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Suppose that univariate data are drawn from a mixture of two distrib-
utions that are equal up to a shift parameter. Such a model is known to be
nonidentifiable from a nonparametric viewpoint. However, if we assume that
the unknown mixed distribution is symmetric, we obtain the identifiability of
this model, which is then defined by four unknown parameters: the mixing
proportion, two location parameters and the cumulative distribution function
of the symmetric mixed distribution. We propose estimators for these four
parameters when no training data is available. Our estimators are shown to be
strongly consistent under mild regularity assumptions and their convergence
rates are studied. Their finite-sample properties are illustrated by a Monte
Carlo study and our method is applied to real data.

1. Introduction. Cumulative distribution functions (c.d.f.) of p-variate multi-
component mixture models are generally defined by

G(x) =
k∑

j=1

λjFj (x), x ∈ R
p,(1)

where the unknown mixture proportions λj (λj ≥ 0 and
∑k

j=1 λj = 1) and the
unknown c.d.f. Fj are to be estimated. It is commonly assumed that the Fj ’s be-
long to a parametric family, which means that the space of unknown parameters
is reduced to a Euclidean set, leading to parametric inference. There is an exten-
sive literature on this subject, including the monographs of Everitt and Hand [16],
Titterington, Smith and Makov [40], McLachlan and Basford [28] and McLachlan
and Peel [29]. The main types of estimators that have been proposed are the follow-
ing: maximum likelihood (e.g., [7, 24, 25, 35]), minimum chi-square (e.g., [11]),
method of moments (e.g., [26]), Bayesian approaches (e.g., [13, 15]) and tech-
niques based on moment generating functions (e.g., [34]). Note that the number of
components k in model (1) may also be an unknown parameter to be estimated,
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leading to various rates of convergence for maximum likelihood estimators, as dis-
cussed by Chen [6]. In this case, the selection of a model is an important topic;
see, for example, [10, 22, 23].

The choice of a parametric family for the Fj ’s may be difficult when little is
known about subpopulations. However, models of type (1) are generally nonpara-
metrically nonidentifiable without additional assumptions. This is no longer true
when training data are available, that is, when some data are of known origin with
respect to the components of the mixture distribution. In this case nonparametric
techniques can be applied; see, for example, [4, 17, 21, 31, 33, 36, 39, 40]. As Hall
and Zhou [18] state, “very little is known about nonparametric inference in mix-
tures without training data.” These authors looked at p-variate data drawn from
a mixture of two distributions, each having independent components, and proved
that, under mild regularity assumptions, their model is identifiable for p ≥ 3. They
proposed root-n consistent estimators of the 2p univariate marginal distributions
and the mixing proportion. In a working paper Kitamura [20] investigates identifi-
ability of type (1) models with the presence of covariates.

Note that even if model (1) is not nonparametrically identifiable, there exist, for
p = 1 and k = 2, many real data sets in the statistical literature for which such a
model is used under parametric assumptions for the Fj ’s. For example, Azzalini
and Bowman [1] provided data on the length of intervals between eruptions and the
duration of the eruption for the Old Faithful Geyser in Yellowstone National Park.
Another example deals with average amounts of precipitation (rainfall) in inches
for United States cities (from the Statistical Abstract of the United States, 1975;
see [30]). These two data sets are available in the R statistical package. Moreover,
in some studies, the only parameters of interest are mixture proportions, in which
case components Fj in model (1) are nuisance parameters (see, e.g., [8]). In this
paper we consider the two-component identifiable restriction of model (1) defined
by

G(x) = λF(x − µ1) + (1 − λ)F (x − µ2), x ∈ R.(2)

Unknown parameters are the c.d.f. F of a symmetric distribution, two real location
parameters µ1 and µ2 and the mixing proportion λ. Note that this model has also
been studied by Hunter, Wang and Hettmansperger [19] in an independent work.
Model (2) above is called semiparametric inasmuch as the unknown parameters
can be separated into a functional part F and a Euclidean part (µ1,µ2, λ). Note
that such a model should be distinguished from the so-called semi- or nonparamet-
ric mixture models (e.g., [27]) where G is defined by

G(x) =
∫

R

F(x; θ) dH(θ), x ∈ R,(3)

where F belongs to a parametric family and H is an unknown distribution function
on R. However, as noted by Lindsay and Lesperance [27], there is a link between
models (1) and (3) if H is discrete with k points of support. Of course, such a link
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exists between models (2) and (3) by assuming that, in the latter model, F(·; θ) =
F(· − θ) with F in the c.d.f. family F of symmetric distributions, and that H puts
masses λ and 1 − λ at points µ1 and µ2, respectively.

One of the fundamental issues with mixture models of type (1) is to provide
identifiability results. When the Fj ’s belong to certain specific parametric families
(e.g., the continuous exponential family), identifiability results are available; see,
for example, [2, 5, 38]. More is needed when we aim to estimate the Fj ’s nonpara-
metrically (see [18] for the two components case). Working with model (2), we
need to prove that G is defined by a unique quadruple (λ,µ1,µ2,F ).

The paper is organized as follows. In the next section we give an identifiability
result for model (2). In Section 3 we provide a methodology for estimating un-
known parameters in our two-component mixture model. Consistency results and
convergence rates of our estimators are given in the same section. Our main results
are proved in Section 5. In Section 4 finite-sample properties of our estimators are
illustrated by a Monte Carlo study and our method is applied to precipitation data.

2. Identifiability. First, note that if F in model (2) admits a density func-
tion f (an even function), the mixture distribution admits a density function g

defined by

g(x) = λf (x − µ1) + (1 − λ)f (x − µ2), x ∈ R,(4)

where θ = (λ,µ1,µ2) ∈ � = [0,1/2) × (R2\�) and � = {(x, x);x ∈ R}.
The aim of this section is to investigate identifiability, that is, the possibility of

having

λF(x − µ1) + (1 − λ)F (x − µ2)

= λ′F ′(x − µ′
1) + (1 − λ′)F ′(x − µ′

2) ∀x ∈ R,
(5)

for two different quadruples (θ,F ) and (θ ′,F ′) in �×F , where θ ′ = (λ′,µ′
1,µ

′
2)

and F is the c.d.f. set of symmetric distributions. Note that it is sufficient to
consider λ ∈ [0,1/2) because the model is invariant by permutation of (λ,µ1)

and (1 − λ,µ2). Note also that what we mean by identifiability is not entirely
an injectivity condition, since if λ = 0, we only need to obtain λ′ = 0, µ2 = µ′

2
and F = F ′. Clearly, identifiability fails if we allow λ to be equal to 1/2. In-
deed, suppose that f is itself an even mixture density function, for example,
f (x) = h(x − µ)/2 + h(x + µ)/2 with h an even density function. If g(x) =
f (x − µ2) with λ = 0, then (5) is obviously satisfied with λ′ = 1/2, µ′

1 = µ + µ2,
µ′

2 = µ2 − µ and f ′ = h. The main identifiability result is summarized in the
following theorem.

THEOREM 2.1. If (λ,µ1,µ2,F ) and (λ′,µ′
1,µ

′
2,F

′) are two parameters of
[0,1/2) × (R2\�) × F satisfying (5), then λ = λ′, µ2 = µ′

2 and F = F ′, and
µ1 = µ′

1 if λ > 0.



SEMIPARAMETRIC MIXTURE MODEL 1207

Hunter, Wang and Hettmansperger [19] have established a similar result for
the parametric part (λ,µ1,µ2) of the model. Their results are slightly different
from ours since they considered identifiability from the injectivity point of view.
They also gave a necessary condition for identifying a type (2) model with three
components.

A question which naturally arises concerns the possibility of extending our iden-
tifiability result when scale parameters are introduced into model (2). In fact, it is
easy to show that such a model is generally not identifiable.

3. Methodology and theoretical results. Let X1, . . . ,Xn be n independent
and identically distributed random variables with common c.d.f. G given by
model (2). We shall denote by θ0 and F0 the true values of the unknown Euclid-
ean parameter and the unknown mixed c.d.f. The aim of this section is to propose
estimators for θ0 and F0. Asymptotic results are given with respect to n → +∞.

The first key idea developed in Section 3.1 is based on the possibility of express-
ing F as a function of G and θ (resp. f as a function of g and θ ) by inverting the
relation (2) [resp. by inverting the relation (4)]. The second key idea, developed in
Section 3.2, involves using the symmetry property of F0 in order to propose a con-
trast function for the Euclidean parameter θ when G is known. Then, in Sections
3.3 and 3.4, replacing G by the corresponding empirical c.d.f., we propose esti-
mators of θ0 and F0 and give some asymptotic results for these estimates. These
results are obtained under two kinds of assumptions on F0:

C1. F0 is strictly increasing and Lipschitz on R.
C2. F0 is strictly increasing, twice continuously differentiable on R and F ′′

0 ∈
L1(R).

3.1. Inversion formula. Assume that in the mixture model defined by (2) the
Euclidean parameter θ = (λ,µ1,µ2), with µ1 �= µ2 and λ ∈ [0,1/2), is known.
The key idea consists in rewriting (2) as

F(x) = 1

1 − λ
G(x + µ2) + −λ

1 − λ
F(x + η) ∀x ∈ R,(6)

where η = µ2 − µ1 �= 0, and hence, using (6) as a recurrence formula. Let � be a
positive integer. By using (6) � times, we get

F(x) = 1

1 − λ

�−1∑
k=0

( −λ

1 − λ

)k

G(x + µ2 + kη)

+
( −λ

1 − λ

)�

F (x + �η) ∀x ∈ R.

(7)

Let us show that

F(x) = 1

1 − λ

∑
k≥0

( −λ

1 − λ

)k

G(x + µ2 + kη) ∀x ∈ R.(8)
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If we denote by H the right-hand side in (8), then by (7) we get, for all � ≥ 1,

‖F − H‖∞ ≤
(

λ

1 − λ

)�

+ 1

1 − λ

∑
k≥�

(
λ

1 − λ

)k

≤
(

λ

1 − λ

)�(
1 + 1

1 − 2λ

)
,

where ‖ · ‖∞ denotes the supremum norm. Since the right-hand side of the above
inequality can be made arbitrarily small, it follows that F = H . Similarly, working
with densities [see (4)] and replacing the supremum norm by the L1(R)-norm
‖ · ‖1, we get

f (x) = 1

1 − λ

∑
k≥0

( −λ

1 − λ

)k

g(x + µ2 + kη) for µ-almost all x ∈ R,(9)

where µ is Lebesgue measure on R.
At this point it is convenient to introduce the linear bounded operators

Aθ and A−1
θ defined by

Aθ = λτµ1 + (1 − λ)τµ2 and A−1
θ = 1

1 − λ

∑
k≥0

( −λ

1 − λ

)k

τ−µ2−kη,(10)

where τµ (µ ∈ R) is the shift operator defined by τµf = f (· − µ). With the above
definitions of Aθ and A−1

θ , formulae (2) and (4) are equivalent to G = AθF and
g = Aθf , respectively, whereas formulae (8) and (9) are equivalent to F = A−1

θ G

and f = A−1
θ g, respectively.

The interest of the operator A−1
θ is that if θ is known, the c.d.f. F may be recov-

ered from a nonparametric estimate Ĝ of G by considering the reversed estimates
F̂ = A−1

θ Ĝ. This also holds for the density f , defining f̂ = A−1
θ ĝ with ĝ a non-

parametric estimator of g. Unfortunately, the Euclidean parameter θ is generally
unknown and thus we need to propose an estimate of θ separately. It should be
noted that the above inversion formulae do not require the model to be identifi-
able. We saw in Section 2 that a crucial factor in obtaining identifiability is using
the symmetry of the unknown mixed distribution. In the next paragraph we use the
symmetry of the mixed distribution to provide a contrast function.

3.2. A contrast function. The second key point follows from the following
simple remark. Let Fθ = A−1

θ G = A−1
θ Aθ0F0, where θ ∈ �. Clearly, if θ = θ0,

we have Fθ = F0 (from Section 3.1), and it must have the invariance property
of c.d.f.’s of symmetric distributions, F0(x) = 1 − F0(−x). For simplicity, let us
introduce Sr , the symmetry operator defined by SrF (·) = 1 − F(−·). The preced-
ing remark may be reformulated as follows: if θ = θ0, then A−1

θ G = SrA
−1
θ G or,

equivalently, G = AθSrA
−1
θ G, by applying Aθ on the left-hand side of the last
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equality. What about the converse? The answer is given in the following theorem,
whose proof is given in Section 5.

THEOREM 3.1. Consider model (2) with F0 the c.d.f. of a symmetric distrib-
ution and θ0 ∈ �. If, for θ ∈ �, we have G = AθSrA

−1
θ G, then θ = θ0.

Assuming that G is known, we can recover the true value θ0 of θ by minimizing
a discrepancy measure between G and Gθ = AθSrA

−1
θ G. Recall that G is un-

known but can be estimated, which is why we choose to consider the discrepancy
measure K , defined by

K(θ) ≡ K(θ;G) =
∫

R

(
Gθ(x) − G(x)

)2
dG(x), θ ∈ �.(11)

The choice of introducing the weighted measure G in the above integral follows
from the consideration that if G is replaced by its empirical c.d.f., then the integral
sign turns into a simple sum. As a consequence of the preceding theorem, assuming
that F is sufficiently smooth and that G is known, we are able to show that K is a
contrast function for the unknown Euclidean parameter θ .

COROLLARY 3.1. Under assumption C1, K is a contrast function: for all
θ ∈ �, K(θ) ≥ 0 and K(θ) = 0 if and only if θ = θ0.

3.3. Estimators of the Euclidean parameter θ . The above Corollary 3.1 sug-
gests that the unknown Euclidean parameter θ should be estimated as follows:

θ̂n = arg min
θ∈�

K(θ; Ĝn),

where Ĝn is an estimator of the c.d.f. of G. It is important to note that if Ĝn is a
stepwise function, K(θ; Ĝn) is also a stepwise function with respect to parameters
µ1 and µ2, and does not have the required regularity properties for differentiable
optimization techniques to be applied in order to find θ̂n. This is the reason why
we need to distinguish two cases: (P1) the parameters µ1 and µ2 are known and
(P2) the parameters µ1 and µ2 are unknown.

(P1) The parameters µ1 and µ2 are known, whereas λ and F are unknown.

For this problem, we suppose that the true mixing proportion λ0 belongs to
[0,1/2 − d], where d ∈ (0,1/2). In this case the parameter θ reduces to λ and we
estimate λ by

λ̂n = arg min
λ∈[0,1/2−d]

K(λ; Ĝn),

where Ĝn is the empirical c.d.f. of G defined by

Ĝn(x) = 1

n

n∑
i=1

1Xi≤x ∀x ∈ R,(12)
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where 1 denotes the indicator function. Let us give an explicit formula for Ĝ
(n)
λ =

AλSrA
−1
λ Ĝn involving a sum of n terms:

Ĝλ(x) = 1 + 1

n

n∑
i=1

(
λ

λ − 1
1x≤η+2µ1−Xi

+ 1 − 2λ

λ

(
λ

λ − 1

)L(i,x))
,(13)

where

L(i, x) = max
(

1,

⌈
x − 2µ1 + Xi − η

η

⌉)
,

and where �x� denotes the smallest integer greater than or equal to x and η =
µ2 − µ1. The following theorem, whose proof is provided in Section 5, gives the
asymptotic behavior of λ̂n.

THEOREM 3.2. Assume that the c.d.f. F0 satisfies assumption C1. Then
(i) λ̂n converges almost surely to λ0, and (ii) we have

√
n(λ̂n − λ0) = OP (1).

Note that if F0 is assumed to admit a first-order moment, then, using the first-
order moment equation of g, we show that λ0 can be directly estimated by the
natural empirical estimator

λ̄n = n−1 ∑n
i=1 Xi − µ2

µ2 − µ1
,

which obviously satisfies results of the above theorem.

(P2) The parameters µ1,µ2, λ and F are unknown.

For this problem, we suppose that � = [0,1/2 − d] × X, where 0 < d < 1/2
and X is a compact subset of R

2 such that X∩� = ∅, and the unknown Euclidean
parameter θ is an interior point of �. As explained previously, we need to change
K(·; Ĝn) into the more regular version Kr(·; Ĝn) defined by

Kr(θ; Ĝn) =
∫

R

(
G̃

(n)
θ (x) − G̃n(x)

)2
dĜn(x),

where G̃
(n)
θ = AθSrA

−1
θ G̃n and G̃n(x) =

∫ x

−∞
ĝn(y) dy, with

ĝn(x) = 1

bn

∫
R

q

(
x − y

bn

)
dĜn(y),

where (bn)n≥1 is a sequence of real numbers decreasing to 0. Our numerical ap-
plications are based upon the kernel function q defined by q(x) = (1 − |x|)1|x|≤1.

As for the (P1) problem, we prove in Section 5 asymptotic results summarized
in the next theorem for the estimator θ̂n. From a general point of view, G̃n is a
smooth estimate of the c.d.f. G defined, for x ∈ R, by

G̃n(x) = 1

n

n∑
k=1

Q

(
x − Xk

bn

)
,(14)
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where Q(x) = ∫ x
−∞ q(y) dy, with q an even density function with compact support

and second-order moment equal to 1, and (bn)n≥1 is a sequence of nonnegative real
numbers decreasing to 0 with nbn → +∞ and

√
nb2

n = O(1). The fact that q has
compact support leads to an explicit formula for G̃

(n)
θ , involving a sum of n terms,

G̃θ (x) = 1 + 1

(nbn)

n∑
i=1

{
λ

λ − 1
Q

(−x + η + 2µ1 − Xi

bn

)

+ 1 − 2λ

λ

(
λ

λ − 1

)L2(i,x)

(15)

+ 2λ − 1

λ(λ − 1)

L2(i,x)−1∑
k=L1(i,x)

(
λ

λ − 1

)k

× Q

(−x + (k + 1)η + 2µ1 − Xi

bn

)}
,

where, for k = 1,2,

Lk(i, x) = max
(

1,

⌈
x − 2µ1 + Xi − η + (−1)kbn

η

⌉)
.

THEOREM 3.3. If the c.d.f. F0 satisfies C1, then θ̂n converges almost surely
to θ0. If, in addition, F0 satisfies C2, we have n1/4−α(θ̂n − θ0) = oa.s.(1), for all
α > 0.

3.4. Estimators of functional parameter F . As suggested by the inversion
formula (8), once we get a consistent estimator θ̂n of the unknown (or partially
unknown) Euclidean true parameter θ0, it is natural to seek to approximate the
unknown c.d.f. F0 by F̃n = A−1

θ̂n
Ĝn. However, since we approximate the c.d.f.

of a symmetric distribution, we constrain F̃n to satisfy the invariance property
F̃n = SrF̃n, leading to the final estimator

F̂n = 1
2(I + Sr)A

−1
θ̂n

Ĝn,(16)

where I is the identity operator. By similar arguments, the unknown density func-
tion f0 can in turn be estimated by

f̂n = 1
2(I + Sd)A−1

θ̂n
ĝn,(17)

where the operator Sd is defined by (Sdf )(x) = f (−x) (corresponding to the in-
variance property of densities of symmetric distributions). The next theorem gives
asymptotic results for both F̂n and f̂n for problems (P1) and (P2). These theorems
are proved in Section 5.
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THEOREM 3.4. (i) If F0 satisfies C1, then ‖F̂n − F0‖∞ converges almost
surely to 0 for problems (P1) and (P2).

(ii) Under C1, we have ‖F̂n −F0‖∞ = OP (n−1/2) for problem (P1). Under C2,
for problem (P2) we have ‖F̂n − F0‖∞ = oa.s.(n

−1/4+α) for any α > 0.
(iii) Under C1 (resp. C2), for problem (P1) [resp. (P2)], ‖f̂n − f0‖1 converges

almost surely to 0.

Let us notice that generally F̂n (resp. f̂n) is not a c.d.f. function (resp. a density
function). Indeed, by the definition of a mixture, g belongs to the range of the
operator Aθ , whereas this is no longer true for its approximate ĝn. Since there
is no possibility that ĝn is a two-component mixture in the sense of model (2),
it follows that A−1

θ̂n
ĝn cannot be a density function, and the same holds for f̂n.

However, from a practical point of view, we can easily transform estimators f̂n

into density functions. Let us consider f ∗
n = f̂n1

f̂n≥0. It is straightforward to show

that ‖f ∗
n − f0‖1 ≤ ‖f̂n − f0‖1, and then we have the almost sure convergence of

‖f ∗
n − f0‖1 to 0, given the assumptions of Theorem 3.4(iii). Moreover, under the

same assumptions and with sn = ∫
R

f ∗
n (x) dx, we have

|sn − 1| =
∣∣∣∣
∫

R

(
f ∗

n (x) − f0(x)
)
dx

∣∣∣∣
≤ ‖f ∗

n − f0‖1

≤ ‖f̂n − f0‖1 → 0 a.s.

Therefore, f̃n = s−1
n f ∗

n are density functions that satisfy ‖f̃n − f0‖1 → 0, almost
surely.

3.5. Discussion of the three-component case. As we discussed in Section 2,
identifiability results exist (see [19]) for the following three-component model:

G(x) = λ1F(x − µ1) + λ2F(x − µ2) + λ3F(x − µ3) ∀x ∈ R,

where F is the c.d.f. of a symmetric distribution, and the λi’s are nonnegative
real numbers with λ1 + λ2 + λ3 = 1. A question naturally arises concerning the
possibility of extending our estimation method to the above model. Following the
method presented in Section 3.1, we get, for all � ≥ 1,

F(x) = G(x + µ3)

λ3

+
�−1∑
k=1

(−1)k
∑

(i1,...,ik)∈{1,2}k
λi1 · · ·λik

λk+1
3

G
(
x + µ3 + ηi1 + · · · + ηik

)

+ (−1)�
∑

(i1,...,i�)∈{1,2}�
λi1 · · ·λi�

λ�
3

F
(
x + ηi1 + · · · + ηi�

) ∀x ∈ R,



SEMIPARAMETRIC MIXTURE MODEL 1213

where we suppose that λ3 > max(λ1, λ2) and we denote ηi = µ3 −µi for i = 1,2.
To prove that a type (8) formula exists, we need to show that, for all x ∈ R, we
have

F(x) = G(x + µ3)

λ3

+
+∞∑
k=1

(−1)k
∑

(i1,...,ik)∈{1,2}k
λi1 · · ·λik

λk+1
3

G
(
x + µ3 + ηi1 + · · · + ηik

)
.

(18)

Unfortunately, taking x ≥ 1, it is easy to see that (18) is not satisfied by taking, for
example, λ1 = λ2 = 4/15, λ3 = 7/15, µ1 = 0, µ2 = −1, µ3 = 1 and F the c.d.f.
of the uniform distribution on (−1,1). Note, however, that if the inversion for-
mula (18) is valid [this is the case, e.g., for 2 max(λ1, λ2) < λ3], the methodology
proposed in this section for the two-component case may be applied.

4. Numerical study. We consider two distinct problems. The first is to esti-
mate λ given that µ1 and µ2 are known. In this case we use an explicit formula
for Ĝ

(n)
λ . In the second case we estimate θ = (λ,µ1,µ2) and we consider G̃

(n)
θ ,

the regularized version of Ĝ
(n)
θ . Explicit formulae for Ĝ

(n)
λ and G̃

(n)
θ are given in

(13) and (15). Recall that the computation of G̃
(n)
θ involves the choice of a band-

width bn. All the simulation results have been obtained with bn = n−1/4. This
value is not optimal to estimate the density g but it is compatible with the assump-
tion

√
nb2

n = O(1) needed to achieve the convergence rate given in Theorem 3.3.
Note that in all our simulations the variance σ 2

g under g is close to 1; our choice
for bn is then close to the bandwidth that minimizes the mean integrated squared
error, usually approximated by σg(4/3n)1/5 (see, e.g., [3]). It is known to be a
good approximation for normal data and a Gaussian kernel but we cannot insure
that it leads to an optimal choice for our problem. For the real example of rainfall
data given at the end of this section, we used the bandwidth (bn = 3.84) provided
by the R software.

Choice of optimization method. Problem (P1) attempts to find an estimate λ̂n

of λ when µ1 and µ2 are known,

λ̂n = arg min
λ∈[0,1/2−d]

K(λ; Ĝn).(19)

Problem (P2) attempts to find an estimate θ̂n of θ = (λ,µ1,µ2),

θ̂n = arg min
θ∈�

K̃r(θ; Ĝn).(20)

Both problems require the minimization of a differentiable functional. As far as
problem (19) is concerned, numerical experiments indicate that K(·; Ĝn) is strictly
convex in [0,1/2 − d] and, thus, an unconstrained minimization algorithm can



1214 L. BORDES, S. MOTTELET AND P. VANDEKERKHOVE

TABLE 1
Empirical mean and standard error (in brackets) of λ

estimates, obtained from 500 simulations of i.i.d.
samples of size n, for the (P1) problem with

µ1 = −1 and µ2 = 2

n
λ 0.15 0.25 0.35

100 0.151 (0.058) 0.256 (0.060) 0.347 (0.057)
400 0.148 (0.031) 0.252 (0.032) 0.349 (0.029)

safely be used, with a starting point in this interval. We use the quasi-Newton
BFGS (Broyden, Fletcher, Goldfarb and Shanno) method (see, e.g., [32]). In the
second case, some experiments with the same unconstrained method show that
Kr(·; Ĝn) is not convex, and that Kr(·; Ĝn) has local minima not belonging to �.
So we use the constrained version of the BFGS algorithm, where bounds on the
variables can be taken into account. In both cases, we provide the gradient of the
functional, which can be readily computed from the explicit formulae given in
Section 3.3. All the computations are performed with Scilab.

Numerical result of the Monte Carlo study for Gaussian mixtures. In this sec-
tion we denote by N (µ,σ 2) a Gaussian distribution with mean µ and variance σ 2.
The performance of our method is evaluated, via a Monte Carlo study, on the
Gaussian mixture

λ ∗ N (µ1,1) + (1 − λ) ∗ N (µ2,1),

for the (P1) problem (see Table 1) and in the (P2) problem (see Tables 2 and 3).
More precisely, Table 1 summarizes the performance of our method for differ-
ent values of λ, that is, λ = 0.15 (weakly bumped model), λ = 0.25 (moder-
ately bumped model) and λ = 0.35 (strongly bumped model), when µ1 = −1 and

TABLE 2
Empirical mean and standard error of (λ,µ1,µ2) semiparametric
estimates, obtained from 200 simulations of i.i.d. samples of size n,

for the (P2) problem with bn = n−1/4

n (λ,µ1,µ2) Empirical means Standard errors

100 (0.15,−1,2) (0.161,−0.948,2.030) (0.052,0.365,0.137)

200 (0.15,−1,2) (0.157,−1.027,2.023) (0.035,0.283,0.101)

100 (0.25,−1,2) (0.249,−1.011,2.009) (0.060,0.289,0.154)

200 (0.25,−1,2) (0.251,−1.000,2.010) (0.041,0.195,0.101)

100 (0.35,−1,2) (0.347,−0.988,1.990) (0.056,0.230,0.145)

200 (0.35,−1,2) (0.357,−0.976,2.012) (0.046,0.176,0.114)
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TABLE 3
Empirical mean and standard error of (λ,µ1,µ2) maximum likelihood
estimates, obtained from 200 simulations of i.i.d. samples of size n, for

the (P2) problem with bn = n−1/4

n (λ,µ1,µ2) Empirical means Standard errors

100 (0.15,−1,2) (0.163,−0.987,2.018) (0.054,0.431,0.138)

200 (0.15,−1,2) (0.152,−1.013,2.004) (0.035,0.283,0.089)

100 (0.25,−1,2) (0.256,−1.008,2.020) (0.051,0.268,0.132)

200 (0.25,−1,2) (0.247,−1.003,2.004) (0.046,0.204,0.114)

100 (0.35,−1,2) (0.342,−1.041,1.980) (0.054,0.231,0.161)

200 (0.35,−1,2) (0.345,−1.009,1.991) (0.041,0.159,0.111)

µ2 = 2 are known. Table 2 summarizes the performance of our method in estimat-
ing λ = 0.15,0.25,0.35, and µ1 = −1, µ2 = 2, while Table 3 gives the perfor-
mance of the standard maximum likelihood approach in the same framework.

Comments on Tables 1–3. The results in Table 1 show first that empirical bias
amounts to less than 1% of the true values, and that standard errors are reason-
ably small. In order to clarify the analysis of the results given in Table 1 and to
quantify the influence of bumps on the estimation efficiency, we can normalize the
empirical standard errors with respect to the true values of the parameters (std/λ).
We obtain for λ = 0.15,0.25,0.35, normalized empirical standard errors equal to
0.386, 0.240, 0.162, respectively, for n = 100, and equal to 0.206, 0.128, 0.0828,
for n = 400. These indicators show, roughly speaking, that our estimation method
is around 2.4 times more precise when λ = 0.35, in comparison with the case
where λ = 0.15, and 1.6 times more precise when λ = 0.35 in comparison with
the case where λ = 0.25. This shows that the nonnegligibility of one subpopula-
tion with respect to the other subpopulation improves the quality of the estimators.

Concerning Tables 2 and 3, it is interesting to note that, when the location para-
meters are unknown, the previous remark is no longer true. In fact, even if the pre-
vious comments on empirical standard errors are clearly relevant, it is worth noting
that the smaller empirical bias is not obtained for the highly bumped model, but for
the moderately bumped model. To explain this phenomenon, we can remark that
when λ = 0.15, there are few data to estimate µ1, whereas when λ = 0.35, even if
there are many more data to estimate µ1, this estimation is disturbed by the left tail
of the distribution centered on µ2. Finally, it is with λ = 0.25 that we obtain the
best compromise and therefore the best estimates with regard to minimum bias. In
addition, we observe that the performance of the maximum likelihood approach
(which is known to be asymptotically efficient) is in the range of those obtained by
our method, which illustrates the good behavior of our semiparametric approach
with respect to the parametric approach.



1216 L. BORDES, S. MOTTELET AND P. VANDEKERKHOVE

A trimodal example. We use a basic symmetric density f which is already a
mixture, that is,

f (x) = 1
8ϕ(x + 4) + 3

4ϕ(x) + 1
8ϕ(x − 4),

where ϕ is the density function of the standard Gaussian distribution. The density
of the simulated data is taken as

g(x) = 1
4f (x) + 3

4f (x − 4) ∀x ∈ R.

We performed the estimation on a simulated sample of size n = 100. The
results are given in Figure 1. Figure 1(a) shows f̃ superimposed with the true den-
sity function f and Figure 1(b) shows the reconstructed density function g̃(·) =
λ̂f̃ (· − µ̂1) + (1 − λ̂)f̃ (· − µ̂2), using estimated values of λ, µ1 and µ2, superim-

FIG. 1. Estimated parameters µ̂1 = 0.691 (0.760), µ̂2 = 3.728 (0.153), λ̂ = 0.232 (0.079) for
n = 100 and bn = n−1/4, the results in parentheses corresponding to the empirical standard errors.
(a) Graph of f̃ (solid ) and graph of f (dashed ). (b) Graph of λ̂f̃ (·− µ̂1)+ (1− λ̂)f̃ (·− µ̂2) (solid )
and graph of g (dashed ).
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posed with the true density function g. The optimization required 31 iterations and
45 evaluations of Kr(·; Ĝn) and its gradient.

Standard errors for Euclidean parameters are computed by the Jackknife method
(see, e.g., [14]). We observe that for a reasonably small sample size n = 100 the
reconstructed mixture density g̃ almost yields the true density g. The main differ-
ences appear around local modes and in the tails of g.

Numerical results on real data. We use the average amount of precipitation
(rainfall) in inches for each of 70 United States (and Puerto Rican) cities (from the
Statistical Abstract of the United States, 1975; see [30]). We consider two models.
The first is model (2) in which we denote by λ̂, µ̂1, µ̂2 and f̃ the estimators of λ,
µ1, µ2 and f (the density function of the c.d.f. F ). The second model is a para-
metric version of model (2) in which we assume that f is the density function of a
centered Gaussian distribution with variance equal to σ 2. Estimators of unknown
parameters of the second model are denoted by λ̃, µ̃1, µ̃2 and σ̃ 2, and calculated
according to the maximum likelihood method.

Figure 2(a) shows f̃ , the estimator of f superimposed with the density function
of N (0, σ̃ 2). Figure 2(b) shows ĝ, the empirical estimate of g (obtained by the
kernel method) superimposed with both the reconstructed density λ̂f̃ (· − µ̂1) +
(1 − λ̂)f̃ (· − µ̂2) (using estimated values λ̂, µ̂1 and µ̂2 of λ, µ1 and µ2) and
the density of the parametric model where the Euclidean parameter is replaced by
its maximum likelihood estimator. The optimization required 32 iterations and 66
evaluations of Kr(·; Ĝn) and its gradient.

We observe in Figure 2(a) that the nonparametric density estimate f̂ is provided
with two symmetric small bumps at the beginnings of its tails, while the best fit-
ting Gaussian density does not obviously benefit from this kind of singularity and
is sharper around the origin. In Figure 2(b) we can see that these two additional
bumps make the difference in the good fitting behavior of the reconstructed mix-
ing distribution, except in a small area around [−20,0] (the area of interest being
[−20,75]), where the best fitting Gaussian mixture is slightly closer to ĝ. Notice
also that the smaller bump on the left of ĝ is clearly detected by our method, while
the best fitting Gaussian mixture almost misses this singularity. Again, standard er-
rors (given in brackets) for Euclidean parameters are computed using the Jackknife
method.

5. Proofs.

5.1. Notation and preliminary results. According to whether we are looking
at density function estimation or c.d.f. estimation, the operators Aθ and A−1

θ , given
in (10), are defined, respectively, on spaces L1(R) or L∞(R) (endowed with the
usual norms ‖ · ‖1 and ‖ · ‖∞, resp.). Independently of the space under consid-
eration, it is straightforward to check that the norms (denoted ||| · |||) of operators
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FIG. 2. Estimated parameters for model (2): µ̂1 = 13.107 (3.299), µ̂2 = 39.056 (1.395),
λ̂ = 0.171 (0.078) (the bandwidth is fixed at 3.84). Estimated parameters for model
λ∗N (µ1, σ 2)+(1−λ)∗N (µ2, σ 2): µ̃1 = 15.715 (2.220), µ̃2 = 40.773 (1.297), λ̃ = 0.235 (0.060)

and σ̃ = 8.504 (1.187), the results in parentheses corresponding to the empirical standard errors.
(a) Graph of the nonparametric density estimator f̂ and graph of the density of N (0, σ̃ 2) (dashed).
(b) Graph of ĝ (dashed ), graph of λ̂f̃ (· − µ̂1) + (1 − λ̂)f̃ (· − µ̂2) (solid ) and graph of the density
of λ̃N (µ̃1, σ̃ 2) + (1 − λ̃)N (µ̃2, σ̃ 2) (dash-dot).

Aθ and A−1
θ , for λ ∈ [0,1/2 − d] and d ∈ (0,1/2), satisfy

|||Aθ ||| ≤ 1 and |||A−1
θ ||| ≤ 1

1 − 2λ
≤ 1

2d
.(21)

Let us recall some basic results on Ĝn and G̃n defined respectively by
(12) and (14). From well-known results on empirical processes (see, e.g., [37]),
for general distribution functions G, we have

√
n‖Ĝn − G‖∞ = OP (1),(22)
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and the law of iterated logarithm (LIL)

‖Ĝn − G‖∞ = Oa.s.

(√
log log(n)

n

)
.(23)

If ‖f ‖∞ < ∞, and if f has derivative f (1) with ‖f (1)‖∞ < ∞, the same holds
for g, and by Corollary 1, page 766 in [37], if q has compact support, and if√

nb2
n = O(1), then we have

√
n‖Ĝn − G̃n‖∞ = Oa.s.(1).(24)

Hence, the result (23) holds for G̃n.
In the remainder of this paper we denote by L̇ and L̈ the first- and second-order

derivatives of a general function L with respect to λ ∈ [0,1/2−d] for problem (P1)
and θ ∈ � = [0,1/2 − d] × X for problem (P2) (see Section 3.3 for assumptions
on the Euclidean parameter space). In the sequel | · |2 denotes the Euclidean norm.

LEMMA 5.1. There exists c ∈ (0,+∞), such that for all θ ∈ � and n ≥ 1, we
have ∥∥Ĝ(n)

θ − Gθ

∥∥∞ ≤ c‖Ĝn − G‖∞.(25)

PROOF. Straightforward, since we have∥∥Ĝ(n)
θ − Gθ

∥∥∞ = ‖AθSr [A−1
θ (Ĝn − G)]‖∞

≤ |||A−1
θ ||| × ‖Ĝn − G‖∞

≤ 1

2d
‖Ĝn − G‖∞. �

LEMMA 5.2. Under C1, the mapping θ �→ Gθ(x) is Lipschitz on � uniformly
in x ∈ R, and the contrast function K is Lipschitz on �.

PROOF. For all (θ, θ ′) ∈ �2, we have |K(θ) − K(θ ′)| ≤ C‖Gθ − Gθ ′‖∞.

Therefore, it is sufficient to prove that θ �→ Gθ(·) is uniformly Lipschitz on �.
Simple calculations lead to

‖Gθ − Gθ ′‖∞ ≤ ‖AθSrA
−1
θ G − Aθ ′SrA

−1
θ G‖∞ + ‖A−1

θ G − A−1
θ ′ G‖∞.(26)

First we prove that the first term on the right-hand side of (26) is Lipschitz. Let us
remark now that, for all bounded functions H , we have, for all x ∈ R,

|AθH(x) − Aθ ′H(x)| ≤ 2|λ − λ′| × ‖H‖∞
+ sup

x∈R

max
i=1,2

∣∣H(x) − H
(
x − (µi − µ′

i )
)∣∣.(27)
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On the other hand, noticing η = µ2 − µ1 (resp. η′ = µ′
2 − µ′

1), we remark that for
all θ ∈ �, A−1

θ G satisfies, for all (z, z′) ∈ R
2,

|SrA
−1
θ G(z) − SrA

−1
θ G(z′)|

= |A−1
θ G(−z) − A−1

θ G(−z′)|

=
∣∣∣∣∣ 1

1 − λ

∞∑
k=0

(
− λ

1 − λ

)k(
G(−z + µ2 + kη) − G(−z′ + µ2 + kη)

)∣∣∣∣∣
≤ 1

2d
sup
y∈R

|G(y) − G(y − z + z′)|

≤ 1

2d
|G|Lip|z − z′|,

because under C1 G is Lipschitz with Lipschitz constant |G|Lip. Now replacing H

in (27) by SrA
−1
θ G, it follows from the above inequality that

|AθSrA
−1
θ G(x) − Aθ ′SrA

−1
θ G(x)| ≤ C|θ − θ ′|2.(28)

It remains to be proved that the second term on the right-hand side of inequal-
ity (26) is Lipschitz. We have

|A−1
θ G(x) − A−1

θ ′ G(x)|

≤
∣∣∣∣∣ 1

1 − λ

∞∑
k=0

(
− λ

1 − λ

)k(
G(x + µ2 + kη) − G(x + µ′

2 + kη′)
)∣∣∣∣∣

+
∣∣∣∣∣
(

1

1 − λ

∞∑
k=0

(
− λ

1 − λ

)k

− 1

1 − λ′
∞∑

k=0

(
− λ′

1 − λ′
)k

)

× G(x + µ2 + kη)

∣∣∣∣∣.
G is supposed to be Lipschitz. We have, for all x ∈ R,

|G(x + µ2 + kη) − G(x + µ′
2 + kη′)| ≤ |G|Lip(k + 1)|θ − θ ′|2;

thus, we obtain, by the two previous inequalities,

|A−1
θ G(x) − A−1

θ ′ G(x)|

≤ c1

1 − λ′
∞∑

k=0

(k + 1)

(
λ′

1 − λ′
)k

|θ − θ ′|2 + c2‖G‖∞|λ − λ′|

≤ c3|θ − θ ′|2,

(29)

where c1, c2 and c3 are nonnegative real constants. From inequalities (26)–(29), it
follows that the function θ �→ Gθ(x) is Lipschitz on � uniformly in x ∈ R, and
thus, K is Lipschitz on �. �
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LEMMA 5.3. For any α > 0, under C1 we have

sup
θ∈�

|K(θ; Ĝn) − K(θ)| = oa.s.(n
−1/2+α).(30)

The same result holds replacing K(·; Ĝn) by Kr(·; Ĝn). It is an obvious conse-
quence of properties of G̃n, since by the LIL result (23) for Ĝn and (24), we have

‖G̃n − G‖∞ = Oa.s.(
√

n−1 log logn ).

PROOF OF LEMMA 5.3. Considering the random variables Zi(θ) =
(Gθ(Xi) − G(Xi))

2 and using Lemma 5.1, we show that

|K(θ; Ĝn) − K(θ)| ≤ c‖Ĝn − G‖∞ + sup
θ∈�

∣∣∣∣∣1

n

n∑
i=1

(
Zi(θ) − E(Zi(θ))

)∣∣∣∣∣,
where c is a nonnegative constant. The two terms on the right-hand sides no longer
depend on θ . The first tends to 0 with the desired rate of convergence by the LIL
result given in (23). The second term is the supremum of an empirical process in-
dexed by the functional class H = {h(·, θ) = (Gθ(·)−G(·))2, θ ∈ �} of Lipschitz
bounded functions. Indeed, we have, by Lemma 5.2,

|h(x, θ) − h(x, θ ′)| ≤ |Gθ(x) + Gθ ′(x) − 2Gθ(x)| × |Gθ(x) − Gθ ′(x)|
≤ c|θ − θ ′|2.

Let (εn)n≥1 be a sequence of real numbers decreasing to 0. It follows by a Bern-
stein type theorem of van der Vaart and Wellner ([41], page 246) that there exist
nonnegative constants A and B such that

P

(
sup
θ∈�

∣∣∣∣∣1

n

n∑
i=1

(
Zi(θ) − EZi(θ)

)∣∣∣∣∣ > εn

)
≤ A

(√
nεn

)B exp(−2nε2
n).

It follows that if εn = n−1/2+α with α > 0, we get, by the Borel–Cantelli lemma,

sup
θ∈�

∣∣∣∣∣1

n

n∑
i=1

(
Zi(θ) − EZi(θ)

)∣∣∣∣∣ = oa.s.(n
−1/2+α),

which concludes the proof. �

LEMMA 5.4. Under C1, for k = 1,2, there exists a real constant c > 0 such
that, for all (λ1, λ2) ∈ [0,1/2 − d]2 and L ∈ L∞(R),∥∥∥∥

[
∂k

∂λk
AλSrA

−1
λ

]
λ=λ1

L −
[

∂k

∂λk
AλSrA

−1
λ

]
λ=λ2

L

∥∥∥∥∞
≤ c|λ1 − λ2| × ‖L‖∞.
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A straightforward consequence of the above lemma is that, for k = 1,2 and
L ∈ L∞(R), there exists another real constant c > 0 such that

∥∥∥∥ ∂k

∂λk
AλSrA

−1
λ L

∥∥∥∥∞
≤ c‖L‖∞.(31)

PROOF OF LEMMA 5.4. We prove the uniform Lipschitz property only for the
case where k = 1, since the case where k = 2 uses the same technical arguments.
For all (λ1, λ2) ∈ [0,1/2 − d]2, L ∈ L∞(R), and all x ∈ R, we have

∣∣∣∣
[

∂

∂λ
AλSrA

−1
λ

]
λ=λ1

L(x) −
[

∂

∂λ
AλSrA

−1
λ

]
λ=λ2

L(x)

∣∣∣∣
≤

∣∣∣∣ 1

(1 − λ1)2 − 1

(1 − λ2)2

∣∣∣∣
× ∑

k≥0

(k + 1)

(
λ1

1 − λ1

)k

(32)
× ∣∣L(−x + µ1 + µ2 + kη) − L

(−x + 2µ2 + (k + 1)η
)∣∣

+ 1

(1 − λ2)2

∑
k≥0

(k + 1)

∣∣∣∣
( −λ1

1 − λ1

)k

−
( −λ2

1 − λ2

)k∣∣∣∣
× ∣∣L(−x + µ1 + µ2 + kη) − L

(−x + 2µ2 + (k + 1)η
)∣∣.

By the mean value theorem, there exist λ̄ and λ̃ lying on the line segment with
extremities λ1 and λ2 such that

∣∣∣∣ 1

(1 − λ1)2 − 1

(1 − λ2)2

∣∣∣∣ ≤ 2

(1 − λ̄)3
|λ1 − λ2|,

and for all k ≥ 0,

∣∣∣∣
( −λ1

1 − λ1

)k

−
( −λ2

1 − λ2

)k∣∣∣∣ ≤ k

(
λ̃

1 − λ̃

)k−1(
1

1 − λ̃

)2

|λ1 − λ2|.

Using the above inequalities with (32), we obtain

∥∥∥∥
[

∂

∂λ
AλSrA

−1
λ

]
λ=λ1

L −
[

∂

∂λ
AλSrA

−1
λ

]
λ=λ2

L

∥∥∥∥∞
≤ 12‖L‖∞|λ1 − λ2|

d3 ,

which concludes the proof. �
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5.2. Proof of Theorem 2.1.

Step 1. Let {sin(α1t), . . . , sin(αpt)} be a family of p functions defined on R.
These functions are linearly independent if and only if we have

αi �= 0 for 1 ≤ i ≤ p and |αi | �= |αj | for 1 ≤ i < j ≤ p.(33)

Indeed, suppose that for β1, . . . , βp in R we have

p∑
i=1

βi sin(αit) = 0 ∀ t ∈ R.

Then, taking the derivative of the above expression with respect to t at orders
1,3, . . . ,2p − 1, we get at t = 0 the system of linear equations

p∑
i=1

βiα
2j+1
i = 0 for 0 ≤ j ≤ p − 1.

The corresponding determinant is a Vandermonde type determinant different
from 0 if and only if (33) is satisfied.

Step 2. We denote by � and �′ the characteristic functions of F and F ′, re-
spectively. Calculating the characteristic function of the two sides in (5), we get,
for all t ∈ R, (

λ exp(itµ1) + (1 − λ) exp(itµ2)
)
�(t)

= (
λ′ exp(itµ′

1) + (1 − λ′) exp(itµ′
2)

)
�′(t).

(34)

Since F and F ′ are c.d.f.’s of symmetric distributions, their characteristic func-
tions are real continuous functions equal to 1 at t = 0. We have from (34) that the
imaginary part of(

λ exp(itµ1) + (1 − λ) exp(itµ2)
)(

λ′ exp(−itµ′
1) + (1 − λ′) exp(−itµ′

2)
)

is equal to 0 in a neighborhood of 0. Then we have

λλ′ sin
(
(µ1 − µ′

1)t
) + λ(1 − λ′) sin

(
(µ1 − µ′

2)t
)

+ (1 − λ)λ′ sin
(
(µ2 − µ′

1)t
) + (1 − λ)(1 − λ′) sin

(
(µ2 − µ′

2)t
) = 0

(35)

on the whole real line, by analyticity of sine functions. We shall now consider two
cases.

Case 1: λ = 0. Then (35) reduces to

λ′ sin
(
(µ2 − µ′

1)t
) + (1 − λ′) sin

(
(µ2 − µ′

2)t
) = 0.(36)

If λ′ > 0, then we have 1 − λ′ > λ′ > 0, and by step 1 we need to consider the
following cases:
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• µ2 = µ′
2 or µ2 = µ′

1, hence by (36) µ′
2 = µ′

1, which is not admissible.
• |µ2 = µ′

1| = |µ2 = µ′
2|, which by (36) leads to λ′ + (1 − λ′) = 0 (impossible)

or λ′ − (1 − λ′) = 0 (not admissible).

It follows that λ′ = λ = 0 and, hence, by (35) µ′
2 = µ2.

Case 2: λ > 0. From Case 1, we also have λ′ > 0. Therefore, it remains to
show that if µ1 �= µ2, µ′

1 �= µ′
2, (λ,λ′) ∈ (0,1/2)2 and that, for all t ∈ R,

λλ′ sin
(
(µ1 − µ′

1)t
) + λ(1 − λ′) sin

(
(µ1 − µ′

2)t
)

+(1 − λ)λ′ sin
(
(µ2 − µ′

1)t
) + (1 − λ)(1 − λ′) sin

(
(µ2 − µ′

2)t
) = 0,

(37)

we have (λ,µ1,µ2) = (λ′,µ′
1,µ

′
2). If we denote β1 = λλ′, β2 = λ(1 − λ′), β3 =

λ′(1 − λ) and β4 = (1 − λ)(1 − λ′), then (37) is equivalent to

β1 sin(αt) + β2 sin
(
(α′ − η)t

)
+ β3 sin

(
(α + η)t

) + β4 sin(α′t) = 0 ∀ t ∈ R,
(38)

where α = µ1 − µ′
1, α′ = µ2 − µ′

2 and η = µ2 − µ1. It is straightforward to see
that if α = α′ = 0, then λ = λ′. Then it remains to show that (α,α′) = (0,0) is
not admissible. To avoid a lengthy proof, we consider only the case α = 0 and
α′ �= 0. The case α �= 0 and α′ = 0 is its symmetric counterpart and the case α �= 0
and α′ �= 0 involves substantial calculations but is straightforward. Hence, if we
suppose that α = 0 and α′ �= 0, equation (38) reduces to

β2 sin
(
(α′ − η)t

) + β3 sin(ηt) + β4 sin(α′t) = 0 ∀ t ∈ R.(39)

Since α′ and η are nonnull, by Step 1, we have to consider the following cases:

• α′ = η: hence, (β3 + β4) sin(ηt) = 0 for all t ∈ R. Then β3 + β4 = 0, which is
not possible.

• |α′ − η| = |η|: hence, α′ = 2η. Then (39) reduces to

(β2 + β3) sin(ηt) + β4 sin(2ηt) = 0 ∀ t ∈ R,

which, again by Step 1, cannot be satisfied for all t ∈ R.
• Cases |α′ − η| = |α′| and |η| = |α′| lead respectively to α′ = η/2 and η = −α′,

hence, as in the previous case, the resulting equations cannot be satisfied for all
t ∈ R.

Step 3. Now, since λ ∈ [0,1/2) we have |λ exp(itµ1) + (1 − λ) exp(itµ2)| ≥
1 − 2λ. Then � = �′ and, finally, F and F ′ are equal.
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5.3. Proofs of Theorem 3.1 and Corollary 3.1.

PROOF OF THEOREM 3.1. Let us write �H for the characteristic function
defined by �H(t) = ∫

R
exp(itx) dH(x) for all t ∈ R. Using the definitions of Aθ

and A−1
θ in (10), we obtain

�Gθ (t) = λ exp(itµ1) + (1 − λ) exp(itµ2)

λ exp(−itµ1) + (1 − λ) exp(−itµ2)
�G(−t) ∀ t ∈ R.(40)

Moreover, because �G(t) = (λ0 exp(itµ0
1) + (1 − λ0) exp(itµ0

2))�F0(t) and �F0

is an even function, �Gθ (t) = �G(t) for all t ∈ R implies that the imaginary part
of

(
λ exp(itµ1) + (1 − λ) exp(itµ2)

)(
λ0 exp(−itµ0

1) + (1 − λ0) exp(−itµ0
2)

)
is null in a neighborhood of 0. Finally, by Step 2 of the proof of Theorem 2.1, we
conclude that θ = θ0. �

PROOF OF COROLLARY 3.1. Given the assumptions concerning F0, we show
that Gθ is a continuous function. By Theorem 3.1, if θ �= θ0, there exists x0 ∈ R

such that G(x0) �= Gθ(x0), and there exist ε > 0 and α > 0 such that |G(x) −
Gθ(x)| > ε on [x0 − α,x0 + α]. It follows that

K(θ) ≥ ε2
∫ x0+α

x0−α
dG(x) = ε2(

G(x0 + α) − G(x0 − α)
)
> 0.

Otherwise, if θ = θ0 it is straightforward to check that K(θ) = 0. �

5.4. Proof of Theorem 3.2. Since the consistency proof for λ̂n follows the lines
of the consistency proof for θ̂n of problem (P2), it is omitted. For the remainder
of this proof, we therefore suppose that λ̂n converges almost surely to λ0. By a
first-order Taylor expansion of K̇(·; Ĝn) around λ̂n, we have

K̈(λ∗
n; Ĝn)

√
n(λ̂n − λ0) = −√

nK̇(λ0; Ĝn),(41)

where λ∗
n lies on the line segment with extremities λ0 and λ̂n. The desired result

follows by proving the two statements
√

nK̇(λ0; Ĝn) = OP (1)(42)

and

K̈(λ∗
n; Ĝn)

a.s.−→ 2
∫

R

Ġ2
λ0

dG > 0.(43)
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Result (42) follows from

|K̇(λ0; Ĝn)| =
∣∣∣∣
∫

R

2 ˙̂
G

(n)

λ0
(x)

(
Ĝ

(n)
λ0

(x) − Ĝn(x)
)
dĜn(x)

∣∣∣∣
≤ 2

∥∥Ĝ(n)
λ0

− Ĝn

∥∥∞ × ∥∥ ˙̂
G

(n)

λ0

∥∥∞

≤ 2
∥∥Aλ0SrA

−1
λ0

[Ĝn − G]∥∥∞ ×
∥∥∥∥
[

∂

∂λ
AλSrA

−1
λ

]
λ=λ0

Ĝn

∥∥∥∥∞
.

The above inequality with Lemma 5.1 and (31) give the existence of a nonnega-
tive constant c such that |K̇(λ0; Ĝn)| ≤ c‖Ĝn − G‖∞. Thus, from result (22), we
get (42). In order to prove (43), let us write the second derivative of K(·; Ĝn) at
point λ,

K̈(λ; Ĝn) = 2
∫

R

¨̂
G

(n)
λ

(
Ĝ

(n)
λ − Ĝn

)
dĜn + 2

∫
R

( ˙̂
G

(n)
λ

)2
dĜn.

We have∣∣∣∣K̈(λ∗
n; Ĝn) − 2

∫
R

Ġ2
λ0

dG

∣∣∣∣
≤ |K̈(λ∗

n; Ĝn) − K̈(λ0; Ĝn)| +
∣∣∣∣K̈(λ0; Ĝn) − 2

∫
R

Ġ2
λ0

dG

∣∣∣∣.
(44)

By very simple calculations, we show that

|K̈(λ∗
n; Ĝn) − K̈(λ0; Ĝn)| ≤ c|λ∗

n − λ0|,
where c is a nonnegative constant arising from Lemma 5.4, (31) and the fact that
Ĝn is a cumulative distribution function. By the above inequality and the strong
consistency of λ̂n, we conclude that K̈(λ∗

n; Ĝn) − K̈(λ0; Ĝn) converges almost
surely to 0.

Concerning the second term of the right-hand side of (44), let us write∣∣∣∣K̈(λ0; Ĝn) − 2
∫

R

Ġ2
λ0

dG

∣∣∣∣
≤ 2

∣∣∣∣
∫

R

Ġ2
λ0

dĜn −
∫

R

Ġ2
λ0

dG

∣∣∣∣ + 2
∥∥ ¨̂
G

(n)
λ0

∥∥∞ × ∥∥Ĝ(n)
λ0

− Ĝn

∥∥∞

+ 2
(∥∥ ˙̂

G
(n)
λ0

∥∥∞ + ∥∥Ġλ0

∥∥∞
) × ∥∥ ˙̂

G
(n)
λ0

− Ġλ0

∥∥∞.

Let us investigate the three terms on the right-hand side of the above inequality.
From Lemmas 5.1 and 5.4, the second term is bounded, up to a multiplicative
nonnegative constant, by(∥∥Ĝ(n)

λ0
− Gλ0

∥∥∞ + ∥∥Ĝn − Gλ0

∥∥∞
) ≤ (

1 + ∣∣∣∣∣∣Aλ0SrA
−1
λ0

∣∣∣∣∣∣) × ‖Ĝn − G‖∞,

and then, tends to 0 almost surely, by using (21) and the LIL result given in (23).
By similar arguments, we show that the third term has the same property. The first
term is a centered empirical mean of i.i.d. random variables which, by Lemma 5.4,
have a finite mean. Therefore, this term converges almost surely to 0 by the strong
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law of large numbers. Thus, it follows that∣∣∣∣K̈(λ0; Ĝn) − 2
∫

R

Ġ2
λ0

dG

∣∣∣∣ = oa.s.(1).

We conclude the proof, noticing that K̈(λ0) > 0 [the proof, under C1, is similar to
the proof of positive definitiveness of K̈(θ0) in Section 5.5; therefore, it is omitted],
and then

K̈(λ0) = 2
∫

R

Ġ2
λ0

dG > 0.

5.5. Proof of Theorem 3.3.

Proof of the consistency. Our method is based on a consistency proof for
miminum contrast estimators by Dacunha–Castelle and Duflo ([9], pages 94–96).
Let us consider a countable dense set D in �. Then infθ∈� Kr(θ; Ĝn) =
infθ∈D Kr(θ; Ĝn) is a measurable random variable. We define, in addition, the
random variable

W(n, ξ) = sup{|Kr(θ; Ĝn) − Kr(θ
′; Ĝn)|; (θ, θ ′) ∈ D2, |θ − θ ′|2 ≤ ξ},

and recall that K(θ0) = 0. Let us consider a nonempty open ball B0 centered on θ0
such that K is bounded from below by a positive real number 2ε on �\B0. Let us
consider a sequence (ξp)p≥1 decreasing to zero, and take p such that there exists
a covering of �\B0 by a finite number � of balls (Bi)1≤i≤� with centers θi ∈ �,
i = 1, . . . , �, and radius less than ξp . Following Dacunha–Castelle and Duflo [9],
we have

lim sup
n

{θ̂n /∈ B0} ⊆ lim sup
n

{W(n, ξp) > ε}

∪ lim sup
n

{
inf

1≤i≤�

(
Kr(θi; Ĝn) − Kr(θ0; Ĝn)

) ≤ ε

}
.

(45)

By the uniform convergence result of Lemma 5.3, we have

P

(
lim sup

n

{
inf

1≤i≤�

(
Kr(θi; Ĝn) − Kr(θ0; Ĝn)

) ≤ ε

})
= 0.(46)

Because K is Lipschitz on � by Lemma 5.2, we have that, for sufficiently large p′,
|K(θ) − K(θ ′)| ≤ ε/2 for all (θ, θ ′) such that |θ − θ ′|2 ≤ ξp′ . This implies

lim sup
n

{W(n, ξp′) > ε}

⊆ lim sup
n

{
2 sup

θ∈�

|Kr(θ; Ĝn) − K(θ)| + |K(θ) − K(θ ′)| > ε

}

⊆ lim sup
n

{
2 sup

θ∈�

|Kr(θ; Ĝn) − K(θ)| > ε/2
}
,
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and by Lemma 5.3 we have

P

(
lim sup

n

{
2 sup

θ∈�

|Kr(θ; Ĝn) − K(θ)| > ε/2
})

= 0,

which leads to

P

(
lim sup

n
{W(n, ξp′) > ε}

)
= 0.(47)

By (45)–(47), we have proved the strong consistency of the contrast estimator θ̂n.

Proof for the convergence rate. By standard Lebesgue theory, it is straight-
forward to show that, under C2, the contrast function K is twice continuously
differentiable on �. If K̈(θ0) is positive definite, by Corollary 3.1 and a Taylor
expansion of K of order 2 at θ0, there exist η > 0 and α > 0 such that, for all u

satisfying |u|2 < η and θ0 + u ∈ ◦
�,

K(θ0 + u) ≥ α|u|22.(48)

For a column vector v = (v1, v2, v3)
T ∈ R

3, we have

vT K̈(θ0)v = 2
∫

R

(
vT Ġθ0(x)

)2
dG(x) ≥ 0.(49)

By C2, we obtain that x �→ Ġθ0(x) is continuous and that G is continuous and
strictly increasing on R. Thus, (49) implies that x �→ vT Ġθ0(x) is the null function
if vT K̈(θ0)v = 0. Because under C2 we have f ′

0 ∈ L1(R), it is easy to show that
vT ġθ0(·) ∈ L1(R), where gθ = AθSf A−1

θ g. Moreover, using the Lebesgue deriva-
tion theorem and (40), and denoting η0 = µ0

2 − µ0
1, we obtain

�vT Ġθ0
(t) = vT �̇Gθ0

(t)

= 2�G(−t)

(λ0 exp(−itµ0
1) + (1 − λ0) exp(−itµ0

2))
2

× [
cos(η0t)

(
v1(1 − 2λ0) + it

(
v2(1 − λ0) + v3λ0

))
+ it

(
v2λ0 + v3(1 − λ0)

)]
.

Therefore, vT K̈(θ0)v = 0 implies that �vT Ġθ0
is the null function. Because

�G(−t)/(λ0 exp(−itµ0
1) + (1 − λ0) exp(−itµ0

2))
2 is not null in a neighborhood

of 0, we obtain that the right multiplicative term of the right-hand side of the above
equality is null in a neighborhood of 0, which in turn implies that v = 0. Thus
K̈(θ0) is positive definite and (48) holds.

Now, let us consider B0(ηn), the open ball centered at θ0 with radius ηn > 0.
Notice that, for all θ ∈ � \ B0(ηn), we have |θ − θ0|2 ≥ ηn. Then we write the
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event inclusions

{θ̂n /∈ B0(ηn)} ⊆
{

inf
θ∈�\B0(ηn)

Kr(θ; Ĝn) < Kr(θ0; Ĝn)

}

⊆
{

inf
θ∈�\B0(ηn)

K(θ) − sup
θ∈�

|Kr(θ; Ĝn) − K(θ)| < Kr(θ0; Ĝn)

}

⊆
{

inf
θ∈�\B0(ηn)

K(θ) < 2 sup
θ∈�

|Kr(θ; Ĝn) − K(θ)|
}

⊆
{

inf
θ∈�\B0(ηn)

K(θ) < γn

}
∪

{
γn ≤ 2 sup

θ∈�

|Kr(θ; Ĝn) − K(θ)|
}

for any arbitrary sequence γn. Thus, we have

lim sup
n

{θ̂n /∈ B0(ηn)} ⊆ lim sup
n

{
inf

θ∈�\B0(ηn)
K(θ) < γn

}

∪ lim sup
n

{
γn ≤ 2 sup

θ∈�

|Kr(θ; Ĝn) − K(θ)|
}
.

Choosing now γn = n−1/2+α and ηn = n−1/4+β/2, with 0 < α < β taken arbitrarily
small, it follows from (48) and the uniform almost sure rate of convergence of
Kr(Ĝn) toward K , given in Lemma 5.3, that

P

(
lim sup

n

{
inf

θ∈�\B0(ηn)
K(θ) < γn

})
= 0

and

P

(
lim sup

n

{
γn ≤ 2 sup

θ∈�

|Kr(θ; Ĝn) − K(θ)|
})

= 0.

In conclusion, θ̂n converges almost surely toward θ0 at rate n−1/4+δ , with δ > 0
chosen arbitrarily small.

5.6. Proof of Theorem 3.4.

Proof of (i) and (ii). We have

F̂n − F0 = 1
2(I + Sr)

[
A−1

θ̂n
Ĝn − A−1

θ0
G

]
.

Thus, there exists a nonnegative real constant c such that

‖F̂n − F0‖∞ ≤ ∥∥A−1
θ̂n

(Ĝn − G)
∥∥∞ + ∥∥(

A−1
θ̂n

− A−1
θ0

)
G

∥∥∞

≤ ∣∣∣∣∣∣A−1
θ̂n

∣∣∣∣∣∣ × ‖Ĝn − G‖∞ + c|θ̂n − θ0|2

≤ 1

2d
‖Ĝn − G‖∞ + c|θ̂n − θ0|2,
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where the second inequality follows from (29) in the proof of Lemma 5.2 and
the last inequality follows from (21), using the fact that G is Lipschitz. Finally,
the above inequality together with (22) [resp. (23)] and Theorem 3.2 (resp. Theo-
rem 3.3) yield result (i) [resp. result (ii)].

Proof of (iii). By the Devroye [12] L1-consistency result, we have

‖ĝn − g‖1 =
∫

R

|ĝn(x) − g(x)|dx
a.s.−→ 0(50)

as n → +∞, providing that bn → 0 and nbn → +∞. Then we can write

‖f̂n − f0‖1 = ∥∥A−1
θ̂n

ĝn − A−1
θ0

g
∥∥

1

≤ ∥∥A−1
θ̂n

(ĝn − g)
∥∥

1 + ∥∥(
A−1

θ̂n
− A−1

θ0

)
g
∥∥

1

≤ 1

2d
‖ĝn − g‖1 + C|θ̂n − θ0|2,

where the last inequality comes from (29), because f ′
0 ∈ L1(R) and, thus, the same

holds for g. We conclude with Theorems 3.2 and 3.3, and (50).
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