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REJOINDER

BY S. C. KOU, QING ZHOU AND WING H. WONG

Harvard University, Harvard University and Stanford University

We thank the discussants for their thoughtful comments and the time they have
devoted to this project. As a variety of issues have been raised, we shall present our
discussion in several topics, and then address specific questions asked by particular
discussants.

1. Sampling algorithms. The widely used state-of-the-art sampling algo-
rithms in scientific computing include temperature-domain methods, such as
parallel tempering and simulated tempering, energy-domain methods, such as mul-
ticanonical sampling and the EE sampler, and methods involving expanding the
sampling/parameter space. The last group includes the Swendsen–Wang type al-
gorithms for lattice models, as Wu and Zhu pointed out, and the group Monte
Carlo method [1]. If designed properly, these sampling-space-expansion methods
could be very efficient, as Wu and Zhu’s example in computer vision illustrated.
However, since they tend to be problem-specific, we did not compare the EE sam-
pler with them. The comparison in the paper is mainly between the EE sampler
and parallel tempering. Atchadé and Liu’s comparison between the EE sampler
and the multicanonical sampling thus complements our result. It has been more
than 15 years since multicanonical sampling was first introduced. However, we
feel that there are still some conceptual questions that remain unanswered. In par-
ticular, the key idea of multicanonical sampling is to produce a flat distribution
in the energy domain. But we still do not have a simple intuitive explanation of
(i) why focusing on the energy works, (ii) why a distribution flat in the energy is
sought, and (iii) how such a distribution helps the sampling in the original sam-
ple space. The EE sampler, on the other hand, offers clear intuition and a visual
picture: the idea is simply to “walk” on the equi-energy sets, and hence focusing
on the energy directly helps avoid local trapping. In fact, the numerical results in
Atchadé and Liu’s comment clearly demonstrate the advantage of EE over multi-
canonical sampling in the 20 normal mixture example. Specifically, their Table 1
shows that in terms of estimating the probabilities of visiting each mode, the EE
sampler is about two to three times more efficient. We think that estimating the
probability of visiting individual modes provides a more sensitive measure of the
performance, the reason being that even if a sampler misses two or three modes in
each run, the sample average of the first and second moments could still be quite
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good; for example, missing one mode in the far lower left can be offset by missing
one mode in the far upper right in the sample average of the first moment, and
missing one faraway mode can be offset by disproportionately visiting much more
frequently another faraway mode in the sample average of the second moment, and
so on. Nevertheless, we agree with Atchadé and Liu that more studies (e.g., on the
benchmark phase transition problems in the Ising and Potts models) are needed to
reach a firmer conclusion.

2. Implementing the EE sampler for scientific computations. The EE sam-
pler is a flexible and all-purpose algorithm for scientific computing. For a given
problem, it could be adapted in several ways.

First, we suggested in the paper that as a good initial start the energy and tem-
perature ladders could be both assigned through a geometric progression. It is con-
ceivable that for a complicated problem alternative assignments might work better,
as Minary and Levitt’s off-lattice protein folding example illustrated. A good as-
signment makes the acceptance rates of the EE jump comparably across the differ-
ent chains, say all greater than 70%. This can be achieved by a small pilot run of
the algorithm, which can be incorporated into an automatic self-tuning implemen-
tation.

Second, the energy ladder and temperature ladder can be decoupled in the sense
that they do not need to always obey (Hi+1 − Hi)/Ti ≈ c. For example, for dis-
crete problems such as the lattice phase transition models and the lattice protein
folding models, one could take each discrete energy level itself as an energy ring,
while keeping the temperatures as a monotone increasing sequence. In this case an
EE jump is always accepted, since it always moves between states with the same
energy level.

Third, the EE sampler can be implemented in a serial fashion as Wu and Zhu
commented. One could start the algorithm from X(K), run for a predetermined
number of iterations, completely stop it and move on to X(K−1), run it, completely
stop, move on to X(K−2), and so on. This serial implementation offers the advan-
tage of saving computer memory in that one only needs to record the states visited
in the chain immediately preceding the current one. The downside is that it will not
provide the users the option to online monitor and control (e.g., determine to stop)
the algorithm; instead, one has to prespecify a fixed number of iterations to run. In
the illustrative multimodal distribution in the paper and the example we include in
this rejoinder in Section 4, we indeed utilized the serial implementation since the
number of iterations for each chain was prespecified.

Fourth, the EE sampler constructs energy rings to record the footsteps of high-
order chains. The fact that a computer’s memory is always finite might appear to
limit the number of iterations that the EE sampler can be run. But as Minary and
Levitt pointed out, this seeming limitation can be readily solved by first putting an
upper bound (subject to computer memory) on the energy ring size; once this upper
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bound is reached a new sample can be allocated to a specific energy ring by replac-
ing a randomly chosen element in the ring. Minary and Levitt’s example involving
a rough one-dimensional energy landscape provides a clear demonstration.

Fifth, the key ingredient of the EE sampler is the equi-energy move, a global
move that compensates for the local exploration. It is worth emphasizing that
the local moves can adopt not only the Metropolis–Hastings type moves, but also
Gibbs moves, hybrid Monte Carlo moves as in Minary and Levitt’s example, and
even moves applied in molecular dynamic simulations, as long as the moves pro-
vide good explorations of the local structure.

Sixth, the equi-energy move jumps from one state to another within the same
energy ring. As Wu and Zhu commented, it is possible to conduct moves across
different energy rings. It has pros and cons, however. It might allow the global jump
a larger range, and at the same time it might also lead to a low move acceptance
rate, especially if the energy of the current state differs much from that of the
proposal jump state. The latter difficulty is controlled in the equi-energy jump of
the EE sampler, since it always moves within an energy ring, where the states all
have similar energy levels. One way to enhance the global jump range and rein in
the move acceptance rate is to put a probability on each energy ring in the jump
step. Suppose the current state is in ring Dj . One can put a distribution on the ring
index so that the current ring Dj has the highest probability to be chosen, and the
neighboring rings Dj−1 and Dj+1 have probabilities less than that of Dj to be
chosen, and rings Dj−2 and Dj+2 have even smaller probabilities to be chosen,
and so on. Once a ring is chosen, the target state is proposed uniformly from it.

3. Theoretical issues. We thank Atchadé and Liu for providing a more proba-
bilistic derivation of the convergence of the EE sampler that complements the one
we gave in the paper. While these results assure the long-run correctness of the
sampler, we agree, however, with Wu and Zhu that investigating the convergence
speed is theoretically more challenging and interesting, as it is the rate of conver-
gence that separates different sampling algorithms. So far the empirical evidence
supports the EE sampler’s promise, but definitive theoretical results must await
future studies.

In addition to facilitating the empirically observed fast convergence, another
advantage offered by the idea of working on the equi-energy sets is that it allows
efficient estimation by utilizing all the samples from all the chains on an energy-
by-energy basis (as discussed in Section 5 of the paper). We thus believe that the
alternative estimation strategy proposed by Chen and Kim is very inefficient, be-
cause it essentially wastes all the samples in the chains other than the target one.
To make the comparison transparent, suppose we want to estimate the probability
of a rare event under the target distribution Pπ0(X ∈ A). Chen and Kim’s formula
would give

P̂ = 1

n

n∑

i=1

K∑

j=0

wj1
(
X

(0)
i ∈ A ∩ Dj

)
.
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But since Pπ0(X ∈ A) is small, say less than 10−10, there is essentially no sample
falling into A in the chain X(0), and correspondingly P̂ would be way off no matter
how cleverly wj is constructed. The fact that the high-order chains X(j) could well
have samples in the set A (due to the flatness of πj ) does not help at all in Chen
and Kim’s strategy. But in the EE estimation method such high-order-chain sam-
ples are all employed. The tail probability estimation presented in Section 5 and
Table 4 illustrates the point. The reason that the EE estimation method is much
more efficient in this scenario is due to the well-known fact that in order to ac-
curately estimate a rare event probability importance sampling has to be used and
the fact that the EE strategy automatically incorporates importance sampling in its
construction. We also want to point out that rare event estimation is an important
problem in science and engineering; examples include calculating surface tension
in phase transition in physics, evaluating earthquake probability in geology, as-
sessing the chance of bankruptcy in insurance or bond payment default in finance,
estimating the potentiality of traffic jams in telecommunication, and so on.

4. Replies to individual discussants. We now focus on some of the individ-
ual points raised. Minary and Levitt’s discussion has been covered in Sections
1 and 2 of this rejoinder, as was Wu and Zhu’s in Sections 1 to 3; we are sorry that
space does not permit us to discuss their contributions further.

Atchadé and Liu questioned the derivation of (5) of the paper. This equation,
we think, arises directly from the induction assumption, and does not use any as-
sumption on X(i+1) explicitly or implicitly. We appreciate their more probabilistic
proof of the convergence theorem.

Chen and Kim asked about the length of the burn-in period in the examples. In
these examples the burn-in period consists of 10% to 30% of the samples. We note
that this period should be problem-dependent. A rugged high-dimensional energy
landscape requires longer burn-in than a smooth low-dimensional one. There is no
one-size-fits-all formula.

In the discussion Chen and Kim appeared to suggest that the Gibbs sampler is
preferred in high-dimensional problems. But our experience with the Gibbs sam-
pler tells a different story. Though simple to implement, in many cases the Gibbs
sampler can be trapped by a local mode or by a strong correlation between the
coordinates—the very problems that the modern state-of-the-art algorithms are
trying to tackle.

We next consider the needle-in-the-haystack example raised in Chen and Kim’s
discussion, in which the variances of the normal mixture distribution differ dramat-
ically. Figure 1(a) shows the density function of this example. We implemented the
EE sampler using four chains (i.e., K = 3) and 200,000 iterations per chain after
a burn-in period of 50,000 iterations. Following the energy ladder setting used in
Chen and Kim, we set H1 = 3.13; the other energy levels were set between H1 and
Hmin + 100 (= 93) in a geometric progression: H1 = 3.13,H2 = 8.3,H3 = 26.8.
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FIG. 1. The artificial needle-in-the-haystack example. (a) The density function of the target distri-

bution. (b) The sample path of X
(0)
1 from a typical run of the EE sampler. (c) The samples generated

at both modes. Note the mode at the origin. (d) The samples generated near the mode at the origin.

The MH proposals were specified as N2(X
(i)
n , τ 2

i TiI2), where Ti (i = 0, . . . ,K)

is the temperature of the ith chain. We set τi = 1 for i > 0 and τ0 = 0.05. The
probability of equi-energy jump pee = 0.3. With all the above parameters fixed in
our simulation, we tested the EE sampler with different highest temperatures TK ,
whereas the remaining temperatures were evenly distributed on the log-scale be-
tween TK and T0 = 1. We tried TK =10, 20, 30, 50 and 100; with each parameter
setting the EE sampler was performed independently 100 times. From the target
chain X(0) we calculated

P̂ = 1

n
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i=1

1
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,

the probability of visiting the mode at the origin. From the summary statistics in
Table 1, we see that (i) the performance of EE is quite stable with an MSE be-
tween 0.04 and 0.06 for different temperature ladders; (ii) more than 98% of the
times EE did jump between the two modes. In order to assess the performance of
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TABLE 1
Summary statistics of EE and PT for the needle-in-the-haystack example

E(P̂ ) std(P̂ ) 5% 95% MSE # Jump # Miss

EE(N = 200, TK = 10) 0.3740 0.2119 0.0289 0.7020 0.0603 36.61 1
EE(N = 200, TK = 20) 0.4298 0.2048 0.0556 0.7492 0.0464 40.35 2
EE(N = 200, TK = 30) 0.4567 0.1973 0.1188 0.7440 0.0404 43.14 0
EE(N = 200, TK = 50) 0.3958 0.2172 0.0223 0.6939 0.0576 39.16 2
EE(N = 200, TK = 100) 0.4396 0.2122 0.0986 0.7762 0.0482 39.19 0
EE(N = 50, TK = 30) 0.3077 0.3163 0 0.8149 0.1361 6.83 36

PT(N = 200, TK = 10) 0.4241 0.2971 0 0.9276 0.0932 364.07 7
PT(N = 200, TK = 20) 0.4437 0.2692 0.0000 0.9476 0.0749 157.18 4
PT(N = 200, TK = 30) 0.4664 0.3181 0 0.9979 0.1013 104.20 6
PT(N = 200, TK = 50) 0.4793 0.3093 0 0.9204 0.0951 63.47 6
PT(N = 200, TK = 100) 0.4291 0.2972 0 0.9772 0.0925 36.02 7

Tabulated are the mean, standard deviation, 5% and 95% quantiles, and MSE of P̂ in 100 independent
runs. Also reported here are the average number of jumps between the two modes and the total
number of runs in which the sampler missed the mode at the origin. N is the number of iterations for
each chain in units of 1000 after the burn-in period.

EE on this problem, we also applied PT under exactly the same settings including
the numbers of chains and iterations, the temperature ladders and the exchange
probability (pex = pee = 0.3). It turns out that with all the different temperature
ladders PT never outperformed even the worst performance of EE (TK = 10) in
MSE (Table 1). From the best performance of the two methods, that is, EE with
TK = 30 and PT with TK = 20, one sees that (i) the MSE of EE is about 54% of
that of PT; (ii) the spread of the estimated probability is smaller for EE than for PT
[see the standard deviation and (5%,95%) quantiles]. We selected a typical run of
EE in the sense that the frequency of jump between the two modes of this run is
approximately the same as the average frequency, and we plotted the samples in
Figure 1. The chain mixed well in each mode and the cross-mode jump is accept-
able. Even in this artificially created extreme example of a needle in the haystack
the performance of EE is still quite satisfactory with only four chains (K = 3).
It is worth emphasizing that we did not even fine-tune the energy or temperature
ladders—they are simply set by a geometric progression.

But we do want to point out that one can always cook up extreme examples to
defeat any sampling algorithm. For instance, one can hide two needles miles apart
in a high-dimensional space, and no sampling algorithm is immune to this type
of extreme example. In fact in Chen and Kim’s example, if we ran EE with only
50,000 iterations (after the burn-in period) with TK = 30, the resulting MSE in-
creased to 0.136 and 36% of the times EE missed the needle completely (Table 1).



1652 S. C. KOU, Q. ZHOU AND W. H. WONG

5. Concluding remarks. We thank all the discussants for their insightful con-
tributions. We appreciate the efforts of the Editor and the Associate Editor for
putting up such a platform for exchanging ideas. We hope that the readers will
enjoy as much as we did reading these comments and thinking about various sci-
entific, statistical and computational issues raised.
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