. It is readily seen that∫ ∫
I (x, y,Fm,F )dF (x) dG(y)

=
∫ ∫

I (x, y,Fm)dF (x) dG(y) −
∫ ∫

I (x, y,F )dF (x) dG(y)

= 1
2

∫ ∫ [
I
(
D(x,Fm) ≤ D(y;Fm)

)
+ I

(
D(x,Fm) ≥ D(y;Fm)

)]
dF(x) dG(y) − 1

2

= 1
2

∫ ∫
I
(
D(x,Fm) = D(y;Fm)

)
dF(x) dG(y) = o(m−1/2),

by Lemma 2. The desired result follows immediately. �

PROOF OF THEOREM 1. By Lemma 3, we have

Q(Fm,Gn) − Q(F,G)

= (
Q(Fm,Gn) − Q(F,Gn)

) + (
Q(F,Gn) − Q(F,G)

)
=

∫ ∫
I (x, y,F )dG(y)d

(
Fm(x) − F(x)

)

+
∫ ∫

I (x, y,F )dF (x) d
(
Gn(y) − G(y)

) + op(m−1/2).

The independence of Fm and Gn and the central limit theorem then give the re-
sult. �

4. Applications and examples. This section verifies (A3)–(A4) [and (A2)]
for several common depth functions. Mahalanobis, halfspace and projection depth
functions are selected for illustration. The findings here and in Section 2 ensure
the validity of Theorem 1 for these depth functions.
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EXAMPLE 1 [Mahalanobis depth (MHD)]. The depth of a point x is defined
as

MHD(x;F) = 1/
(
1 + (

x − µ(F)
)′
�−1(F )

(
x − µ(F)

))
, x ∈ R

d,

where µ(F) and �(F) are location and covariance measures of a given distribu-
tion F ; see [12, 27]. Clearly, both MHD(x;F) and MHD(x;Fm) vanish at infinity
as ‖x‖ → ∞, where Fm is the empirical version of F based on X1, . . . ,Xm and
µ(Fm) and �(Fm) are strongly consistent estimators of µ(F) and �(F), respec-
tively. Hence,

sup
x∈Rd

|MHD(x;Fm) − MHD(x;F)| = |MHD(xm;Fm) − MHD(xm;F)|,

by the continuity of MHD(x;F) and MHD(x;Fm) in x for some xm = x(Fm,F ) ∈
R

d such that ‖xm‖ ≤ M < ∞ for some M > 0 and all large m. Write, for sim-
plicity, µ and � for µ(F) and �(F) and µm and �m for µ(Fm) and �(Fm),
respectively. Then

|MHD(xm;Fm) − MHD(xm;F)|

= |(µm − µ)′�−1
m (µm + µ − 2xm) + (xm − µ)′(�−1

m − �−1)(xm − µ)|
(1 + ‖�−1/2

m (xm − µm)‖2)(1 + ‖�−1/2(xm − µ)‖2)
.

This, in conjunction with the strong consistency of µm and �m, yields (A2).
Hölder’s inequality and expectations of quadratic forms (page 13 of [21]) yield

(A3) if conditions (i) and (ii) below are met. (A4) holds trivially if (iii) holds.

(i) µm and �m are strongly consistent estimators of µ and �, respectively.
(ii) E (µm − µ)i = O(m−1/2), E (�−1

m − �−1)jk = O(m−1/2), 1 ≤ i, j, k ≤
d , where the subscripts i and jk denote the elements of a vector and a matrix,
respectively.

(iii) The probability mass of X at any ellipsoid is 0.

COROLLARY 1. Assume that conditions (i), (ii) and (iii) hold and the distrib-
ution of MHD(Y ;F) is Lipschitz continuous. Then Theorem 1 holds for MHD.

EXAMPLE 2 [Halfspace depth (HD)]. Tukey [24] suggested this depth as

HD(x;F) = inf{P(Hx) : Hx closed halfspace with x on its boundary},
x ∈ R

d,

where P is the probability measure corresponding to F . (A2) follows immediately
(see, e.g., pages 1816–1817 of [5]). Let H be the set of all closed halfspaces and
Pm be the empirical probability measure of P . Define

Dm(H) := m1/2‖Pm − P‖H := sup
H∈H

m1/2|Pm(H) − P(H)|.
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Note that H is a permissible class of sets with polynomial discrimination (see
Section II.4 of [17] for definitions and arguments). Let S(H) be the degree
of the corresponding polynomial. Then, by a generalized Dvoretzky–Kiefer–
Wolfowitz theorem (see [1, 13, 14] and Section 6.5 of [6]), we have, for any
ε > 0, that P(Dm(H) > M) ≤ Ke−(2−ε)M2

for some sufficiently large constant
K = K(ε,S(H)). This immediately yields (A3).

To verify (A4), we consider the case F = G for simplicity. We first note that
HD(X;Fm) for given Fm is discrete and can take at most O(m) values ci = i/m

for i = 0,1, . . . ,m. Let F be continuous. We first consider the univariate case. Let

A0 = R
1 − ⋂

Hm, Ai = ⋂
Hm−i+1 − ⋂

Hm−i ,

Ak+1 = ⋂
Hm−k − ⋂

∅,

with 1 ≤ i ≤ k and k = �(m − 1)/2�, where Hi is any closed half-line containing
exactly some i points of X1, . . . ,Xm. It follows that for 0 ≤ i ≤ k,

P
(
HD(X;Fm) = ci | Fm

)
= P(Ai) = [

F
(
X(i+1)

) − F
(
X(i)

)] + [
F

(
X(m−i+1)

) − F
(
X(m−i)

)]
,

P
(
HD(X;Fm) = ck+1 | Fm

) = P(Ak+1) = [
F

(
X(m−k)

) − F
(
X(k+1)

)]
,

where −∞ =: X(0) ≤ X(1) ≤ · · · ≤ X(m) ≤ X(m+1) := ∞ are order statistics.
On the other hand, X(i) and F−1(U(i)) are equal in distribution ( d=), where

0 =: U(0) ≤ U(1) ≤ · · · ≤ U(m) ≤ U(m+1) := 1 are the order statistics based on a
sample from the uniform distribution on [0,1]. Let Di = F(X(i+1)) − F(X(i)),
i = 0, . . . ,m. The Di’s have the same distribution and

E(Di) = 1

m + 1
, E(D2

i ) = 2

(m + 1)(m + 2)
,

E(DiDj ) = 1

(m + 1)(m + 2)
.

Hence, for 0 ≤ i ≤ k, E((P (HD(X;Fm) = ci | Fm))2) = 6/((m + 1)(m + 2)) and
E((P (HD(X;Fm) = ck+1 | Fm))2) = O(m−2). Thus, (A4) follows immediately.

Let us now treat the multivariate case. Let X1, . . . ,Xm be given. Denote by Hi

any closed halfspace containing exactly i points of X1, . . . ,Xm. Define the sets

A0 = R
d − ⋂

Hm, A1 = ⋂
Hm − ⋂

Hm−1 , . . . ,

Am−k = ⋂
Hk+1 − ⋂

Hk, Am−k+1 = ⋂
Hk,

with (m − k + 1)/m = maxx∈Rd HD(x;Fm) ≤ 1. Then it is not difficult to see that

HD(x;Fm) = i/m, for x ∈ Ai, i = 0,1, . . . ,m − k,m − k + 1.
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Now let pi = P(HD(X;Fm) = ci | Fm) with ci = i/m. Then, for any 0 ≤ i ≤
m − k + 1, pi = P(X ∈ Ai) = P(

⋂
Hm−i+1) − P(

⋂
Hm−i) with Hm+1 = R

d and
Hk−1 = ∅. Now, treating pi as random variables based on the random variables
X1, . . . ,Xm, by symmetry and the uniform spacings results used for the univariate
case above, we conclude that the pi’s have the same distribution for i = 0, . . . ,m−
k and

E(pi) = O(m−1), E(p2
i ) = O(m−2), i = 0, . . . ,m − k + 1.

Assumption (A4) follows in a straightforward fashion. Thus, we have:

COROLLARY 2. Assume that F is continuous and the distribution of HD(Y ;F)

is Lipschitz continuous. Then Theorem 1 holds for HD.

EXAMPLE 3 [Projection depth (PD)]. Stahel [22] and Donoho [4] defined the
outlyingness of a point x ∈ R

d with respect to F in R
d as

O(x;F) = sup
u∈Sd−1

∣∣u′x − µ(Fu)
∣∣/σ(Fu),

where Sd−1 = {u :‖u‖ = 1}, µ(·) and σ(·) are univariate location and scale estima-
tors such that µ(aZ + b) = aµ(Z) + b and σ(aZ + b) = |a|σ(Z) for any scalars
a, b ∈ R

1 and random variable Z ∈ R
1 and u′X ∼ Fu with X ∼ F . The projection

depth of x with respect to F is then defined as (see [10, 25])

PD(x;F) = 1/
(
1 + O(x;F)

)
.

Under the following conditions on µ and σ ,

(C1) supu∈Sd−1 µ(Fu) < ∞, 0 < infu∈Sd−1 σ(Fu) ≤ supu∈Sd−1 σ(Fu) < ∞;
(C2) supu∈Sd−1|µ(Fmu)−µ(Fu)| = o(1), supu∈Sd−1|σ(Fmu)−σ(Fu)| = o(1), a.s.
(C3) E sup‖u‖=1|µ(Fmu)−µ(Fu)| = O(m−1/2), E sup‖u‖=1|σ(Fmu)− σ(Fu)| =

O(m−1/2),

where Fmu is the empirical distribution based on u′X1, . . . , u
′Xm and X1, . . . ,Xm

is a sample from F , assumption (A2) holds true by Theorem 2.3 of [25] and (A3)
follows from (C3) and the fact that for any x ∈ R

d and some constant C > 0,∣∣PD(x;Fm) − PD(x;F)
∣∣

≤ sup
u∈Sd−1

O(x;F)|σ(Fmu) − σ(Fu)| + |µ(Fmu) − µ(Fu)|
(1 + O(x;Fm))(1 + O(x;F))σ (Fmu)

≤ C sup
u∈Sd−1

{|σ(Fmu) − σ(Fu)| + |µ(Fmu) − µ(Fu)|}.

(C1)–(C3) is true for general smooth M-estimators of µ and σ (see [8]) and rather
general distribution functions F . If we consider the median (Med) and the median
absolute deviation (MAD), then (C3) holds under the following condition:
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(C4) Fu has a continuous density fu around points µ(Fu) + {0,±σ(Fu)} such
that

inf‖u‖=1
fu(µ(Fu)) > 0,

inf‖u‖=1

(
fu

(
µ(Fu) + σ(Fu)

) + fu

(
µ(Fu) − σ(Fu)

))
> 0.

To verify this, it suffices to establish just the first part of (C3) for µ = Med. Observe
that

F−1
u (1/2 − ‖Fmu − Fu‖∞) − F−1

u (1/2) ≤ µ(Fmu) − µ(Fu)

≤ F−1
u (1/2 + ‖Fmu − Fu‖∞)

− F−1
u (1/2)

for any u and sufficiently large m. Hence,

|µ(Fmu) − µ(Fu)| ≤ 2‖Fmu − Fu||∞/
inf

u∈Sd−1
fu(µ(Fu)) := C‖Fmu − Fu‖∞,

by (C4). Clearly, µ(Fmu) is continuous in u. From (C4), together with Lemma 5.1
and Theorem 3.3 of [25], it follows that µ(Fu) is also continuous in u. Therefore,

P
(√

m sup
u∈Sd−1

|µ(Fmu) − µ(Fu)| > t
)

≤ P
(‖Fmu0 − Fu0‖∞ > (t2/(mC2))1/2)

≤ 2e−2t2/C2
, for any t > 0,

where the unit vector u0 may depend on m. Hence, the first part of (C3) follows.
Assumption (A4) holds for PD since P(PD(X;Fm) = c | Fm) = 0 for most

commonly used (µ,σ ) and F . First, the continuity of µ(Fmu) and σ(Fmu) in u

gives

P
(
PD(X;Fm) = c | Fm

) = P
((

u′
XX − µ(Fmu

X
)
)
/σ(Fmu

X
) = (1 − c)/c | Fm

)
for some unit vector uX depending on X. This probability is 0 for most F and
(µ,σ ). For example, if (µ,σ ) = (mean, standard deviation), then

P
(
PD(X;Fm) = c | Fm

) = P
(‖S−1/2

m (X − X̄m)‖ = (1 − c)/c | Fm

)
,

where Sm = 1
m−1

∑m
i=1(Xi − X̄m)(Xi − X̄m)′, which is 0 provided the mass of F

on any ellipsoid is 0. Thus:

COROLLARY 3. Assume that (C1)–(C3) hold, P(PD(X;Fm) = c | Fm) = 0
for any c ≥ 0 and PD(Y ;F) satisfies (A1). Then Theorem 1 holds for PD.
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5. Power properties of the Liu–Singh multivariate rank sum test.

Large sample properties. A major application of the Liu–Singh multivariate
rank-sum statistic is to test the hypotheses

H0 : F = G versus H1 : F �= G.(5.5)

By Theorem 1, a large sample test based on the Liu–Singh rank-sum statistic
Q(Fm,Gn) rejects H0 at (an asymptotic) significance level α when

|Q(Fm,Gn) − 1/2| > z1−α/2
(
(1/m + 1/n)/12

)1/2
,(5.6)

where �(zr) = r for 0 < r < 1 and normal cumulative distribution function �(·).
The test is affine invariant and is distribution-free in the asymptotic sense under
the null hypothesis. Here we focus on the asymptotic power properties of the test.
By Theorem 1, the (asymptotic) power function of the depth-based rank-sum test
with an asymptotic significance level α is

βQ(F,G) = 1 − �

(
1/2 − Q(F,G) + z1−α/2

√
(1/m + 1/n)/12√

σ 2
GF /m + σ 2

FG/n

)

(5.7)

+ �

(
1/2 − Q(F,G) − z1−α/2

√
(1/m + 1/n)/12√

σ 2
GF /m + σ 2

FG/n

)
.

The asymptotic power function indicates that the test is consistent for all al-
ternative distributions G such that Q(F,G) �= 1/2. Before studying the behavior
of βQ(F,G), we shall consider its key component Q(F,G), the so-called quality
index in [12]. For convenience, consider a normal family and let d = 2. Assume,
without loss of generality, that F = N2((0,0)′, I2) and consider G = N2(µ,�),
where I2 is the 2 × 2 identity matrix. It can be shown that

Q(F,G) = (|S|/|�|)1/2 exp
(−µ′(�−1 − �−1S �−1)µ/2

)
for any affine invariant depth functions, where S = (I2 + �−1)−1. In the case
µ = (u,u)′ and � = σ 2 I2, write Q(u,σ 2) for Q(F,G). Then

Q(u,σ 2) := Q(F,G) = exp
(−u2/(1 + σ 2)

)
/(1 + σ 2).

Its behavior is revealed in Figure 1. It increases to its maximum value (1 + σ 2)−1

[or exp(−u2)] as u → 0 for a fixed σ 2 (or as σ 2 → 0 for a fixed u). When u = 0
and σ 2 = 1, Q(F,G), as expected, is 1/2, and it is less than 1/2 when there is a
dilution in the distribution (σ 2 > 1). Note that Liu and Singh [12] also discussed
Q(u,σ 2). The results here are more accurate than their Table 1.

A popular large sample test for hypotheses (5.5) is based on Hotelling’s T 2

statistic that rejects H0 if

(X̄m − Ȳn)
′((1/m + 1/n)Spooled

)−1
(X̄m − Ȳn) > χ2

1−α(d),(5.8)
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FIG. 1. The behavior of Q(F,G) with F = N2((0,0)′, I2) and G = N2((u,u)′, σ 2I2).

where Spooled = ((m − 1)SX + (n − 1)SY )/(m + n − 2), X̄m, Ȳn, SX and SY are
sample means and covariance matrices and χ2

r (d) is the r th quantile of the chi-
square distribution with d degrees of freedom. The power function of the test is

βT 2(F,G) = P
(
(X̄m − Ȳn)

′((1/m + 1/n)Spooled
)−1

(X̄m − Ȳn)
(5.9)

> χ2
1−α(d)

)
.

We also consider a multivariate rank-sum test based on the Oja objective func-
tion in [7]. The Oja test statistic, O , has the following null distribution with
N = m + n and λ = n/N :

O := (
Nλ(1 − λ)

)−1
T ′

NB−1
N TN

d−→ χ2(d).(5.10)

Here TN = ∑N
k=1 akRN(zk), RN(z) = d!(N−d)!

N !
∑

p∈P Sp(z)np , ak = (1 −λ)I (k >

m) − λI (k < m), zk ∈ {X1, . . . ,Xm,Y1, . . . , Yn}, BN = 1
N−1

∑
k RN(zk)R

′
N(zk),

P = {p = (i1, . . . , id) : 1 ≤ i1 < · · · < id ≤ N}, Sp(z) = sign(n0p + z′np) and

det
(

1 1 . . . 1 1
zi1 zi2 . . . zid z

)
= n0p + z′np,

where n0p and njp, j = 1, . . . , d , are the cofactors according to the column (1, z′)′.
The power function of this rank test with an asymptotic significance level α is

βO(F,G) = P
((

Nλ(1 − λ)
)−1

T ′
NB−1

N TN > χ2
1−α(d)

)
.(5.11)
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FIG. 2. βT 2 (F,G) and βQ(F,G) with F = N2((0,0)′, I2), G = N2((0,0)′, σ 2I2).

The asymptotic relative efficiency (ARE) of this test in Pitman’s sense is discussed
in the literature; see, for example, [16]. At the bivariate normal model, it is 0.937
relative to T 2.

In the following, we study the behavior of βQ, βO and βT 2 . To facilitate our
discussion, we assume that α = 0.05, m = n, d = 2 and that G is normal or mixed
(contaminated) normal, shrinking to the null distribution F = N2((0,0)′, I2). Note
that the asymptotic power of the depth-based rank-sum test, hereafter called the Q

test, is invariant with respect to the choice of the depth function.
For pure location shift models Y ∼ G = N2((u,u)′, I2), Hotelling’s T 2 based

test, hereafter called T 2, is the most powerful, followed by the Oja rank test, to be
called the O test, and then followed by the Q test. All of these tests are consistent at
any fixed alternative. Furthermore, we note that when the dimension d gets larger,
the asymptotic powers of these tests move closer together.

On the other hand, for pure scale change models G = N2((0,0)′, σ 2I2), the Q

test is much more powerful than the other tests. In fact, for these models, the T 2

test has trivial asymptotic power α at all alternatives. Figure 2, a plot of the power
functions βT 2 , βO and βQ, clearly reveals the superiority of the Q test. The O test
performs just slightly better than T 2.

In the following, we consider a location shift with contamination, a scale change
with contamination and a simultaneous location and scale change as alternatives.
The amount of contamination ε is set to be 10%. The asymptotic power calcu-
lations for T 2 and Q are based on the limiting distributions of the test statistics
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TABLE 1
The (asymptotic) power of tests based on T 2, O and Q

u 0.0 0.15 0.20 0.25 0.30 0.35

G = 0.9N2((u,u)′, I2) + 0.1N2((0,0)′, (1 + 10uσ 2)I2), σ = 4
n = 100 βT 2 0.050 0.117 0.155 0.196 0.239 0.284

βQ 0.051 0.245 0.286 0.307 0.381 0.443
βO 0.046 0.157 0.296 0.423 0.558 0.687

n = 200 βT 2 0.050 0.193 0.273 0.357 0.441 0.521
βQ 0.051 0.430 0.508 0.549 0.659 0.746
βO 0.056 0.342 0.546 0.712 0.881 0.941

under the alternatives. Since the limiting distribution is not available for the O test
(except for pure location shift models), we use Monte Carlo to estimate the power.

For G = (1−ε)N2((u,u)′, I2)+εN2((0,0)′, (1+10uσ 2)I2), the contaminated
location shift models with u ≥ 0, the (asymptotic) power function βT 2(F,G) is
P(Z2a ≥ χ2

0.95(2)), where Z2a has a noncentral chi-square distribution with two
degrees of freedom and noncentrality parameter n(1 − ε)2u2/(1 + 5εuσ 2 + ε(1 −
ε)u2). Since the derivation of this result is quite tedious, we omit the details. Com-
parisons of βT 2 , βO and βQ are listed in Table 1, which clearly reveals that T 2

becomes less powerful than Q when a pure location shift model is 10% conta-
minated. For large µ, O is more powerful than Q since the underlying model is
mainly a location shift.

For G = 0.9N2((0,0)′, σ 2I2) + 0.1N2((u,u)′, I2), the contaminated scale
change models with σ = u + 1 ≥ 1, the (asymptotic) power function βT 2 is equal
to P(Z2b ≥ χ2

0.95(2)), where Z2b has the noncentral chi-square distribution with
two degrees of freedom and noncentrality parameter 2nε2u2/(1 + ε + (1 − ε)σ 2 +
2ε(1 − ε)u2). Table 2 reveals the superiority of Q in detecting scale changes over
T 2 and O , even when the model has 10% contamination.

TABLE 2
The (asymptotic) power of tests based on T 2, O and Q

σ 2 1.0 1.2 1.4 1.6 1.8 2.0

G = 0.9N2((0,0)′, σ 2I2)+0.1N2((u,u)′, I2), u = σ −1
n = 100 βT 2 0.050 0.050 0.052 0.054 0.056 0.059

βQ 0.051 0.181 0.430 0.734 0.891 0.963
βO 0.048 0.054 0.057 0.064 0.068 0.070

n = 200 βT 2 0.050 0.051 0.054 0.058 0.063 0.068
βQ 0.051 0.299 0.740 0.950 0.994 1.000
βO 0.052 0.059 0.063 0.085 0.112 0.139
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TABLE 3
The (asymptotic) power of tests based on T 2, Q and O

u 0.0 0.15 0.20 0.25 0.30 0.35

G = N2((u,u)′, σ 2I2), σ = u + 1
n = 100 βT 2 0.050 0.219 0.348 0.493 0.634 0.755

βQ 0.051 0.437 0.662 0.839 0.941 0.983
βO 0.046 0.218 0.324 0.430 0.573 0.708

n = 200 βT 2 0.050 0.404 0.625 0.805 0.916 0.970
βQ 0.049 0.725 0.922 0.987 0.999 1.000
βO 0.056 0.357 0.569 0.755 0.882 0.944

For G = N2((u,u)′, σ 2I2), the simultaneous location and scale change models
with σ = u + 1 ≥ 1, the (asymptotic) power function βT 2 is P(Z2c ≥ χ2

0.95(2)),
where Z2c has the noncentral chi-square distribution with two degrees of freedom
and noncentrality parameter 2nu2/(1 + σ 2). Table 3 reveals that Q can be more
powerful than T 2 and O when there are simultaneous location and scale changes.
Here, we selected (σ − 1)/u = 1. Our empirical evidence indicates that the supe-
riority of Q holds provided that (σ − 1)/u is close to or greater than 1, that is, as
long as the change in scale is not much less than that in location. Also note that in
this model, T 2 is more powerful than O .

Small sample properties. To check the small sample power behavior of Q, we
now examine the empirical behavior of the test based on Q(Fm,Gn) and compare
it with those of T 2 and O . We focus on the relative frequencies of rejecting H0
of (5.5) at α = 0.05 based on the tests (5.6), (5.8) and (5.10) and 1000 samples
from F and G at the sample size m = n = 25. The projection depth with (µ,σ ) =
(Med, MAD) is selected in our simulation studies and some results are given in
Table 4. Again, we skip the pure location shift and scale change models, in which
cases T 2 and Q perform best, respectively. Our Monte Carlo studies confirm the
validity of the (asymptotic) power properties of Q at small samples.

6. Concluding remarks. This paper proves the conjectured limiting distribu-
tion of the Liu–Singh multivariate rank-sum statistic under some regularity condi-
tions which are verified for several commonly used depth functions. The asymp-
totic results in the paper are established for general depth structures and for general
distributions F and G. The Q test requires neither the existence of a covariance
matrix nor the symmetry of F and G. This is not always the case for Hotelling’s
T 2 test and other multivariate generalizations of Wilcoxon’s rank-sum test.

The paper also studies the power behavior of the rank-sum test both asymptot-
ically and empirically. Although the discussion focuses on the normal and mixed
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TABLE 4
Observed relative frequency of rejecting H0

u 0.0 0.15 0.20 0.25 0.30 0.35

G = 0.9N2((u,u)′, I2) + 0.1N2((0,0)′, (1 + 10uσ 2)I2), σ = 4
n = 25 βT 2 0.058 0.083 0.108 0.142 0.151 0.189

βQ 0.057 0.154 0.156 0.170 0.203 0.216
βO 0.047 0.084 0.116 0.152 0.201 0.254

σ 2 1.0 1.2 1.4 1.6 1.8 2.0

G = 0.9N2((0,0)′, σ 2I2) + 0.1N2((u,u)′, I2), u = σ − 1
n = 25 βT 2 0.059 0.063 0.059 0.073 0.061 0.067

βQ 0.063 0.145 0.243 0.377 0.469 0.581
βO 0.051 0.058 0.041 0.053 0.043 0.055

u 0.0 0.15 0.20 0.25 0.30 0.35

G = N2((u,u)′, σ 2I2), σ = u + 1
n = 25 βT 2 0.069 0.113 0.147 0.183 0.220 0.269

βQ 0.060 0.245 0.324 0.418 0.498 0.587
βO 0.044 0.082 0.089 0.127 0.197 0.221

normal models and d = 2, what we have learned from these investigations is typi-
cal for d > 2 and for many non-Gaussian models. Our investigations also indicate
that the conclusions drawn from our two-sample problems are valid for one-sample
problems.

The Liu–Singh rank-sum statistic plays an important role in detecting scale
changes similar to the role played by Hotelling’s T 2 in detecting location shifts
of distributions. When there is a scale change in F , the depths of almost all points
y from G decrease or increase together and, consequently, Q(F,G) is very sen-
sitive to the change. This explains why Q is so powerful in detecting small scale
changes. On the other hand, when there is a small shift in location, the depths of
some points y from G increase, whereas those of the others decrease and, conse-
quently, Q(F,G) will not be so sensitive to a small shift in location. Unlike the
T 2 test for scale change alternatives, the Q test is consistent for location shift
alternatives, nevertheless.

Finally, we briefly address the computing issue. Hotelling’s T 2 statistic is
clearly the easiest to compute. The computational complexity for the O test is
O(nd+1), while the complexity for the Q test based on the projection depth (PD)
is O(nd+2). Indeed, the projection depth can be computed exactly by consider-
ing O(nd) directions that are perpendicular to a hyperplane determined by d data
points; see [26] for a related discussion. The exact computation is of course time-
consuming. In our simulation study, we employed approximate algorithms (see
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www.stt.msu.edu/~zuo/table4.txt), which consider a large number of directions in
computing Q and O .
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