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ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC
AUTOREGRESSION AND NONPARAMETRIC

REGRESSION

BY ION G. GRAMA AND MICHAEL H. NEUMANN

Université de Bretagne-Sud and Friedrich-Schiller-Universität Jena

It is proved that nonparametric autoregression is asymptotically equiva-
lent in the sense of Le Cam’s deficiency distance to nonparametric regression
with random design as well as with regular nonrandom design.

1. Introduction. We assume that observations X0, . . . ,Xn from a stationary
autoregressive process (Xi)i=0,...,n are available which obey the model equation

Xi = f (Xi−1) + εi, i = 1, . . . , n,(1)

where (εi)i=1,...,n are i.i.d. random variables. The unknown autoregression func-
tion f is then the target of statistical inference and the development of efficient
estimators is a natural task for theoretically oriented statisticians. On the one hand,
it has been recognized for a long time that commonly used estimators in model (1)
have the same asymptotic behavior as corresponding estimators in nonparametric
regression. A result of Robinson [26] concerns the pointwise equivalence of non-
parametric kernel estimators and Neumann and Kreiss [22] extended this equiv-
alence to the global behavior of nonparametric estimators. On the other hand,
despite these well-known similarities between estimators, there is still a certain
discrepancy in the current state of available theory in both contexts. While there is
a very well developed asymptotic theory for optimal estimation in nonparametric
regression, even up to the level of exact asymptotics (see, e.g., [13] or [24], for an
overview), there is considerably less theory available in the case of nonparametric
autoregression.

The purpose of the present paper is to bridge this gap between the two settings
of nonparametric regression and autoregression by showing asymptotic equiva-
lence on an abstract level. The theory of asymptotic equivalence of statistical ex-
periments has been developed in Le Cam’s [19] work. In the framework of non-
parametric statistics, Brown and Low [4] proved that the Gaussian white noise
experiment and nonparametric regression with nonrandom design and Gaussian
errors are asymptotically equivalent in the sense that Le Cam’s deficiency dis-
tance between them tends to zero. In [12, 14, 15, 23] the scope of asymptotic
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equivalence was extended to the nonparametric density estimation problem and
to nonparametrically driven regression models. Moreover, asymptotic equivalence
of nonparametric regression with random design and Gaussian white noise was
shown in [2] while asymptotic equivalence of Poisson processes and Gaussian
white noise was established in [3]. The issue of constructive asymptotic equiva-
lence is considered in [25] and [5]. The asymptotic equivalence of a close relative
of nonparametric autoregression, a diffusion experiment parametrized by the drift
function, to Gaussian white noise experiments is proved in [8] and [7]. Milstein
and Nussbaum [21] showed asymptotic equivalence of a nonparametric statistical
model of small diffusion type and its discretization by a stochastic Euler difference
scheme. These models deal with dependent observations in continuous time. How-
ever, asymptotic equivalence for models with dependent observations in discrete
time where the noise is non-Gaussian seems to be a much more difficult issue.

In this paper we establish local equivalence of nonparametric autoregression
(1) and nonparametric regression in the discrete-time setting. That is, the set of
possible functions lies in a class �n(f0) centered around some fixed function f0
and shrinking in some appropriate norm as n → ∞. Depending on additional prior
smoothness assumptions on f , this class will nevertheless be rich enough for the
transfer of minimax lower bounds from one to the other model. Under mild regu-
larity assumptions stated below, the process (Xi)i=0,...,n corresponding to f0 has
a stationary density ψf0 , say. We show asymptotic equivalence of the experiment
given by (1) to nonparametric regression with random design as well as with reg-
ular nonrandom design. The former experiment corresponds to i.i.d. observations
(Y1, ξ1), . . . , (Yn, ξn) with

Yi = f (ξi) + ηi, i = 1, . . . , n,(2)

where E(ηi |ξi) ≡ 0. The basic assumption on the errors ηi is that their Fisher
information is the same as that of the εi’s. This includes the case of Gaussian errors
as well as of errors having the same distribution as the εi . The ξi are distributed
according to the stationary density ψf0 of the process corresponding to the central
function f0, regardless of the actual value of f .

We show also equivalence to nonparametric regression with regular nonrandom
design, which corresponds to independent observations Yn,1, . . . , Yn,n obeying the
model

Yn,i = f (tn,i) + ηi, i = 1, . . . , n,(3)

where Eηi = 0. Here we will assume that the design points are regularly spaced
with density ψf0 , that is,

∫ tn,i−∞ ψf0(x) dx = (i − 1/2)/n. We assume again that
the Fisher information of ηi is the same as the Fisher information of εi . Since Le
Cam’s equivalence relation is transitive, we also obtain as an immediate by-product
asymptotic equivalence of nonparametric regression with random and regular non-
random design. In the special case of Gaussian errors but under weaker smoothness
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assumptions on f , this equivalence also follows from the asymptotic equivalence
of nonparametric regression with nonrandom design and Gaussian white noise [4]
and the asymptotic equivalence of nonparametric regression with random design
and Gaussian white noise [2].

At the end of Section 2 we discuss briefly how our results on asymptotic equiva-
lence can be used to transfer well-known lower asymptotic bounds for the minimax
risk in nonparametric regression to the case of nonparametric autoregression. Our
local version of asymptotic equivalence does not allow an immediate transfer of
upper asymptotic bounds; however, they could be independently proved by appeal
to strong approximations of nonparametric estimators in both models (see [22] for
details) or by direct computation of the risk of asymptotically optimal estimators.

2. Assumptions and main results. We start by introducing an appropriate
functional parameter set. Consider the set of functions

F =
{
f : R → R : sup

x∈R

|f (x)| ≤ M

}
,

where M < ∞ is a constant. For any constants β > 0 and L > 0, let H = H(β,L)

be a Hölder ball, that is, the set of functions f : R → R satisfying

|f | ≤ L,
∣∣f �β�(x) − f �β�(y)

∣∣≤ L|x − y|β−�β�, x, y ∈ R.

Here �β� denotes the largest integer strictly less than β . The set of functional
parameters is defined as

� = F ∩ H(β,L).

Let X0 be a random variable on the probability space (�,A,P ). Assume that
we observe a sequence X1, . . . ,Xn which obeys

Xi = f (Xi−1) + εi, i = 1, . . . , n,(4)

where ε1, . . . , εn are i.i.d. with a given density p that is continuous and positive
on R and the function f ∈ � is assumed to be unknown. It is easy to see that,
for any f ∈ �, P(Xi+1 ∈ B|Xi = x) ≥ µ(B) holds for all B ∈ B and x ∈ R,
where µ is some measure not depending on f with µ(R) = µ0 > 0. From Theo-
rem 2.4.1 in [10] it follows that the uniform mixing coefficients (see Section 6.2)
decay geometrically and, therefore, there exists a stationary density which we shall
denote ψf .

Throughout the paper we shall assume that the observations (4) satisfy the fol-
lowing assumption:

(A1) The random variable X0 has the stationary density ψf (·), which implies that
the sequence (Xi)i=0,...,n is in the stationary regime.
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Note that the stationary density ψf (·) satisfies
∫
B ψf (x) dx ≥ µ(B), for all B ∈ B.

Before we can state our main results on the approximation of the nonparametric
autoregressive model by a nonparametric regression model, we have to introduce
the basic concepts of asymptotic equivalence. Let En

l = (�n
l ,A

n
l , {P n

l,f , f ∈ �′}),
l = 1,2, be two sequences of statistical experiments indexed by f in a subset
�′ ⊂ �. The deficiency of En

1 with respect to En
2 is defined as

δ(En
1 ,En

2 ) = sup
L

inf
δ(1)

sup
δ(2)

sup
f ∈�′

∣∣En
1,f L

(
f, δ(1))− En

2,f L
(
f, δ(2))∣∣,

where the first supremum is taken over all decision problems with loss function
L with 0 ≤ L ≤ 1, and the minimax value of the maximum difference in risks
over f ∈ �′ is computed over all randomized statistical procedures δ(l) for En

l ,
l = 1,2. According to Theorem 2 on page 15 in [20], the deficiency distance can
alternatively be written as

δ(En
1 ,En

2 ) = inf
M

sup
f ∈�′

1
2‖M · P n

1,f − P n
2,f ‖Var,

where ‖ · ‖Var denotes the total variation distance and the infimum is taken over all
Markov kernels M on �n

1 × An
2. Le Cam’s pseudodistance between En

1 and En
2 is

	(En
1 ,En

2 ) = max{δ(En
1 ,En

2 ), δ(En
2 ,En

1 )}.
Following [4], we say that the sequences En

1 , n = 1,2, . . . , and En
2 , n = 1,2, . . . ,

are asymptotically equivalent if

	(En
1 ,En

2 ) → 0 as n → ∞.

To formulate our results we also need to impose the following regularity as-
sumptions on the density p(·) of the innovations:

(A2) (i) The density p is positive on R.
(ii) The log-likelihood function lp(x) = logp(x) has three derivatives

and satisfies, for some ε > 0,∫
R

sup
|u|≤ε

l′′p(x + u)2p(x)dx < ∞, sup
x∈R

|l′′′p (x)| ≤ c1 < ∞.

(iii) The score l′p(x) = p′(x)/p(x) satisfies, for some ε > 0 and any
λ < ∞, ∫

R

sup
|u|≤ε

|l′p(x + u)|λp(x) dx < ∞.

Assumption (A2) mainly requires the existence of three derivatives of p(·) and
of the absolute moments of the corresponding scores. These types of assumptions
can be related to the so-called Cramér conditions (see [20], page 102). Assump-
tion (A2) is used here just for the sake of simplifying the proofs, but it is clear



EQUIVALENCE OF AUTOREGRESSION AND REGRESSION 1705

that they could be relaxed substantially. We refer to [15] for a relevant exposition
of sufficient assumptions in the case of nonparametric models with independent
observations.

In the sequel q(·) denotes a positive density which satisfies the following as-
sumptions:

(A3) (i) The log-likelihood function lq(x) = logq(x) has three derivatives
and satisfies, for some ε > 0,∫

R

sup
|u|≤ε

l′′q (x + u)2q(x) dx < ∞, sup
x∈R

|l′′′q (x)| ≤ c1 < ∞.

(ii) The score l′q(x) = q ′(x)/q(x) satisfies, for some ε > 0 and any
λ < ∞, ∫

R

sup
|u|≤ε

|l′q(x + u)|λq(x) dx < ∞.

(iii) The Fisher information corresponding to the density q(·) is the same
as that corresponding to p(·), that is,

I =
∫

R

l′p(x)2p(x)dx =
∫

R

l′q(x)2q(x) dx.

We state local versions of asymptotic equivalence, that is, we additionally as-
sume that f lies in a shrinking (as n → ∞) neighborhood of some central func-
tion f0. To get a meaningful result, we have to choose this neighborhood large
enough such that it can be reached with a probability tending to 1 by an appropri-
ate preliminary estimator. We fix any β > 5/2 and define

γn = c

(
logn

n

)β/(2β+1)

, γ ′
n = c′

(
logn

n

)(β−1)/(2β+1)

.(5)

Here γn and γ ′
n are the rates at which the function f and its derivative f ′ can be

estimated in the model (4) and in the corresponding regression models. For any
f0 ∈ �, introduce the neighborhood

�n
f0

= {f ∈ � :f (x) = f0(x), x /∈ [A,B],
‖f − f0‖∞ ≤ γn,‖f ′ − f ′

0‖∞ ≤ γ ′
n},

where A < B are two constants.
Our main results are the following two theorems which state the local asymp-

totic equivalence of our nonparametric autoregressive model to a nonparametric
regression with random and nonrandom designs. We start with the case of random
design.

THEOREM 2.1. Let En
f0

= (Rn,Bn, {P n
f , f ∈ �n

f0
}) be the local experiment

based on observations Xi , i = 0, . . . , n, obeying (A1) with f ∈ �n
f0

. Suppose that
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the density p(·) satisfies assumption (A2). Let Gn
f0

= (Rn,Bn, {Qn
f ,f ∈ �n

f0
}) be

the nonparametric regression model in which we observe

Yi = f (ξi) + ηi, i = 1, . . . , n,(6)

where η1, . . . , ηn are i.i.d. with density q(·) obeying (A3), ξ1, . . . , ξn are i.i.d. with
the common density ψf0(·), independent of η1, . . . , ηn, and f ∈ �n

f0
is unknown.

Then, for all β > 5/2, the sequences of experiments En
f0

, n = 1,2, . . . , and Gn
f0

,
n = 1,2, . . . , are asymptotically equivalent uniformly in f0 ∈ �:

sup
f0∈�

	
(
En

f0
,Gn

f0

)→ 0 as n → ∞.

Our second local result states asymptotic equivalence to the regression model
with nonrandom design.

THEOREM 2.2. Let En
f0

= (Rn,Bn, {P n
f , f ∈ �n

f0
}) be the local experi-

ment based on observations Xi , i = 0, . . . , n, obeying assumption (A1) with
f ∈ �n

f0
. Assume that the density p(·) satisfies assumption (A2). Let Gn

f0
=

(Rn,Bn, {Qn
f ,f ∈ �n

f0
}) be the nonparametric regression model in which we ob-

serve

Yn,i = f (tn,i) + ηi, i = 1, . . . , n,(7)

where η1, . . . , ηn are i.i.d. with density q(·) obeying assumption (A3). Further-
more, tn,1, . . . , tn,n are nonrandom design points chosen according to the density
ψf0(·), that is, (i − 1/2)/n = ∫ tn,i−∞ ψf0(x) dx, i = 1, . . . , n, and f ∈ �n

f0
is un-

known. Then, for all β > 5/2, the sequences of experiments En
f0

, n = 1,2, . . . ,

and Gn
f0

, n = 1,2, . . . , are asymptotically equivalent uniformly in f0 ∈ �:

sup
f0∈�

	
(
En

f0
,Gn

f0

)→ 0 as n → ∞.

REMARK 1. As a by-product of our main results, we obtain also asymptotic
equivalence of nonparametric regression with random and regular nonrandom de-
sign. However, since we used a construction of the likelihood ratios based on a
Skorokhod embedding rather than a KMT construction, the rate for the approxi-
mation error between the likelihood ratios of both models is presumably not the
best possible one. We conjecture that the constraint β > 5/2 that was imposed
for proving asymptotic equivalence of nonparametric autoregression and nonpara-
metric regression can be further relaxed for the case of asymptotic equivalence
of nonparametric regression with random and regular nonrandom design. It fol-
lows from the results in [4] and [2] that in the special case of Gaussian errors this
equivalence holds even for β > 1/2.
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REMARK 2. Our results on asymptotic equivalence in the Le Cam sense of
nonparametric regression and autoregression can be used to transfer existing lower
asymptotic efficiency bounds (when the loss is measured in the supremum norm)
in nonparametric regression to the case of nonparametric autoregression. Indeed, it
can be seen from the calculations in [9], Section 5, that a shrinking neighborhood
of size O((logn/n)β/(2β+1)) around some central function f0 is large enough for
generating the desired risk bound. Hence, we can actually deduce these lower as-
ymptotic efficiency bounds in the cases β > 5/2 which are covered by our results.

Owing to the local character of our results (asymptotic equivalence is proved for
shrinking neighborhoods of f0), we cannot directly use them for transferring upper
asymptotic risk bounds. However, such bounds can be easily derived by straight-
forward calculations or by using asymptotic equivalence results between nonpara-
metric estimators in both settings as given by strong approximations in [22].

The possibility of transferring asymptotic efficiency bounds on the basis of the
asymptotic equivalence of experiments has been already known for a long time.
This principle was applied by Korostelev and Nussbaum [18] for deducing asymp-
totic minimax bounds in nonparametric density estimation from known results in
signal estimation in Gaussian white noise. On the basis of local equivalence results,
Drees [11] transferred available lower asymptotic risk bounds from the Gaussian
white noise model to the case of estimating an extreme value index.

3. Proofs of the main theorems. In this section we shall prove Theorem 2.1.
Theorem 2.2 can be derived in the same way.

Our method of estimating the Le Cam distance 	(En
f0

,Gn
f0

) runs as follows.
Let X0, . . . ,Xn be the observations obeying assumption (A1) with f ∈ �n

f0
and

let (Y1, ξ1), . . . , (Yn, ξn) be the observations defined in Theorem 2.1. Denote by
L

1,n
f,f0

and L
2,n
f,f0

the likelihood ratio processes of the experiments En
f0

and Gn
f0

,
respectively,

L
1,n
f,f0

= ψf (X0)

ψf0(X0)

n∏
i=1

p(Xi − f (Xi−1))

p(Xi − f0(Xi−1))

and

L
2,n
f,f0

=
n∏

i=1

q(Yi − f (ξi))

q(Yi − f0(ξi))
.

According to Proposition 2.2 in [23] (see also [20], page 16, for a similar assertion
in the parametric context), the deficiency distance can be estimated as

	
(
En

f0
,Gn

f0

)≤ sup
f ∈�n

f0

EP
∣∣L̃1,n

f,f0
− L̃

2,n
f,f0

∣∣,(8)

where L̃
1,n
f,f0

and L̃
2,n
f,f0

are arbitrary versions of the likelihood ratios L
1,n
f,f0

and

L
2,n
f,f0

constructed on a common probability space (�,F ,P) and distributed ac-

cording to the central measure Pf0 . The versions L̃
1,n
f,f0

and L̃
2,n
f,f0

will be con-
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structed in such a way that the right-hand side of (8) tends to zero as n → ∞.
Since this will hardly cause any confusion, we drop the tildes in the notation of
L̃

1,n
f,f0

and L̃
2,n
f,f0

. With this agreement inequality (8) can be written as

	
(
En

f0
,Gn

f0

)≤ sup
f ∈�n

f0

Ef0

∣∣L1,n
f,f0

− L
2,n
f,f0

∣∣.(9)

The subscript f0 at the expectation indicates that the measure P corresponds to
the central measure Pf0 .

First, we give a bound for the L1-distance on the right-hand side of (9) in terms
of the Hellinger distance:

1
2Ef0

∣∣L1,n
f,f0

− L
2,n
f,f0

∣∣≤ H(P n
f ,Qn

f ) ≡
√

Ef0

(√
L

1,n
f,f0

−
√

L
2,n
f,f0

)2
,(10)

where L
1,n
f,f0

and L
2,n
f,f0

mean the corresponding versions of the likelihood ratios.
Here H(P,Q) denotes the Hellinger distance between two probability measures
P and Q. Following an idea originating from [23] in the context of density esti-
mation and from [14] in the context of regression with independent observations,
we shall use an analogue of the following property of the Hellinger distance for
product measures (see Lemma 2.17 in [27]):

H 2

(
Kn⊗
l=1

P (l),

Kn⊗
l=1

Q(l)

)
≤

Kn∑
l=1

H 2(P (l),Q(l)),(11)

where P (l) and Q(l) are the measures corresponding to certain disjoint blocks of
observations and Kn is a sequence satisfying Kn → ∞ and Kn/n → 0. The size of
these blocks will be chosen small enough so that one can get reasonable estimates
for H 2(P (l),Q(l)). It is clear that the estimate (11) is essentially based on the
product structure of the measures

⊗Kn

l=1 P (l) and
⊗Kn

l=1 Q(l), and in general does
not directly apply to the case of dependent observations.

In the particular context of the dependent data under consideration, we proceed
as follows. Set Kn = [n1/6]. Split the set of indices {1, . . . , n} into Kn blocks,

Il =
{
i : (l − 1)

n

Kn

< i ≤ l
n

Kn

}
, l = 1, . . . ,Kn.

Denote by ml the number of elements in the block Il , that is, ml = #Il = O(n5/6).
Let il be the first element in the set Il . Furthermore, let F0 be the trivial σ -field
and, for 1 ≤ l ≤ Kn,

Fl = σ
(
X0, . . . ,Xil−1; (Y1, ξ1), . . . ,

(
Yil−1, ξil−1

))
.

The likelihood ratio corresponding to the observations X0, . . . ,Xn can be written
as the product

L
1,n
f,f0

=
Kn∏
l=0

L
1,(l)
f,f0

, L
1,(l)
f,f0

= ∏
i∈Il

p(Xi − f (Xi−1))

p(Xi − f0(Xi−1))
, 1 ≤ l ≤ Kn,
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where L
1,(0)
f,f0

= ψf (X0)/ψf0(X0) and L
1,(l)
f,f0

is the conditional (given Fl) likeli-
hood ratio generated by (Xi : i ∈ Il). Analogously, in the case of a regression ex-
periment with random design, we have that

L
2,n
f,f0

=
Kn∏
l=0

L
2,(l)
f,f0

, L
2,(l)
f,f0

= ∏
i∈Il

q(Yi − f (ξi))

q(Yi − f0(ξi))
, 1 ≤ l ≤ Kn,

where L
2,(0)
f,f0

= 1. A generalization of (11) to our setting with dependent random
variables is given by the following result.

LEMMA 3.1.

H 2(P n
f,f0

,Qn
f,f0

)≤ Kn∑
l=0

ess supEf0

((√
L

1,(l)
f,f0

−
√

L
2,(l)
f,f0

)2|Fl

)
.

PROOF. The proof of this assertion is adapted from that of Lemma 2.17
in [27]. We rewrite the Hellinger distance as

1
2H 2(L1,n

f,f0
,L

2,n
f,f0

)= 1
2Ef0

(√
L

1,n
f,f0

−
√

L
2,n
f,f0

)2 = 1 − Ef0

Kn∏
l=0

√
L

1,(l)
f,f0

L
2,(l)
f,f0

.

For the last term one easily deduces

Ef0

Kn∏
l=0

√
L

1,(l)
f,f0

L
2,(l)
f,f0

= Ef0

[(
Kn−1∏
l=0

√
L

1,(l)
f,f0

L
2,(l)
f,f0

)
Ef0

(√
L

1,(Kn)
f,f0

L
2,(Kn)
f,f0

|FKn

)]

≥ Ef0

[
Kn−1∏
l=0

√
L

1,(l)
f,f0

L
2,(l)
f,f0

]
ess infEf0

(√
L

1,(Kn)
f,f0

L
2,(Kn)
f,f0

|FKn

)
.

Continuing in the same way we obtain

Ef0

Kn∏
l=0

√
L

1,(l)
f,f0

L
2,(l)
f,f0

≥ Ef0

[√
L

1,(0)
f,f0

L
2,(0)
f,f0

] Kn∏
l=1

ess infEf0

(√
L

1,(l)
f,f0

L
2,(l)
f,f0

|Fl

)

≥
Kn∏
l=0

(
1 − ess sup 1

2Ef0

((√
L

1,(l)
f,f0

−
√

L
2,(l)
f,f0

)2|Fl

))
.
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Using the inequality 1 −∏
(1 − ai) ≤ ∑

ai , which is true for all 0 ≤ ai ≤ 1, we
obtain the assertion of the lemma. �

Hence, we have an analogue of (11) for the case of dependent random
variables. Separability, which is equivalent to independence of the factors in∏Kn

l=0

√
L

1,(l)
f,f0

L
2,(l)
f,f0

, is just achieved by transition to the “worst case” which is ap-

propriately expressed by ess supEf0((
√

L
1,(l)
f,f0

−
√

L
2,(l)
f,f0

)2|Fl).
Note that, since p is positive on R and supf ∈�n

f0
‖f ‖∞ ≤ M < ∞, the condition

ρ < 1 of Lemma 6.1 below is satisfied with some ρ depending on p and M . Then
Lemma 6.1 and assumption (A2) imply, as n → ∞,

sup
f0∈�

sup
f ∈�n

f0

Ef0

((√
L

1,(0)
f,f0

−
√

L
2,(0)
f,f0

)2|F0
)

(12)
= sup

f0∈�

sup
f ∈�n

f0

Ef0

(√
ψf (X0)/ψf0(X0) − 1

)2 → 0.

Now Theorem 2.1 follows from Lemma 3.1, (12) and from the following assertion
which provides us with bounds for the conditional Hellinger distance.

PROPOSITION 3.1. Suppose that assumptions (A1)–(A3) are satisfied. Then
there exists a construction of the sequences X0, . . . ,Xn and (Y1, ξ1), . . . , (Yn, ξn)

on a common probability space such that

max
1≤l≤Kn

sup
f0∈�

sup
f ∈�n

f0

ess supEf0

((√
L

1,(l)
f,f0

−
√

L
2,(l)
f,f0

)2|Fl

)= o(K−1
n ).

The proof of this proposition is postponed to Section 4.
In the case of comparing nonparametric autoregression and regression with

regular nonrandom design, we proceed analogously. We use the same splitting
of the set of indices {1, . . . , n} into blocks I1, . . . ,IKn as above. The pairs
(Yn,1, tn,1), . . . , (Yn,n, tn,n) are rearranged in such a way that∣∣∣∣ ∫ tn,nl+i−1

−∞
ψf0(x) dx − i − 1/2

ml

∣∣∣∣= O(m−1
l ),

for all i ∈ {1, . . . ,ml}, l ∈ {1, . . . ,Kn}. Then we write the likelihood ratio as

L
3,n
f,f0

=
Kn∏
l=0

L
3,(l)
f,f0

, L
3,(l)
f,f0

= ∏
i∈Il

q(Yn,i − f (tn,i))

q(Yn,i − f0(tn,i))
, 1 ≤ l ≤ Kn,

where L
3,(0)
f,f0

= 1. Let F ′
0 be the trivial σ -field and, for l = 1, . . . ,Kn,

F ′
l = σ

(
X0, . . . ,Xil−1;Yn,1, . . . , Yn,il−1

)
.
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Using the same arguments as in the proof of Proposition 3.1 we obtain the follow-
ing assertion.

PROPOSITION 3.2. Suppose that assumptions (A1)–(A3) are satisfied. Then
there exists a construction of the sequences X0, . . . ,Xn and Yn,1, . . . , Yn,n on a
common probability space such that, as n → ∞,

max
1≤l≤Kn

sup
f0∈�

sup
f ∈�n

f0

ess supEf0

((√
L

1,(l)
f,f0

−
√

L
3,(l)
f,f0

)2|F ′
l

)= o(K−1
n ).

Theorem 2.2 follows from Lemma 3.1, (12) and Proposition 3.2.

4. Proofs of Propositions 3.1 and 3.2.

PROOF OF PROPOSITION 3.1. Let X0, . . . ,Xn and (Y1, ξ1), . . . , (Yn, ξn) be
the observations generated according to (4) and (6). According to Theorem 5.1,
there is a construction of the sequences X0, . . . ,Xn and (Y1, ξ1), . . . , (Yn, ξn)

on a common probability space which are coupled in such a way that the asser-
tion of Theorem 5.1 holds true. Without loss of generality, we can assume that
the sequences X0, . . . ,Xn and (Y1, ξ1), . . . , (Yn, ξn) are already constructed on the
probability space (�, F n,Pf0) endowed with the central measure Pf0 .

Recall that ml = #Il = O(n5/6) is the number of indices in the set Il and that
Kn = [n1/6] is the number of blocks. Set, for brevity, g(x) = f (x) − f0(x). Since
f ∈ �n

f0
, we have ‖g‖∞ ≤ γn and ‖g′‖∞ ≤ γ ′

n. Since supx |l′′′p (x)| ≤ c1 [by as-

sumption (A2)(i)] and γ 3
n ml = o(K

−1/2
n ), we obtain by a Taylor series expansion

that

logL
1,(l)
f,f0

= ∑
i∈Il

g(Xi−1)l
′
p(εi) + 1

2

∑
i∈Il

g(Xi−1)
2l′′p(εi) + o(K−1/2

n )

(13)
= T

1,(l)
1 + T

1,(l)
2 + o(K−1/2

n )

and, in the same way,

logL
2,(l)
f,f0

= ∑
i∈Il

g(ξi)l
′
q(ηi) + 1

2

∑
i∈Il

g(ξi)
2l′′q (ηi) + o(K−1/2

n )

(14)
= T

2,(l)
1 + T

2,(l)
2 + o(K−1/2

n ).

We introduce the set Al = Al,1 ∩ Al,2, where

Al,1 = {∣∣T 1,(l)
1 − T

2,(l)
1

∣∣≤ c1(γn)
1/4(γ ′

n)
3/4m

1/4
l logml

}
,

Al,2 = {∣∣T 1,(l)
2 − T

2,(l)
2

∣∣≤ vnK
−1/2
n

}
,
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and vn → 0 sufficiently slowly. An appropriate choice of the sequence vn is de-
scribed in the course of the proof of Lemma 4.1 below. We bound the Hellinger
distance between the partial likelihoods L

1,(l)
f,f0

and L
2,(l)
f,f0

as

Ef0

((√
L

1,(l)
f,f0

−
√

L
2,(l)
f,f0

)2|Fl

)≤ R1 + R2,(15)

say, where

R1 = Ef0

((√
L

1,(l)
f,f0

−
√

L
2,(l)
f,f0

)2
IAl

|Fl

)
, R2 = Ef0

(
2
(
L

1,(l)
f,f0

+ L
2,(l)
f,f0

)
IAl

|Fl

)
.

First we bound R1. On the set Al , we get∣∣ logL
1,(l)
f,f0

− logL
2,(l)
f,f0

∣∣= O
(
(γn)

1/4(γ ′
n)

3/4m
1/4
l logml

)+ o(K−1/2
n ).

Since β > 5/2, we have (γn)
1/4(γ ′

n)
3/4m

1/4
l logml = o(K

−1/2
n ), which in turn im-

plies that∣∣√L
1,(l)
f,f0

/L
2,(l)
f,f0

− 1
∣∣= ∣∣ exp

(1
2 logL

1,(l)
f,f0

− 1
2 logL

2,(l)
f,f0

)− 1
∣∣= o(K−1/2

n ).

Taking into account that Ef0(L
2,(l)
f,f0

|Fl) = 1, we get

R1 = Ef0

(
L

2,(l)
f,f0

(√
L

1,(l)
f,f0

/L
2,(l)
f,f0

− 1
)2

IAl
|Fl

)
(16)

= o
(
K−1

n Ef0

(
L

2,(l)
f,f0

|Fl

))= o(K−1
n ).

Now we shall bound R2. Set Bl = {logL
1,(l)
f,f0

≤ 1} and Cl = {logL
2,(l)
f,f0

≤ 1}. Then

R2 ≤ Ef0

(
2
(
L

1,(l)
f,f0

IBl
+ L

2,(l)
f,f0

ICl

)
IAl

|Fl

)
+ Ef0

(
2
(
L

1,(l)
f,f0

IBl
+ L

2,(l)
f,f0

ICl

)|Fl

)
(17)

≤ 4ePf0(Al|Fl) + 2Ef0

(
L

1,(l)
f,f0

IBl
|Fl

)+ 2Ef0

(
L

2,(l)
f,f0

ICl
|Fl

)
.

We will prove that

Pf0(Al|Fl) = o(K−1
n ), Pf0-a.s.,(18)

and that

Ef0

(
L

1,(l)
f,f0

IBl
|Fl

)= o(K−1
n ),

(19)
Ef0

(
L

2,(l)
f,f0

ICl
|Fl

)= o(K−1
n ), Pf0-a.s.

Then, in conjunction with (15)–(17), we obtain the desired bound

Ef0

((√
L

1,(l)
f,f0

−
√

L
2,(l)
f,f0

)2|Fl

)= o(K−1
n ).
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Hence, it remains to prove (18) and (19).
First we prove (18). By Theorem 5.1 (with some λ large enough) we have that

Pf0(Al,1|Fl) = O(m−λ
l ) = o(K−1

n ).(20)

To complete the proof of (18) we shall prove the following bound.

LEMMA 4.1.

Pf0(Al,2|Fl) = o(K−1
n ).(21)

PROOF. We shall use the fact that the Markov chain X0, . . . ,Xn is φ-mixing.
Decompose the set Il as Il = I(1)

l ∪ I(2)
l so that I(1)

l contains the first c0 logml

elements of the set Il and I(2)
l the remaining ones, where the positive constant c0

will be chosen below. Let l ∈ {1, . . . ,Kn} and let il,2 be the first element of I(2)
l .

According to Lemma 6.2 in Section 6.2, we can construct a version X̃il,2−1 of the
r.v. Xil,2−1 on the same probability space, such that X̃il,2−1 is independent of Fl

and

Pf0

(
X̃il,2−1 �= Xil,2−1|Fl

)≤ φ
(
Xil,2−1,Fl

)≤ cρc0 logml ,(22)

for some large enough constant c0 and for some ρ < 1. Having constructed
X̃i−1 for some i ∈ I(2)

l , we define recursively a version X̃i of the r.v. Xi

on the same probability space, such that X̃i is independent of Fl and of
X̃i−c0 logml

, . . . , X̃il , εi−c0 logml
, . . . , εil and

Pf0(X̃i �= Xi |Fl) = ρc0 logml .

Choosing c0 large enough, X̃il−1, . . . , X̃il+1−1 satisfy

Pf0(X̃i �= Xi,∀ i ∈ {il − 1, . . . , il+1 − 1}|Fl) = mlρ
c0 logml

(23)
= o(K−1

n ).

Denote

T̃
1,(l)

2 = 1
2

∑
i∈Il

g(X̃i−1)
2l′′p(εi) = 1

2

∑
i∈Il

ζi,

where ζi = g(X̃i−1)
2l′′p(εi). Since T̃

1,(l)
2 is a sum of c0 logml-dependent r.v.’s, us-

ing Chebyshev’s inequality, we obtain

Pf0

(∣∣T̃ 1,(l)
2 − Ef0

(
T̃

1,(l)
2 |Fl

)∣∣> vnK
−1/2
n |Fl

)
≤ Kn/vnEf0

((
T̃

1,(l)
2 − Ef0

(
T̃

1,(l)
2 |Fl

))2|Fl

)
= O

(
Kn

v2
n

∑
i∈Il

∑
j∈Il

Ef0

((
ζi − Ef0(ζi |Fl)

)(
ζj − Ef0(ζj |Fl)

)|Fl

))

= O(v−2
n Knγ

4
n ml logml) = o(v−2

n n−1/3).
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Choosing vn such that vn → 0 and o(v−2
n n−1/3) = o(K−1

n ) we get

Pf0

(∣∣T̃ 1,(l)
2 − Ef0

(
T̃

1,(l)
2 |Fl

)∣∣> vnK
−1/2
n |Fl

)= o(K−1
n ).(24)

By similar arguments for sums of independent random variables, we can show that

Pf0

(∣∣T 2,(l)
2 − Ef0T

2,(l)
2

∣∣> vnK
−1/2
n |Fl

)= o(K−1
n ).(25)

Taking into account that Ef0 l
′′
p(εi) = Ef0 l

′′
q (ηi) = I [by Assumption (A3)(iii)] we

obtain

Ef0

(
T̃

1,(l)
2 |Fl

)− Ef0

(
T

2,(l)
2

)
= O(γ 2

n logml) + I

2

∑
i∈I(2)

l

Ef0

(
g(X̃i−1)

2|Fl

)− I

2

∑
i∈I(2)

l

Ef0g(ξi)
2.

Since Xi−1 and ξi have the same density ψf we get Ef0[g(Xi−1)
2] = Ef0[g(ξi)

2],
and thus

Ef0

(
T̃

1,(l)
2 |Fl

)− Ef0

(
T

2,(l)
2

)= O(γ 2
n logml) = o(K−1

n ).(26)

By (23)–(26) we get

Pf0

(∣∣T 1,(l)
2 − T

2,(l)
2

∣∣≥ vnK
−1/2
n |Fl

)
≤ Pf0

(∣∣T̃ 1,(l)
2 − T

2,(l)
2

∣∣≥ vnK
−1/2
n |Fl

)
+ Pf0

(
X̃i �= Xi ∀ i ∈ {il − 1, . . . , il+1 − 1

}|Fl

)
= o(K−1

n ),

which proves (21). �

Now we prove (19). We give a proof for the first bound; the second one can be
proved in the same way. Changing the probability measure we obtain that

Ef0

(
L

1,(l)
f,f0

IBl
|Fl

)= Pf (Bl|Fl) = Pf

(
logL

1,(l)
f,f0

> 1|Fl

)
.

We shall prove that

Pf

(
logL

1,(l)
f,f0

> 1|Fl

)= o(K−1
n ).(27)

Indeed, proceeding as in the proof of (24) and using the fact that εi = Xi −
f0(Xi−1) = Xi − f (Xi−1) + o(γn) and assumption (A2)(ii), one gets

Pf

(∣∣T 1,(l)
2 − Ef

(
T

1,(l)
2 |Fl

)∣∣≥ cK−1/2
n |Fl

)= o(K−1
n ).(28)

Since Ef (T
1,(l)
2 |Fl) = o(1), we get from (13) and (28),

Pf

(
logL

1,(l)
f,f0

> 1|Fl

)≤ o(K−1
n ) + Pf

(
T

1,(l)
1 > 1

2 |Fl

)
.(29)



EQUIVALENCE OF AUTOREGRESSION AND REGRESSION 1715

If we prove that

Pf

(
T

1,(l)
1 > 1

2 |Fl

)= o(K−1
n ),(30)

then we get, in conjunction with (29), that (27) holds.
To prove (30) we use the exponential Chebyshev’s inequality for martingales.

Since β > 5/2, by (5), we have γn = o(n−5/12−3δ), for some δ > 0 small enough.
Recall that ml = O(n5/6) and ‖g‖∞ ≤ γn. Assume first that n−δ|l′p(εi)| ≤ const .
Using Lemma 6.3,

Pf

(
T

1,(l)
1 > 1

2 |Fl

)
≤ e−nδ

Ef

(
exp

(
2
∑
i∈Il

nδg(Xi−1)l
′
p(εi)

)∣∣∣∣Fl

)

= e−nδ

Ef

( ∏
i∈Il

Ef

(
exp(2nδg(Xi−1)l

′
p(εi))|Xi−1

)|Fl

)

≤ e−nδ ∏
i∈Il

exp(cn2δγ 2
n Ef l′p(εi)

2)

≤ e−nδ

exp(cn2δγ 2
n mlEf l′p(εi)

2),

where c is a constant. The latter implies (30). If n−δ|l′p(εi)| ≤ const is not sat-

isfied, we use the same arguments with truncated scores l̂i = l̄i − Ef (l̄i |Xi−1),

l̄i = l′p(εi)1(|l′p(εi)| ≤ nδ) instead of the true scores l′p(εi). The term with the dif-

ference l′p(εi) − l̂i is bounded easily as before, using Chebyshev’s inequality, the
fact that εi = Xi − f0(Xi−1) = Xi − f (Xi−1) + o(γn) and assumption (A2)(iii):

Pf

(∑
i∈Il

(
g(Xi−1)l

′
p(εi) − l̂i

)
> 1

2 |Fl

)

= O
(
γ 2
n mlEf l′p(εi)

21
(|l′p(εi)| ≥ nδ))= O(K−1

n ).

Using the same types of arguments for sums of independent random variables
we obtain

Ef0

(
L

2,(l)
f,f0

ICl
|Fl

)= Pf (Cl|Fl) = Pf

(
logL

2,(l)
f,f0

> 1|Fl

)= o(K−1
n ),

which completes the proof of the first bound in (19). �

PROOF OF PROPOSITION 3.2. This proof is analogous to that of Proposi-
tion 3.1 and requires only a few minor modifications. Analogously to (13) and (14),
we use the Taylor expansion

logL
3,(l)
f,f0

= ∑
i∈Il

g(tn,i)l
′
q(ηi) + 1

2

∑
i∈Il

g(tn,i)
2l′′q (ηi) + o(K−1/2

n )

(31)
= T

3,(l)
1 + T

3,(l)
2 + o(K−1/2

n ).
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Similarly to the calculations in the proof of Proposition 3.1, the closeness of T
1,(l)

1

and T
3,(l)

1 follows from Theorem 5.2, while that of T
1,(l)

2 and T
3,(l)

2 follows in
complete analogy to the derivation of (21). �

5. A functional strong approximation result. In the proof of the main re-
sults we use the following strong approximation theorem. It can be viewed as an
analogue of the functional strong approximation result established in [16] for sums
of independent random variables.

Let Xi , i = 1, . . . , n, and (Yi, ξi), i = 1, . . . , n, be defined according to
(4) and (6), respectively. Let f0 ∈ � and f ∈ �n

f0
. We set

S
1,(l)
f = ∑

i∈Il

(f − f0)(Xi−1)l
′
p(εi), S

2,(l)
f = ∑

i∈Il

(f − f0)(ξi)l
′
q(ηi).

THEOREM 5.1. Suppose that assumptions (A1)–(A3) are satisfied. Let λ > 1
be a constant. Then there are versions of the random variables X0, . . . ,Xn and
(Y1, ξ1), . . . , (Yn, ξn) on a common probability space such that, for 1 ≤ l ≤ Kn,

sup
f0∈�

sup
f ∈�n

f0

ess supPf0

(∣∣S1,(l)
f − S

2,(l)
f

∣∣> c(λ)rn|Fl

)= O(m−λ
l ),

where rn = (γn)
1/4(γ ′

n)
3/4m

1/4
l logml + m−λ

l and c(λ) is a constant depending
only on λ.

The proof of this functional approximation result is based on a truncated Haar
series expansion of f − f0 and Lemma 5.1 below which provides a strong ap-
proximation result for partial sums with respect to a system of dyadic subintervals
of [A,B].

Define, for j ≥ 0 and k = 0, . . . ,2j , sj,k = A + k2−j (B − A), and

Ij,k = (sj,k−1, sj,k], k = 1, . . . ,2j .

The Haar basis functions are defined via indicators as

h0 = (B − A)−1/21I0,1,

hj,k = (B − A)−1/22j/2(1Ij+1,2k−1 − 1Ij+1,2k

)
(j ≥ 0; k = 1, . . . ,2j ).

With a choice of the finest scale of the expansion, j∗ = j∗(n), described at the
end of the proof of Theorem 5.1, we obtain a truncated Haar series expansion of
g = f − f0 as

g(x) = c0(g)h0(x) +
j∗∑

j=0

2j∑
k=1

cj,k(g)hj,k(x) + rj∗(x),

where c0(g) = ∫ B
A g(t)h0(t) dt , cj,k(g) = ∫ B

A g(t)hj,k(t) dt , and rj∗(x) is the
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residual term. This yields that∣∣S1,(l)
f − S

2,(l)
f

∣∣
≤ |c0(g)|

∣∣∣∣∣∑
i∈Il

h0(Xi−1)l
′
p(εi) − ∑

i∈Il

h0(ξi−1)l
′
q(ηi)

∣∣∣∣∣
+

j∗∑
j=0

2j∑
k=1

|cj,k(g)|
∣∣∣∣∣∑
i∈Il

hj,k(Xi−1)l
′
p(εi) − ∑

i∈Il

hj,k(ξi−1)l
′
q(ηi)

∣∣∣∣∣
+
∣∣∣∣∣∑
i∈Il

rj∗(Xi−1)l
′
p(εi) − rj∗(ξi−1)l

′
p(ηi)

∣∣∣∣∣
≤ (B − A)−1/2|c0(g)|∣∣Z1,(l)

0,1 − Z
2,(l)
0,1

∣∣
+

j∗∑
j=0

2j/2
2j∑

k=1

|cj,k(g)|(∣∣Z1,(l)
j+1,2k−1 − Z

2,(l)
j+1,2k−1

∣∣+ ∣∣Z1,(l)
j+1,2k − Z

2,(l)
j+1,2k

∣∣)

+
∣∣∣∣∣∑
i∈Il

rj∗(Xi−1)l
′
p(εi) − rj∗(ξi−1)l

′
p(ηi)

∣∣∣∣∣,
where

Z
1,(l)
j,k = ∑

i∈Il

I (Xi−1 ∈ Ij,k)l
′
p(εi), Z

2,(l)
j,k = ∑

i∈Il

I (ξi−1 ∈ Ij,k)l
′
q(ηi).

While the approximation-theoretic calculations are rather straightforward, the
strong approximation result will require a lengthy proof based on Skorokhod em-
bedding techniques. Let In = {(j, k) : 0 ≤ j ≤ j∗, k = 1, . . . ,2j }.

LEMMA 5.1. Suppose that assumptions (A1)–(A3) are satisfied. Then there
exists a construction of the random variables X0, . . . ,Xn and (Y1, ξ1), . . . , (Yn, ξn)

on a common probability space such that, for 1 ≤ l ≤ Kn,

inf
f0∈�

ess supPf0

(∣∣Z1,(l)
j,k − Z

2,(l)
j,k

∣∣≤ Cλ(ml2
−j )1/4 logml,∀ (j, k) ∈ In|Fl

)
= 1 − O(m−λ

l ).

To formulate the next theorem, we define

S
3,(l)
f = ∑

i∈Il

(f − f0)(tn,i)l
′(ηi).
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THEOREM 5.2. Suppose that asumptions (A1)–(A3) are satisfied. Let λ > 1
be a constant. Then there are versions of the random variables X0, . . . ,Xn and
Y1, . . . , Yn on a common probability space such that, for 1 ≤ l ≤ Kn,

sup
f0∈�

sup
f ∈�n

f0

ess supPf0

(∣∣S1,(l)
f − S

3,(l)
f

∣∣> c(λ)rn|F ′
l

)= O(m−λ
l ),

where rn = (γn)
1/4(γ ′

n)
3/4m

1/4
l logml + m−λ

l and c(λ) is a constant depending
only on λ.

The assertion of this theorem is a consequence of the following lemma. Set

Z
3,(l)
j,k = ∑

i∈Il

I (tn,i ∈ Ij,k)l
′(ηi).

LEMMA 5.2. Suppose that assumptions (A1)–(A3) are satisfied. Then there
exists a construction of the random variables X0, . . . ,Xn and Yn,1, . . . , Yn,n on a
common probability space such that, for 1 ≤ l ≤ Kn,

inf
f0∈�

ess supPf0

(∣∣Z1,(l)
j,k − Z

3,(l)
j,k

∣∣≤ Cλ(ml2
−j )1/4 logml,∀ (j, k) ∈ In|F ′

l

)
= 1 − O(m−λ

l ).

The proofs of Lemmas 5.1 and 5.2 make use of a multiscale version of the
Skorokhod embedding and are similar to the construction in [22]. We postpone
these proofs to Section 5.2. Now we shall give proofs of Theorems 5.1 and 5.2.

5.1. Proofs of Theorems 5.1 and 5.2. As already indicated, the proofs of the
theorems split into an approximation-theoretic and a stochastic part. The following
lemma contains the approximation-theoretic facts needed for the proofs of Theo-
rems 5.1 and 5.2.

LEMMA 5.3. Let c0(g) and cj,k(g) be the Haar coefficients of a function g

defined above. Then:

(i) |c0(g)| ≤ (B − A)1/2‖g‖∞,
(ii) |cj,k(g)| ≤ min{(B − A)1/22−j/2‖g‖∞(B − A)3/22−3j/2−2‖g′‖∞},

(iii) ‖g − (c0(g)h0 +∑j∗
j=0

∑2j

k=1 cj,k(g)hj,k)‖∞ ≤ (B − A)2−j∗−2‖g′‖∞.

PROOF. Assertion (i) follows from

|c0(g)| ≤ ‖g‖∞
∫

|h0(t)|dt ≤ (B − A)1/2‖g‖∞.

Analogously, we obtain that

|cj,k(g)| ≤ ‖g‖∞
∫

|hj,k(t)|dt ≤ (B − A)1/22−j/2‖g‖∞.
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Furthermore, it follows that

|cj,k(g)| ≤ (B − A)−1/22j/2
∣∣∣∣ ∫ B

A
g(t)

(
1Ij+1,2k−1(t) − 1Ij+1,2k

(t)
)
dt

∣∣∣∣
≤ (B − A)−1/22j/2

∫
Ij+1,2k−1

∣∣g(t) − g
(
t + (B − A)2−j−1)∣∣dt

≤ (B − A)3/22−3j/2−2‖g′‖∞,

which yields (ii).
Finally, we obtain from (ii) that∣∣∣∣∣g(x) −

(
c0(g)h0(x) +

j∗∑
j=0

2j∑
k=1

cj,k(g)hj,k(x)

)∣∣∣∣∣
≤

∞∑
j=j∗+1

2j∑
k=1

|cj,k(g)hj,k(x)|

≤
∞∑

j=j∗+1

(B − A)3/22−3j/2−2‖g′‖∞(B − A)−1/22j/2

= (B − A)2−j∗−2‖g′‖∞. �

Now we are in a position to prove Theorems 5.1 and 5.2.

PROOF OF THEOREM 5.1. Define

S
1,(l)
f,j∗ = ∑

i∈Il

[
c0(g)h0(Xi−1) +

j∗∑
j=0

2j∑
k=1

cj,k(g)hj,k(Xi−1)

]
l′p(εi),

S
2,(l)
f,j∗ = ∑

i∈Il

[
c0(g)h0(ξi) +

j∗∑
j=0

2j∑
k=1

cj,k(g)hj,k(ξi)

]
l′q(ηi)

and

R
i,(l)
f,j∗ = S

i,(l)
f − S

i,(l)
f,j∗, i = 1,2.

Define the event

Dl := {∣∣Z1,(l)
j,k − Z

2,(l)
j,k

∣∣≤ Cλ(ml2
−j )1/4 logml,∀ (j, k) ∈ In

}
,

where Cλ is a constant. By Lemma 5.1, Pf0(Dl|Fl) = O(m−λ
l ) with some choice
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of Cλ. By (i) and (ii) of Lemma 5.3, on the set Dl it holds that∣∣S1,(l)
f,j∗ − S

2,(l)
f,j∗

∣∣
≤ (B − A)−1/2

(
|c0(g)|∣∣Z1,(l)

0,1 − Z
2,(l)
0,1

∣∣
+

j∗∑
j=0

2j/2
2j∑

k=1

|cj,k(g)|(∣∣Z1,(l)
j+1,2k−1 − Z

2,(l)
j+1,2k−1

∣∣
+ ∣∣Z1,(l)

j+1,2k − Z
2,(l)
j+1,2k

∣∣))

≤ Cλ‖g‖∞m
1/4
l logml

+ Cλ

j∗∑
j=0

23j/2 min{2−j/2‖g‖∞, (B − A)2−3j/2−2‖g′‖∞}

× (ml2
−j )1/4 logml

= O
(
(‖g‖∞ + ‖g‖1/4∞ ‖g′‖3/4∞ )m

1/4
l logml

)
.

The latter proves that, with some constant c(λ) depending on λ,

Pf0

(∣∣S1,(l)
f,j∗ − S

2,(l)
f,j∗

∣∣> c(λ)r ′
n|Fl

)= O(m−λ
l ),(32)

where r ′
n = (γn)

1/4(γ ′
n)

3/4m
1/4
l logml . By (iii) of Lemma 5.3 it holds that

Pf0

(∣∣R1,(l)
f,j∗

∣∣≥ m−λ
l

)≤ m2λ
l Ef0

(
R

1,(l)
f,j∗

)2
(33)

≤ m2λ
l (B − A)2−j∗−2‖g′‖∞

∑
i∈Il

Ef0(l
′
p(εi))

2.

Choosing the finest level j∗(n) = c∗ logml , with some c∗ large enough, we obtain
that

Pf0

(∣∣R1,(l)
f,j∗

∣∣≥ m−λ
l

)= O(m−λ
l ).(34)

Since the above bounds are uniform in f0 ∈ �, from (32)–(34) and a similar bound
for R

2,(l)
f,j∗ we conclude the assertion. �

Theorem 5.2 can be proved in a similar way.

5.2. Proofs of Lemmas 5.1 and 5.2. We prove Lemma 5.1 only for l = 1, since
the proof for l > 1 is completely analogous. The proof of Lemma 5.2 then requires
only some obvious modifications and therefore will not be described here. To sim-
plify notation we drop the index l in the following, that is, we write Z1

j,k , Z2
j,k , m
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instead of Z
1,(l)
j,k , Z

2,(l)
j,k , ml , respectively.

PROOF OF LEMMA 5.1. Conditional on X0 (which represents the information
contained in F0), we construct a pairing of X1, . . . ,Xm and (Y1, ξ1), . . . , (Ym, ξm)

such that

inf
f0∈�

ess supPf0

(|Z1
j,k − Z2

j,k| ≤ Cλ(m2−j )1/4 logm, (j, k) ∈ In|X0
)

= 1 − O(m−λ)

is satisfied. In the following, all estimates are to be understood to hold uniformly
in f0 ∈ �.

The pairing of the random variables of both models is organized by a simultane-
ous Skorokhod embedding of Z1

j,k and Z2
j,k in a common set of Wiener processes

Wj,k assigned to the intervals Ij,k . We describe this embedding in detail for the au-
toregressive process. The embedding of lq(ηi) from the regression model is com-
pletely analogous and will be briefly mentioned only. Then we draw conclusions
for the rate of approximation of Z1

j,k by Z2
j,k , which will conclude the proof. An

embedding scheme like this has already been developed in [22], in a different con-
text. In view of some modifications and since we intend to provide a self-contained
paper, we give a full proof of this lemma.

Let Wj,k, (j, k) ∈ In, be independent Wiener processes. Apart from the coars-
est resolution scale which corresponds to j = 0, we use each of these processes
only on a finite time interval [0, Tj,k], where the particular (nonrandom) values of
the Tj,k will be specified in part (iv) below. For the time being it is only important
to know that T0,k = ∞.

(i) Embedding of lp(ε1) and construction of X1.

First we define lp(ε1) by a Skorokhod embedding in the Wiener processes men-
tioned above. Since lp(ε1) does not necessarily define X1 uniquely, we have to use
perhaps an additional randomization to get X1.

Let k1 be that random number with X0 ∈ Ij∗,k1 . Now we are going to repre-
sent lp(ε1) by increments of the Wiener processes, preferably by those of Wj∗,k1 .
However, since we want to use Wj∗,k1 up to some prespecified time Tj∗,k1 only, it
might happen that this is not enough for representing lp(ε1). In this case we ad-
ditionally use a certain stretch of the process Wj∗−1,[k1/2], and so on. The Wiener
processes which are potentially used for the representation of lp(ε1) correspond to
a containment relation of the dyadic intervals,

Ij∗,k ⊆ Ij∗−1,[k/2] ⊆ · · · ⊆ I0,[k2−j∗ ],
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where [a] denotes the largest integer not greater than a. This means that we repre-
sent lp(ε1) by the following Wiener process:

W(1)(s) =



Wj∗,k1(s), if 0 ≤ s ≤ Tj∗,k1,

Wj∗,k1

(
Tj∗,k1

)+ · · · + Wj+1,[k12j+1−j∗ ]
(
Tj+1,[k12j+1−j∗ ]

)
+ Wj,[k12j−j∗ ]

(
s −

j∗∑
l=j+1

Tl,[k12l−j∗ ]

)
,

if Tj∗,k1 + · · · + Tj+1,[k12j+1−j∗ ]
< s ≤ Tj∗,k1 + · · · + Tj,[k12j−j∗ ].

(W(1) is indeed a Wiener process on [0,∞), since T0,k = ∞.)
According to Lemma A.2 of [17], there exists a stopping time τ (1) such that

the distribution of W(1)(τ (1)) is equal to the conditional distribution of lp(ε1)

given X0. We define ε1 in such a way that

lp(ε1) = W(1)(τ (1)).
[This is achieved by first setting lp(ε1) equal to W(1)(τ (1)) and then defining ε1
with the aid of an additional randomization according to its conditional distribution
given lp(ε1).] Finally, according to the model equation under f0, we set X1 =
f0(X0) + ε1.

To explain the following steps in a formally correct way, we introduce stop-
ping times τ

(i)
j,k , i = 1, . . . ,m, assigned to the corresponding Wiener process Wj,k .

Define

τ
(0)
j,k = 0, (j, k) ∈ In.

To get τ
(1)
j,k , we redefine all those τ

(0)
j,k which are assigned to Wiener processes Wj,k

that were used for representing lp(ε1). According to the above construction we set

τ
(1)
j∗,k1

= τ (1) ∧ Tj∗,k1 .

We redefine further

τ
(1)

j,[k12j−j∗ ] =

[
τ (1) − Tj∗,k1 − · · · − Tj+1,[k12j+1−j∗ ]

]∧ Tj,[k12j−j∗ ],
if Tj∗,k1 + · · · + Tj+1,[k12j+1−j∗ ] < τ(1),

0, otherwise.

The remaining stopping times τ
(1)
j,l with l �= [k12j−j∗] keep their preceding values

τ
(0)
j,l = 0.

This procedure will be successively repeated for all other εi ’s with the modifica-
tion that we use only those parts of the Wiener processes which are still untouched
by the previous construction steps.

(ii) Embedding of lp(εi) and construction of Xi .
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Assume that X0, . . . ,Xi−1 are already defined. Let ki be that random number
with Xi−1 ∈ Ij∗,ki

. Now we represent lp(εi) by parts of Wj∗,ki
, Wj∗−1,[ki/2], . . . ,

W0,[2−j∗ ], which have not been used so far.
First note that, because of the strong Markov property, these remaining in-

crements Wj,[ki2j−j∗ ](s + τ
(i−1)

j,[ki2j−j∗ ]) − Wj,[ki2j−j∗ ](τ
(i−1)

j,[ki2j−j∗ ]) form indepen-
dent Wiener processes, also independent of X0, . . . ,Xi−1. Hence, gluing these
parts together we obtain a Wiener process on [0,∞) which is independent of
X0, . . . ,Xi−1. This process is given as

W(i)(s) =



Wj∗,ki

(
s + τ

(i−1)
j∗,ki

)− Wj∗,ki

(
τ

(i−1)
j∗,ki

)
,

if 0 ≤ s ≤ Tj∗,ki
− τ

(i−1)
j∗,ki

,{
Wj∗,ki

(
Tj∗,ki

)− Wj∗,ki

(
τ

(i−1)
j∗,ki

)}+ · · ·
+ {

Wj+1,[ki2j+1−j∗ ]
(
Tj+1,[ki2j+1−j∗ ]

)
− Wj+1,[ki2j+1−j∗ ]

(
τ

(i−1)

j+1,[ki2j+1−j∗ ]
)}

+
{
Wj,[ki2j−j∗ ]

(
s −

j∗∑
l=j+1

(
Tl,[ki2l−j∗ ] − τ

(i−1)

l,[ki2j−l ]
)

+ τ
(i−1)

j,[ki2j−j∗ ]

)

− Wj,[ki2j−j∗ ]
(
τ

(i−1)

j,[ki2j−j∗ ]
)}

,

if
j∗∑

l=j+1

(
Tl,[ki2j−l ] − τ

(i−1)

l,[ki2j−l ]
)
< s

≤
j∗∑
l=j

(
Tl,[ki2j−l ] − τ

(i−1)

l,[ki2j−l ]
)
.

There exists a stopping time τ (i) such that W(i)(τ (i)) has the same distribution as
the conditional distribution of lp(εi). We define εi in such a way that

lp(εi) = W(i)(τ (i)),
and set Xi = f0(Xi−1)+ εi . [The definition of εi is again achieved in two steps by
first setting lp(εi) equal to W(i)(τ (i)) and then defining εi according to its condi-
tional distribution.]

To complete this construction, it remains to define the stopping times τ
(i)
j,k . These

stopping times indicate up to which point the Wiener processes have been used in
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the first i steps. Accordingly we set

τ
(i)

j,[ki2j−j∗ ] =



[
τ

(i−1)

j,[ki2j−j∗ ] + (
τ (i) − (

Tj∗,ki
− τ

(i−1)
j∗,ki

)− · · ·
− (

Tj+1,[ki2j+1−j∗ ] − τ
(i−1)

j+1,[ki2j+1−j∗ ]
))]

∧Tj,[ki2j−j∗ ],
if
(
Tj∗,ki

− τ
(i−1)
j∗,ki

)+ · · ·
+ (

Tj+1,[ki2j+1−j∗ ]
− τ

(i−1)

j+1,[ki2j+1−j∗ ]
)
< τ(i),

τ
(i−1)

j,[ki2j−j∗ ], otherwise.

For all (j, l) with l �= [ki2j−j∗] we define

τ
(i)
j,l = τ

(i−1)
j,l .

After embedding lp(ε1), . . . , lp(εm) we arrive at stopping times τ
(m)
j,k . The partial

sums are connected to the Wiener processes by the relation

Z1
j,k = ∑

(u,v) : Iu,v⊆Ij,k

Wu,v

(
τ (m)
u,v

)
(35)

+ ∑
i : 1≤i≤m,Xi−1∈Ij,k

∑
(u,v) : Iu,v⊃Ij,k

Wu,v

(
τ (i)
u,v

)− Wu,v

(
τ (i−1)
u,v

)
.

(iii) Embedding of lq(η1), . . . , lq(ηm) and construction of (Y1, ξ1), . . . ,

(Ym, ξm).

This will be done in complete analogy to the construction described above. We
define again stopping times τ̃

(i)
j,k and obtain the following representation of the

partial sums:

Z2
j,k = ∑

(u,v) : Iu,v⊆Ij,k

Wu,v

(
τ̃ (m)
u,v

)
(36)

+ ∑
i : 1≤i≤m,Yi∈Ij,k

∑
(u,v) : Iu,v⊃Ij,k

Wu,v

(
τ̃ (i)
u,v

)− Wu,v

(
τ̃ (i−1)
u,v

)
.

(iv) Choice of the values for Tj,k .

To motivate our particular choice of the Tj,k described below, we consider first
two extreme cases. If Tj∗,k = ∞ for all k, then Z1

j∗,k and Z2
j∗,k are both completely

represented by Wj∗,k . This leads indeed to a satisfactorily close connection of
Z1

j∗,k and Z2
j∗,k . On the other hand, this choice is unfavorable at scales j � j∗.

Although we get immediately the upper estimate

|Z1
j,k − Z2

j,k| ≤
∑

l : Ij∗,l⊆Ij,k

|Z1
j∗,l − Z2

j∗,l|,
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the difference between Z1
j,k and Z2

j,k will be unnecessarily large. This is because,

for j � j∗, Z1
j,k and Z2

j,k are then represented by too many different stretches of
the Wiener processes Wj∗,l with Ij∗,l ⊆ Ij,k .

On the other hand, if the Tj∗,k are rather small, then Z1
j∗,k and Z2

j∗,k will be
represented in large parts by stretches of Wiener processes Wu,v which correspond
to intervals Iu,v ⊃ Ij∗,k with j < j∗. Once we are on a coarser scale j < j∗, we
cannot guarantee that Z1

j∗,k and Z2
j∗,k are (mostly) generated by identical parts of

the Wiener processes. Consequently, we would also get a suboptimal connection,
this time for Z1

j∗,k and Z2
j∗,k .

To find a good compromise between these two conflicting aims, we choose the
Tj,k as large as possible, however, with the additional property that, for j �= 0, the
stretches [0, Tj,k] are used up with a high probability in the representation of both
lp(ε1), . . . , lp(εm) and lq(η1), . . . , lq(ηm). Strictly speaking, we choose the Tj,k in
such a way that

ess supPf0

(
m∑

i=1

τ (i)I (Xi−1 ∈ Ij,k) <
∑

(u,v) : Iu,v⊆Ij,k

Tu,v,

(37)

∀ (j, k) ∈ In \ {(0, k)}
∣∣∣X0

)
= O(m−λ)

and

Pf0

(
m∑

i=1

τ̃ (i)I (Yi ∈ Ij,k) <
∑

(u,v) : Iu,v⊆Ij,k

Tu,v,∀ (j, k) ∈ In \ {(0, k)}
)

(38)
= O(m−λ).

To this end, we study first the stochastic behavior of the above sums of stopping
times assigned to the interval Ij,k .

Recall that the innovations εi are assumed to be independent. According to the
construction of the Skorokhod embedding described in [17], Appendix A.1, the
randomness of τ (i) is driven by some Ui ∼ Uniform[0,1] from a sequence of inde-
pendent random variables and by {W(i)(s), 0 ≤ s ≤ τ (i)}. The vectors (Xi−1,Ui)

are of course also φ-mixing as the Xi . Since, for i �= i ′, {W(i)(s), 0 ≤ s ≤ τ (i)} and
{W(i′)(s), 0 ≤ s ≤ τ (i′)} are composed of disjoint stretches of the Wiener processes
Wj,k separated by stopping times, the random variables τ (i)I (Xi−1 ∈ Ij,k) inherit
the φ-mixing property from the process {Xi}. Hence, we obtain by a Bernstein-
type inequality for sums of φ-mixing random variables (see, e.g., [10]) that

ess supPf0

(∣∣∣∣∣
m∑

i=1

{
τ (i)I (Xi−1 ∈ Ij,k) − E

[
τ (i)I (Xi−1 ∈ Ij,k)

]} ∣∣∣∣∣
(39)

> Cλ

√
m2−j logm

∣∣∣X0

)
= O(m−λ)
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and, analogously,

Pf0

(∣∣∣∣∣
m∑

i=1

{
τ̃ (i)I (Yi ∈ Ij,k) − E

[
τ̃ (i)I (Yi ∈ Ij,k)

]}∣∣∣∣∣> Cλ

√
m2−j logm

)
(40)

= O(m−λ).

Define

Sj,k =
m∑

i=1

Eτ(i)I (Xi−1 ∈ Ij,k) − Cλ

√
m2−j logm.

Furthermore, we define

Tj,k = Sj,k − ∑
(u,v) : Iu,v⊂Ij,k

Su,v.

Then Sj,k =∑
(u,v) : Iu,v⊂Ij,k

Tu,v . By (39) and (40) we obtain (37) and (38).

(v) Conclusion for Z1
j,k − Z2

j,k .

By (35)–(38) we obtain that

Z1
j,k = ∑

(u,v) : Iu,v⊆Ij,k

Wu,v(Tu,v)

(41)
+ ∑

i : 1≤i≤m,Xi−1∈Ij,k

∑
(u,v) : Iu,v⊃Ij,k

Wu,v

(
τ (i)
u,v

)− Wu,v

(
τ (i−1)
u,v

)
and

Z2
j,k = ∑

(u,v) : Iu,v⊆Ij,k

Wu,v(Tu,v)

(42)
+ ∑

i : 1≤i≤m,Yi∈Ij,k

∑
(u,v) : Iu,v⊃Ij,k

Wu,v

(
τ̃ (i)
u,v

)− Wu,v

(
τ̃ (i−1)
u,v

)

are satisfied with a probability exceeding 1 − O(m−λ). At this point we see why
our particular pairing of the random variables provides a close connection between
Z1

j,k and Z2
j,k : most of the randomness of Z1

j,k and Z2
j,k is contained in the first

terms on the right-hand sides of (41) and (42), respectively. These terms are ran-
dom, but identical to each other.

To analyze the difference between the right-hand sides of (41) and (42), we
compose the pieces {Wu,v(s), τ

(i−1)
u,v ≤ s ≤ τ

(i)
u,v} and {Wu,v(s), τ̃

(i−1)
u,v ≤ s ≤ τ̃

(i)
u,v}
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corresponding to intervals Iu,v ⊃ Ij,k to Wiener processes. For fixed i, we define

W
res,i
j,k (s) =



Wj−1,[k/2]
(
s + τ

(i−1)
j−1,[k/2]

)− Wj−1,[k/2]
(
τ

(i−1)
j−1,[k/2]

)
,

if 0 ≤ s ≤ τ
(i)
j−1,[k/2] − τ

(i−1)
j−1,[k/2],[

Wj−1,[k/2]
(
τ

(i)
j−1,[k/2]

)− Wj−1,[k/2]
(
τ

(i−1)
j−1,[k/2]

)]+ · · ·
+ [

Wl+1,[k2l+1−j ]
(
τ

(i)

l+1,[k2l+1−j ]
)

− Wl+1,[k2l+1−j ]
(
τ

(i−1)

l+1,[k2l+1−j ]
)]

+ [
Wl,[k2l−j ](u) − Wl,[k2l−j ]

(
τ

(i−1)

l,[k2l−j ]
)]

,

if s = (
τ

(i)
j−1,[k/2] − τ

(i−1)
j−1,[k/2]

)+ · · ·
+ (

τ
(i)

l+1,[k2l+1−j ] − τ
(i−1)

l+1,[k2l+1−j ]
)+ (

u − τ
(i−1)

l,[k2l−j ]
)

with τ
(i−1)

l,[k2l−j ] < u ≤ τ
(i)

l,[k2l−j ].

It is clear that W
res,i
j,k is a Wiener process on the interval [0, τ

res,i
j,k ], where τ

res,i
j,k =∑

(u,v) : Ij,k⊂Iu,v
(τ

(i)
u,v − τ

(i−1)
u,v ).

By the strong Markov property, the remaining parts of the Wiener processes
Wj,k again form independent Wiener processes, also independent of {W res,i

j,k ,0 ≤
s ≤ τ

res,i
j,k }. Therefore, we can compose all these latter parts to one Wiener process

by setting

W res
j,k(s) =



W
res,1
j,k (s), if 0 ≤ s ≤ τ

res,1
j,k ,

W
res,1
j,k (τ

res,1
j,k ) + · · · + W

res,u−1
j,k (τ

res,u−1
j,k )

+ W
res,u
j,k (s − τ

res,1
j,k − · · · − τ

res,u−1
j,k ),

if τ
res,1
j,k + · · · + τ

res,u−1
j,k < s ≤ τ

res,1
j,k + · · · + τ

res,u
j,k .

An analogous construction can be made for the τ̃
(i)
u,v , leading to Wiener proces-

ses W̃ res
j,k .

If both
∑m

i=1 τ (i)I (Xi−1 ∈ Ij,k) ≥ Sj,k and
∑m

i=1 τ̃ (i)I (Yi ∈ Ij,k) ≥ Sj,k are sat-
isfied, then ∑

i : 1≤i≤m,Xi−1∈Ij,k

∑
(u,v) : Ij,k⊂Iu,v

Wu,v

(
τ (i)
u,v

)− Wu,v

(
τ (i−1)
u,v

)

= W res
j,k

( ∑
i : Xi−1∈Ij,k

τ (i) − Sj,k

)

and ∑
i : 1≤i≤m,Yi∈Ij,k

∑
(u,v) : Ij,k⊂Iu,v

Wu,v

(
τ̃ (i)
u,v

)− Wu,v

(
τ̃ (i−1)
u,v

)

= W̃ res
j,k

( ∑
i : Xi−1∈Ij,k

τ̃ (i) − Sj,k

)
.
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Hence, we obtain by (37), (38) and Lemma 1.2.1 in [6], page 29, that, for all
(j, k) ∈ In,

ess supPf0(|Z1
j,k − Z2

j,k| > r ′′
n |X0)

≤ ess supPf0

(∣∣∣∣∣W res
j,k

( ∑
i : Xi−1∈Ij,k

τ (i) − Sj,k

)∣∣∣∣∣> r ′′
n/2

∣∣∣X0

)

+ ess supPf0

(∣∣∣∣∣W̃ res
j,k

( ∑
i : Xi−1∈Ij,k

τ̃ (i) − Sj,k

)∣∣∣∣∣> r ′′
n/2

∣∣∣X0

)

+ O(m−λ) = O(m−λ),

where r ′′
n = Cλ(m2−j )1/4 logm. This completes the proof. �

6. Some auxiliary results.

6.1. Convergence of stationary distributions.

LEMMA 6.1. Suppose that (X
f
i )i≥0 and (X

f0
i )i≥0 are stationary processes

obeying (4) with autoregression functions f and f0, respectively, where |f |,
|f0| ≤ M . Assume that the innovations (εi)i≥1 are i.i.d. with a density p such
that

ρ = 1
2 sup

−M≤x1≤x2≤M

∫ ∞
−∞

|p(x − x1) − p(x − x2)|dx < 1.

Then, for the stationary densities ψf and ψf0 , it holds that∫ ∞
−∞

(√
ψf (x) −

√
ψf0(x)

)2
dx

≤ 1

1 − ρ
sup

u∈[0,‖f −f0‖∞]

∫ ∞
−∞

|p(x) − p(x − u)|dx.

PROOF. We denote by pf (x|y) = p(x − f (y)) and pf0(x|y) = p(x − f0(y))

the transition densities of the processes (X
f
i )i≥0 and (X

f0
i )i≥0, respectively. It

holds that ∫ ∞
−∞

(√
ψf (x) −

√
ψf0(x)

)2
dx ≤

∫ ∞
−∞

∣∣ψf (x) − ψf0(x)
∣∣dx.

Let, for brevity, �f,f0(x) = ψf (x) − ψf0(x). From

�f,f0(x) =
∫

[pf (x|y) − pf0(x|y)]ψf (y) dy +
∫

pf0(x|y)�f,f0(y) dy
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we deduce that∫ ∞
−∞

∣∣�f,f0(x)
∣∣dx

≤
∫ [∫ ∣∣pf (x|y) − pf0(x|y)

∣∣ψf (y) dy

]
dx

+
∫ ∣∣∣∣ ∫ pf0(x|y)

[
�f,f0(y)

]
+ dy −

∫
pf0(x|y)

[
�f,f0(y)

]
− dy

∣∣∣∣dx

≤
∫ [∫ ∣∣pf (x|y) − pf0(x|y)

∣∣dx

]
ψf (y) dy

+ sup
y1,y2

∫ ∣∣pf0(x|y1) − pf0(x|y2)
∣∣dx

∫ [
�f,f0(y)

]
+ dy

≤ sup
y

∫ ∣∣pf (x|y) − pf0(x|y)
∣∣dx

+ sup
y1,y2

∫ ∣∣pf0(x|y1) − pf0(x|y2)
∣∣dx

∫ [
�f,f0(y)

]
+ dy.

The latter implies∫ ∞
−∞

∣∣�f,f0(x)
∣∣dx ≤ sup

0≤u≤‖f −f0‖∞

∫
|p(x) − p(x − u)|dx

+ 1
2 sup

y1,y2

∫ ∣∣pf0(x|y1) − pf0(x|y2)
∣∣dx

∫ ∣∣�f,f0(x)
∣∣dy.

Rearranging the terms we obtain the assertion. �

6.2. An analogue of Berbee’s lemma.

DEFINITION 6.1. The uniform φ-mixing coefficient between r.v.’s ξ and η is
defined to be the number

φ(ξ, η) = sup{|P(A) − P(A|B)| :A ∈ σ(ξ),B ∈ σ(η),P (B) �= 0}.

LEMMA 6.2. Suppose that ξ and η are two random variables with values in
R

1 and R
d , respectively, given on the probability space (�, F ,P ). Furthermore,

we assume that ξ and η possess a joint density and that the probability space is
rich enough for the definition of a random variable 	 ∼ Uniform[0,1] which is
independent of ξ and η. Then we can construct a random variable ξ̃ = ξ̃ (ξ, η,	)

such that:

(i) L(̃ξ |η) = L(ξ) a.s., that is, ξ̃ is independent of η and has the same distri-
bution as ξ ,

(ii) P (̃ξ �= ξ |η) ≤ φ(ξ, η) a.s.
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PROOF. The idea of the proof is of course closely related to that of the proof of
Theorem 2 in [1]. However, since the formulation of our result differs slightly from
theirs (they constructed ξ̃ in such a way that it is close to ξ with a high probability,
whereas we are interested in an exact coincidence of ξ̃ and ξ ) we decided not to
omit this proof.

We denote by pξ (·) the marginal density of ξ and by pξ |η(·|y) the conditional
density of ξ given η = y. Define

φy = 1
2

∫ ∣∣pξ (x) − pξ |η(x|y)
∣∣dx = 1 −

∫
pξ (x) ∧ pξ |η(x|y)dx.

Then φη ≤ φ(ξ, η) a.s.
If φη = 0, then pξ (·) and pξ |η(· | y) coincide and we set ξ̃ ≡ ξ . Otherwise we

proceed as follows. With a random variable 	 ∼ Uniform[0,1] which is indepen-
dent of ξ and η, we set

ξ̃ = ξ̃ (ξ, η,	) =
{

ξ, if pξ (ξ) ≥ 	pξ |η(ξ |η),
ξ, otherwise,

where ξ is an appropriate random variable having the density [pξ (·) − pξ (·) ∧
pξ |η(·|η)]/φη. The random variable ξ is defined via a quantile transform as

G−1
η (

	pξ |η(ξ |η)−pξ (ξ)

pξ |η(ξ |η)−pξ (ξ)
), where

Gη(y) = 1

φη

∫ y

−∞
[pξ (x) − pξ |η(x|η)]+ dx.

Now we have

P (̃ξ = ξ |η) = P
(
pξ |η(ξ |η) ∧ pξ (ξ) ≥ 	pξ |η(ξ |η)|η)

= E

(
pξ |η(ξ |η) ∧ pξ (ξ)

pξ |η(ξ | η)
I
(
pξ |η(ξ |η) > 0

)∣∣∣η)

=
∫

pξ |η(x|η) ∧ pξ (x) dx = 1 − φη,

which implies (ii). Part (i) follows from the construction. �

6.3. An exponential inequality. We made use of the following inequality
whose proof can be found in [15].

LEMMA 6.3. Let ξ be a r.v. such that Eξ = 0 and |ξ | ≤ a, for some positive
constant a. Then

E exp(λξ) ≤ exp(cλ2Eξ2), |λ| ≤ 1,

where c = ea/2.
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