The Annals of Statistics

2006, Vol. 34, No. 5, 21802210

DOI: 10.1214/009053606000000704

© Institute of Mathematical Statistics, 2006

FROM &-ENTROPY TO KL-ENTROPY: ANALYSIS OF MINIMUM
INFORMATION COMPLEXITY DENSITY ESTIMATION

By TONG ZHANG

Yahoo Research

We consider an extension of g-entropy to a KL-divergence based com-
plexity measure for randomized density estimation methods. Based on this
extension, we develop a general information-theoretical inequality that mea-
sures the statistical complexity of some deterministic and randomized den-
sity estimators. Consequences of the new inequality will be presented. In
particular, we show that this technique can lead to improvements of some
classical results concerning the convergence of minimum description length
and Bayesian posterior distributions. Moreover, we are able to derive clean
finite-sample convergence bounds that are not obtainable using previous ap-
proaches.

1. Introduction. The purpose of this paper is to study a class of com-
plexity minimization based density estimation methods using a generalization
of e-entropy, which has become a central technical tool in the traditional
finite-sample convergence analysis. Specifically, we derive a simple yet general
information-theoretical inequality that can be used to measure the convergence of
this very basic inequality.

We shall first introduce basic notation used in the paper. Consider a sample
space X and a measure p on X (with respect to some o -field). In statistical infer-
ence, nature picks a probability measure Q on X which is unknown. We assume
that Q has a density g with respect to w. In density estimation, we consider a set
of probability densities p(-|0) (with respect to u on X) indexed by 6 € I'. With-
out causing any confusion, we may also occasionally denote the model family
{p(-16):6 € I'} by the same symbol I". Throughout this paper, we always denote
the true underlying density by ¢, and we do not assume that g belongs to the model
class I'. Given I', our goal is to select a density p(-|0) € I" based on the observed
data X = {X1,..., X} € X", such that p(-|6) is as close to ¢ as possible when
measured by a certain distance function (which we shall specify later).

In the framework considered in this paper, we assume that there is a prior dis-
tribution dm (9) on the parameter space " that is independent of the observed data.
For notational simplicity, we shall call any observation X dependent probability
density wx (#) on I (measurable on X" x I') with respect to dm () a posterior
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randomization measure, or simply a posterior. In particular, a posterior randomiza-
tion measure in our sense is not limited to a Bayesian posterior distribution, which
has a very specific meaning. We are interested in the density estimation perfor-
mance of randomized estimators that draw 6 according to posterior randomization
measures Wy (0) obtained from a class of density estimation schemes. We should
note that in this framework, our density estimator is completely characterized by
the associated posterior wy (0).

The paper is organized as follows. In Section 2, we introduce a generalization
of e-entropy for randomized estimation methods, which we call KL-entropy. Then
a fundamental information-theoretical inequality, which forms the basis of our ap-
proach, will be obtained. Section 3 introduces the general information complex-
ity minimization (ICM) density estimation formulation, where we derive various
finite-sample convergence bounds using the fundamental information-theoretical
inequality established earlier. Sections 4 and 5 apply the analysis to the case of
minimum description length (MDL) estimators and to the convergence of Bayesian
posterior distributions. In particular, we are able to simplify and improve most re-
sults in [1] as well as various recent analysis on the consistency and concentration
of Bayesian posterior distributions. Some concluding remarks will be presented in
Section 6.

Throughout this paper, we ignore the measurability issue, and assume that
all quantities appearing in the derivations are measurable. Similarly to empiri-
cal process theory [14], the analysis can also be written in the language of outer-
expectations, so that the measurability requirement imposed in this paper can be
relaxed.

2. The basic information-theoretical inequality. In this section we intro-
duce an information-theoretical complexity measure of randomized estimators rep-
resented as posterior randomization measures. As we shall see, this quantity di-
rectly generalizes the concept of e-entropy for deterministic estimators. We also
develop a simple yet very general information-theoretical inequality, which bounds
the convergence behavior of an arbitrary randomized estimator using the intro-
duced complexity measure. This inequality is the foundation of the approach in-
troduced in this paper.

DEFINITION 2.1. Consider a probability density w(-) on I' with respect to 7.
The KL-divergence Dki (wdm||dm) is defined as

DKL(wdnlldn)zf w@)Inw@)dm ().
r

For any posterior randomization measure wy, we define its KL-entropy with re-
spect to 7w as Dk (wx dr||dr).
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Note that Dy, (w dm||dm) may not always be finite. However, it is always non-
negative.

KL-divergence is a rather standard information-theoretical concept. In this sec-
tion we show that it can be used to measure the complexity of a randomized esti-
mator. We can immediately see that the quantity directly generalizes the concept
of e-entropy on an e-net; assuming that we have N points in an e-net, we may
consider a prior that puts a mass of 1//N on every point. It is easy to see that any
deterministic estimator in the e-net can be regarded as a randomized estimator that
is concentrated on one of the N points with posterior weight N (and weight of
zero elsewhere). Clearly this estimator has a KL-entropy of In N, which is essen-
tially the e-entropy. In fact, it is also easy to verify that any randomized estimator
on the e-net has a KL-entropy bounded by its e-entropy In N. Therefore e-entropy
is the worst-case KL-entropy on an &-net with a uniform prior.

The concept of e-entropy can be regarded as a notion to measure the com-
plexity of an explicit discretization, usually for a deterministic estimator on a
discrete e-net. The concept of KL-entropy can be regarded as a notation to mea-
sure the complexity of a randomized estimation method, where the discretization is
done implicitly through randomization with respect to an arbitrary prior. This dif-
ference is important for practical purposes since it is usually impossible (or very
difficult) to perform computation on an explicitly discretized e-net. Therefore es-
timators based on e-nets are often of theoretical interest only. However, it is often
feasible to draw samples from a posterior randomization measure with respect to a
continuous prior by using standard Monte Carlo techniques. Therefore randomized
estimation methods are potentially useful for practical problems.

Since KL-entropy allows nonuniform priors, the concept can directly charac-
terize local adaptivity of randomized estimators when we put more prior mass
in certain regions of the model family. In contrast, e-entropy is a notation that
tries to treat every part of the space equally, which may not give the best possi-
ble results. For example, for convergence of posterior distributions, the fact that
entropy conditions are not always the most appropriate was pointed out in [4],
pages 522-523. The issue of adaptivity (and related nonuniform prior) cannot be
directly addressed with g-entropy. In the literature, one has to employ additional
techniques such as peeling (e.g., see [13]) for this purpose. As a comparison, the
ability to use a nonuniform prior directly in our analysis is conceptually useful.
Putting a large prior mass in a certain region indicates that we want to achieve
a more accurate estimate in that region, in exchange for slower convergence in a
region with smaller prior mass. The prior structure reflects our belief that the true
density is more likely to have a certain form than some alternative forms. There-
fore the theoretical analysis should also imply a more accurate estimate when we
are lucky enough to guess the true density g correctly by putting a large prior mass
around it. As we will see later, finite-sample convergence bounds derived in this
paper using KL-entropy have this behavior.
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Next we prove a simple information-theoretical inequality using the KL-entropy
of randomized estimators, which forms the basis of our analysis. For a real-valued
function f(6) on I', we denote by E, f(6) the expectation of f(-) with respect
to 7. Similarly, for a real-valued function £(x) on X, we denote by E,£(x) the
expectation of £(-) with respect to the true underlying distribution ¢. We also use
Ex to denote the expectation with respect to the observation X (n independent
samples from q).

The key ingredient of our analysis using KL-entropy is a well-known convex
duality, which has already been used in some recent machine learning papers to
study sample complexity bounds. For example, see [8, 11]. For completeness, we
include a simple information-theoretical proof.

PROPOSITION 2.1. Assume that f(0) is a measurable real-valued function
on I', and w(0) is a density with respect to 7 ; we have
E;w(9)f(0) < DxL(wdn||dm) + InEz exp(f(0)).
PROOF. We assume that E; exp(f(6)) < oo; otherwise the bound is trivial.
Consider v(0) = exp(f(0))/E; exp(f(#)). Since E,v(#) = 1, we can regard it

as a density with respect to 7. Using this definition, it is easy to verify that the
inequality in Proposition 2.1 can be rewritten equivalently as

Ezw(0) Inw(®) + InEx exp(f(0)) — Ezw(0) f () = DxL(wdn||lvdr) =0,
which is a well-known information-theoretical inequality, and follows easily from

Jensen’s inequality. [J

The main technical result which forms the basis of the paper is given by the
following lemma, where we assume that wyx (0) is a posterior (represented as a
density with respect to 7 that depends on X and is measurable on X" x I').

LEMMA 2.1. Consider any posterior wx(0). Let « and B be two real num-
bers. The following inequality holds for all measurable real-valued functions
Lx (@) on X" x T

Ex exp[Exx (0)(Lx (0) — a mExePLX D) — Dy (x dr||dr)]

) Eyelx®
= TR PLX @)

where Ey is the expectation with respect to the observation X.

PROOF. From Proposition 2.1, we obtain
L(X) =E,x(0)(Lx©®) —alnExefLx®) — Dyy (by dr||drm)
<InE;exp(Lx(0) — lnExeﬁLX(e)).
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Now applying Fubini’s theorem to interchange the order of integration, we have

L(X) Lx()—aInEx exp(BLx (6)) Exetx®

< x(@)—alnEy X —

Exe <ExEe E”Eo)l(eﬂLx(G)’ 0
REMARK 2.1. The importance of the above inequality is that the left-hand

side is a quantity that involves an arbitrary posterior randomization measure

wx dr. The right-hand side is a numerical constant independent of the estima-

tor wy. Therefore the inequality gives a bound that can be applied to an arbitrary

randomized estimator. The remaining issue is merely how to interpret the resulting

bound, which we shall focus on later in this paper.

REMARK 2.2. The main technical ingredients of the proof are motivated from
techniques in the recent machine learning literature. The general idea for analyz-
ing randomized estimators using Fubini’s theorem and decoupling was already
in [17]. The specific decoupling mechanism using Proposition 2.1 appeared in [3];
see [8, 11] for related problems. A simplified form of Lemma 2.1 was used in [18]
to analyze Bayesian posterior distributions.

The following bound is a straightforward consequence of Lemma 2.1. Note that
for density estimation, the loss £y (x) has the form of £(p(x|0)), where £(-) is a
scaled log-loss.

THEOREM 2.1. We use the notation of Lemma 2.1. Let X = {X1, ..., X} be
n-samples that are independently drawn from q. Consider a measurable function
Lo(x):T' x X — R, and real numbers o and B, and define

i E e~ te() \n
Cn(Ol»,B)—; n E<W> .

Then Y t, the following event holds with probability at least 1 — exp(—t):

—aE,ix(0) InE, e P0®)

E, 0y (6 " lo(X;)+ Dxr(wxdr||dm) + ¢
< Ex x(0) 271 €a( l)n kL(Wx drm||dm) N

Moreover, we have the expected risk bound

—aExE;x(6) InE e Pl

XEnﬁ)x(Q) Y 0o(X;) + Dxr(Wy dm||dm)
n

<E

+ ¢ (a, B).



MINIMUM COMPLEXITY ESTIMATION 2185

PROOF. We use the notation of Lemma 2.1, with Lx(0) = —>""_, €o(X;). If
we define

L(X) =Ezx(0)(Lx(0) — aInExePLx @) — Dy (by dr||dm)

n
=E,0x () (- > p(Xi) — na 1nqu—f“39(x)) — DL (Wx dr||dn),

i=1

then by Lemma 2.1 we have ExelX) < gnen(@p) This implies Ve: ¢ P(L(X) >
g) <eton @) Now given any ¢, and letting ¢ =t 4 nc, («, 8), we obtain

et+”c”(a’ﬁ)P(i(X) > 1+ ncp(a, B)) < een(@:h)

That is, with probability at least 1 — e/, L(X) <e=ncy(a, B) + t. By rearrang-
ing the equation, we establish the first inequality of the theorem.

To prove the second inequality, we still start with Exel®) < ¢7¢(%F) from
Lemma 2.1. From Jensen’s inequality with the convex function e*, we obtain
EXLX) < Eyel(X) < pnen(@.f) That is, Exi(X) < nc(a, B). By rearranging the
equation, we obtain the desired bound. [J

REMARK 2.3. The special case of Theorem 2.1 with « = 8 =1 is very use-
ful since in this case the term ¢, (o, ) vanishes. In fact, in order to obtain the
correct rate of convergence for nonparametric problems, it is sufficient to choose
o = f = 1. The more complicated case with general « and § is only needed for
parametric problems, where we would like to obtain a convergence rate of the order
O(1/n). In such cases the choice of « = 8 = 1 would lead to a rate of O (Inn/n),
which is suboptimal.

3. Information complexity minimization. Let S be a predefined set of densi-
ties on I with respect to the prior 7. We consider a general information complexity
minimization estimator,

n
(1) ﬁ))s( = argmin|:—Eﬂw(0) Zln p(Xil0) + ADxp(wdrm| |dn):|.

weS i=1

Given the true density g, if we define

@ R = @ Y 25D b i),
n = pXil0) n
then it is clear that
ﬁ))s( = argmin R, (w).

wes

The above estimation procedure finds a randomized estimator by minimizing
the regularized empirical risk R; (w) among all possible densities with respect to
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the prior 7 in a predefined set S. The purpose of this section is to study the perfor-
mance of this estimator using Theorem 2.1. For simplicity, we shall only study the
expected performance using the second inequality, although similar results can be
obtained using the first inequality (which leads to exponential probability bounds).

One may define the true risk of w by replacing the empirical expectation in (2)
with the true expectation with respect to g:

A
3) R;.(w) = Ezw(0)DxL(q||p(:16)) + —Dr(w dr||dm),

where Dgy.(¢q]|p) = E4In(q(x)/p(x)) is the KL-divergence between ¢ and p. The
information complexity minimizer in (1) can be regarded as an approximate solu-
tion to (3) using empirical expectation.

Using empirical process techniques, one can typically expect to bound R; (w) in
terms of IéA (w). Unfortunately, it does not work in our case since Dk (¢||p) is not
well defined for all p. This implies that as long as w has nonzero concentration
around a density p with Dxp(ql||p) = 400, then R)(w) = 4o00. Therefore we
may have R; (12))5() = +oo with nonzero probability even when the sample size
approaches infinity.

A remedy is to use a distance function that is always well defined. In statistics,
one often considers the p-divergence for p € (0, 1), which is defined as

1 p(x))p}
4 D =—FE, |1- .
@ PP = a0 "[ (q(x)

This divergence is always well defined and Dy (¢||p) =1lim,_.o D,(q||p). In the
statistical literature, convergence results were often specified under the squared
Hellinger distance (p = 0.5). In this paper we specify convergence results with
general p. We shall mention that bounds derived in this paper will become trivial
when p — 0. This is consistent with the above discussion since R, (correspond-
ing to p = 0) may not converge at all. However, under additional assumptions,
such as the boundedness of ¢/ p, Dk (¢q||p) exists and can be bounded using the
p-divergence D, (ql|p).

A concept related to the p-divergence in (4) is the Rényi entropy introduced
in [9]. The notion has been widely used in information theory. Up to a scaling
factor, it can be defined as

p(x) )”
q(x)

Note that the standard definition of Rényi entropy in the literature is ,ODEC qlip).
We employ a scaled version in this paper for compatibility with our p-divergence
definition. Using the inequality 1 —x < —Inx < x~1 =1 (x €0, 1]), we can see
thatV p, g

Re _ 1 <
Dy (qllp) = (=) InE,

D,(qllp)
1—p(1—p)Dy(qllp)

D,(qllp) < D3%(qllp) <
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The following bounds imply that up to a constant, the p-divergence with any
p € (0, 1) is equivalent to the squared Hellinger distance. Therefore a convergence
bound in any p-divergence implies a convergence bound of the same rate in the
Hellinger distance.

PROPOSITION 3.1. We have the following inequalities ¥ p € [0, 1]:

max(p, 1 — p)D,(qllp) > AD1,2(qllp) = min(p, 1 — p)D,(ql|p).

PROOF. We prove the first half of the two inequalities. Due to the symmetry
D,(qllp) = Di1—,(pllg), we only need to consider the case p < 1/2. The proof
of the second half (with p > 1/2) is identical except that the sign in the Taylor
expansion step is reversed.

We use Taylor expansion. Let x = £ ”;1‘/3”2; then x > —1, and there exists

& > —1 such that

A+ =142px+pQ2p— DA +£)*2x> <1+ 2px.

Now taking expectation with respect to g, we obtain

o 12 1/2\2p
Eq<§> =Eq<1+p6117/2q) <1+20E,2

1/2 1/2

—dq
g2

By rearranging the equation, we obtain 2,0(%Dl/z(q||p)) <p—=p)D,(qllp).
O

3.1. A general convergence bound. The following theorem is a consequence
of Theorem 2.1. Most of our later discussion can be considered as interpretation
of this theorem under different conditions.

THEOREM 3.1. Consider the estimator uA)‘;( defined in (1). Let a > 0. Then
Vo e (0,1)and y > p such that X' = );/V—__pl > 0, we have

ExE; by (0)D,(qllp(10)) <ExE.w}(0)D(qllp(-10))
_rvinfues Ri(w) ¥y —p
ap(l—p) ap(l—p)
Cp,n(a)
ap(l—p)’

Ex R,/ (by)

— Re
where ¢, p(0t) = %lnEﬂEfl1 “)"(%)P = %mEﬂe—P(l—P)(l—a)nDp @llpCl0)
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PROOF. Consider an arbitrary data-independent density w(6) € S with respect
to 7. Using (4), we can obtain from Theorem 2.1 the chain of equations

ap(l — p)ExEr i} (0)D, (gl p(-10))
<ap(l — p)ExE,x (0) Dy (qlIp(-16))

= —aEXE,Tﬁ);(H) InE, exp(—pln q(x) )
p(x|0)

"1 X; Dy (WS dr||d
<Ey| pE, 03 Z_ln q(X;) kL(wy dm||dm)
Xn ™ p(Xil6) n

=Ex[y Ru(%) + (0 — ¥) R (@5)] + cpa(e0)
<Ex[yRy(w) + (p — Y) Ry (5)] 4 cp.n(@)

=y Ri(w) — (y — p)Ex Ry (05) + cp.n(@),

where R; (w) is defined in (3). Note that the first inequality uses the fact —In(1 —
x) > x. The second inequality follows from Theorem 2.1 with the choice €5 (x) =

pln pq()(:lcg) and B = 1. The third inequality follows from the definition of w 3? in (1).

O

:| + Cp,n(a)

REMARK 3.1. If y = p in Theorem 3.1, then we also require Ay = 1, and let
A =0.

Although the bound in Theorem 3.1 looks complicated, the most important part
on the right-hand side is the first term. The second term is only needed to handle
the situation A < 1. The requirement that y > p is to ensure that the second term
is nonpositive. Therefore in order to apply the theorem, we only need to estimate a
lower bound of Ii’w(u?f(), which (as we shall see later) is much easier than obtain-
ing an upper bound. The third term is mainly included to get the correct conver-
gence rate of O (1/n) for parametric problems, and can be ignored for nonparamet-
ric problems. The effect of this term is quite similar to using localized e-entropy in
the empirical process approach for analyzing the maximum-likelihood method; for
example, see [13]. As a comparison, the KL-entropy in the first term corresponds
to the global e-entropy.

Note that one can easily obtain a simplified bound from Theorem 3.1 by choos-
ing specific parameters so that both the second term and the third term vanish:

COROLLARY 3.1. Consider the estimator ﬁ)}g( defined in (1). Assume that
A>1andlet p=1/A. We have

. L
ExExib} (0) D} (qllp(16)) < —— inf R, (w).
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PROOF. We simply let « =1 and y = p in Theorem 3.1. [J

An important observation is that for A > 1, the convergence rate is solely deter-
mined by the quantity inf,cs R) (w), which we shall refer to as the model resolv-
ability associated with S.

3.2. Some consequences of Theorem 3.1. In order to apply Theorem 3.1, we
need to bound the quantity Ex R v (W 3?() from below. Some of these results can be
found in the Appendix, and by using these results, we are able to obtain some
refined bounds from Theorem 3.1.

COROLLARY 3.2. Consider the estimator 12)3?( defined in (1). Assume that
A>1;thenVpe(0,1/A]
ExE, w5 (0)DRe 10)) < ———— inf R; (w).
xEzwy (@)D, (qllp(-10)) = ST 2(w)
PROOF. We simplyleto=1and y = (1 — p)/(A — 1) in Theorem 3.1. Note

that in this case, 2" =1, and hence by Lemma A.l in the Appendix, we have
ExRy(wy)>0. O

Note that Lemma A.1 is only applicable for A’ > 1. If A’ < 1, then we need
a discretization device which generalizes the upper e-covering number concept
used in [2] for showing the consistency (or inconsistency) of Bayesian posterior
distributions:

DEFINITION 3.1. The e-upper bracketing number of I', denoted by Ny, (T, €),
is the minimum number of nonnegative functions { f;} on X with respect to 1 such
that E,(fj/q) <1+¢,and VO € I', 3 j such that p(x|0) < f;(x) a.e. [u].

The discretization device which we shall use in this paper is based on the fol-
lowing definition.

DEFINITION 3.2. Given a set I’ C ', we define its upper-bracketing radius
as

() = [ sup p(xlo) duo) — 1.
fel”

An e-upper discretization of I' consists of a covering of I' by countably many

measurable subsets {I';} such that [ j ['j =T and ry(T'j) <e.

Using this concept, we may combine the estimate in Lemma A.2 in the Ap-
pendix with Theorem 3.1, and obtain the following simplified bound for A = 1.
Similar results can also be obtained for A < 1.
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COROLLARY 3.3. Consider the estimator defined in (1). Let A = 1. Consider
an arbitrary covering {I';} of I'.Vp € (0, 1) and Vy > 1, we have

ExE by (0) Dy (¢l p(-[0))

LY infy,es Ry (w) Y —p
p(l—p) p(l—p)

-1 —
nln?n(rj)w VY=P(1 4 g ()"

In particular, if{F;'?} is an e-upper discretization of ", then

ExE, by (0)D3(qlp(:10))

. e
- yinfyes Ry (w) Y —p [lnzjn(ri)(y )/ (y=p)
p(l—p) p(l—p)

+1In(1 +s)]
n

PROOF. Welet«a =1 in Theorem 3.1 and apply Lemma A.2. [

Note that the above results immediately imply the following bound using
g-upper entropy by letting y — 1 with a finite e-upper bracketing cover of size

Nup (T, €) as the discretization:

. infes Ry(w) 1. [InNy(T,e)

ExE, i3 (0)DR(qlIp(-10)) < —22 200 4 — mf[“i
pl—p) p >0 n

It is clear that Corollary 3.3 is significantly more general. We are able to deal with
an infinite cover as long as the decay of the prior 7 is fast enough on an e-upper
discretization so that 3 ; n(l"?)(”_l)/(y_p) < +4o00.

+In(1 +e)]

3.3. Weak convergence bound. The case of A =1 is related to a number of
important estimation methods in statistical applications. However, for an arbitrary
prior 7 without any additional assumption such as the fast decay condition in
Corollary 3.3, it is impossible to establish any convergence rate result in terms
of Hellinger distance using the model resolvability quantity alone, as in the case
of A > 1 (Corollary 3.2). See Section 4.4 for an example demonstrating this claim.
However, one can still obtain a weaker convergence result in this case.

THEOREM 3.2. Consider the estimator ﬁ))S( defined in (1) with . = 1. Then
Vf:X—[-1,1], we have

. 1<
Ex B by )Epcio)f () = =3 f(X0)| <245 + V24,
i=1
where E 10y f (x) = [ f(x)p(x]0) dju(x) is the expectation with respect to p(-0)
on X,and A, =inf,cs Ex Ry (w) + %
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PROOF. The first half of the proof, leading to (5), is an application of Theo-
rem 2.1. The second half is very similar to the proof of Theorem 3.1.

Letg.(x)=1—¢f(x),and h.(0, x) = %, where ¢ € (—1, 1) is a para-
meter to be determined later. Note that g.(x) > 0.

We consider an extensionof N'to I/ =T x {£1}. Letoc =+1,and 8’ = (,0) €
I''. We define a prior 77/ on I'" such that 7'((0, o)) = 0.57(0). For a posterior
12))5((0) on I', we consider for u = 1 a posterior ﬁ)lf’X(Q, o) on IV such that
W3 (60, 0) =25 () when o =u, and W} (0, o) =0 otherwise. Leta = = 1
and £y o (x) =Inhs. (6, X;). For all u(X) € {£1}, we apply Theorem 2.1 to the
posterior 12)5( x).x-» and obtain

—ExE iy (0) InE e~ Mus@-0)

g Exhx(©) S Inhye (6. Xi) + Do (iby dr||dm) +1In2
= X .
n

Note that qu_lnh”(e’x) = E(19)8¢ (x). Therefore if we let

Ae(X) =E, 1% (0) (Z Inge(X;) — nlnE,,(.w)ge(x)),

i=1

then

(5) Ex Aucoe(X) < nEx Ry (%) +1n2 < n inf Ry () +1n2,
we

where the second inequality follows from the definition of 12)3?( in (1). This inequal-
ity plays the same role as Theorem 2.1 in the proof of Theorem 3.1.

Consider x <y < 1. We have the inequalities (which follow from Taylor expan-
sion)

x2

<—In(1—x) < P E——
x < —In( )c)_x+2(1_y)2

.. . 2
This implies In g (x) > —ef(x) — m and —InE,9)8:(x) > ¢Ep(jg) f (x).
Therefore

A n n82
Ae(X) > SEan(Q) (-Zf(X,’) +nEp(,|9)f(x)> — W

i=1
Substitute into (5); we have
s " ne?
Ex sup {ucE; w3 O —> f(X)+nE,0f(X)])]———
ue{il}( X ( 2 R 2(1— |e))?

<n inf ExR)(w) + In2.
weS
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Therefore we have

) N l’l|8| l’lAn
E, wx(e)(— Z f(Xi)+ ”Ep(-|9)f(x))’ = 2(1 — |&])? *

i=1

Ey )
le]

Let |[e] = v/2A,/(/2A, + 1) and we obtain the desired bound. [

Note that for all f € [—1, 1] the empirical average % "_; f(X;) converges to

qu(x),

2
1 & 1
Ex §E¥2<;Zf(Xi)—qu(x)) ==

i=1

1 n
~2 F(X) =By f(x)

i=1

It follows from Theorem 3.2 that
Ex|Er i} (O)E pj0)f (x) — Eq f(X)| <24, + V24, +n~ /2.

This means that as long as lim,, A,, = 0, for all bounded functions f(x) € [—1, 1],
the posterior average E; 12))5( (0)Ep (o) f (x) converges to E, f(x) in probability.
Since Theorem 3.2 uses the same weak topology as that in the usual definition of
weak convergence of measures, we can interpret this result to mean the posterior
average E; 0y (0)p(:|0) converges weakly to ¢ in probability. In particular, by
letting f(x) be an indicator function for an arbitrary set B C X, we obtain the
consistency of the probability estimate. That is, the probability of B under the
posterior mean E,,zbi(@) p(-]6) converges to the probability of B under ¢ (when
lim, A, =0).

4. Two-part code MDL on discrete net. The minimum description length
(MDL) method has been widely used in practice [10]. The two-part code MDL
we consider here is the same as that of Barron and Cover [1]. In fact, results in
this section improve those of Barron and Cover [1]. The MDL method considered
in [1] can be regarded as a special case of information complexity minimization.
The model space I" is countable: 6 € I' = {1, 2, .. .}. We denote the corresponding
models p(x]|0 = j) by p;(x). The prior 7 has the form 7 = {my, 72, ...} such that
>_j7j = 1, where we assume that 7r; > 0 for each j. A randomized algorithm can
be represented as a nonnegative weight vector w = [w;] such that }°; 7;w; = 1.

MDL gives a deterministic estimator, which corresponds to the set of weights
concentrated on any one specific point k. That is, we can select S in (1), where
each weight w in § corresponds to an index k € I' such that wy =1/ and w; =0
when j # k. It is easy to check that Dy (wdn||dm) = In(1/my). The correspond-
ing algorithm can thus be described as finding a probability density p; with k
obtained by

(6) k i ZH:I ! + 2l !
= arg min n n—/[,
gk Pre(Xi) Tk

i=1
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where A > 1 is a regularization parameter. The first term corresponds to the de-
scription of the data, and the second term corresponds to the description of the
model. The choice A = 1 can be interpreted as minimizing the total description
length, which corresponds to the standard MDL. The choice A > 1 corresponds
to heavier penalty on the model description, which makes the estimation method
more stable. This modified MDL method was considered in [1] and the authors
obtained results on the asymptotic rate of convergence. However, no simple finite-
sample bound was obtained. For the case of A = 1, only weak consistency was
shown. In the following, we shall improve these results using the analysis pre-
sented in Section 3.

4.1. Modified MDL under global entropy condition. Consider the case A > 1
in (6). We can obtain the following theorem from Corollary 3.2.

THEOREM 4.1. Consider the estimator k defined in (6). Assume that A > 1.
ThenV p € (0,1/X]

ExD,(qllpp) < Ex DN (lIpp) <~ inf] D (qllp) + 1o |
qupk_qupk_p(k—l)k KL{q 1| Pk .

The term ry, ,(¢) = infy [ Dx1.(q]| px) + % In nik] is referred to as index of resolv-
ability in [1]. They showed (Theorem 4) that Di,2(qllpg) = Op(ra.n(q)) when
A > 1, which is a direct consequence of Theorem 4.1.

Theorem 4.1 generalizes a result by Andrew Barron and Jonathan Li, which
gave a similar inequality but only for the case of A =2 and p = 1/2. The result
can be found in [7], Theorem 5.5, page 78. In particular, consider I" such that
IT'| = N with uniform prior 7; = 1/N; one obtains a bound for the maximum
likelihood estimate over I' (take A =2 and p = 1/2 in Theorem 4.1),

. 2 1
™ ExD12allpy) = 2inf| Daallp + . |

Examples of indexes of resolvability for various function classes can be found
in [1], which we shall not repeat in this paper. In particular, it is known that for
nonparametric problems, with appropriate discretization the rate resulting from (7)
matches the minimax rate, such as those in [16].

4.2. Local entropy analysis. Although the bound based on the index of re-
solvability in Theorem 4.1 is quite useful for nonparametric problems, see [1], it
does not handle the parametric case satisfactorily. To see this, we consider a one-
dimensional parameter family indexed by 6 € [0, 1], and we discretize the family
using a uniform discrete net of size N +1,60; = j/N (j =0, ..., N). In the follow-
ing, we assume that ¢ is taken from the parametric family, and for some fixed p,
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both D/]}e(q|| pr) and Dk (q||px) are of the order (6 — 0¢)%. That is, we assume
that there exist constants ¢; and ¢, where

®) 10 — 6> < D(qllpr).  Dxu(qllpr) < ca® —6)°.

We will thus have infy Dxr.(q||px) < caN ~2_and the bound in (7), which relies
on the index of resolvability, becomes Ex Di,2(¢qllp;) < O(N -2y + %ln ﬁ

Now by choosing N = O(n~!/?), we obtain a suboptimal convergence rate
ExDi,2(qllp;) < O(Inn/n). Note that convergence rates established in [1] for
parametric examples are also of the order O (Inn/n).

The main reason for this suboptimality is that the complexity measure O (In N)
or O(—Inmy) corresponds to the globally defined entropy. However, readers who
are familiar with the empirical process theory know that the rate of convergence of
the maximum-likelihood estimate is determined by local entropy mentioned in [5].
For nonparametric problems, it was pointed out in [16] that the worst-case local
entropy is of the same order as the global entropy. Therefore a theoretical analysis
which relies on global entropy (such as Theorem 4.1) leads to the correct worst-
case rate at least in the minimax sense. For parametric problems, at the O(1/n)
approximation level, local entropy is constant but the global entropy is Inn. This
leads to a In(n) difference in the resulting bound.

Although it may not be immediately obvious how to define a localized counter-
part of the index of resolvability, we can introduce a correction term which has the
same effect. As pointed out earlier, this is essentially the role of the ¢, , () term
in Theorem 3.1. We include a simplified version below, which can be obtained by
choosinga =1/2and y = p =1/A.

THEOREM 4.2. Consider the estimator k defined in (6). Assume that A > 1,
and let p = 1/\. Then

) Zjnje—0A5p<1—p)nD,‘Se(q||p,->}

2
Ex DS (llpp) < T inf| Dt allpo) + ~1n —

The bound relies on a localized version of the index of resolvability, with the
global entropy —Inm; replaced by a localized entropy In) ;m; X
¢~ 0-3p(=pn DR (lIp)) _ Inx. Since

Re .
annje_O'sp(l_p)”DP (qllpj) < lnzﬂj =0,
J J

the localized entropy is always smaller than the global entropy. Intuitively, we can
see that if p;(x) is far away from g (x), then exp(—p(1 — p)(1 — a)nD/}}e(qllpj))
is exponentially small as n — oo. It follows that the main contribution to the sum-

. . _ _ Re . .
mationin }_; ;e 0-5p(1=pInDp"(alIP}) i from terms such that Dllfe(q l|p;) is small.
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This is equivalent to a reweighting of the prior 7% in such a way that we only count
points that are localized within a small Dﬁe ball of g.

This localization leads to the correct rate of convergence for parametric prob-
lems. The effect is similar to using localized entropy in the empirical process
analysis. We still consider the same one-dimensional problem discussed at the be-
ginning of the section, with a uniform discretization consisting of N + 1 points. We
will consider the maximum-likelihood estimate. For one-dimensional parametric
problems, using the assumption in (8), we have for all N 2=0(),

Ze—p(l—p)(l—a)nD,‘S%quj) < Ze,—p(l—p)(l—oe)ncu’z/N2 — o).
j j
Since 7; = 1/(N + 1), the localized entropy

> nje—p(l—p)(l—a)nDp“e(m|pj)

In =0(1)

Tk
is a constant when N = O(n!/?). Therefore with a discretization size N =
O (n'/?), Theorem 4.2 implies a convergence rate of the correct order O (1/n).

4.3. The standard MDL (.. =1). The standard MDL with A = 1 in (6) is more
complicated to analyze. It is impossible to give a bound similar to Theorem 4.1
that depends only on the index of resolvability. As a matter of fact, no bound was
established in [1]. As we will show later, the method can converge very slowly
even if the index of resolvability is well behaved.

However, it is possible to obtain bounds in this case under additional assump-
tions on the rate of decay of the prior . The following theorem is a straightforward
interpretation of Corollary 3.3, where we consider the family itself as a O-upper
discretization, I'; = {p;}.

THEOREM 4.3. Consider the estimator defined in (6) with A = 1. For all p €
0,1) andVy > 1, we have
y infe[Dxr(ql|pr) + (1/n) In(1/mx)]
p(l1—p)
L_r=r 1HZJT,Q_”/(V_”).
j

ExDR(qllpp) <

p(l—pn

The above theorem depends only on the index of resolvability and the decay
of the prior 7. If 7 has a fast decay in the sense of }_; Jrj(-yfl)/(yfp) < +o00 and
does not change with respect to n, then the second term on the right-hand side of

Theorem 4.3 is O(1/n). In this case the convergence rate is determined by the
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index of resolvability. The prior decay condition specified here is rather mild. This
implies that the standard MDL is usually Hellinger consistent when used with care.

4.4. Slow convergence of the standard MDL. The purpose of this section is
to illustrate that the index of resolvability cannot by itself determine the rate of
convergence for the standard MDL. We consider a simple example related to the
Bayesian inconsistency counterexample given in [2], with an additional random-
ization argument. Note that due to the randomization, we shall allow two densities
in our model class to be identical. It is clear from the construction that this require-
ment is for convenience only, rather than anything essential.

Given a sample size n, consider an integer m such that m > n. Let the space X
consist of 2m points {1, ..., 2m}. Assume that the truth ¢ is the uniform distribu-
tion, g(u) =1/2m) foru=1,...,2m.

Consider a density class I'’ consisting of all densities p such that either p(u) =0
or p(u) = 1/m. That is, a density p in I’ takes the value 1/m at m of the 2m
points, and 0 elsewhere. Now let our model class I" consist of the true density ¢
with prior 1/4, as well as 2" densities p; (j =1,...,2") that are randomly and
uniformly drawn from I'" (with replacement), where each p; is given the same
prior 3/2"+2,

We shall show that for a sufficiently large integer m, with large probability we
will estimate one of the 2" densities from I’ with probability of at least 1 — e~ 1/2,
Since the index of resolvability is In4/n, which is small when 7 is large, the ex-
ample implies that the convergence of the standard MDL method cannot be char-
acterized by the index of resolvability alone.

Let X = {X1,..., X} be a set of n-samples from ¢ and let p be the estimator
from (6) with A =1 and I" randomly generated above. We would like to estimate
P(p = q). By construction, p = ¢ only when [[_, p;j(X;) =0forall p; e I'NT.
Now pick m large enough such that m — n)"/m" > 0.5; we have

n
P(ﬁ:q):P(ijeF/ﬂF:npj(Xi):O)
i=1

=EXp(ij ernr:[[pjXxn =0’X>

i=1

n 2"
:EXP<1‘[ pIX)) =0'X)
i=1

ch 2
(1 CEm)
C2m

. N .
< Ex(l _ (m n) ) < (1 _ 2—(n+1))2 56_0'5,

2m
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where | X | denotes the number of distinct elements in X . Therefore with a constant
probability we have p # g no matter how large n is.

This example shows that it is impossible to obtain any rate of convergence result
using the index of resolvability alone. In order to estimate convergence, it is thus
necessary to make additional assumptions, such as the prior decay condition of
Theorem 4.3. The randomization used in the construction is not essential. This is
because there exists at least one draw (a deterministic configuration) that leads to
convergence probability (the probability of correct estimation) at least as large as
the expected convergence probability of e~ under randomization.

We shall also mention that starting from this example, together with a construc-
tion scheme similar to that of the Bayesian inconsistency counterexample in [2],
it is not difficult to show that the standard MDL is not Hellinger consistent even
when the index of resolvability approaches zero as n — oo. For simplicity, we skip
the detailed construction in this paper.

4.5. Weak convergence of the standard MDL. Although Hellinger consistency
cannot be obtained for standard MDL based on the index of resolvability alone,
it was shown in [1] that as n — oo, if the index of resolvability approaches zero,
then p; converges weakly to g in probability (in the sense discussed at the end of
Section 3.3). This result is a direct consequence of Theorem 3.2, which we shall
restate here.

THEOREM 4.4. Consider the estimator defined in (6) with A = 1. Then
Vf:X—[-1,1], we have

1 n
Ex|E, f(x) - Y F(X)| <24, + V24,

i=1

where A, = infy[Dxr(qlIpi) + 3 In -]+ 22,

Note that in the sense discussed at the end of Section 3.3, this theorem essen-
tially implies that the standard MDL estimator is weakly consistent (in probability)
as long as the index of resolvability approaches zero when n — oo. Moreover, it
establishes a rate of convergence result which depends only on the index of re-
solvability. This theorem improves the consistency result in [1], where no rate of
convergence result was established and f was assumed to be an indicator function.

5. Bayesian posterior distributions. Assume we observe n-samples X =
{X1,..., Xn} € X", independently drawn from the true underlying distribution
Q with density ¢g. As mentioned earlier, we call any probability density wyx (0)
with respect to 7 that depends on the observation X (and measurable on X" x I')
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a posterior. For all y > 0, we define a generalized Bayesian posterior ), (-| X) with
respect to  as (also see [15])

—1 PV (Xi|6)
Jr Iz PV(X 6)dm(6)
We call , the y-Bayesian posterior. The standard Bayesian posterior is denoted
as (-] X) = m (-] X).
The key starting point of our analysis is the following simple observation that

relates the Bayesian posterior to an instance of information complexity minimiza-
tion which we have already analyzed in this paper.

€)) my (01X) =

PROPOSITION 5.1. Consider a prior w and X > 0. Then

p(XI)

R A A
Ry (r13.(1X)) = ——InEx exp( Zl )=lngx(w),
i=1

where Iék(w) is defined in (2), and the inf on the right-hand side is over all possible
densities w with respect to the prior 7.

PROOF. The ﬁrst equality follows from simple algebra.
Now let f(0) = 5 Z _In p(X;|0) in Proposition 2.1; we obtain

- X 10 By exp(£(6) < inf &, (w) < R, (i (1)),

Combining this with the first equality, we know that equality holds in the above
chain of inequalities. This proves the second inequality. []

The above proposition indicates that the generalized Bayesian posterior can be
regarded as a minimum information complexity estimator (1) with S consisting of
all possible densities. Therefore results parallel to those of MDL can be obtained.

5.1. Generalized Bayesian methods. Similarly to the index of resolvability
complexity measure for MDL, for Bayesian-like methods the corresponding model
resolvability, which controls the complexity, becomes the Bayesian resolvability
defined as

. A
Fon(q) = lgf[Enw(e)Dmmm(we)) + 2D dnndn)]
(10)
— Mg, e/ DalpCio).
n

The density that attains the infimum of (10) is given by

w(6) o exp[—%DKL(qnp(-He))]
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The following proposition gives a simple and intuitive estimate of the Bayesian
index of resolvability. This bound implies that the Bayesian resolvability can be
estimated using local properties of the prior 7 around the true density ¢g. The quan-
tity is small as long as there is a positive prior mass in a small KL-ball around the
truth ¢.

PROPOSITION 5.2.  The Bayesian resolvability defined in (10) can be bounded
as

A
rn(q) < gg[s - ;lnn({p el DxL(qllp) < e})]

PROOF. Forall ¢ > 0, we simply note that E, e~ /MDDkL@lIpCI0)) > o=(/Me
7({p € I': DxrL(q||p) < e€}). Now taking the logarithm and using (10), we obtain
the desired inequality. [J

The following bound is a direct consequence of Corollary 3.2.

THEOREM 5.1. Consider the generalized Bayesian posterior w1, (0]X) de-
finedin 9) with A > 1. Then ¥V p € (0, 1/A]

ExExm1/3,(01X) DR (gl p(16)) < - ~InEx exp( ' D (qlIpC10)) )

_
p(h—1)

The above theorem gives a general convergence bound on the y-Bayesian
method with y < 1, depending only on the globally defined Bayesian resolvability.
Note that similarly to Theorem 4.2 for the MDL case, a bound using a localized
Bayesian resolvability can also be obtained.

Theorem 5.1 immediately implies the concentration of a generalized Bayesian
posterior. Define the posterior mass outside an & D};e—ball around ¢ as

mi.({p €T : DR(qllp) = €}] X).

Using the bound in Theorem 5.1 and Proposition 5.2, we can show that with large
probability, the generalized Bayesian posterior outside a D}}e-ball of size O(¢) is
exponentially small when ¢ > ¢, ,. However, the average performance bound in
Theorem 5.1 is not refined enough to yield exponential tail probability directly
under the prior . In order to obtain the correct behavior, we shall thus consider
a prior 7’ related to 7 which is more heavily concentrated on distributions that
are far away from ¢g. We choose 7’ for which Theorem 5.1 can be used to obtain a
constant probability of posterior concentration. We then translate the concentration
of posterior with respect to 7’ to a concentration result with respect to 7.

COROLLARY 5.1. Let A > 1 and p € (0,1/A]. Then for all t > 0 and § €
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(0, 1), with probability at least 1 — §,

dep n + 21 1
er:nfqip = 22t x) <
m({per:Disin = T2 X ) <

where the critical prior-mass radius &, = inf{e:e > —%lnn({p e I':
Dxi(qllp) =eb}.

PROOF. Let g, =2Qez, +1)/(p(A =1)8), ' ={pel: Dllfe(qu) < &}
and Ty = {p € ': DR*(q||p) > &}. We let a = e~"/* and define 7’ (0) = am (6)C
when 6 € I'; and 7/(9) = 7 (0)C when 6 € I'>, where the normalization constant
C = (an(T) +m (T~ e[l, 1/al.

Now apply Theorem 5.1 and Proposition 5.2 with the prior 7z’. We obtain (using
the Markov inequality)

Ex 7}, (T2|1X)e, < ExEqpm,, (01X)D3(ql| p)
A

n
=< —m lnEnr eXp(—XDKL(qu(.W)))

< _m[lna +InE, eXp(—%DKL(QHP('W)))}

<
T px—1
- 270+ t‘
T p(r=D
In the above derivation, the first inequality is the Markov inequality; the second
inequality is from Theorem 5.1; the third inequality follows from 7’ > am; the
fourth inequality follows from Proposition 5.2; the final inequality uses the defini-
tion of &z ;.

Now we can divide both sides by &;, and obtain with probability 1 — § that
n{/k(F2|X) < 0.5. By construction, JT{M(F2|X) = mp(2|X)/(a(1—
w1/, (I21X)) + w1/, (I'2|X)). We can solve for 7/, (I'2|X) as my/n(I2]X) =
ary;; (T2 X) /(1 — (1 —a)w{ ;, (T2|X)) <a/(1+a). O

A
|:l +éern— ;lnn({p el':DxrL(qllp) < 8:1,71})]

From the bound, we can see that with large probability the posterior probability
outside a DEe—ball with large distance ¢ decays exponentially in nt and is inde-
pendent of the complexity of the prior (as long as ¢ is larger than the scale of the
critical radius ¢ ). As we will see later, the same is true for the standard Bayesian
posterior distributions.

5.2. The standard Bayesian method. For the standard Bayesian posterior dis-
tribution, it is impossible to bound its convergence using only the Bayesian re-
solvability. The reason is the same as in the MDL case. In fact, it is immediately
obvious that the example for MDL can also be applied here. Also see [2] for a
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related example.

Therefore in order to obtain a rate of convergence (and concentration) for the
standard Bayesian method, additional assumptions are necessary. Similarly to The-
orem 4.3, bounds using upper-bracketing radius can be easily obtained from Corol-
lary 3.3.

THEOREM 5.2. Consider the Bayesian posterior mw(-|X) = m1(-|X) defined
in (9). Consider an arbitrary cover {I';} of I'. Then Y p € (0,1) and y > 1, we
have

ExE7(0|X)D3(q1p(-10))

y InE e "PxL(gllpC10))

p(p—n
y—pr ANy=D/(y—p) AL
+ Ind) 7)Y 14+ rep))".
p(l —p)n XJ: J ( u J )

For all € > 0, consider an e-upper discretization {F;?} of I'. We obtain from
Theorem 5.2,

ExE,7(0]1X)Dy(qlIp(:10))

y InE e " PrL(glIP(10))

p(p—Dn
_ Iny": n(re)(}/—l)/(y—p)
)(/1 '0) ing[ ZJ J +ln(1—|—8)].
p(l—p)e> n

In particular, let y — 1. We have

ExE,m(©0|X) D} (q]1p(-10))

— in
p(p—Dn - p >0
where Ny, (T, ¢) is the e-upper-bracketing covering number of I

Similarly to Corollary 5.1, we obtain the following concentration result for the
standard Bayesian posterior distribution from Theorem 5.2.

InE. e—"PxLllp¢10) In Ny (T,
_InEqe ; f[M.Hn(l—i-s)],

COROLLARY 5.2. Let &7, =inf{e:e > —1Inw({p € T: Dxr(qllp) < &})}
be the critical prior-mass radius. Let p € (0, 1). For all s € [0, 1], let

L.
upper.n(8) =/ {llgf} In) (@) (1+rw@)))"
j -
J

be the critical upper-bracketing radius with coefficient s, where {I"j} denotes an
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arbitrary covering of I'. Now VY p € (0, 1) and y > 1, let
en =2V&nn+ (¥ — P)eupper,n (¥ — D/(y — p)).
We have for all t > 0 and § € (0, 1), with probability at least 1 — §,

ke R -
n({peF.Dp (qllp) = o(1—p)s ‘X §1+e’”'

PROOF. The proof is similar to that of Corollary 5.1. We let ¢, = (2¢, +
(4y —2)1)/((p — p*)3). Define T'y = {p e T:D3(qlIp) < &) and T2 = {p €
r: DEe(qllp) > ;). Weleta = e ™ and define /(0) = am(9)C when 8 € I'| and
7'() = 7 (8)C when 6 € I';, where the normalization constant C = (ax(I'y) +
()~ ell, 1/al.

Using Proposition 5.2 and the assumption of the theorem, we obtain

v InE, e DKL@!IP(16))

p(p—1n
y-—r . (P A@=D/(r—p) n
————infIn)_ 7' (THY V=P (1 4 (T
p(l — ,o)n ;) - ( j) ( ub( j))

—nDKL(q||p(-16))
_rt+(y/n)nEze

- p(1—p)

y—p [(y—Dt (V—lﬂ
+ + upper,n\ —

p(l—p)[y—p Fupper\ 0
_ @y —Dite

p(l—p)

In the first inequality, we have used the fact that aw(9) < 7'(0) < 7 (0)/a.
Similarly to the proof of Corollary 5.1, we can use Markov inequality to ob-
tain 7/(I"z|X) < 0.5 with probability 1 — 8. This leads to the desired bound for
m([2]X) = amy,; (T2 X) /(1 = (1 — a)my 5 (T2]X)). O

In this theorem, we can use the estimate

. 1
gupper,n(s) = 1nf|:_ In Nyp(T', &) + In(1 + 8):|s
e>0Ln

where Nyp(I, €) is the upper-bracketing covering number of I' at scale €. The
result implies that if the critical upper-bracketing radius eypper,, 1s at the same (or
smaller) order of the critical prior-mass radius & ,, then with large probability, the
standard Bayesian posterior distribution will concentrate in a D}}e -ball of size e .
In this case, the standard Bayesian posterior has the same rate of convergence when
compared with the generalized Bayesian posterior with A > 1. However, if eypper,n
is large, then the standard Bayesian method may fail to concentrate in a small D}}e—
ball around the truth g, even when the critical prior radius &5 ,, is small. This can be
easily seen from the same counterexample used to illustrate the slow convergence
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of the standard MDL.

Although the standard Bayesian posterior distribution may not concentrate even
when &5, is small, Theorem 3.2 implies that the Bayesian density estimator
E,7(0|X)p(-|X) is close to ¢ in the sense of weak convergence.

The consistency theorem given in [2] also relies on the upper covering number
Nuw (T, €). However, no convergence rate was established. Therefore Corollary 5.2
in some sense can be regarded as a refinement of their analysis using their covering
definition. Other kinds of covering numbers (e.g., Hellinger covering) can also be
used in convergence analysis of nonparametric Bayesian methods. For example,
some different definitions can be found in [4] and [12].

The convergence analysis in [12] employed techniques from empirical process-
es, which can possibly lead to suboptimal convergence rates when the covering
number grows relatively fast as the scale ¢ — 0. We shall focus on [4], which em-
ployed techniques from hypothesis testing in [6]. The resulting convergence theo-
rem from their analysis cannot be as simply stated as those in this paper. Moreover,
some of their conditions can be relaxed. Using techniques of this paper, we can ob-
tain the following result. The proof, which requires two additional lemmas, is left
to the Appendix.

THEOREM 5.3. Consider a partition of I" as the union of countably many
disjoint measurable sets I'j (j =1,...). Then ¥V p € (0,1) and y > 1

E [;|X) inf DRe
x;n( il )pegol(rj) o (qllp)

(y —p)In Y, m(THY D= —ymy; (T j)e " S Preea)) Dkr(gllp)
<

’

- p(l—p)n
where co(T";) is the convex hull ofdensities inlj,n(T;) = fr drr (0) is the prior
probability of T'j and 7t (I'j|1X) = Jp TIj—) p(Xi10)d7(0)/ Jr [Ti=; p(Xil0) dm (6)

is the Bayesian posterior probablllty of I;.

An immediate consequence of the above theorem is a result on the concentra-
tion of Bayesian posterior distributions that refines some aspects of the main re-
sult in [4]. It also complements the upper-bracketing radius-based bound in Corol-
lary 5.2. For simplicity, we only state a version for p-divergence so that the result is
directly comparable to that of [4]. A similar bound can be stated for Rényi entropy.

COROLLARY 5.3. Let ¢7, =infle:e > —%lnn({p el':DxL(qllp) <e})}.
Given p € (0,1), we assume that Ve > 0, {p € I': D,(q||p) > &} can be cov-
ered by the union of measurable sets Fj (j=1,...) such that inf{D,(q||p): p €
U; CO(F?)} >¢/2. Forall s €10, 1], let

1
Econv,n(§) =supyé&o: &y < — sup inf ln<Zn(F ) +2)}

n g>gn {F }
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be the critical convex-cover radius. Now Yy > 1 let

en =20+ (¥ — Peconv.n((y — D/(y — p)).
Forallt > 0and § € (0, 1), with probability at least 1 — &,

4e, + 8y — 4t “X) -
p(1—p)s T l4en

PROOF. Let s =4(e, + 2y — 1)t)/(p(1 — p)§). Similarly to the proof of
Corollary 5.1, we define I'y = {p e ' : Dy (qllp) < &}, 2 =T —T'1. Weleta =
e and define 7w’ (0) = an(8)C when 6 € 'y and ' (0) = 7(#)C when 0 € I'y,
where the normalization constant C = (a(I"1) + 7(F2) ! €1, 1/al.

Let I'y = {p € I':DxL(qllp) < &xn}. Since Dxr(qllp) = Do(ql|p) and
& > &g p/min(p,1 — p), we know from Proposition 3.1 that F(’) c I'y. Let
I'" | =Ty —T. By assumption, it is clear that I'; can be partitioned into
the union of disjoint measurable sets {F;} (j = 1) such that F} C Fj’ and
infpeujzl co(I"}) D, (ql|p) = &;/2. For this partition, we have

w({peripain =

Exn'(T2|X)e;/2<Ex ) 7'(Tj1X) inf  D,(qllp).
’ pEco(Fj)

j=-1
Note that
In Z n’(l—*;)()/—l)/()/—l?) < - Y- Ina + ln[z ﬂ(r;t)()/—l)/(y—ﬂ) + 21|
j=—1 v=r j=1
-1
_Y Ina 4 necony.n
Yy —p
and

—nsup ..y PxL(ql|p)

—In Y A@pe T <nsup Digllp) — In(T)
j>—1 peco('y)

<2nep, +nt.

Combining the above estimates, and plugging them into Theorem 5.3, we obtain

(y —p)(=(na)(y = D/(y — p) + néconv,n) + v 2ney n +nt)

Exn'(I|X) <
X p(1— p)ne; /2

=0.58.
Therefore 77/ (I'3| X) < 0.5 with probability 1 — §. The desired bound for 7 (I';| X)
can be obtained from 7 (I'| X) = an{/A(F2|X)/(1 —(1- a)rri/k(F2|X)). O

If we can cover {p € I': D, (q||p) = €} by N, convex measurable sets F; (j=
I,..., Ng) such that inf{D,(q||p): p € Uj F?} > ¢/2, then we may take y = 1 in
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Corollary 5.3 with econy,, defined as

1
Econv,n = sup{eo 180 < —ln<sup N, + 2)}

n £>g0

Clearly if %ln N¢ = O(egr.y) for some ¢ = O(gr ), then with large proba-
bility Bayesian posterior distributions concentrate on a D,-ball of size O(ex )
around ¢g. Note that this result relaxes a condition of [4], where our defin-
ition of &5, was replaced by possibly smaller balls {p € I" : DxrL(ql|lp) <
e, Eq ln(%)2 < &}. Moreover, their covering definition N, does not apply to ar-
bitrary convex covering sets directly (although it is not difficult to modify their
proof to deal with this case), and their result does not directly handle noncompact
families where Ny = co (which can be directly handled by our result with y > 1).

It is worth mentioning that for practical purposes, the balls {p € I' : Dxp.(¢g||p) <
e, Eg4 ln(%)2 <e}and {p € ': Dxr(q||p) < €} are usually of comparable size.
Therefore relaxing this condition may not always lead to significant practical
advantages. However, it is possible to construct examples such that this refine-
ment makes a difference. For example, consider the discrete family I' = {p;}
(j = 1) with prior w; = 1/j(j + 1). Assume that the truth g(x) is the uni-
form distribution on [0, 1], and p;(x) = 27/ when x € [0, j~%/2] and pj(x) =
(j2 —27771/(j* — 0.5) otherwise. It is clear that E, 1n(§)2 > 0.51n4, while
lim;_, o Dx1(qllpj) = 0. Therefore the result in [4] cann(J)t be applied, while
Corollary 5.3 implies that the posterior distribution is consistent in this example.

Applications of convergence results similar to Corollary 5.2 and Corollary 5.3
can be found in [4] and [12]. It is also useful to note that Corollary 5.1 requires
less assumptions to achieve good convergence rates, implying that generalized
Bayesian methods are more stable than the standard Bayesian method. This fact
has also been observed in [15].

6. Discussion. This paper studies certain randomized (and deterministic) den-
sity estimation methods which we call information complexity minimization. We
introduced a general KL-entropy based convergence analysis, and demonstrated
that this approach can lead to simplified and improved convergence results for
MDL and Bayesian posterior distributions.

An important observation from our study is that generalized information com-
plexity minimization methods with regularization parameter A > 1 are more robust
than the corresponding standard methods with A = 1. That is, their convergence
behavior is completely determined by the local prior density around the true dis-
tribution measured by the model resolvability infy,cs R) (w). For MDL, this quan-
tity (index of resolvability) is well behaved if we put a not too small prior mass
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at a density that is close to the truth g. For the Bayesian posterior, this quantity
(Bayesian resolvability) is well behaved if we put a not too small prior mass in a
small KL-ball around g. We have also demonstrated through an example that the
standard MDL (and Bayesian posterior) does not have this desirable property. That
is, even if we can guess the true density by putting a relatively large prior mass at
the true density g, we may not be able to estimate g very well as long as there
exists a bad (random) prior structure even at places very far from the truth g.

Therefore, although the standard Bayesian method is “optimal” in a certain av-
eraging sense, its behavior is heavily dependent on the regularity of the prior dis-
tribution globally. Intuitively, the standard Bayesian method can put too much em-
phasis on the difficult part of the prior distribution, which degrades the estimation
quality in the easier part in which we are actually more interested. Therefore even
if one is able to guess the true distribution by putting a large prior mass around
its neighborhood, the Bayesian method can still behave poorly if one accidentally
makes bad choices elsewhere. This implies that unless one completely understands
the impact of the prior, it is much safer to use a generalized Bayesian method with
A>1.

APPENDIX

A.1. Lower bounds of Ex Ié;‘r (ﬁ)}g(). In order to apply Theorem 3.1, we shall
bound the quantity Ex ﬁy(ﬁ)f{) from below.

LEMMA A.1. Forall ' > 1, ExRy(d}) = —% 1nEnEg(%)W > 0.

q(X;)
p(Xil6)

PROOF. The convex duality in Proposition 2.1 with f(x) = —% *_In
implies

5 A 1 & g(X)

Ry(Ww3)>—"InE;exp[—— Y In .
w (W) = =2 InkEx p( % ; p(X110)

Now by taking expectation and using Jensen’s inequality with the convex function

¥ (x) = —In(x), we obtain

5 2 1 & g(X))
ExR,(03) > — = InExE —Y1
xRy (Wy) = =7 InEx ”e"p( A/an(xiw)

i=l1
P(XI9)>1/A/ >0
q(x) -

)"/
=——mnE, EZ (
n
which proves the lemma. [J

LEMMA A.2.  Consider an arbitrary cover (T j} of I'. The following inequality
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isvalid V' €0, 1]:
A 1 /
Ex Ry (y) = —~In ) x(T)" (1+run(T)",
J
where ryy is the upper-bracketing radius in Definition 3.2.

PROOF. The proofis similar to that of Lemma A.1, but with a slightly different
estimate. We again start with the inequality

5 A 1 & 9(X)
Rk/(w}S() > —;lnEn exp(—y Zln p(X~|lt9) .
i=1 !

Taking expectation and using Jensen’s inequality with the convex function ¥ (x) =
—In(x), we obtain

. 1 , 1 & g(X))
—ExR,(03) < —InEyE* — Y !
xRy (Wy) < 7 InEx ”e"p( wl.zzlnp(xﬁe)

IA

)\‘/
1 1 & Xi
;lnEx[;n(Fj)exp(—p Zln q(X;) )]

i=1 Sup@eFj p(Xlle)

IA

! lnEX[Zn(F_/)k,exp<—Zln q(Xi) )i|
J

n = supger, p(Xil0)

1 = SUPger; p(Xi|9)i|

_ AV
1n[;n(r,) Exll q(Xi)

- ; i=1
1 , n
— ;m[Zn(Fj)* (14 rup(T'))) }
j

The third inequality follows from the fact that VA’ € [0, 1] and positive numbers
fajt, Cjap* <¥;a. O

A.2. Proof of Theorem 5.3. The proof requires two lemmas.

LEMMA A.3. Consider a partition of I" as the union of countably many dis-
Jjoint measurable sets I'; (j=1,...). Let

1 n
5 /F ,. Ep(xiwmn(e).

X) = X)), (X) =
q(X) i]:[lq( ) pi(X) -
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Then we have ¥ p € (0,1) and y > 1,

Ex Y 7(I';|X)DR(q(X")Ip;j(X"))
J

(y —p)Iny; (T HT=D/=r) _yIn Y n(pj)e—DKL(q(X/)l\pj(X’))
<

’

p(l—p)
where X', X € X", q(X) =[1/_, q¢(X;) is the true density of X and
1 n
(X)) = X;|10)dn (6
PiX)= rji:Hlp( i10) d7 (0)

is the mixture density over I' j under 1.

PROOF. We shall apply Corollary 3.3 with a slightly different interpretation.
Instead of considering X as n independent samples X; as before, we simply re-
gard it as one random variable by itself. Consider the family I'"" which consists
of discrete densities p;(X), with prior 7; = 7 (I";). This discretization itself can
be regarded as a O-upper discretization of I'’. Also, given X, it is easy to see that
the Bayesian posterior on I'" with respect to {r;} is 7; = 7 (I"j|X). We can thus
apply Corollary 3.3 on '/, which leads to the stated bound [with the help of (10)].

O

In order to apply the above lemma, we also need to simplify D/]}e (g(X)H|Ip i (X )
and Dk (q(X")[|p;(X")).

LEMMA A.4. We have the bounds

DR(q(X)||p; (X))
inf DR Ip(x) < o NP

peco()
< sup DyS(g(XDlIp(X1))
peco(l';)
and
. Dk1.(q(X)||pj(X))
inf  DkL(g(XD)|Ip(X1)) < 2P
peco(T) n

< sup DgpL(@(XD|lp(X1)).
peco(T))

PROOF.  Since Dkr(¢q||p) = lim,_, o+ Dge(qu), we only need to prove the
first two inequalities. The proof is essentially the same as that of Lemma 4 on page
478 of [6], which dealt with the existence of tests under the Hellinger distance. We
include it here for completeness.
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We shall only prove the first half of the first two inequalities (the second half
has an identical proof) and we shall prove the claim by induction. If n = 1, then
since p;(X) € co(I';) the claim holds trivially. Now assume that the claim holds
forn =k.Forn =k + 1, if we let

15, p(X:10)

O1X1,.... Xp) = ,
S O T p(Xi16) d (0)

then
exp(—p(1 = p)DR*(q(X)||pj(X)))

Jr, TTi=y p(Xi10) d @)\
Xk( )

=Ex, .,
‘ m(C) Ty g(X))
frjw(9|X1,-..,Xk)p(Xk+1|9)d7T(9) o
XEXk+1< )
q(Xr41)
1/7(T)) fr, TTiz) p(Xi10) d (6) #
<EX] ..... Xk( i x >
Hi:HI(Xi)
« sup Ey (P(Xk—i-l))p
peco(T)) i Q(Xk-i-l)
/7)) Jr, TTizy p(Xi10) dre (0) P
:EXI ..... Xk< - k )
l_[i:1Q(Xi)
X sup o~ PU=P) DS (q(Xi DI P(Xi41))
peco(T)

< e—p(l—p)kinfpecowj)D,‘Se(q(xl)up(xo). sup o PU=P) DS (q(XirDI[P(Xi41))
pEco(Fj)

= exp(—p(1 = pin Lnt DRGNP ).

This proves the claim for n = k + 1. Note that in the above derivation, the first
of the two inequalities follows from the fact that with fixed X1, ..., Xk, the den-
sity p(Xg41) = frj w; (01X1, ..., Xi) p(Xi+110) dm(0) € co(I'j); the second of
the two inequalities follows from the induction hypothesis. [

PROOF OF THEOREM 5.3. We simply substitute the estimates of Lemma A.4
into Lemma A.3. [
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