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DISCUSSION: CONDITIONAL GROWTH CHARTS

BY MATIAS SALIBIAN-BARRERA1 AND RUBEN H. ZAMAR2

University of British Columbia

The authors are to be congratulated for a very important contribution with many
practical applications. Including covariates in the construction of growth charts
will undoubtedly lead to more informative tools for practitioners in many disci-
plines.

Growth charts are widely used in practice to monitor the evolution of particular
univariate measurements over time. In some situations, a patient’s evolution may
be better described by the joint behavior of these variables of interest. For example,
instead of using two univariate growth charts to map the weight and height of chil-
dren, the physician may prefer to simultaneously locate the child’s measurements
with respect to the joint population distribution of weight and height for children
of the same age cohort. It is well known that biological variables are generally
correlated and that these correlations may be important to determine multivariate
boundaries for the “normal” range of the response vector. When measurements are
correlated, univariate growth charts may be unable to represent interesting com-
bined features of the variables of interest.

We can identify the following challenges when one tries to develop multivariate
growth charts:

(a) choosing an appropriate definition of multivariate quantiles;
(b) modeling multivariate quantiles to include the subject’s prior development

history and other covariates; and
(c) devising visualization tools to display individual trajectories with respect to

the reference populations.

Regarding item (a), a nice unified presentation of several definitions of multivariate
quantiles along with an insightful account of desirable properties is given in [2].
A proper extension of Wei and He’s model to the multivariate setting [which would
address (b) above] is of great interest but beyond the scope of this note. We will
focus our discussion on item (c) for the simple case where the only covariate is
time.

For simplicity of presentation, in what follows we will restrict our attention to
the bivariate case and use quantiles based on Tukey’s half-space depth [3]. For a
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random sample x1, . . . ,xn, depth-based multivariate quantiles can be obtained as
follows:

(i) first, for each observation xi compute its half-space depth HD(xi ), which
is defined as the smallest fraction of observations included in a closed half-space
with boundary line that passes through xi ;

(ii) define the multivariate quantile of xi as the sample quantile of HD(xi )

among all the n half-space depths HD(xj ), j = 1, . . . , n.

Figure 1 shows a bivariate dataset where “extreme” points (those with quantiles
smaller than 0.05) are indicated with circles, and innermost points (correspond-
ing to quantiles larger than 0.95) are shown with ×’s. Note that this definition
is closely related to the following population definition of depth-based median-
oriented multivariate quantiles [2]. The half-space depth of a vector x with respect
to a reference probability measure P is defined as

HD(x,P ) = inf{P(H) :H is a closed half-space and x ∈ H }.
Following [2], the depth-based median-oriented multivariate pth quantile is the

FIG. 1. A random sample of size n = 1000 from a bivariate normal distribution. Points with
depth-based multivariate quantiles lower than 0.05 are shown with ◦’s, and those with quantiles
higher than 0.95 are displayed with ×’s.
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boundary of the set I (γp,P ), where

γp = sup{γ ≥ 0 :P(I (γ,P )) ≥ p}
and

I (γ,P ) = {x : HD(x,P ) ≥ γ }.
Multivariate quantiles are, of course, difficult to visualize when the dimension

of the data is higher than 2 or 3. Since the main objective of growth charts is to
locate the trajectory along time of a particular individual with respect to the corre-
sponding different reference populations, we propose to use a series of univariate
plots, one for each time point where the individual of interest has been observed.

More specifically, assume that we observe a vector of p measurements
x(t) ∈ R

p , at k time points t1, . . . , tk . Denote these observations by x(ti), i =
1, . . . , k. Furthermore, assume that we have k reference populations from the
distribution of the vector of measurements of interest X(t) at the same times ti ,
i = 1, . . . , k. For each time ti , let qti be the corresponding multivariate quantile
of the observed x(ti) with respect to the corresponding reference populations. Let
a ∈ R

p with ‖a‖ = 1 be any unit vector, and consider the projections a′x(ti),
i = 1, . . . , k. Denote by q̃ti (a) the corresponding (univariate) quantiles of the pro-
jections a′x(ti) with respect to the projected reference populations. We propose
to find the vector a0 for which the resulting q̃ti (a0)’s are closest to the multi-
variate quantiles qti , i = 1, . . . , k. Because in many applications the observations
x(t1), . . . ,x(tk) correspond to measurements taken over time on a particular pa-
tient, we will call this optimal vector a0 the “patient-specific direction.” In other
words, we define

a0 = arg min
‖a‖=1

k∑

j=1

[
qtj − q̃tj (a)

]2
,(1.1)

and use this direction to find univariate reference populations for which the corre-
sponding projection of the measurements of the “patient of interest” are closest to
the multivariate ones. Note that this patient-specific optimal direction (common for
all time points) may provide some insight into which combination of the patient’s
measurements best describes the relative position of this individual in the multi-
variate reference populations. For example, if this patient’s multivariate quantiles
are becoming more “extreme” with time, the patient-specific optimal direction a0
may help the physician understand in which way this patient is deviating from the
bulk of the reference populations.

We can now use different graphical tools to display the relative position of the
individual of interest with respect to the projected reference populations. In the
example below we use boxplots. Alternatively, one could use histograms or kernel
density estimators.
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EXAMPLE. We will illustrate the main ideas of our visualization proposal with
a synthetic example. Although our proposal is aimed at situations involving several
variables, in what follows we only consider bivariate observations to be able to plot
the multivariate data and their projections.

We generated k = 4 reference samples of size 1000 from a bivariate normal
distribution with constant correlation equal to 0.77 and variances 1 and 2.44. The
mean vectors change over time from (5,5)′ to (10.5,9)′. In Figure 2 we display the
four datasets along with the bivariate measurements corresponding to a “patient of
interest,” indicated with solid circles. The half-space depth bivariate quantiles for
this patient are 0.79, 0.38, 0.07 and 0.02 at times t1, t2, t3 and t4, respectively.
Clearly this patient is becoming atypical as time progresses.

To find a0 in (1.1) we used a grid of 500 directions with equally spaced angles
between 0 and π . Note that the multivariate quantiles qtj only need to be computed
once, regardless of the number of directions used in the numerical optimization.
The bivariate half-space depths were computed using the AS 307 algorithm [1].

FIG. 2. Reference samples of size 1000, at times t1, t2, t3 and t4. The measurements for a “patient
of interest” are indicated with solid circles.
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The optimal â0 = (0.72,−0.69)′ and the univariate quantiles q̃tj (â0) were found
to be 0.79, 0.38, 0.09 and 0.02, in close agreement with the multivariate ones. It
is interesting to note that the “source” of this patient’s increasing “unusualness”
seems to be explained by a contrast between the first and second measurements. If
these were height and weight, for example, we could conclude that this patient is
becoming disproportionally tall for his/her weight.

Figure 3 shows the position of the “patient of interest” with respect to the ref-
erence samples projected on the patient-specific optimal direction â0. The corre-
sponding projections of the point of interest are indicated with a solid dot. We can
clearly see that this point is noticeably deviating from the bulk of the population
(crossing quantile boundaries) as time progresses. Furthermore, Figure 4 shows
the relative position of the “patient of interest” using the two original variables.
Note that, as it is to be expected, the univariate approach fails to detect the unusual
behavior of this patient’s measurements. This last figure illustrates the potential
usefulness of multivariate growth charts compared with the analysis of several
univariate growth charts.

FIG. 3. Relative position of the “patient of interest” (indicated with a solid circle) with respect to
the reference samples projected on the patient-specific optimal direction.
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FIG. 4. Relative position of the “patient of interest” (indicated with a solid circle) with respect to
the two univariate coordinates of the reference samples.
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