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PRODUCT-LIMIT ESTIMATORS OF THE SURVIVAL FUNCTION
WITH TWICE CENSORED DATA

BY VALENTIN PATILEA AND JEAN-MARIE ROLIN1

CREST–ENSAI and Université Catholique de Louvain

A model for competing (resp. complementary) risks survival data where
the failure time can be left (resp. right) censored is proposed. Product-limit
estimators for the survival functions of the individual risks are derived. We
deduce the strong convergence of our estimators on the whole real half-line
without any additional assumptions and their asymptotic normality under
conditions concerning only the observed distribution. When the observa-
tions are generated according to the double censoring model introduced by
Turnbull, the product-limit estimators represent upper and lower bounds for
Turnbull’s estimator.

1. Introduction. Consider the problem of nonparametric inference with com-
peting risks survival data. The novelty we propose is that the failure time can be
left-censored, for instance, at the time the study starts. For simplicity, we consider
two distinct competing risks of failure, the extension to more than two competing
risks being straightforward. Let T and V1 denote the latent independent lifetimes
for each cause of failure. The failure time is min(T ,V1) and it can be censored
from the left by a censoring time U1. The observations are independent copies
of a lifetime Y , a finite nonnegative random variable and a discrete random vari-
able A with values in {0,1,2}, where 2 indicates a left-censored failure time, while
0 and 1 correspond to an observation equal to T and V1, respectively. If T is the
lifetime of interest, we say that Y is a twice censored observation of T . Associated
with the problem of competing risks is the dual problem of complementary risks
where the observed failure time is the maximum of the lifetimes for each cause of
failure (e.g., [1]). The extension we consider here is that the failure time can be
right-censored, for instance, at the time the experience ends.

By the plug-in (or substitution) principle applied for the empirical distribution,
the nonparametric estimation of the distribution of a latent lifetime of interest is
straightforward as soon as this distribution can be expressed as an explicit func-
tion of the distribution of the observed variables. The two models we propose in
this paper allow for explicit inversion formulae, that is, the latent distributions of
interest are explicit functionals of the distribution of the observations.
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In Section 2 we introduce our latent models, while in Section 3 we provide the
inversion formulae. In Section 4 we compare our model with the doubly censored
data latent model proposed by Turnbull [14]. We show that the inversion formu-
lae provide lower and upper bounds for the distribution of interest identified by
Turnbull’s model. Applying the inversion formulae to the empirical distribution,
we deduce in Section 5 the product-limit estimators. In Sections 6 and 7 we de-
duce the almost sure uniform convergence and the asymptotic normality for our
functionals.

2. Latent variables models. The random variables we consider take values in
R

+ = [0,∞] endowed with B
+

the Borel σ -field. If X is such a variable, FX de-
notes its distribution.

For the first latent model considered (call it Model I ), let T and V1 be two
lifetimes and let U1 be a left-censoring time. Assume that T , V1 and U1 are in-
dependent. Suppose that Y and A are observed, where Y = max[min(T ,V1),U1]
and

A =



0, if U1 < T ≤ V1,
1, if U1 < V1 < T ,
2, if min(T ,V1) ≤ U1.

Define the observed subdistributions of Y as

Hk(B) = P [Y ∈ B,A = k], k = 0,1,2,

where B is a Borel set in [0,∞]; the distribution of Y is H = H0 + H1 + H2. In
Model I , the subdistributions of Y can be expressed in terms of the distributions
of the latent variables as follows:

H0(dt) = FU1([0, t))FV1([t,∞])FT (dt),

H1(dt) = FU1([0, t))FT ((t,∞])FV1(dt),

H2(dt) = {
1 − FT ((t,∞])FV1((t,∞])}FU1(dt)

(1)

[necessarily H0({0}) = H1({0}) = 0]. If S1 = min(T ,V1) and H01 = H0 + H1, the
three equations imply

H01(dt) = FU1([0, t))FS1(dt), H2(dt) = FS1([0, t])FU1(dt).(2)

This indicates that the problem of inverting the model, that is, expressing the dis-
tributions of the latent variables in terms of the subdistributions of Y , can be solved
in two steps. First, determine the distributions of U1 and S1 as in an independent
left-censoring model. Next, use these distributions and the first equation in (1) to
recover the distribution of T .

As an application of Model I , consider a reliability system which consists of
three components U1, T and V1, with T and V1 in series and U1 in parallel with
this series system (see, e.g., [8], Chapter 15). The lifetimes of U1, T and V1 are
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independent and when the system fails we are able to determine which component
failed at the same time as the system. Morales, Pardo and Quesada [9] propose the
application of this model to study a certain cause of death for trees on a farm.

For our second latent model (call it Model II), let U2 and T be two lifetimes
and let V2 be a right-censoring time. Suppose T , U2 and V2 are independent. The
observed variables are Y and A, where Y = min[max(T ,U2),V2] and

A =



0, if U2 < T ≤ V2,
1, if V2 < max(U2, T ),
2, if T ≤ U2 ≤ V2.

In Model II, the relationship between the subdistributions of Y and the distribu-
tions of the latent variables is described by the equations

H0(dt) = FU2([0, t))FV2([t,∞])FT (dt),

H1(dt) = {
1 − FT ([0, t])FU2([0, t])}FV2(dt),

H2(dt) = FT ([0, t])FV2([t,∞])FU2(dt)

(3)

[necessarily H0({0}) = 0]. If S2 = max(U2, T ) and H02 = H0 + H2, we obtain

H02(dt) = FV2([t,∞])FS2(dt), H1(dt) = FS2((t,∞])FV2(dt).(4)

These relations show that Model II can be inverted in two steps. First, as in an
independent right-censoring model, recover the distributions of V2 and S2 from
H02 and H1. Second, use the distributions of V2 and S2 and the first equation in (3)
to determine the distribution of T .

Model II can be interpreted as follows: consider a system consisting of three
components U2, T and V2 with independent lifetimes. Put T and U2 in parallel
and V2 in series with this parallel system (see also [2], page 767). Again, assume
that we are able to determine which component failed at the same time as the
system.

3. Inversion formulae. Recall that if F is a probability distribution on
(R

+
,B

+
), the associated hazard measure is L([0, t]) = − lnF((t,∞]). Two more

hazard measures can be defined,

L−(dt) = F(dt)

F ([t,∞]) and L+(dt) = F(dt)

F ((t,∞]) ,
which we call the predictable and the unpredictable hazard measure, respectively.
The three hazard measures have the same continuous parts. Moreover, their point
masses are in bijection: L({t}) = − ln[1 − L−({t})] = ln[1 + L+({t})]. The prob-
ability distribution F can be expressed as

F((t,∞]) = exp{−L([0, t])} = π[0,t]
(
1 − L−(ds)

) =
[
π[0,t]

(
1 + L+(ds)

)]−1

,
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where π is the product-integral (e.g., [6]). The mass of L at infinity is irrelevant
for F and F({∞}) = exp{−L([0,∞))}.

Similarly, by reversing time, the reverse hazard measure associated to F is
M((t,∞]) = − lnF([0, t]). Moreover, the predictable and unpredictable reverse
hazard measures are defined as

M−(dt) = F(dt)

F ([0, t]) and M+(dt) = F(dt)

F ([0, t))
,

respectively. The three reverse hazard measures have the same continuous parts
and their point masses satisfy M({t}) = − ln[1 − M−({t})] = ln[1 + M+({t})].
We have

F([0, t]) = exp{−M((t,∞])} = π
(t,∞]

(
1 − M−(ds)

) =
[
π
(t,∞]

(
1 + M+(ds)

)]−1

.

The mass M({0}) is irrelevant for F . Moreover, F({0}) = exp{−M((0,∞])}.
Given a nonnegative measure on (R

+
,B

+
), we can always define a probabil-

ity distribution on the same space by considering this measure as being one of L,
L− or L+ (resp. M , M− or M+) and using the relations above. For instance, in
the independent right-censoring model, one defines L−(dt) = H0(dt)/H([t,∞]),
with H0 the subdistribution of the uncensored data. Then, by the equations of the
model, the distribution corresponding to this L− is nothing else than the distribu-
tion of the lifetime of interest. The reverse hazard measures M , M− and M+ are
the counterparts of L, L− and L+ to be used in left-censoring models.

We can invert our models using the hazard measures above. Since, apart from
mild conditions at the origin, the inversion formulae below apply to any subdistrib-
utions (H0,H1,H2), we deduce them without any reference to the latent variables.

For inverting Model I , assume H0({0}) = H1({0}) = 0. In view of (2), proceed
as for inverting a left-censoring model and define the predictable reverse hazard
measures

M−
2 (dt) = H2(dt)

H([0, t]) , M−
01(dt) = H01(dt)

H([0, t)) + H01({t})(5)

and let FI
2 and FI

01 be the corresponding distributions. By this definition, we have
H([0, t]) = FI

2 ([0, t])F I
01([0, t]). In the second step of the inversion, note that

the first equation in (1) and the definition of S1 imply H0(dt)/FU1([0, t))FS1([t,
∞]) = FT (dt)/FT ([t,∞]). This suggests defining the predictable hazard measure

LI−
T (dt) = H0(dt)

F I
2 ([0, t))F I

01([t,∞]) .(6)

Let FI
T be its associated distribution.
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For Model II, assume H0({0}) = 0. Look at the relation (4) and, exactly as in a
right-censoring model, define the predictable hazard measures

L−
02(dt) = H02(dt)

H([t,∞]) , L−
1 (dt) = H1(dt)

H((t,∞]) + H1({t}) .

Let F II
02 and F II

1 denote the corresponding distributions. Clearly, H((t,∞]) =
F II

1 ((t,∞])F II
02((t,∞]). In the second step of the inversion, by the first equa-

tion in (3) and the definition of S2, H0(dt)/{FV2([t,∞])FS2([0, t)) + H0({t})} =
FT (dt)/FT ([0, t]). Consequently, define the predictable reverse hazard measure

M II−
T (dt) = H0(dt)

F II
1 ([t,∞])F II

02([0, t)) + H0({t})(7)

and let F II
T be its associated distribution.

Now, consider the identification problem. If Model I is correct, we look for
conditions ensuring that FI

T = FT on R
+

. Define the support of µ, a nonneg-
ative measure on [0,∞], as supp(µ) = {t :µ([0, t])µ([t,∞]) > 0}. Let B1 =
{t :FU1([0, t))FV1([t,∞]) > 0}. Deduce from (6) that the support of LI−

T is equal
to the support of H0. As supp(H0) = B1 ∩ supp(FT ),

FI
T = FT on R

+ ⇐⇒ supp(FT ) ⊂ B1.

By similar arguments, if Model II is correct, F II
T = FT on R

+
if and only if

supp(FT ) ⊂ {t :FU2([0, t))FV2([t,∞]) > 0}.

4. Comparisons with the doubly censored data model. The models we pro-
pose are closely related to the model for doubly (left and right) censored ob-
servations introduced by Turnbull [14]. In Turnbull’s model the lifetime T is
independent of the censoring variables (L,R) and L ≤ R. The observations are
independent copies of Y and A, where

Y = max[min(T ,R),L] = min[max(T ,L),R],

A =



0, if L < T ≤ R (no censoring),
1, if (L ≤)R < T (right censoring),
2, if T ≤ L(≤ R) (left censoring).

If Hk(dt) = P(Y ∈ dt,A = k), k = 0,1,2, the equations of the model are

H0(dt) = {FL([0, t)) − FR([0, t))}FT (dt),

H1(dt) = FT ((t,∞])FR(dt),

H2(dt) = FT ([0, t])FL(dt).

(8)

Note that the assumptions of the model imply

H([0, t]) = FL([0, t])FT ([0, t]) + FR([0, t])FT ((t,∞]).(9)
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In Turnbull’s model T is censored from the left by L and from the right by R and
the observation Y is always the variable in the middle. This is different from the
censoring mechanisms we consider: in Model I the variable min(T ,V1) is left-
censored, while in Model II the variable max(U2, T ) is right-censored.

Turnbull [14] proposed a nonparametric maximum likelihood estimator that can
be obtained as the implicit solution of the equations (8). The implicit definition
of Turnbull’s estimator makes its asymptotic properties quite difficult (see [7]).
Moreover, a numerical algorithm is needed for the applications.

We are interested in the relationship between our FI
T , F II

T and FT identified by
Turnbull’s model. In fact, for any subdistributions H0, H1 and H2 with H0({0}) =
H1({0}) = 0,

FI
T ([0, t]) ≤ FT ([0, t]) ≤ F II

T ([0, t]) ∀ t ≥ 0,

where FT is the distribution of T identified by Turnbull’s model. Indeed, in
Model I use definition (6) and H([0, t]) = FI

2 ([0, t])F I
01([0, t]) to write

LI−
T (dt) = H0(dt)

F I
2 ([0, t)) − H([0, t))

.

In Turnbull’s model [relations (8) and (9)] we have

L−
T (dt) = H0(dt)

FL([0, t)) − H([0, t))
.

Next, the definition of M−
2 , the last equation in (8) and equation (9) imply

M−
2 (dt) = FL([0, t])FT ([0, t])

FL([0, t])FT ([0, t]) + FR([0, t])FT ((t,∞])M
−
L (dt).

Deduce that the measure M−
2 is smaller than the measure M−

L . Therefore,
FI

2 ([0, t)) ≥ FL([0, t)), ∀ t ≥ 0. Hence, the measure LI−
T is smaller than the mea-

sure L−
T , which implies FI

T ([0, t]) ≤ FT ([0, t]), ∀ t ≥ 0.
On the other hand, for Model II, use the general relationship between

M+ and M−, the definition (7) and H((t,∞]) = F II
1 ((t,∞])F II

02((t,∞]) and write

M II+
T (dt) = H0(dt)

F II
1 ([t,∞]) − H([t,∞]) .

Meanwhile, in Turnbull’s model,

M+
T (dt) = H0(dt)

FR([t,∞]) − H([t,∞]) .

Next, use the definition of L−
1 , the general relationship between L+ and L−,

the second equation in (3) and the equality H((t,∞]) =FL((t,∞])FT ([0, t]) +
FR((t,∞])FT ((t,∞]) [this is a consequence of (9)] to deduce

L+
1 (dt) = FR((t,∞])FT ((t,∞])

FL((t,∞])FT ([0, t]) + FR((t,∞])FT ((t,∞])L
+
R(dt).
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Clearly, the measure L+
1 is smaller than the measure L+

R and, therefore, F II
1 ([t,

∞]) ≥ FR([t,∞]), ∀ t ≥ 0. Hence, the measure M II+
T is smaller than the mea-

sure M+
T and this implies F II

T ([0, t]) ≥ FT ([0, t]), ∀ t ≥ 0.

5. Product-limit estimators. If we replace in the expressions of FI
T and F II

T

the subdistributions H0, H1 and H2 by their empirical counterparts, we ob-
tain the product-limit estimators FI

nT and F II
nT , respectively. For this, denote by

{Zj : 1 ≤ j ≤ M} the distinct values in increasing order of Yi in a set of indepen-
dent identically distributed (i.i.d.) observations {(Yi,Ai) : 1 ≤ i ≤ n}. Define

Dkj = ∑
1≤i≤n

1{Yi=Zj ,Ai=k}, Nj = ∑
1≤i≤n

1{Yi≤Zj }, Nj = ∑
1≤i≤n

1{Yi≥Zj },

k = 0,1,2. With these definitions, the product-limit estimator of FT in Model I is

FI
nT ((Zj ,∞]) = ∏

1≤k≤j

{
1 − D0k

Uk−1 − Nk−1

}
,

where

Uj−1 = n
∏

j≤k≤M

{
1 − D2k

Nk

}
.

The product-limit estimator of FT in Model II is given by

F II
nT ([0,Zj ]) = ∏

j<k≤M

{
1 − D0k

Vk − Nk + D0k

}
,

where

Vj = n
∏

1≤k≤j

{
1 − D1k

Nk+1 + D1k

}
.

When the doubly censored data model is considered, our product-limit estima-
tors represent lower and upper bounds for Turnbull’s estimator. These bounds may
serve for the numerical algorithms used to compute Turnbull’s estimator.

6. Strong convergence. We study the strong (almost sure or a.s.) uniform
convergence of FI

nT and F II
nT . Since, in fact, the estimators FI

nT and F II
nT are built

as explicit functionals of the empirical distribution, we deduce their asymptotic
behavior, in particular, the strong convergence, whatever the properties of the
underlying censoring mechanism are. Hereafter, we use the following rule: the
subscript n indicates the empirical version of the quantities we consider. More-
over, if µ is a nonnegative measure on (R

+
,B

+
) and f is a measurable function,

µ(f ) = ∫
f (t)µ(dt).

For the strong convergence, we recall a result of Rolin [12], an extension of
the strong law under right-censorship proved by Stute and Wang [13]. Let H =
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∑
1≤r≤g Hr be a probability distribution decomposed into g subdistributions. If

I ⊂ K = {r : 1 ≤ r ≤ g}, let HI = ∑
r∈I Hr . For Jk ⊂ Ik ⊂ K , k = 1,2, define

L−
k (dt) = HJk

(dt)

H((t,∞]) + HIk
({t})

and consider the measure G(dt) = exp{−L2([0, t))}L−
1 (dt).

THEOREM 6.1. If G(f ) < ∞, then Gn(f ) → G(f ) a.s. and in the mean.

The same result holds if we define the predictable reverse hazard measures

M−
k (dt) = HJk

(dt)

H([0, t)) + HIk
({t}) , k = 1,2,

and consider the measure G(dt) = exp{−M2((t,∞])}M−
1 (dt).

Let us extend the number of hazard measures associated with Model I by defin-
ing

M−
0 (dt) = H0(dt)

H([0, t)) + H01({t}) , M−
1 (dt) = H1(dt)

H([0, t)) + H1({t}) .

Consider FI
0 ,F I

1 , the corresponding distributions. Deduce that M01 = M0 + M1,

where M0,M1 and M01 are the reverse hazard measures associated with M−
0 ,M−

1
and M−

01 [see (5)], respectively. In view of equations (2), deduce H([0, t)) =
FI

2 ([0, t))F I
01([0, t)) and H01({t}) = FI

2 ([0, t))F I
01({t}). Therefore,

H0(dt) = FI
2 ([0, t))F I

01([0, t])M−
0 (dt).

Consequently, in the expression of the predictable hazard measure defining FI
T

[see (6)], we get rid of FI
2 and obtain

LI−
T (dt) = FI

01([0, t])
F I

01([t,∞])M
−
0 (dt).

THEOREM 6.2. If f is a nonnegative Borel measurable function defined on
(R

+
,B

+
) such that LI−

T (f ) < ∞, then, almost surely as n → ∞, LI−
nT (f ) →

LI−
T (f ).

Theorem 6.2 is a direct consequence of the following lemma.

LEMMA 6.3. (i) If LI−
T (f 1[0,t]) < ∞ and FI

01([t,∞]) > 0, then a.s.

LI−
nT

(
f 1[0,t]

) → LI−
T

(
f 1[0,t]

)
, n → ∞.

(ii) If LI−
T (f 1[t,∞]) < ∞ and FI

2 ([0, t)) > 0, then almost surely as n → ∞,

LI−
nT

(
f 1[t,∞]

) → LI−
T

(
f 1[t,∞]

)
.
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PROOF. (i) First, Theorem 6.1 implies that any empirical distribution function
defined by the empirical reverse hazard measures of Model I converges uniformly
on [0,∞]. Now,∣∣∣∣LI−

nT

(
f 1[0,t]

) −
∫
(0,t]

f (s)

F I
01([s,∞])F

I
n01([0, s])M−

n0(ds)

∣∣∣∣
≤ ‖FI

n01 − FI
01‖

FI
n01([t,∞])

∫
(0,t]

f (s)

F I
01([s,∞])F

I
n01([0, s])M−

n0(ds).

The second member of the inequality tends to zero almost surely because
FI

n01([t,∞]) → FI
01([t,∞]) > 0 a.s. and, by Theorem 6.1 applied for G(ds) =

exp{−M01((s,∞])}M−
0 (ds),∫

(0,t]
f (s)

F I
01([s,∞])F

I
n01([0, s])M−

n0(ds) → LI−
T

(
f 1[0,t]

)
, a.s.

(ii) First, looking at the definition of M−
01, by a simple computation,

H01([s,∞]) ≤ FI
01([s,∞]) ≤ H01([s,∞])

H01([0,∞]) .

Using definition (6) for the predictable hazard measure defining FI
T , we have∣∣∣∣LI−

nT

(
f 1[t,∞]

) −
∫
[t,∞]

f (s)

F I
2 ([0, s))

Hn0(ds)

F I
n01([s,∞])

∣∣∣∣
≤ ‖FI

n2 − FI
2 ‖

FI
n2([0, t))

∫
[t,∞]

f (s)

F I
2 ([0, s))

Hn0(ds)

F I
n01([s,∞])

≤ ‖FI
n2 − FI

2 ‖
FI

n2([0, t))

∫
[t,∞]

f (s)

F I
2 ([0, s))

Hn0(ds)

Hn01([s,∞]) .

Now, almost surely FI
n2([0, t)) → FI

2 ([0, t)), which is strictly positive. Since∫
[t,∞]

f (s)

F I
2 ([0, s))

H0(ds)

H01([s,∞]) ≤ H01([0,∞])−1LI−
T

(
f 1[t,∞]

)
< ∞,

a new application of Theorem 6.1 provides the result. �

Denote by t0k the left endpoint and by t1k the right endpoint of the support
of Hk , k = 0,1,2. We have the following corollary of Theorem 6.2. Note that the
strong uniform convergence of FI

nT is obtained without any additional assumption,
apart from that of i.i.d. observations and the condition H0({0}) = H1({0}) = 0.

COROLLARY 6.4. (a) If LI−
T ([0, t10)) < ∞, then, almost surely,

sup
0≤t<t10

|LI
nT ([0, t]) − LI

T ([0, t])| → 0
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and LI
nT ({t10}) → LI

T ({t10}). If LI−
T ([0, t10)) = ∞, then, almost surely,

sup
0≤s≤t

|LI
nT ([0, s]) − LI

T ([0, s])| → 0

for all t < t10 and LI
nT ([0, t10)) → ∞.

(b) Almost surely, ‖FI
nT − FI

T ‖ = sup0≤t≤∞ |FI
nT ([0, t]) − FI

T ([0, t])| → 0.

PROOF. The Glivenko–Cantelli theorem provides the result in (a) with LI
T

and LI
nT replaced by LI−

T and LI−
nT , respectively. The similar result for the haz-

ard measure LI
nT is obtained by taking care of the fact that LI

T ({t10}) = ∞ if
LI−

T ({t10}) = 1. This happens if t10 ≥ t11, H0({t10}) > 0 and H1({t10}) = 0. The
convergence of FI

nT is implied by the convergence of the associated hazard mea-
sure LI

nT . �

The strong uniform convergence of F II
nT can be obtained in a similar way. Define

L−
0 (dt) = H0(dt)

H([t,∞]) , L−
2 (dt) = H2(dt)

H((t,∞]) + H1({t}) + H2({t})
and consider F II

0 ,F II
2 , the corresponding distributions. After some manipulations

we can get rid of F II
1 in the definition (7):

M II−
T (dt) = F II

2 ([t,∞]F II
0 ([t,∞])

1 − F II
2 ([t,∞])F II

0 ((t,∞])L
−
0 (dt).

Next, apply Theorem 6.1 (see [10] for the details).

7. Asymptotic normality. Let (D[a, b],‖ · ‖) be the space of càdlàg func-
tions defined on [a, b] ⊂ [0,∞], endowed with the supremum norm. BVC[a, b] ⊂
D[a, b] is the set of càdlàg functions with total variation bounded by C. The in-
tegrals with respect to functions which are not of bounded variation have to be
understood via partial integration. Finally, weak convergence is denoted by � and
is in the sense considered by Pollard [11], that is, D[a, b] is endowed with the ball
σ -field.

Given the explicit form of FI
nT and F II

nT , a convenient approach for proving
weak convergence is the delta method (e.g., [5] and [15], Section 3.9). For proving
Hadamard differentiability, the denominators appearing in the maps used to de-
fine FI

T and F II
T should stay away from zero. Therefore, we have to complete the

delta method with a tool for treating the endpoints of the intervals on which weak
convergence is finally proved.

LEMMA 7.1 ([11], page 70). Let X,X1,X2, . . . be random elements of
(D[a, b],‖·‖) with the distribution of X concentrated on a separable set. Suppose,
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for each ε, δ > 0 there exist approximating random elements AX,AX1,AX2, . . .

such that AXn � AX, P(‖X − AX‖ > δ) < ε and

lim sup
n→∞

P(‖Xn − AXn‖ > δ) < ε.(10)

Then Xn � X.

For brevity, we consider only the asymptotic normality of FI
nT ; similar argu-

ments apply for F II
nT . The empirical central limit theorem yields

√
n(Hn − H,H0n − H0,H2n − H2) � (G,G0,G2) in D3([0,∞]).

Now, we prove that
√

n(M−
n2 − M−

2 ) and
√

n(F I
n2 − FI

2 ) converge weakly to
Gaussian limits. The computation of the covariance structures for the limit
processes in this section is elementary, albeit tedious (see [10] for some formu-
lae).

LEMMA 7.2. Let M−
2t = M−

2 ((t,∞]) and M−
n2t be the corresponding estima-

tor. Assume that ∫
(t00,∞]

M−
2 (du)

H([0, u]) =
∫
(t00,∞]

H2(du)

H([0, u])2 < ∞,(11)

where t00 = inf{t :H0([0, t]) > 0}. Then
√

n(Hn − H,Hn0 − H0,M
−
n2 − M−

2 ) � (G,G0,GM) in D3[t00,∞],(12)

where (G,G0,GM) is a zero-mean Gaussian process with

GMt =
∫
(t,∞]

dG2u

H([0, u]) −
∫
(t,∞]

Gu

H([0, u])2 H2(du).(13)

Moreover, if FI
2t = FI

2 ([0, t]), then
√

n(Hn − H,Hn0 − H0,F
I
n2 − FI

2 ) � (G,G0,G3) in D3[t00,∞],
where (G,G0,G3) is a zero-mean Gaussian process with

G3t = FI
2 ([0, t])

∫
(t,∞]

dGMu

1 − M−
2 ({u}) .(14)

PROOF. The map (A,B) → ∫
(·,∞](1/A)dB is Hadamard-differentiable on a

domain of the type {(A,B) :A ∈ D[a, b],B ∈ BVC[a, b],A ≥ ε}, C,ε > 0, at
every point such that 1/A is of bounded variation. The derivative map is given
by (α,β) → ∫

(·,∞](1/A)dβ − ∫
(·,∞](α/A2) dB . Therefore, the delta method for

the map (H,H0,H2) → (H,H0,M
−
2 ) yields the weak convergence of

√
n(Hn −

H,Hn0 − H0,M
−
n2 − M−

2 ) in D3[σ,∞], provided that H([0, σ ]) > 0.
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For the weak convergence in D3[t00,∞], consider the pathwise limit of
GMσ as σ ↓ t00, which exists in view of (11). It remains to verify (10) when
H([0, t00]) = 0. It suffices to prove the following: (a) for any ε, δ > 0, there exists
σ = σ(ε, δ) > t00 such that

lim sup
n→∞

P

(
sup

U≤t≤σ

√
n|M−

n2([t, σ )) − M−
2 ([t, σ ))| > δ

)
< ε;(15)

and (b)
√

nM−
2 ((t00,U)) → 0, in probability, where U = mini Yi . To ensure (a),

reverse the time and apply the arguments usually used to check the “tightness at
τH = sup{t :H([0, t]) < 1}” when proving weak convergence for Nelson–Aalen
and Kaplan–Meier estimators (see [3], Theorem 6.2.1, [4]). For (b), first note
that (11) ensures M−

2 ((t00,∞]) is finite. This implies FI
2 ([0, t00]) > 0 (use, e.g.,

arguments as in Lemma 6 of [6]). Since in general M− is smaller than M , deduce

M−
2 ((t00,U)) ≤ M2((t00,U)) = ln

FI
2 ([0,U))

F I
2 ([0, t00]) ≤ FI

2 ((t00,U))

F I
2 ([0, t00]) .

Let uλ
n = sup{s :

√
nF I

2 ((t00, s)) ≤ λ} (see also [16]). We have

P
(√

nF I
2 ((t00,U)) > λ

) ≤ P(U > uλ
n) = H((uλ

n,∞])n
≤ {1 − FI

2 ((t00, u
λ
n])F I

01([0, uλ
n])}n

≤
(

1 − λ2

n

F I
01([0, uλ

n])
F I

2 ((t00, uλ
n])

)n

→ 0.

The convergence to zero is true because, in view of (11),

FI
2 ((t00, u

λ
n])

F I
01([0, uλ

n])
≤

∫
(t00,u

λ
n]

FI
2 (ds)

F I
01([0, s]) =

∫
(t00,u

λ
n]

M−
2 (ds)

H([0, s]) → 0, n → ∞.

Now, (b) is clear. For the last part of the lemma, apply the delta method for the
map A → π(·,∞](1 − A(ds)) defined on BVC[t00,∞], for some C > 0. �

REMARK. In view of the variance of the process G3, it seems possible to relax
condition (11) when FI

2 ([0, t00]) = 0 (see also [4]). However, in the following, due
to the lack of an obvious martingale structure for LI−

nT − LI−
T , it is convenient to

keep the denominator appearing in the definition of LI−
T away from zero when

t ↓ t00. For this, we have to impose FI
2 ([0, t00]) > 0 and, in this case, (11) is needed

to bound the variance of G3t when t ↓ t00.

Now we state the asymptotic normality for LI−
nT and FI

nT . The notation A−
means that we consider the left-limits of the process A.
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THEOREM 7.3. Suppose condition (11) holds. Let t00 < τ such that H01([0,

τ )) < 1. If LI−
T t = LI−

T ([0, t]), then
√

n(LI−
nT − LI−

T ) � V in D[0, τ ], where

Vt =
∫
(0,t]

dG0u

(F I
2 − H)([0, u))

−
∫
(0,t]

G3u− − Gu−
(F I

2 − H)2([0, u))
H0(du), t ∈ [0, τ ],

is a zero-mean Gaussian process. Moreover, if FI
T t = FI

T ([0, t]), then we have√
n(F I

nT − FI
T ) � W in D[0, τ ], with W the zero-mean Gaussian process

Wt = FI
T ((t,∞])

∫
(0,t]

dVu

1 − LI−
T ({u}) .

PROOF. Since FI
01([τ,∞]) > 0 and, by (11), FI

2 ([0, t00]) > 0, we have
inf(t00,τ ](F I

2 − H)([0, s)) > ε, for some ε > 0. Thus, if H0({t00}) = 0, the weak
convergence of

√
n(LI−

nT − LI−
T ) is obtained by the delta method for the map

(A,B) → ∫
(t00,·](1/A−) dB (see [15], pages 382–384).

When H0({t00}) > 0 (hence, necessarily t00 > 0), in the definition of LI−
T , we

also have to take into account FI
2 ([0, t00)). For this, extend the weak convergence

in (12) on D3[0,∞] by considering a modified predictable reverse hazard function

M−
2t = M−

2 ((t,∞]) =
∫
(t,∞]

H2(du)

H([0, u ∨ t00]) , t ∈ [0,∞].

Let M−
n2 be the empirical counterpart. Since the denominator in the last display

stays away from zero, the weak convergence of
√

n(Hn −H,Hn0 −H0,F
I
n2 −FI

2 )

in D3[0,∞] is easily obtained by the delta method, where now FI
2 , FI

n2 corre-
spond to the modified M−

2 , M−
n2, respectively. Note that now FI

2 ([0, t00)) > 0.
The processes GM and G3 are still defined according to (13) and (14), respec-
tively. Since the modification of M−

2t and M−
n2 does not change the definitions of

LI−
T and LI−

nT , the delta method yields the weak convergence of
√

n(LI−
nT − LI−

T ).

The last part of the theorem is obtained by the delta method for the product-
integration map. �
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