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TESTING FOR A LINEAR MA MODEL AGAINST
THRESHOLD MA MODELS

BY SHIQING LING1 AND HOWELL TONG2

Hong Kong University of Science and Technology and London School of
Economics and Political Science

This paper investigates the (conditional) quasi-likelihood ratio test for the
threshold in MA models. Under the hypothesis of no threshold, it is shown
that the test statistic converges weakly to a function of the centred Gaussian
process. Under local alternatives, it is shown that this test has nontrivial as-
ymptotic power. The results are based on a new weak convergence of a linear
marked empirical process, which is independently of interest. This paper also
gives an invertible expansion of the threshold MA models.

1. Introduction. Since Tong [30], threshold autoregressive (TAR) models
have become a standard class of nonlinear time series models. Some fundamental
results on the probabilistic structure of this class were given by Chan, Petruccelli,
Tong and Woolford [11], Chan and Tong [12] and Tong [31]. The 1990s saw many
more contributions including, for example, Chen and Tsay [15], Brockwell, Liu
and Tweedie [6], Liu and Susko [27], An and Huang [3], An and Chen [1], Liu, Li
and Li [26], Ling [23] and others.

The likelihood ratio (LR) test for the threshold in AR models was studied by
Chan [8, 9] and Chan and Tong [13]. Tsay [33, 34] proposed some methods for
testing the threshold in AR and multivariate models. Lagrange multiplier tests were
studied by Wong and Li [35, 36] for (double) TAR–ARCH models. The Wald test
was studied by Hansen [17] for TAR models. Testing the threshold in nonstationary
AR models was investigated by Caner and Hansen [7]. The asymptotic theory on
the estimated threshold parameter in TAR models was established by Chan [10]
and Chan and Tsay [14]. Recently, Chan’s result was extended to non-Gaussian
error TAR models by Qian [28]; see also [20] for threshold regression models.
Hansen [18] obtained a new limiting distribution for TAR models with changing
parameters; see also [19].
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However, almost all the research in this area to date has been limited to the AR
or AR-type models. Except for Brockwell, Liu and Tweedie [6], Liu and Susko
[27], de Gooijer [16] and Ling [23], it seems that threshold moving average (TMA)
models have not attracted much attention in the literature. It is well known that, in
the linear case, MA models are as important as the AR models. In particular, for
many economic data, such as monthly exchange rates, IBM stock market prices
and weekly spot rates of the British pound, the models selected in the literature
are often MA or ARMA models from the point of view of parsimony; see, for
example, [32]. Now, the concept of threshold has been recognized as an important
idea for time series modeling. Therefore, it is natural to introduce this concept in
the context of MA modeling leading to the TMA models. Again, model parsimony
is often an important consideration in nonlinear time series modeling. We shall
give an example of this in Section 4. In addition, techniques developed for TMA
models should prepare us for a systematic study of the much more challenging
threshold ARMA models. We shall give one such instance in the Appendix.

We investigate the quasi-LR test for threshold in MA models. Under the hy-
pothesis of no threshold, it is shown that the test statistic converges weakly to a
function of a centred Gaussian process. Under local alternatives, it is shown that
this test has nontrivial asymptotic power. The results heavily depend on a linear
marked empirical process. This type of empirical process has been found to be
very useful and was investigated by An and Cheng [2], Chan [10], Stute [29], Koul
and Stute [22], Hansen [18] and Ling [24] for various purposes. However, all the
processes in these papers have only one marker. To the best of our knowledge, our
linear marked empirical process which includes infinitely many markers has never
appeared in the statistical literature before. This is of independent interest. This
paper also gives an invertible expansion of the TMA models.

This paper proceeds as follows. Section 2 gives the quasi-LR test and its null
asymptotic distribution. Section 3 studies the asymptotic power under local al-
ternatives. Some simulation results and one real example are given in Section 4.
Sections 5 and 6 present the proofs of the results stated in Section 2.

2. Quasi-LR test and its asymptotics. The time series {yt : t = 0,±1,

±2, . . .} is said to follow a TMA(p,q, d) model if it satisfies the equation

yt =
p∑

i=1

φiεt−i +
q∑

i=1

ψiI (yt−d ≤ r)εt−i + εt ,(2.1)

where {εt } is a sequence of independent and identically distributed (i.i.d.) random
variables with mean zero and variance 0 < σ 2 < ∞, p,q, d are known positive
integers with p ≥ q , I is the indicator function and r ∈ R is called the threshold
parameter. Let � and �ψ be compact subsets of Rp and Rq , respectively, and
�1 = � × �ψ be the parameter space. Let φ = (φ1, . . . , φp)′, ψ = (ψ1, . . . ,ψq)

′
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and λ = (φ′,ψ ′)′. Here λ is the unknown parameter (vector) and its true value is
λ0 = (φ′

0,ψ
′
0)

′. Assume λ0 is an interior point in �1.
Given observations y1, . . . , yn from model (2.1), we consider the hypotheses

H0 :ψ0 = 0 versus H1 :ψ0 �= 0 and some r ∈ R.

Under H0, the true model (2.1) reduces to the usual linear MA model and {yt } is
always strictly stationary and ergodic. In this case, the parameter r is absent, which
renders the problem nonstandard. Under H1, Liu and Susku [27] and Ling [23]
showed that there is always a strictly stationary solution {yt } to the model (2.1)
without any restriction on λ0. Under H0 and H1, the corresponding quasi-log-
likelihood functions based on {yn, yn−1, . . .} are, respectively,

L0n(φ) =
n∑

t=1

ε2
t (φ) and L1n(λ, r) =

n∑
t=1

ε2
t (λ, r),

where εt (φ) = εt (λ,−∞) and

εt (λ, r) = yt −
p∑

i=1

φiεt−i(λ, r) −
q∑

i=1

ψiI (yt−d ≤ r)εt−i(λ, r),

which is the residual from the TMA model. To make it meaningful, we need to
study the invertibility of this model. Assumption 2.1 below is a condition for this.

ASSUMPTION 2.1.
∑p

i=1 |φi | < 1 and
∑p

i=1 |φi + ψi | < 1, where ψi = 0 for
i > q .

This assumption is similar to Lemma 3.1 for the ergodicity of TAR models
in [12]. We discuss the invertibility of a general TMA model in the Appendix.

Since there are only n observations, we need the initial values ys , when s ≤ 0, to
calculate εt (φ) and εt (λ, r). For simplicity, we assume ys = 0 for s ≤ 0. We denote
εt (φ) and εt (λ, r), calculated with these initial values by ε̃t (φ) and ε̃t (λ, r), and
modify the corresponding quasi-log-likelihood functions, respectively, to

L̃0n(φ) =
n∑

t=1

ε̃2
t (φ) and L̃1n(λ, r) =

n∑
t=1

ε̃2
t (λ, r).

Let φ̃n = arg min� L̃0n(φ) and λ̃n(r) = arg min�1 L̃1n(λ, r). We call φ̃n and λ̃n(r)

the conditional least squares estimators of φ0 and λ0, respectively. Given r , the
quasi-LR test statistic for H0 against H1 is defined as

L̃Rn(r) = −2
[
L̃1n

(
λ̃n(r), r

) − L̃0n(φ̃n)
]
.

Since the threshold parameter r is unknown, a natural test statistic is
supr∈R L̃Rn(r). However, this test statistic diverges to infinity in probability;



2532 S. LING AND H. TONG

see (2.2) below and [4]. We consider the supremum of L̃Rn(r) on the finite in-
terval [a, b],

LRn = 1

σ̃ 2
n

sup
r∈[a,b]

L̃Rn(r),

where σ̃ 2
n = L̃0n(φ̃n)/n. This method is used by Chan [8] and Chan and Tong [13].

The idea here is similar to the problem of testing change points in Andrews [4],
which has been commonly used in the literature. To study its asymptotics, we need
another assumption which is a mild technical condition.

ASSUMPTION 2.2. εt has a continuous and positive density on R and
Eε4

t < ∞.

We further introduce the following notation:

U1t (λ, r) = ∂εt (λ, r)/∂φ, U2t (λ, r) = ∂εt (λ, r)/∂ψ,

D1t (λ, r) = U1t (λ, r)εt (λ, r), D2t (λ, r) = U2t (λ, r)εt (λ, r),

Ut (λ, r) = [U ′
1t (λ, r),U ′

2t (λ, r)]′ and Dt(λ, r) = [D′
1t (λ, r),D′

2t (λ, r)]′.
Throughout this paper, all the expectations are computed under H0. We de-
note �rs = E[U2t (λ0, r)U

′
2t (λ0, s)], �1r = E[U1t (λ0, r)U

′
2t (λ0, r)] and 	r =

E[Ut(λ0, r)U
′
t (λ0, r)]. Let � = E{[∂εt (φ0)/∂φ][∂εt (φ0)/∂φ]′}. Here and in the

sequel, op(1) denotes convergence to zero in probability as n → ∞. We first state
one basic lemma, which gives a uniform expansion of L̃Rn(r) on [a, b].

LEMMA 2.1. If Assumptions 2.1 and 2.2 hold, then under H0 it follows that:

(a) sup
r∈[a,b]

‖λ̃n(r) − λ0‖ = op(1),

(b) sup
r∈[a,b]

∥∥∥∥∥√n[λ̃n(r) − λ0] + 	−1
r√
n

n∑
t=1

Dt(λ0, r)

∥∥∥∥∥ = op(1),

(c) sup
r∈[a,b]

‖L̃Rn(r) − T ′
n(r)[�rr − �′

1r�
−1�1r ]−1Tn(r)‖ = op(1),

where Tn(r) = n−1/2 ∑n
t=1[D2t (λ0, r) − �′

1r�
−1D1t (λ0, r)].

The proof of this lemma is quite complicated and is given in Section 6. Un-
der H0, D1t (λ0, r) = εt ∂εt (φ0)/∂φ and, by (6.4), D2t (λ0, r) has the expansion

D2t (λ0, r) =
[ ∞∑

i=0

u′
iuZt−i−1I (yt−d−i ≤ r)

]
εt a.s.,

where Zt = (εt , . . . , εt−q+1)
′, u = (1,0, . . . ,0)′p×1 and 
 is defined as in Theo-

rem A.1. Following Stute [29], we call {Tn(r) : r ∈ R} a marked empirical process,
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where each yt−d−i is a marker. It is a linear marked empirical process and includes
infinitely many markers. As stated in Section 1, this is a new empirical process.
Let Dq[Rγ ] = D[Rγ ] × · · · × D[Rγ ] (q factors), which is equipped with the cor-
responding product Skorohod topology and in which Rγ = [−γ, γ ]. Weak con-
vergence on Dq[R] is defined as that on Dq[Rγ ] for each γ ∈ (0,∞) as n → ∞
and is denoted by 
⇒. We now give the weak convergence of {Tn(r) : r ∈ R} as
follows.

THEOREM 2.1. If Assumption 2.2 holds and all the roots of zp − ∑p
i=1 φi ×

zp−i = 0 lie inside the unit circle, then under H0 it follows that

Tn(r) 
⇒ σGq(r) in Dq[R],
where {Gq(r) : r ∈ R} is a q × 1 vector Gaussian process with mean zero and co-
variance kernel Krs = �rs −�′

1r�
−1�1s , and almost all its paths are continuous.

Unlike Koul and Stute [22], our weak convergence does not include the two end-
points ±∞ and LRn only requires the weak convergence on Dq[R]. In addition,
our technique heavily depends on Rγ and Assumption 2.2. The covariance kernel
Krs is essentially different from those of the empirical processes with one marker.
Theorem 2.1 is a new weak convergence result and its proof is given in Section 5.

Under H0, it is well known that σ̃ 2
n = σ 2 + op(1). By Lemma 2.1(c), Theo-

rem 2.1 and the continuous mapping theorem, we obtain the main result as follows.

THEOREM 2.2. If Assumptions 2.1 and 2.2 hold, then under H0 it follows that

LRn
L−→ sup

r∈[a,b]
[G′

q(r)K
−1
rr Gq(r)]

as n → ∞, where
L−→ stands for convergence in distribution.

When p = q < d , �rr = �1r = �Fy(r) since Zt−1 and yt−d are independent.
Here Fy(r) = P(yt ≤ r). Thus, the limiting distribution is the same as that of

sup
β1≤s≤β2

‖Bp(s)‖2

s − s2 ,(2.2)

where β1 = Fy(a), β2 = Fy(b) and Bp(s) is a p × 1 vector Gaussian process with
mean zero and covariance kernel (r ∧ s − rs)Ip , where Ip is a p × p identity
matrix. It is interesting that this distribution is the same as that of test statistics
for change-points in [4]. The critical values can be found in [4]. In practice, we
can select, for example, β1 = 0.05 and β2 = 0.95. Some guidelines on this can be
found in [8]. For given β1 and β2, we can compute LRn with a = F−1

ny (β1) and
b = F−1

ny (β2), where F−1
ny (τ ) is the τ -quantile of the empirical distribution based

on data {y1, . . . , yn}. For other cases, the critical values of LRn can be obtained via
a simulation method. The implementation is not so difficult in practice.
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3. Asymptotic power under local alternatives. To investigate asymptoti-
cally the local power of LRn, consider the local alternative hypothesis

H1n :ψ0 = h√
n

for a constant vector h ∈ Rq and r = r0 ∈ R,

where r0 is a fixed value. For this, we need some basic concepts as follows. Let
F Z be the Borel σ -field on RZ with Z = {0,±1,±2, . . .} and P be a probability
measure on (RZ,F Z). Let P n

λ be the restriction of P on Fn, the σ -field gener-
ated by {Y0, y1, . . . , yn}, where Y0 = {y0, y−1, . . .}. Suppose the errors {ε1(λ, r0),
ε2(λ, r0), . . .} under P n

λ are i.i.d. with density f and are independent of Y0. From
model (2.1), the distribution of initial value Y0 is the same under both P n

λ and P n
λ0

.
Thus, the log-likelihood ratio �n(λ1, λ2) of P n

λ2
to P n

λ1
is

�n(λ1, λ2) = 2
n∑

t=1

[log st (λ2) − log st (λ1)],

where st (λ) = √
f (εt (λ, r0)); see [21] and [25] for details. We first introduce the

following assumption.

ASSUMPTION 3.1. The density f of εt is absolutely continuous with
a.e.-derivative and finite Fisher information, 0 < I (f ) = ∫ ∞

−∞[f ′(x)/f (x)]2 ×
f (x) dx < ∞.

The following theorem gives the LAN of �n(λ1, λ2) for model (2.1) and
the contiguity of P n

λ0
and P n

λ0+un/
√

n
, where un is a bounded constant sequence

in Rp+q .

THEOREM 3.1. If Assumptions 2.1, 2.2 and 3.1 hold and λ0 = (φ′
0,0)′, then:

(a) �n(λ0, λ0 + un√
n
) = n−1/2u′

n

∑n
t=1 Ut(λ0, r0)ξt − I (f )u′

n	r0un/2 + op(1)

under P n
λ0

, and
(b) P n

λ0
and P n

λ0+un/
√

n
are contiguous,

where ξt = f ′(εt (λ0, r0))/f (εt (λ0, r0)) and 	r is defined as in Lemma 2.1.

PROOF. By verifying the conditions in Theorem 2.1 and (2.2) in [25], we can
show that the conclusions hold. The details are omitted. �

Using Theorem 2.1 and following a routine argument, we can obtain the follow-
ing theorem. This theorem shows that LRn has nontrivial local power under H1n.

THEOREM 3.2. If Assumptions 2.1, 2.2 and 3.1 hold, then under H1n:

(a) Tn(r) 
⇒ µ(r) + σGq(r) in Dq[R], and
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(b) LRn
L−→ sup

r∈[a,b]
{[σ−1µ(r) + Gq(r)]′K−1

rr [σ−1µ(r) + Gq(r)]},

where µ(r) = Krr0h and Gq(r) is a Gaussian process defined as in Theorem 2.1.

4. Simulation and one real example. This section first examines the perfor-
mance of the statistic LRn in finite samples through Monte Carlo experiments.
In the experiments, sample sizes (n) are 200 and 400 and the number of repli-
cations is 1000. The null is the MA(1) model with φ10 = −0.5 and 0.5 and
the alternative is the TMA(1,1,2) model with d = 2, r0 = 0, φ10 = 0.5 and
ψ10 = −0.5,−0.3,−0.1,0.1,0.3,0.5. We take β1 = 0.1 and β2 = 0.9 in LRn.
Significance levels are α = 0.05 and 0.1. The corresponding critical values are
7.63 and 9.31, respectively, which were given by Andrews [4]. The results are
summarized in Table 1. It shows that the sizes are very close to the nominal val-
ues 0.05 and 0.1, in particular, when n = 400, and the power increases when the
alternative departs from the null model or when the sample size increases. These
results indicate that the test has good performance and should be useful in practice.

We next analyze the exchange rate of the Japanese yen against the USA dollar.
Monthly data from Jan. 1971 to Dec. 2000 are used and have 360 observations.
Define xt = 100� log(exchange rate) at the t th month and yt = xt − ∑360

t=1 xt/360.
AR(1), TAR(1,1,1), MA(1) and TMA(1,1,1) models are used to fit the data
{y1, . . . , y360}, where the TAR(1,1,1) model is defined as in [8]. The results are
summarized in Table 2, where Q(M) is the standard Ljung–Box statistic for test-
ing the adequacy of models fitted and r0 is estimated by arg minr∈R L̃1n(λ̃(r), r).
The table shows that Q(11), Q(13) and Q(15) all reject AR(1) and TAR(1,1,1)

TABLE 1
Size and power of LRn for testing threshold in MA(1)

models (β1 = 0.1, β2 = 0.9, d = 2, 1000 replications)

n = 200 n = 400

α 5% 10% 5% 10%

φ10 Sizes

−0.5 0.044 0.097 0.058 0.102
0.5 0.059 0.112 0.051 0.101

ψ10 Powers when φ10 = 0.5

−0.5 0.836 0.909 0.993 0.999
−0.3 0.318 0.514 0.710 0.815
−0.1 0.076 0.156 0.123 0.191

0.1 0.103 0.167 0.143 0.237
0.3 0.599 0.717 0.916 0.953
0.5 0.989 0.993 1.000 1.000
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TABLE 2
Results for monthly exachange rate data of Japanese yen against USA dollar (1971 to 2000)

φ00 ψ00 φ10 ψ10 r0 Q(11) Q(13) Q(15) AIC

AR(1) 0.345 22.66 28.91 29.26 699.83
TAR(1,1,1) 0.930 −0.905 0.076 0.293 −2.51 20.97 28.40 28.63 704.44
MA(1) 0.402 13.59 18.93 19.36 693.17
TMA(1,1,1) 0.281 0.445 −4.93 15.52 19.52 19.73 691.61

Upper-tail 5% critical values: Q(11) = 19.68, Q(13) = 23.36 and Q(15) = 25.00.

models, but they do not reject the MA(1) or TMA(1,1,1) models at significance
level 0.05.

Based on the MA(1) model, the statistic LRn is calculated with β1 = 0.1 and
β2 = 0.9 and its value is 14.19. Furthermore, we use the residuals and the esti-
mated φ10 in the MA(1) model to estimate the asymptotic covariance matrix in
Theorem 2.2. Using these and the simulation method with 25,000 replications, we
obtain that the critical values of the null limiting distribution of LRn are 6.995,
7.483 and 10.831 at significance levels 0.10, 0.05 and 0.01, respectively. This
shows that the null hypothesis of no threshold in the MA(1) model is rejected at all
these levels. Furthermore, we note that the TMA(1,1,1) model achieves the min-
imum AIC among the four candidate models and, hence, it should be a reasonable
choice for the data.

Finally, to understand what order of AR or TAR model is adequate for the
data, some higher-order models are fitted. We found that AR(2) is not ade-
quate, but AR(3) and TAR(2,2,1) are adequate at significance level 0.05. The
result for AR(3) is yt = 0.390yt−1 − 0.139yt−2 + 0.103yt−3 + εt , for which
Q(11) = 13.211, Q(13) = 18.106 and Q(15) = 18.573 and the value of AIC
is 696.50. The result for TAR(2,2,1) is yt = 0.821 + 0.130yt−1 − 0.082yt−2 +
[−0.790 + 0.275yt−1 − 0.018yt−2]I (yt−1 ≤ −3.741) + εt , for which Q(11) =
12.214, Q(13) = 16.936 and Q(15) = 17.325 and the value of AIC is 705.08.
In terms of AIC, it is clear that not only are AR(3) and TAR(2,2,1) worse than
TMA(1,1,1), they are also worse than MA(1).

5. Proof of Theorem 2.1. To prove Theorem 2.1, we first introduce three lem-
mas. Lemma 5.1 is the basis for the other two lemmas and is similar to Lemma A.1
in [18].

LEMMA 5.1. If Assumption 2.2 holds, then under H0 it follows that

(a) E[|εt−j |kI (r ′ < yt−d ≤ r)] ≤ C(r − r ′) as k = 0,1,2,3,4, and j ≥ 1,
and

(b) Emk
t ≤ C(r − r ′) as k = 1,2,3,4,
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where mt = ‖Zt−1‖I (r ′ < yt−d ≤ r), r ′ < r , r, r ′ ∈ Rγ , Rγ is defined in Section 2,
and C is a constant independent of r ′ and r .

PROOF. Since E|εt−j |4 < ∞, there is a constant M such that sup|x|>M |x|4 ×
f (x) < 1. Since f is continuous, it follows that sup|x|≤M |x|4f (x) < ∞. Thus,
supx∈R |x|kf (x) < ∞ for k = 0,1,2,3,4. Let gt = ∑p

i=1 φi0εt−i . When j �= d ,

E[|εt−j |kI (r ′ < yt−d ≤ r)] = E[|εt−j |k ∫ r−gt−d

r ′−gt−d
f (x) dx] ≤ C(r − r ′). When

j = d , E[|εt−d |kI (r ′ < yt−d ≤ r)] = E[∫ r−gt−d

r ′−gt−d
|x|kf (x) dx] ≤ C(r − r ′). Thus,

we can show that (a) and (b) hold. �

LEMMA 5.2. Under the assumptions of Theorem 2.1 and H0, it follows that:

E

∥∥∥∥∥ 1√
n

n∑
t=1

[ ∞∑
i=0

u′
iuZt−i−1I (r ′ < yt−d−i ≤ r)

]
εt

∥∥∥∥∥
4

(a)

≤ C

[√
r − r ′

n
+ (r − r ′)

]2

,

and

(b) E

[
1√
n

n∑
t=1

(|εt | − E|εt |)
∞∑
i=0

‖
i‖mt−i

]4

≤ C

[√
r − r ′

n
+ (r − r ′)

]2

,

where C is a constant independent of r ′, r and n, and mt is defined in Lemma 5.1.

PROOF. (a) Let atj = εt−i−j I (r ′ < yt−d−i ≤ r), where i ≥ 0 and j =
1, . . . , q . Since εt and atj are independent and atj is (p+q +d)-dependent, we can
show that E(

∑n
t=1 atj εt )

4 ≤ O(1)
∑n

t=1
∑n

t1=1 E(a2
tj a

2
t1j

ε2
t ε

2
t1
), where O(1) holds

uniformly in i. Note that ‖
i‖ = O(ρi) with ρ ∈ (0,1). Thus, by Minkowskii’s
inequality,

E

∥∥∥∥∥ 1√
n

n∑
t=1

[ ∞∑
i=0

u′
iuZt−i−1I (r ′ < yt−d−i ≤ r)

]
εt

∥∥∥∥∥
4

= 1

n2 E

∥∥∥∥∥
∞∑
i=0

u′
iu

n∑
t=1

[Zt−i−1I (r ′ < yt−d−i ≤ r)]εt

∥∥∥∥∥
4

(5.1)

= O(1)

n2

{ ∞∑
i=0

ρi

[
E

∥∥∥∥∥
n∑

t=1

[Zt−i−1I (r ′ < yt−d−i ≤ r)]εt

∥∥∥∥∥
4]1/4}4

≤ O(1)

n2

{ ∞∑
i=0

ρi

[
E

(
n∑

t=1

m2
t−iε

2
t

)2]1/4}4

≤ O(1)

∞∑
i=0

ρiE

(
1

n

n∑
t=1

m2
t−iε

2
t

)2

,
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where the third and the last steps hold using the inequality (
∑∞

i=0 ρiai)
2 = ∑∞

i=0∑∞
j=0 ρi+j aiaj ≤ (1 − ρ)−1 ∑∞

i=0 ρia2
i , for any ai ∈ R as

∑∞
i=0 ρia2

i < ∞. By
Lemma 5.1(b),

E

(
1

n

n∑
t=1

m2
t−iε

2
t

)2

= E

[
1

n

n∑
t=1

m2
t−i(ε

2
t − Eε2

t−i) + Eε2
t−i

1

n

n∑
t=1

m2
t−i

]2

≤ 2E

[
1

n

n∑
t=1

m2
t−i(ε

2
t − Eε2

t−i)

]2

+ 2(Eε2
t−i)

2E

(
1

n

n∑
t=1

m2
t−i

)2

≤ 2

n2

n∑
t=1

Em4
t−iE(ε2

t − Eε2
t−i)

2 + 2(Eε2
t−i )

2E

(
1

n

n∑
t=1

m2
t−i

)2

≤ C0(r − r ′)
n

+ 2(Eε2
t−i)

2E

(
1

n

n∑
t=1

m2
t−i

)2

,

where C0 is a constant independent of i, r ′, r and n. Again, by Lemma 5.1(b),

E

(
1

n

n∑
t=1

m2
t−i

)2

= E

[
1

n

n∑
t=1

(m2
t−i − Em2

t−i) + Em2
t−i

]2

≤
{

1

n

[
E

(
n∑

t=1

(m2
t−i − Em2

t−i)

)2]1/2

+ C(r − r ′)
}2

.

Since yt is only p-dependent, we see that mt is p̃-dependent, where p̃ = p+q +d .
So, E[(m2

t − Em2
t )(m

2
t1

− Em2
t1
)] = 0 when |t − t1| > p̃. Thus, by Lemma 5.1(b),

it follows that

E

(
n∑

t=1

(m2
t−i − Em2

t−i )

)2

=
n∑

t=1

E(m2
t−i − Em2

t−i )
2 + 2

n∑
t=1

n−t∑
s=1

E[(m2
t−i − Em2

t−i )(m
2
t−i+s − Em2

t−i)]

=
n∑

t=1

E(m2
t−i − Em2

t−i)
2

+ 2
n∑

t=1

min{n−t,p̃}∑
s=1

E[(m2
t−i − Em2

t−i)(m
2
t−i+s − Em2

t−i)]

≤ (2p̃ + 1)

n∑
t=1

E(m2
t−i − Em2

t−i )
2 ≤ (2p̃ + 1)nC(r − r ′),
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where C is a constant independent of i, r ′, r and n. By the preceding three equa-
tions and (5.1), we can claim that (a) holds.

(b) Let ε̃t = |εt | − E|εt |. As for (5.1) and the preceeding argument, we have

E

[
1√
n

n∑
t=1

ε̃t

∞∑
i=0

‖
i‖mt−i

]4

= O(1)

n2 E

[
n∑

t=1

n∑
t1=1

( ∞∑
i=0

‖
i‖mt−i

)2( ∞∑
i=0

‖
i‖mt1−i

)2

ε̃2
t ε̃

2
t1

]

≤ O(1)

n2 E

[
n∑

t=1

( ∞∑
i=0

ρimt−i

)2

ε̃2
t

]2

≤ C

[
(r − r ′)1/2

√
n

+ (r − r ′)
]2

,

where C is a constant independent of i, r ′, r and n. Thus, (b) holds. �

LEMMA 5.3. Under the assumptions of Theorem 2.1 and H0, it follows that

E

[
1√
n

n∑
t=1

∞∑
i=0

‖
i‖(mt−i − Emt−i)

]4

≤ C

[
r − r ′

n
+ (r − r ′)2

]
,

where C is a constant independent of r ′, r and n, and mt is defined in Lemma 5.1.

PROOF. First, for any integer i ≥ 0, we have the inequality

E

[
n∑

t=1

(mt−i − Emt)

]4

≤
n∑

t=1

E(mt−i − Emt)
4 + c1

∣∣∣∣∣
n∑

t=1

n−t∑
s=1

E[(mt−i − Emt)
3(mt+s−i − Emt)]

∣∣∣∣∣
+ c2

∣∣∣∣∣
n∑

t=1

n−t∑
s=1

E[(mt−i − Emt)
2(mt+s−i − Emt)

2]
∣∣∣∣∣

+ c3

∣∣∣∣∣
n∑

t=1

n−t∑
t1=1

n−t−t1∑
t2=1

n−t−t1−t2∑
t3=1

E
[
(mt−i − Emt)

× (
mt+t1−i − Emt

)
× (

mt+t1+t2−i − Emt

)
× (

mt+t1+t2+t3−i − Emt

)]∣∣∣∣∣
≡ A1n + c1A2n + c2A3n + c3A4n,

(5.2)
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where c1, c2 and c3 are constants independent of n and i. Since mt is p̃-dependent,
E[(mt − Emt)

3(mt1 − Emt)] = 0 when |t − t1| > p̃, where p̃ = p + q + d . Thus,
by Lemma 5.1(b),

A2n =
∣∣∣∣∣

n∑
t=1

min{n−t,p̃}∑
s=1

E[(mt−i − Emt)
3(mt+s−i − Emt+s)]

∣∣∣∣∣
≤ np̃E(mt−i − Emt)

4

≤ np̃C1(r − r ′).

Let m̃t = (mt−i − Emt)
2 − E(mt−i − Emt)

2. Then, by Lemma 5.1(b) we can
show that Em̃2

t ≤ C2(r − r ′). Since {m̃t } is a p̃-dependent sequence, we know that
E(m̃t m̃t1) = 0 when |t − t1| > p̃. Furthermore, by Lemma 5.1(b),

A3n =
∣∣∣∣∣

n∑
t=1

n−t∑
s=1

E(m̃t m̃t+s) −
n∑

t=1

(n − t)[E(mt − Emt)
2]2

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

t=1

min{n−t,p̃}∑
s=1

E(m̃t m̃t+s)

∣∣∣∣∣ + C3n
2(r − r ′)2

≤ C2p̃n(r − r ′) + C3n
2(r − r ′)2.

Denote p̃1 = min{n − t, p̃}. Similarly, by Lemma 5.1(b) we have that

A4n =
∣∣∣∣∣

n∑
t=1

p̃1∑
t1=1

p̃1−t1∑
t2=1

p̃1−t1−t2∑
t3=1

E
[
(mt−i − Emt)

× (
mt+t1−i − Emt

)(
mt+t1+t2−i − Emt

)
× (

mt+t1+t2+t3−i − Emt

)]∣∣∣∣∣
≤ p̃3

1

n∑
t=1

E(mt−i − Emt)
4

≤ np̃3
1C4(r − r ′).

By Lemma 5.1(b), the preceding three inequalities and (5.2), we can claim that

E

[
n∑

t=1

(mt−i − Emt)

]4

≤ nC5(r − r ′) + C5n
2(r − r ′)2.

In the above, Ci , i = 1, . . . ,5, are some constants independent of r ′, r , i and n.
By the assumption given, 
i = O(ρi) with ρ ∈ (0,1). Thus, by Minkowskii’s
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inequality,

E

[
1√
n

n∑
t=1

∞∑
i=0

‖
i‖(mt−i − Emt−i)

]4

≤ 1

n2 E

[ ∞∑
i=0

‖
i‖
∣∣∣∣∣

n∑
t=1

(mt−i − Emt−i)

∣∣∣∣∣
]4

≤ O(1)

n2

[ ∞∑
i=0

ρi

{
E

∣∣∣∣∣
n∑

t=1

(mt−i − Emt−i )

∣∣∣∣∣
4}1/4]4

≤ O(1)

n2

{
[nC5(r − r ′) + C5n

2(r − r ′)2]1/4
∞∑
i=0

ρi

}4

≤ C(r − r ′)
n

+ C(r − r ′)2,

where C is some constant independent of r ′, r and n. �

PROOF OF THEOREM 2.1. We use Lemmas 5.2 and 5.3 to prove the tightness.
Let

T1n(r) = 1√
n

n∑
t=1

[ ∞∑
i=0

u′
iuZt−i−1I (yt−d−i ≤ r)

]
εt .

We first show that {T1n(r) : r ∈ Rγ } is tight. For any given η > 0, we choose (δ, n)

such that 1 > δ ≥ n−1 and
√

n ≥ M/η and then choose an integer K such that
δn/2 ≤ K ≤ nδ, where M is determined later.

Let rk+1 = rk + δ/K , where r1 = r ′ and k = 1, . . . ,K . Thus,

sup
r ′<r≤r ′+δ

‖T1n(r) − T1n(r
′)‖

≤ sup
1≤k≤K

‖T1n(rk) − T1n(r
′)‖

+ sup
1≤k≤K

sup
rk<r≤rk+δ/K

‖T1n(r) − T1n(rk)‖.
(5.3)

For any 1 ≤ i < j ≤ K , we have (rj − ri)
1/2 = [(j − i)δ/K]1/2 ≤ (j − i)

√
δ/K .

By Lemma 5.2(a) and the inequality 1/
√

n ≤ √
δ/K , it follows that

E‖T1n(ri) − T1n(rj )‖4 ≤ C

[
(rj − ri)

1/2
√

n
+ (rj − ri)

]2

= C

( j∑
k=i+1

δ

K

)2

.
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Note that T1n(rj ) − T1n(ri) = ∑j
k=i+1[T1n(rk) − T1n(rk−1)]. By the preceding

equation and Theorem 12.2 of [5], page 94, there exists a constant C1 indepen-
dent of K , δ, r ′ and n such that

P

(
sup

1≤k≤K

‖T1n(rk) − T1n(r
′)‖ >

η

2

)
≤ CC1

η4

(
K∑

k=1

δ

K

)2

= CC1δ
2

η4 .

(5.4)

We now consider the second term of the right-hand side in (5.3). Let

mkt = ‖Zt−1‖I (rk < yt−d ≤ rk + δ/K).

By Lemma 5.1(b) and the definition of K and η,

E|εt |√
n

n∑
t=1

E

( ∞∑
i=0

‖
i‖mkt−i

)
≤ C2

√
nδ

K

≤ 2C2
√

nδ

nδ

= 2C2√
n

≤ η

8
,

as M ≥ 16C2, where C2 is a constant independent of k, δ, r ′ and n. By the preced-
ing inequality, Lemma 5.3 and Markov’s inequality,

K∑
k=1

P

(
1√
n

n∑
t=1

[
(E|εt |)

∞∑
i=0

‖
i‖mkt

]
>

η

4

)

≤
K∑

k=1

P

(
E|εt |√

n

n∑
t=1

[( ∞∑
i=0

‖
i‖mkt

)
− E

( ∞∑
i=0

‖
i‖mkt

)]
>

η

8

)

≤ C3

η4

K∑
k=1

E

[
1√
n

n∑
t=1

∞∑
i=0

‖
i‖(mkt − Emkt )

]4

≤ C4K

η4

(
δ

nK
+ δ2

K2

)

≤ 2C4δ
2

η4 ,

since n−1 ≤ δ/K , where C3 and C4 are constants independent of K , δ, r ′ and n.
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By the preceding inequality, Lemma 5.2(b) and Markov’s inequality, we have

P

(
sup

1≤k≤K

sup
rk<r≤rk+δ/K

‖T1n(r) − T1n(rk)‖ >
η

2

)

≤
K∑

k=1

P

(
1√
n

n∑
t=1

(
|εt |

∞∑
i=0

‖
i‖mkt

)
>

η

2

)

≤
K∑

k=1

P

(
1√
n

n∑
t=1

[
(|εt | − E|εt |)

∞∑
i=0

‖
i‖mkt

]
>

η

4

)

+
K∑

k=1

P

(
1√
n

n∑
t=1

[
(E|εt |)

∞∑
i=0

‖
i‖mkt

]
>

η

4

)

≤ 44

η4

K∑
k=1

E

[
1√
n

n∑
t=1

(|εt | − E|εt |)
∞∑
i=0

‖
i‖mkt

]4

+ 2C4δ
2

η4

≤ C5K

η4

(√
δ

nK
+ δ

K

)2

+ 2C4δ
2

η4 ≤ (2C4 + 4C5)δ
2

η4 ,

(5.5)

since 1/
√

n ≤ √
δ/K , where C5 is a constant independent of K , δ, r ′ and n.

Given ε > 0 and η > 0, let δ = min{εη4/(2C4 + 4C5 + CC1),0.5}. We first
select M such that M ≥ 16C2, and then select N = max{δ−1,M2/η2}. Thus, for
any r ′ ∈ Rγ , as n > N , by (5.3)–(5.5) it follows that

P

(
sup

r ′<r≤r ′+δ

‖T1n(r) − T1n(r
′)‖ > η

)
≤ (2C4 + 4C5)δ

2

η4 + CC1δ
2

η4 ≤ δε.

By Theorem 15.5 in [5] (also see the proof of Theorem 16.1 in [5]), we can claim
that {T1n(r) :Rγ } is tight. Furthermore, since

∑n
t=1 D1t (λ0, r)/

√
n is tight un-

der H0 and �1r is continuous in terms of r on Rγ , we know that {Tn(r) :Rγ }
is tight. We can show that the finite-dimensional distributions of {Tn(r) : r ∈ Rγ }
converge weakly to those of {σGq(r) : r ∈ Rγ }. By Prohorov’s theorem in [5],
page 37, Tn(r) ⇒ σGq(r) on Dq[Rγ ] for each γ ∈ (0,∞). By Theorem 15.5
in [5], almost all the paths of Gq(r) are continuous in terms of r . �

6. Proof of Lemma 2.1. To prove Lemma 2.1, we need six lemmas.
Lemma 6.1 is a basic result. Lemmas 6.3 and 6.4 are for Lemma 2.1(a). Lem-
mas 6.2 and 6.5 are for Lemma 2.1(b). Lemma 6.6 shows that the effect of initial
values is asymptotically ignorable. Most of the results in this section still hold
under H1.

LEMMA 6.1. If Assumption 2.1 holds with Eε4
t < ∞, then under H0:

(a) E sup
�1

sup
r∈[a,b]

ε4
t (λ, r) < ∞,
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(b) E sup
�1

sup
r∈[a,b]

∥∥∥∥∂εt (λ, r)

∂λ

∥∥∥∥4

< ∞,

(c) E sup
�1

sup
r∈[a,b]

∥∥∥∥∂2εt (λ, r)

∂λ∂λ′ εt (λ, r)

∥∥∥∥2

< ∞.

PROOF. By Theorem A.2 in the Appendix, under H0 the following expansion
holds:

εt (λ, r) = yt +
∞∑

j=1

u′
j∏

i=1

[
 + �I (yt−d−i+1 ≤ r)]uyt−j a.s.,(6.1)

where u, 
 and � are defined in Theorem A.2. By (6.1) and Theorem A.1, we
have

sup
�1

sup
r∈[a,b]

|εt (λ, r)| ≤ O(1)

∞∑
i=0

ρi |yt−i | a.s.,(6.2)

where ρ ∈ (0,1). Since Eε4
t < ∞, it is readily shown that Ey4

t < ∞. By
Minkowskii’s inequality, we can show that E sup�1

supr∈[a,b] ε4
t (λ, r) < ∞. Thus,

(a) holds:

∂εt (λ, r)

∂φk

= −εt−k(λ, r) −
p∑

i=1

[φi + ψiI (yt−d ≤ r)]∂εt−i(λ, r)

∂φk

,

∂εt (λ, r)

∂ψl

= −ε1t−l(λ, r) −
p∑

i=1

[φi + ψiI (yt−d ≤ r)]∂εt−i(λ, r)

∂ψl

,

where ε1t−l(λ, r) = εt−l(λ, r)I (yt−d ≤ r), k = 1, . . . , p and l = 1, . . . , q . By The-
orem A.2, under H0, the following expansions hold:

∂εt (λ, r)

∂φk(6.3)

= −εt−k(λ, r) −
∞∑

j=1

u′
j∏

i=1

[
 + �I (yt−d−i+1 ≤ r)]uεt−k−j (λ, r),

∂εt (λ, r)

∂ψl(6.4)

= −ε1t−l(λ, r) −
∞∑

j=1

u′
j∏

i=1

[
 + �I (yt−d−i+1 ≤ r)]uε1t−l−j (λ, r),

a.s. Using (6.3) and (6.4), Theorem A.1 and a similar method as for (a), we can
show that (b) holds. Similarly, we can show that (c) holds. �

LEMMA 6.2. If Assumptions 2.1 and 2.2 hold, then under H0 	r is positive
definite for each λ ∈ �1.
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PROOF. It is sufficient to show that if

E

[
c′ ∂εt (λ, r)

∂λ

∂εt (λ, r)

∂λ′ c

]
= 0,

then c = 0 for any constant vector c = (c′
1, c

′
2)

′ with c1 = (c11, . . . , c1p)′ and c2 =
(c21, . . . , c2q)

′. The above equation holds if and only if c′ ∂εt (λ, r)/∂λ = 0 a.s.,
from which we can show that[ p∑

i=1

c1iεt−i(λ, r)

]
I (yt−d > r)

+
[ p∑

i=1

(c1i + c2i )εt−i(λ, r)

]
I (yt−d ≤ r) = 0 a.s.,

where c2i = 0 as i > q . From this equation, we have that[ p∑
i=1

c1iεt−i(λ, r)

]
I (yt−d > r) = 0 a.s.,(6.5)

[ p∑
i=1

(c1i + c2i )εt−i(λ, r)

]
I (yt−d ≤ r) = 0 a.s.(6.6)

Denote the event A = {∑p
i=1 c1iεt−i(λ, r) = 0}. If c11 �= 0, for simplicity let

c11 = 1. Then A = {εt−1(λ, r) = −∑p
i=2 c1iεt−i(λ, r)}. Let g1t−1(λ, r) =∑p

i=1[φi +ψiI (yt−d−1 ≤ r)]εt−i−1(λ, r) and gt−2 = g1t−1(λ, r)−∑p
i=1 φi0εt−i −∑p

i=2 c1iεt−i(λ, r):

εt−1(λ, r) = yt − g1t−1(λ, r) = εt +
p∑

i=1

φi0εt−i − g1t−1(λ, r)

and, hence, A = {εt−1 = gt−2}. Since εt−1 and gt−2 are independent and εt has
a density function, P(A) = EI (εt−1 = gt−2) = E{E[I (εt−1 = gt−2)|gt−2]} = 0.
Thus,

P

({[ p∑
i=1

c1iεt−i(λ, r)

]
I (yt−d > r) = 0

})

= P

({[ p∑
i=1

c1iεt−i(λ, r)

]
I (yt−d > r) = 0

}
∩ Ac

)

= P
({I (yt−d > r) = 0} ∩ Ac) = P

({I (yt−d > r) = 0})
= P

(
εt−d ≤ r −

p∑
i=1

φi0εt−i

)
= E

{∫ r−∑p
i=1 φi0εt−i

−∞
f (x) dx

}
> 0,
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since f is positive, where f is the density of εt . This contradicts (6.5). So,
c11 = 0. Similarly, we can show that c12 = · · · = c1p = 0. Similarly, we can show
that c21 = · · · = c2q using (6.6). �

LEMMA 6.3. If Assumptions 2.1 and 2.2 hold, then under H0,

inf‖λ−λ0‖≥η
inf

r∈[a,b]E[ε2
t (λ, r) − ε2

t (λ0, r)] > 0 for any η > 0.

PROOF. Let Vt−1(λ, r) = εt (λ, r) − εt (λ0, r). Then

Vt−1(λ, r) =
p∑

i=1

[(φi − φi0) + (ψi − ψi0)I (yt−d ≤ r)]εt−i(λ, r)

+
p∑

i=1

[(φi0 + ψi0)I (yt−d ≤ r)]Vt−i(λ, r)

(6.7)

and, hence, it is independent of εt . Note that, under H0, εt (λ0, r) = εt . Since
εt (λ, r) = εt (λ0, r)+Vt−1(λ, r), we have Eε2

t (λ, r) = Eε2
t (λ0, r)+EV 2

t−1(λ, r).
EV 2

t−1(λ, r) = 0 if and only if Vt−1(λ, r) = 0 a.s. By (6.7) this occurs if and only
if

∑p
i=1[(φi − φi0) + (ψi − ψi0)I (yt−d ≤ r)]εt−i(λ, r) = 0 a.s. From the proof of

Lemma 6.2, the preceding equation holds if and only if λ = λ0 for each r ∈ [a, b].
Since EV 2

t−1(λ, r) is a continuous function of (λ′, r) and �1 × [a, b] is compact,
we have inf{‖λ−λ0‖≥η}×[a,b] EV 2

t−1(λ, r) > 0. Thus, the conclusion holds. �

LEMMA 6.4. If Assumptions 2.1 and 2.2 hold, then under H0, for any ε > 0,

lim
n→∞P

(
1

n
sup
�1

sup
r∈[a,b]

∣∣∣∣∣
n∑

t=1

[ε2
t (λ, r) − Eε2

t (λ, r)]
∣∣∣∣∣ > ε

)
= 0.

PROOF. Since �1 is compact, we can choose a collection of balls of radius
δ > 0 covering �1 and the number of such balls is a finite integer K1. We take a
point λi in the ith ball and denote this ball by Vλi

. Similarly, we divide [a, b] into
K2 parts such that a = r1 ≤ r2 < · · · < rK2+1 = b with |ri − ri−1| ≤ δ. Thus,

P

(
1

n
sup
�1

sup
r∈[a,b]

∣∣∣∣∣
n∑

t=1

[ε2
t (λ, r) − Eε2

t (λ, r)]
∣∣∣∣∣ > ε

)

≤
K1∑
i=1

K2∑
j=1

P

(
1

n

∣∣∣∣∣
n∑

t=1

[ε2
t (λi, rj ) − Eε2

t (λi, rj )]
∣∣∣∣∣ >

ε

2

)

+ P

(
sup

1≤i≤K1

sup
1≤j≤K2

sup
λ∈Vλi

sup
rj<r≤rj+1

|E[ε2
t (λi, rj ) − ε2

t (λ, r)]| > ε

4

)
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+ P

(
1

n
sup

1≤i≤K1

sup
1≤j≤K2

sup
λ∈Vλi

sup
rj<r≤rj+1

∣∣∣∣∣
n∑

t=1

[ε2
t (λ, r) − ε2

t (λi, rj )]
∣∣∣∣∣ >

ε

4

)
≡ B1n + B2n + B3n, say.

For any r ′ < r , let Xt = −∑p
i=1 ψiI (r ′ < yt−d ≤ r)εt−i(λ, r ′). By Theorem A.2,

εt (λ, r) − εt (λ, r ′) = Xt +
∞∑

j=1

u′
j∏

i=1

[
 + �I (yt−d−i+1 ≤ r)]uXt−j a.s.

By Lemma 5.1(a), we know that EI (r ′ < yt−d ≤ r ′ + δ) = O(δ). Furthermore, by
Lemma 6.1(a) and Hölder’s inequality, we can show that

E sup
λ∈�1

sup
r ′∈[a,b]

sup
r ′<r≤r ′+δ

X2
t = O(δ1/2).

By the preceding two equations, Theorem A.1 and Minkowskii’s inequality, we
have

E sup
λ∈�1

sup
1≤j≤K2

sup
rj<r≤rj+1

|εt (λ, r) − εt (λ, rj )|2 ≤ O(1)

( ∞∑
i=0

ρiδ1/4

)2

= O(δ1/2).

By this equation, Lemma 6.1(a) and the Cauchy–Schwarz inequality,

E sup
λ∈�1

sup
1≤j≤K2

sup
rj<r≤rj+1

|ε2
t (λ, r) − ε2

t (λ, rj )| = O(δ1/4).(6.8)

By Taylor’s expansion and Lemma 6.1(b), we have

E sup
1≤i≤K1

sup
λ∈Vλi

sup
r∈[a,b]

|εt (λ, r)−εt (λi, r)|2 ≤ δ2E sup
�1

sup
r∈[a,b]

∥∥∥∥∂εt (λ, r)

∂λ

∥∥∥∥2

= O(δ2).

Furthermore, by Lemma 6.1(a) and the Cauchy–Schwarz inequality, we can show
that

E sup
1≤i≤K1

sup
λ∈Vλi

sup
r∈[a,b]

|ε2
t (λ, r) − ε2

t (λi, r)| = O(δ).(6.9)

By (6.8) and (6.9), we can take δ small enough such that B2n = 0 and

B3n ≤ P

(
1

n
sup

1≤i≤K1

sup
λ∈Vλi

sup
r∈[a,b]

∣∣∣∣∣
n∑

t=1

[ε2
t (λ, r) − ε2

t (λi, r)]
∣∣∣∣∣ >

ε

8

)

+ P

(
1

n
sup
λ∈�1

sup
1≤j≤K2

sup
rj<r≤rj+1

∣∣∣∣∣
n∑

t=1

[ε2
t (λ, r) − ε2

t (λ, rj )]
∣∣∣∣∣ >

ε

8

)
<

ε

3
.

For this δ, K1 and K2 are fixed. By the ergodic theorem, B1n < ε/3 for n large
enough. Thus, we can claim that the conclusion holds. �
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LEMMA 6.5. If Assumptions 2.1 and 2.2 hold, then under H0, for any ε > 0,
there is an η > 0 such that

P

(
1

n
sup

‖λ−λ0‖≤η

sup
r∈[a,b]

∥∥∥∥∥
n∑

t=1

[Pt(λ, r) − 	r ]
∥∥∥∥∥ > ε

)
< ε,

where Pt(λ, r) = Ut(λ, r)U ′
t (λ, r) + [∂2εt (λ, r)/∂λ∂λ′]εt (λ, r).

PROOF. As for Lemma 6.4, the conclusion can be proved by using Lemma 6.1.
�

LEMMA 6.6. If Assumptions 2.1 and 2.2 hold, then under H0:

(a)
1

n
sup
�1

sup
r∈[a,b]

∣∣∣∣∣
n∑

t=1

[ε2
t (λ, r) − ε̃2

t (λ, r)]
∣∣∣∣∣ = op(1),

(b)
1√
n

sup
�1

sup
r∈[a,b]

∥∥∥∥∥
n∑

t=1

[Dt(λ, r) − D̃t (λ, r)]
∥∥∥∥∥ = op(1),

(c)
1

n
sup
�1

sup
r∈[a,b]

∥∥∥∥∥
n∑

t=1

[Pt(λ, r) − P̃t (λ, r)]
∥∥∥∥∥ = op(1),

where Pt(λ, r) is defined in Lemma 6.5 and typically D̃t (λ, r) is Dt(λ, r) with the
initial values ys = 0 for s ≤ 0.

PROOF. By Lemma 6.1 and Theorem A.1 we can show that the conclusion
holds. �

PROOF OF LEMMA 2.1. For any η > 0, let c = inf‖λ−λ0‖≥η infr∈[a,b] E[ε2
t (λ,

r) − ε2
t (λ0, r)]. By Lemma 6.3 c > 0. Furthermore, by Lemma 6.4 we have that

P

(
inf

r∈[a,b] inf‖λ−λ0‖≥η

{
n∑

t=1

[ε2
t (λ, r) − ε2

t (λ0, r)] − cn

2

}
< 0

)

= P

(
inf

r∈[a,b] inf‖λ−λ0‖≥η

{
n∑

t=1

[ε2
t (λ, r) − Eε2

t (λ, r)]

−
n∑

t=1

[ε2
t (λ0, r) − Eε2

t (λ0, r)]

+ n[Eε2
t (λ, r) − Eε2

t (λ0, r)] − cn

2

}
< 0

)

≤ P

(
sup

r∈[a,b]
sup
�1

{∣∣∣∣∣1

n

n∑
t=1

[ε2
t (λ, r) − Eε2

t (λ, r)]
∣∣∣∣∣
}

>
c

4

)
→ 0
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as n → ∞. Using the preceding equation and Lemma 6.6(a), we can show that

P

(
inf

r∈[a,b] inf‖λ−λ0‖≥η

{
n∑

t=1

[ε̃2
t (λ, r) − ε̃2

t (λ0, r)] − cn

4

}
< 0

)
→ 0

as n → ∞. Thus, for any ε > 0, it follows that

P

(
sup

r∈[a,b]
‖λ̃n(r) − λ0‖ > ε

)

= P

{
‖λ̃n(r) − λ0‖ > ε,

n∑
t=1

[
ε̃2
t

(
λ̃n(r), r

) − ε̃2
t (λ0, r)

] ≤ 0,

for some r ∈ [a, b]
}

≤ P

{
inf

r∈[a,b] inf‖λ−λ0‖>ε

n∑
t=1

[ε̃2
t (λ, r) − ε̃2

t (λ0, r)] ≤ 0

}
→ 0

as n → ∞, that is, (a) holds. Using Taylor’s expansion, by (a) of this lemma,
Lemmas 6.2, 6.5 and 6.6(b)–(c), we can show that (b) holds. For (c), let D1n =
n−1/2 ∑n

t=1 D1t (λ0, r) and D2n = n−1/2 ∑n
t=1 D2t (λ0, r). L0n(φ̃n) has the expan-

sion

2[L̃0n(φ̃n) − L̃0n(φ0)] = −D′
1n�

−1D1n + op(1).(6.10)

By (b) of this lemma and Lemmas 6.5 and 6.6, using Taylor’s expansion, it follows
that

2
[
L̃1n

(
λ̃n(r), r

) − L̃1n(λ0, r)
] = −D′

n	
−1
r Dn + Rn,

where Dn = [D′
1n,D

′
2n]′ and supr∈[a,b] |Rn| = op(1). After some algebra we have

2
[
L̃1n

(
λ̃n(r), r

)− L̃1n(λ0, r)
] = −T ′

n(r)K
−1
rr Tn(r)−D′

1n�
−1D1n +Rn.(6.11)

Since L̃0n(φ0) = L̃1n(λ0, r) under H0 for each r , by (6.10) and (6.11), (c) holds.
�

APPENDIX

Invertibility of TMA models. This appendix gives a general invertible ex-
pansion of TMA models, which can be used for TARMA models. We first provide
a uniform bound for these coefficients.

THEOREM A.1. If Assumption 2.1 holds, then sup�1
supr∈R ‖∏j

i=1[
 +
�I (yt−i ≤ r)]‖ = O(ρj ) a.s., as j → ∞, where ρ ∈ (0,1),


 =
(−φ1 · · · −φp

Ip−1 O(p−1)×1

)
and � =

(−ψ1 · · · −ψp

O(p−1)×p

)
,

with Ik being the k × k identity matrix and Ok×s the k × s zero matrix.
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PROOF. Let a = sup�1
max{∑p

i=1 |φi |,∑p
i=1 |φi + ψi |}. Then a ∈ [0,1].

Since �1 is compact, if a = 1, then there exists a point λ ∈ �1 such that∑p
i=1 |φi | = 1 or

∑p
i=1 |φi + ψi | = 1, which contradicts Assumption 2.1. Thus,

a ∈ [0,1). For any matrix C = (cij ), we introduce the notation |C| = (|cij |).
Denote ei = (0, . . . ,0,1,0, . . . ,0)′p×1 with the ith element equal to 1, and v =
(1, . . . ,1)′p×1. Thus,

sup
r∈R

∣∣∣∣∣ej

n∏
i=1

[
 + �I (yt−i ≤ r)]ek

∣∣∣∣∣
≤ sup

r∈R

ej

n∏
i=1

[|
|I (yt−i > r) + |
 + �|I (yt−i ≤ r)]v

≤ max

{
ej

n∏
i=1

Aiv :Ai = |
| or |
 + �|
}

a.s.,

for any j, k = 1, . . . , p. It is not difficult to see that Anv ≤ (a,1, . . . ,1)′, where, for
two vectors B = (b1, . . . , bp)′ and C = (c1, . . . , cp)′, B ≤ C means that bi ≤ ci for
i = 1, . . . , p. Since a ∈ [0,1), we can see that An−1Anv ≤ An−1(a,1, . . . ,1)′ ≤
(a, a,1, . . . ,1)′, . . . , and An−p+1 . . .Anv ≤ (a, a, . . . , a)′ = av. Let n = ps + r ,
where r = 0,1, . . . , p − 1. Then sup�1

ej

∏n
i=1 Aiv ≤ Cas , where C > 0 is a con-

stant independent of n. Since as = O[(a1/p)n] = O(ρn), the conclusion holds.
�

THEOREM A.2. Let {(wt , yt ) : t ∈ Z} be a strictly stationary sequence with
E|wt | < ∞. If Assumption 2.1 holds, then there exists a unique strictly stationary
solution {zt } to the equation zt = wt − ∑p

i=1 φizt−i − ∑q
i=1 ψiI (yt−d ≤ r)zt−i ,

with p ≥ q , and zt has the expansion

zt = wt +
∞∑

j=1

u′
j∏

i=1

[
 + �I (yt−d−i+1 ≤ r)]uwt−j ,

a.s. and in L1, where 
 and � are defined as in Theorem A.1 and u =
(1,0, . . . ,0)′p×1.

PROOF. Let ζt = (zt , . . . , zt−p+1)
′, At = 
 + �I (yt−d ≤ r) and Yt = uwt .

We can rewrite zt in the vector form

ζt = Yt + Atζt−1.(A.1)

We iterate this equation J steps: ζt = Yt + ∑J−1
j=1

∏j
i=1 At−i+1Yt−j +∏J

i=1 At−i+1ζt−J . Let SJ = Yt + ∑J−1
j=1

∏j
i=1 At−i+1Yt−j . By Theorem A.1 it is
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not hard to see that

E
∥∥SJ1 − SJ2

∥∥ = E

∥∥∥∥∥
J2−1∑
j=J1

j∏
i=1

At−i+1Yt−j

∥∥∥∥∥
≤ O(1)E|wt |

J2−1∑
j=J1

ρj = O(ρJ1)

(A.2)

for any J1 < J2. By (A.2) we can show that SJ → S∞ a.s. and in L1. Let ζt = S∞.
Then ζt is a solution of (A.1). To see the uniqueness, suppose that there is another
solution ζ ∗

t a.s. and in L1 for model (A.1). Let Vt = ζt − ζ ∗
t . Vt = AtVt−1 = · · · =∏J

i=1 At−i+1Vt−J . Since E‖Vt‖ = a constant < ∞, by Theorem A.1 we can see
that E‖Vt‖ = 0 and, hence, ζt = ζ ∗

t a.s. and in L1. �
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