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A binomial-type operator on a stationary Gaussian process is introduced
in order to model long memory in the spatial context. Consistent estimators of
model parameters are demonstrated. In particular, it is shown that d̂N − d =
OP (

(LogN)3

N
), where d = (d1, d2) denotes the long memory parameter.

1. Introduction and main results. A process obeying the spatial autoregres-
sive model

Xst = αXs−1,t + βXs,t−1 − αβXs−1,t−1 + εst(1.1)

was first studied by Martin [18], where −1 < α,β < 1. Martin indicated that
it is often desirable in practice that a process be reflection symmetric, that is,
ρk� = ρ−k,−� = ρk,−� = ρ−k,� for lags k and �, and that the autocorrelations have
a simple form. These requirements led to the definition of model (1.1),which has
autocorrelation ρk,� = α|k|β |�| for lags k and �. Spatial autoregressive models are
shown by Tjøstheim [22] to be useful in studying geophysical quantities such as
seismological data. Jain [14] indicates that these models can be applied to de-
velop useful algorithms for image processing. Culles and Gleeson [8] and Basu and
Reinsel [2] illustrate the suitability of model (1.1) as an error term in a regression
model used to analyze data collected in agricultural field trials. Moreover, empiri-
cal evidence of slow decay of correlations between yield in two-dimensional agri-
cultural field trials has received considerable attention (e.g., [10, 24, 25] and [20]).
This led to the study of power law correlation functions by Whittle [25] and
Besag [3] as an alternative to exponential decay. Martin [19] also indicates the im-
portance of long-range correlation structures in agricultural field experiments. In
addition, Professor Kwang-Yul Kim of the Department of Meteorology at Florida
State University has communicated to us that many geophysical variables, such
as ocean temperature, exhibit a well-extended spatial correlation structure (e.g.,
[16, 17]). The above references motivate the possible need for inclusion of a long
memory component when modeling certain spatial processes.
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It is assumed that the data-sites can be arranged in a square lattice. This com-
monly occurs in agricultural experiments where exactly one plant is located at
site (i, j). Tjøstheim [21] mentions that irregularly spaced data-sites can some-
times be replaced by a regular grid using the interpolation techniques of Delfiner
and Delhomme [9].

Let C denote the field of complex numbers; define

φ(z1, z2, α,β) = (1 − αz1)(1 − βz2),
(1.2)

ψ(z1, z2, α,β) = [φ(z1, z2, α,β)]−1.

Suppose that B1Xst = Xs−1,t (B2Xst = Xs,t−1) is the backward shift operator on
the first (second) index of Xst ; then (1.1) can be written compactly as

φ(B1,B2, α,β)Xst = εst .(1.3)

It is assumed throughout this work that all processes considered are Gaussian.
Asymptotic results on parameter estimators in the model (1.3) for both stationary
and nonstationary cases can be found in [1, 4, 5, 15].

Our purpose here is to extend the work of Fox and Taqqu [11, 12] from
time series to the spatial context by including a long memory component in the
model (1.3). Memory in time series is modeled by use of the binomial operator
(1 − B)d , where d ∈ (−1

2 , 1
2) denotes the memory parameter. The following oper-

ator is used in the spatial setting with two indices d = (d1, d2):

∇d = (1 − B1)
d1 ◦ (1 − B2)

d2 .(1.4)

The operator ∇d is defined by its corresponding power series representation in
(z1, z2), that is, ∇dXst = ∑∞

k,�=0 ak�Xs−k,t−�, where the coefficients are found
from the power series expansion of (1 − z1)

d1(1 − z2)
d2 in the unit polydisc

�1(0) × �1(0) with �1(0) = {z ∈ C : |z| < 1}. Let Z denote the set of all inte-
gers. Given φ in (1.2), ∇d in (1.4) and the white noise process εst ∼ WN (0, σ 2),
the fractional autoregressive model of the form

φ(B1,B2, α,β)∇dXst = εst , where s, t ∈ Z and d1, d2 ∈ (−1
2 , 1

2

)
,(1.5)

is considered. It can be shown (see [6]) that the spectral density function of the
stationary solution of (1.5) is

f (x, y, θ) = σ 2

4π2

|1 − e−ix |−2d1 · |1 − e−iy |−2d2

|φ(e−ix, e−iy, α,β)|2 ,(1.6)

where θ = (α,β, d), |α| < 1, |β| < 1 and |di | < 1
2 , i = 1,2. Moreover, the corre-

sponding autocovariance function when α = β = 0 is

γ (k, �) = (−1)k+�
(1 − 2d1)
(1 − 2d2)σ
2


(k − d1 + 1)
(1 − k − d1)
(� − d2 + 1)
(1 − � − d2)
.
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Let θ0 = (α0, β0, d0) denote the true parameter value, where d0 = (d10, d20).
Recall that a second-order process {Xst : s, t ∈ Z} is said to be stationary

when E(Xst ) = µ and, for each k, � ∈ Z, cov(Xs+k,t+�,Xst ) is independent of
s, t ∈ Z. Moreover, {Xst : s, t ∈ Z} is called strictly stationary provided all its
finite-dimensional distributions remain invariant under translations. Denote XN =

1
N2

∑N
k,�=1 Xk� and define

IN(x, y) = 1

N2

∣∣∣∣∣
N∑

k,�=1

ei(kx+�y) · (Xk� − XN)

∣∣∣∣∣
2

to be the periodogram of the process. As suggested by Whittle [23] in the time
series case, define θ̂N to be an argument θ = (α,β, d) making

σ 2
N(θ) =

∫
I 2

IN(x, y)

f (x, y, θ)
dx dy(1.7)

a minimum, where I = [−π,π ], I 2 = [−π,π ] × [−π,π ] and f (x, y, θ) is the
spectral density function of the process. In our setting, it can be shown that a min-
imum exists when |α| ≤ r , |β| ≤ r and |di | ≤ s, where 0 < r < 1 and 0 < s < 1

2 ,
i = 1,2.

Some motivational comments concerning the estimator defined in (1.7) are in
order. Assume that {Xst : s, t ∈ Z} is a mean zero Gaussian process with spectral
density function f (x, y, θ) given in (1.6) and denote X = (X11,X12, . . . ,XNN) ∼
N (0,
N). Let Logx denote the natural logarithm of x. Then the log-likelihood
function of X is

LN(θ, σ 2) = −N2

2
Log 2π − 1

2
Log |
N | − 1

2
X′
−1

N X.

Let VN = σ−2
N . Whittle [23] proves that |VN(θ)| → 1 as N → ∞ and, thus,
LN(θ, σ 2) can be approximated by −N2

2 Log 2πσ 2 − 1
2σ 2 X′V −1

N (θ)X when N is

large. Fox and Taqqu ([11], page 518) use Parseval’s identity to show that 
−1
N

can be approximated by the more tractable Toeplitz matrix BN = (bk�mn), where
bk�mn = ∫

I 2 ei[(k−m)x+(�−n)y]f −1(x, y, θ) dx dy, and this leads to the Whittle es-
timator given in (1.7).

The primary results of this work are given below and proved in Sections 2–4.
The many details and statements whose proofs are not given here are all available
on request from the authors. Our first result establishes strong consistency of the
estimator θ̂N .

THEOREM 1.1. Assume that {Xst : s, t ∈ Z} is a stationary Gaussian process
having the spectral density function listed in (1.6), where |α| < 1, |β| < 1 and
0 < d1, d2 < 1

2 . Then θ̂N → θ0 almost surely as N → ∞.
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The rate at which {θ̂N } converges in probability is given in the next theorem.
The notation ∂

∂θ
σ 2

N(θ0) is defined to be the partial derivative of σ 2
N evaluated at θ0.

THEOREM 1.2. Let {Xst : s, t ∈ Z} be a stationary Gaussian process hav-
ing the spectral density function listed in (1.6), where |α| < 1, |β| < 1 and
0 < d1, d2 < 1

2 . Then:

(a) N(θ̂N − θ0)+NA−1
N E( ∂

∂θ
σ 2

N(θ0))
D→ N (0,128π6�−1), where � and AN

are defined in (3.1), (3.2) and (3.5);

(b) N(LogN)−3(θ̂N − θ0)
P→ 64π2K

3 (δ13d10, δ24d20, δ33d10, δ44d20), where K

and δij are defined in (3.3).

Observe that AN in Theorem 1.2(a) depends on the abstract point θN defined
in (3.4). It follows that Theorem 1.2(a) cannot be used for construction of a con-
fidence set about θ0. It only shows that when θ̂N − θ0 is normalized by N , the
second term in (a) provides just enough cancellation to produce a nondegenerate
limit distribution.

REMARK 1.3. Many of the results given here are natural extensions of those
given in the time series context by Fox and Taqqu [11]. However, a significant
departure occurs with the bias term used in Theorem 1.2(a). According to (4.3),
the normalized convergence of the sequence

∑
|k|<N(1−|k|/N)ak1ck1 is required.

The proof given by Fox and Taqqu ([11], page 529) shows that (in our notation)
Nρ ∑

|k|<N(1 − |k|/N)ak1ck1 → 0 and N → ∞, for ρ < 1. (They only used the
case ρ = 1/2.) In the spatial case one has to deal with the asymptotic behavior
of NE( ∂

∂θ
σ 2

N(θ0)), which amounts to considering what happens to N
∑

|k|<N(1 −
|k|/N)ak1ck1 as N → ∞. Unlike in the time series setting [where the bias term√

N
∑

|k|<N(1 − |k|/N)ak1ck1 → 0], this sequence goes to infinity. It is shown in
this paper that (N/Log3 N)

∑
|k|<N(1 − |k|/N)ak1ck1 converges to a nonzero real

number as N → ∞. The point here is that the bias term, NA−1
N E[ ∂

∂θ
σ 2

N(θ0)], in
the spatial context is of order Log3 N as N → ∞.

2. Proof of Theorem 1.1: Outline. A sequence of lemmas needed to establish
the strong consistency of estimators of model parameters is stated and the reader
is referred to Boissy [6] for detailed proofs. The first lemma gives a convenient
method (in our setting) for finding the Fourier series representation of a spectral
density function in terms of the orthogonal set {ei(kx+�y) :k, � ∈ Z} with respect to
the product Lebesgue measure λ = λ1 × λ2 on I 2. Let Lp(I 2) denote the set of all
complex-valued functions for which

∫
I 2 |f |p dλ < ∞, where p > 0.

LEMMA 2.1. Let g be a complex-valued function defined on the closed unit
polydisc �1(0)×�1(0) in C×C for which g(e−ix, e−iy) ∈ L2(I 2). Suppose that g
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is an analytic function defined on �1(0)×�1(0) with power series representation
g(z1, z2) = ∑∞

k,�=0 Ck�z
k
1z

�
2, and assume that λ{(x, y) ∈ I 2 :g is discontinuous at

(z1, z2) = (e−ix, e−iy)} = 0. Then g(e−ix, e−iy) has the Fourier series expansion∑∞
k,�=0 Ck�e

−i(kx+�y) if and only if
∑∞

k,�=0 |Ck�|2 < ∞.

The representation described in Lemma 2.1 can be used to verify Lemma 2.2(a).

LEMMA 2.2. Let f (x, y, θ) denote the spectral density function listed in (1.6).
Then:

(a) f ∈ L1(I 2) and
∫
I 2 Log 4π2

σ 2 f (x, y, θ) dx dy = 0,

(b)
∫
I 2

f (x,y,θ1)
f (x,y,θ2)

dx dy > 4π2 when θ1 
= θ2.

LEMMA 2.3. Assume that {Xst : s, t ∈ Z} is a stationary process defined
on the underlying probability space (�,F,P ) and having mean µ, autoco-
variance γ and spectral density function h(x, y, θ0). Suppose that XN → µ

and 1
N2

∑N
s,t=1(Xs+k,t+� − µ)(Xst − µ) → γ (k, �) almost surely, and that

g : (Rp+2,Bp+2) → (R,B) is bounded, Borel measurable and periodic with
g(x + 2πk ) = g(x ) for each x ∈ R

p+2 and k ∈ Z
p+2. If I 2 × K is a com-

pact subset of Ip+2 which is contained in the set of all continuity points of
g and IN is the periodogram of the process, then

∫
I 2 g(x, y, θ)IN(x, y) dx dy →∫

I 2 g(x, y, θ)h(x, y, θ0) dx dy uniformly in θ ∈ K , almost surely [P ].
The omitted proof uses the technique of Hannan ([13], Lemma 1) in the

time series case by uniformly approximating g(x, y, θ) over I 2 × K with an
N th order Cesàro sum (see [26], page 304, Theorem 1.20). Since a station-
ary Gaussian process is strictly stationary, it can be shown that XN → µ and

1
N2

∑N
s,t=1(Xs+k,t+� −µ)(Xst −µ) → γ (k, �) almost surely and, thus, Lemma 2.3

is applicable in our context.

PROOF OF THEOREM 1.1. Combining Lemmas 2.2–2.3 above with the ar-
gument given by Hannan ([13], Theorem 1) for the time series case shows that
θ̂N → θ0 almost surely (see [6]). �

Next, a sequence of estimators of θ0 that is more suited for computational pur-
poses than (1.7) is given. Following Hannan ([13], page 133), define θ̃N to be the
argument making

σ̃ 2
N(θ) = 1

N2

∑
−N/2<s,t≤N/2

IN(ws,wt)

(4π2/σ 2)f (ws,wt , θ)
(2.1)

a minimum, where ws = 2πs/N . Under the hypothesis of Theorem 1.1 above,
it can be shown that θ̃N → θ0 almost surely. Once θ̃N has been found, σ̃ 2

N(θ̃N)

in (2.1) can be used as a strongly consistent estimator of σ 2.
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3. Proof of Theorem 1.2(a). In the time series context, Fox and Taqqu [12]
used a combinatorial method in order to establish convergence to normality of cer-
tain sequences of quadratic forms determined by Toeplitz matrices. Lemma 3.2
below allows one to extend the above result to the spatial context when the coeffi-
cient matrix can be expressed as a finite sum of Kronecker products. This lemma
is used to prove Theorem 1.2(a).

Given h ∈ L1(I 2), ak�mn = ∫
I 2 ei[(k−m)x+(�−n)y]h(x, y) dx dy is a Fourier co-

efficient of h and TN(h) = (ak�mn) denotes the corresponding N2 × N2 (block)
Toeplitz matrix. Elements in (ak�mn) are arranged lexicographically beginning
with row 1, followed by row 2, and so on. In particular, element ak�mn ap-
pears in row (k − 1)N + � and column (m − 1)N + n of TN(h). Recall that the
Kronecker product of matrices A and B is defined by A ⊗ B = (ak�B), and the
following properties are needed:

∏k
j=1(Aj ⊗ Bj) = (

∏k
j=1 Aj) ⊗ (

∏k
j=1 Bj) and

Tr(A ⊗ B) = Tr(A) · Tr(B), when the matrices are compatible and Tr denotes the
trace.

DEFINITION 3.1. A function h : I → R is called admissible provided the fol-
lowing conditions are fulfilled:

(A.1) h is symmetric and integrable;
(A.2) the set of discontinuities of h has Lebesgue measure zero;
(A.3) for each fixed δ > 0, h is bounded on [δ,π];
(A.4) there exists α < 1 such that h(x) = O(|x|−α) as x → 0.

Given h, k : I → R, the product of h and k is defined to be the function (h ⊗
k)(x, y) = h(x) · k(y) for each x, y ∈ I .

LEMMA 3.2. Assume that fs = fs1 ⊗ fs2, gt = gt1 ⊗ gt2, f = ∑m
s=1 fs ,

g = ∑n
t=1 gt and each fsj , gtj is admissible on I, j = 1,2. Moreover, suppose

that fsj (x) = O(|x|−α), gtj (x) = O(|x|−β) as x → 0 and α + β < 1
2 . Then:

(a) 1
N2 Tr[TN(f )TN(g)]2 → (4π2)3 ∫

I 2[fg]2 dx dy,

(b) 1
Nk Tr[TN(f )TN(g)]k → 0 when k = 3,4, . . . .

PROOF. First, observe that if hst = fs1 ⊗ gt2, then TN(hst ) = TN(fs1) ⊗
TN(gt2) = (ak�TN(gt2)). Indeed, a typical element in (ak�TN(gt2)) is of the form
ak�bmn = ∫

I ei(k−�)xfs1(x) dx · ∫
I ei(m−n)ygt2(y) dy = ∫

I 2 ei[(k−�)x+(m−n)y] ×
hst (x, y) dx dy. The latter quantity appears in row N(k − 1) + m and column
N(�−1)+n of both TN(fs1)⊗TN(gt2) and TN(hst ), which establishes the equal-
ity.
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(a) Employing Theorem 1(a) of [12] and properties of the Kronecker product,

1

N2 Tr[TN(f )TN(g)]2

= 1

N2

∑
s,t,u,v

Tr[TN(fs)TN(gt )TN(fu)TN(gv)]

= 1

N2

∑
s,t,u,v

Tr
[(

TN(fs1) ⊗ TN(fs2)
)(

TN(gt1) ⊗ TN(gt2)
)

× (
TN(fu1) ⊗ TN(fu2)

) ⊗ (
TN(gv1) ⊗ TN(gv2)

)]

= ∑
s,t,u,v

1

N
Tr[TN(fs1)TN(gt1)TN(fu1)TN(gv1)]

× 1

N
Tr[TN(fs2)TN(gt2)TN(fu2)TN(gv2)]

→ ∑
s,t,u,v

(2π)3
∫
I
[fs1gt1fu1gv1]dx · (2π)3

∫
I
[fs2gt2fu2gv2]dy

= (4π2)3
∫
I 2

[fg]2 dx dy.

The above application of Theorem 1 of [12] is valid since each fsj (gtj ) has the
same order as x → 0, respectively. It is not necessary that all fsj ’s be equal in the
proof of Theorem 1 of [12].

(b) Suppose that k is an integer exceeding 2. First, assume that k(α + β) < 1.
An extension of the argument used in part (a) shows that 1

N2 Tr[TN(f )TN(g)]k →
(4π2)2k−1 ∫

I 2[fg]k dx dy, and since k > 2, 1
Nk Tr[TN(f )TN(g)]k → 0. The case

when k(α + β) ≥ 1 is verified in a similar manner by employing Theorem 1(b)
of [12]. �

Given the process {Xst : s, t ∈ Z}, recall that XN = 1
N2

∑N
s,t=1 Xst , and define

X̃′
N = (X11 − XN,X12 − XN, . . . ,X1N − XN,X21 − XN, . . . ,X2N − XN, . . . ,

XN1 − XN, . . . ,XNN − XN). Verification of the following result is based on the
fact that the normal distribution is determined by its moments. The details of the
proof are given in [6].

LEMMA 3.3. Let {Xst : s, t ∈ Z} be a stationary Gaussian process having
mean µ and spectral density function f , and let g : (I 2,B2) → (R,B) be a
bounded measurable function obeying g(−x,−y) = g(x, y) for each (x, y) ∈ I 2.
Moreover, assume that f = ∑m

s=1 fs (g = ∑n
t=1 gt ), fs = fs1 ⊗ fs2 (gt =

gt1 ⊗ gt2) and each fsj (gtj ) is an admissible function with parameter α(β)

in Definition 3.1, where α + β < 1
2 . If AN = TN(g), then 1

N
[X̃′

NANX̃N −
E(X̃′

NANX̃N)] D→ N (0, δ2), where δ2 = 128π6 ∫
I 2[f (x, y) · g(x, y)]2 dx dy.



2560 BOISSY, BHATTACHARYYA, LI AND RICHARDSON

Recall that θ̂N is a value of θ = (α,β, d) = (α,β, d1, d2) making σ 2
N(θ) in (1.7)

a minimum relative to the spectral density function f (x, y, θ) given in (1.6). For
simplicity we use θ = (θ1, θ2, θ3, θ4) = (α,β, d1, d2). Define a symmetric matrix

� = (σij )

(3.1)
with σij =

∫
I 2

∂f −1(x, y, θ0)

∂θi

· ∂f −1(x, y, θ0)

∂θj

f 2(x, y, θ0) dx dy.

A calculation shows that σij = ∫
I 2

∂2f −1(x,y,θ0)
∂θi ∂θj

· f (x, y, θ0) dx dy and, moreover,
using the spectral density function listed in (1.6), it is straightforward to verify

σ11 = 8π2/(1 − α2
0), σ12 = 0,

σ13 = −8π2(
Log(1 − α0)

)
/α0, σ14 = 0,

σ22 = 8π2/(1 − β2
0 ), σ23 = 0,(3.2)

σ24 = −8π2(
Log(1 − β0)

)
/β0,

σ33 = σ44 = 4π4/3 and σ34 = 0.

The interpretation given when α0 = 0 (β0 = 0) is that σ13 (σ24) be replaced by its
limiting value 8π2. Moreover, denote

C(x) = 1

1 − x2

π2

6
− Log2(1 − x)

x2

and define

K = 1

8π2C(α0)C(β0)
,

δ11 = π2

6
C(β0), δ12 = 0,

δ13 = Log(1 − α0)

α0
C(β0), δ14 = 0,(3.3)

δ22 = π2

6
C(α0), δ23 = 0, δ24 = Log(1 − β0)

β0
C(α0),

δ33 = 1

1 − α2
0

C(β0), δ34 = 0 and δ44 = 1

1 − β2
0

C(α0).

Then one can verify that �−1 = K(δij ).

PROOF OF THEOREM 1.2(a). Applying the mean value theorem,

∂

∂θ
σ 2

N(θ̂N) − ∂

∂θ
σ 2

N(θ0) = ∂2

∂θ2 σ 2
N(θN)(θ̂N − θ0)(3.4)
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for some θN belonging to the line segment between θ̂N and θ0. According to The-
orem 1.1, θ̂N → θ0 almost surely and, thus, in probability; hence, ∂

∂θ
σ 2

N(θ̂N) = 0

since θ̂N becomes an interior point of the parameter space when N is sufficiently
large. It follows from Lemma 2.3, Theorem 1.1 and (3.1)–(3.2) that

AN := ∂2

∂θ2 σ 2
N(θN) → � almost surely as N → ∞.(3.5)

The Cramér–Wold device can be used to show that, as N → ∞,

N

[
∂

∂θ
σ 2

N(θ0) − E

(
∂

∂θ
σ 2

N(θ0)

)]
D→ N (0,128π6�).(3.6)

Indeed, let c′ = (c1, c2, c3) ∈ R
3 and define g(x, y, c) = c′ · ∂f −1(x,y,θ0)

∂θ
; then

c′ · N ∂

∂θ
σ 2

N(θ0) = N

∫
I 2

g(x, y, c)IN(x, y) dx dy = 1

N
X̃′

NBNX̃N,

where BN = TN(g). According to Lemma 3.3,

c′N
[

∂

∂θ
σ 2

N(θ0) − E

(
∂

∂θ
σ 2

N(θ0)

)]

= 1

N
[X̃′

NBNX̃N − E(X̃′
NBNX̃N)] D→ N (0, δ2),

where

δ2 = 128π6
∫
I 2

[f (x, y, θ0) · g(x, y, c)]2 dx dy

= 128π6
3∑

k,�=1

ckc�

∫
I 2

∂f −1(x, y, θ0)

∂θk

· ∂f −1(x, y, θ0)

∂θ�

f 2(x, y, θ0) dx dy

= 128π6c′�c.

Therefore, (3.6) holds. From this, employing (3.4) and (3.5),

N(θ̂N − θ0) + NA−1
N E

(
∂

∂θ
σ 2

N(θ0)

)
= −NA−1

N

[
∂

∂θ
σ 2

N(θ0) − E

(
∂

∂θ
σ 2

N(θ0)

)]

D→ N (0,128π6�−1)

as N → ∞. �

4. Proof of Theorem 1.2(b). According to (3.5), A−1
N → �−1 almost surely

and, thus, the proof of Theorem 1.2(b) involves determining the orders of
NE( ∂

∂θ
σ 2

N(θ0)). Define σ 2∗
N (θ) as in (1.7) with XN in IN replaced by µ =

E(X11). The argument given by Fox and Taqqu ([12], Lemma 8.1) verifies that
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NE[ ∂
∂θ

σ 2
N(θ0) − ∂

∂θ
σ 2∗

N (θ0)] → 0 as N → ∞; it is shown that the orders of
NE( ∂

∂θ
σ 2∗

N (θ0)) and NE( ∂
∂θ

σ 2
N(θ0)) coincide.

Assume that {Xst : s, t ∈ Z} is a process described in Theorem 1.2 with spectral
density function f (x, y, θ) defined in (1.6) and having mean µ and autocovariance
function γ (k, �). Denote

I ∗
N(x, y) = 1

N2

∣∣∣∣∣
N∑

k,�=1

ei(kx+�y)(Xk� − µ)

∣∣∣∣∣
2

and

σ 2∗
N (θ) =

∫
I 2

I ∗
N(x, y)

f (x, y, θ)
dx dy.

It follows from the stationarity of the X-process that

E

(
∂

∂θ
σ 2∗

N (θ0)

)
= 1

N2

∫
I 2

N∑
k,�,m,n=1

ei[(k−m)x+(�−n)y] ∂

∂θ
f −1(x, y, θ0)

× E(Xk� − µ)(Xmn − µ)dx dy

= 1

N2

N∑
k,�,m,n=1

γ (k − m,� − n)

(4.1)

×
∫
I 2

ei[(k−m)x+(�−n)y] ∂

∂θ
f −1(x, y, θ0) dx dy

= 1

N2

∑
|k|<N,|�|<N

(N − |k|)(N − |�|)γ (k, �)

×
∫
I 2

ei(kx+�y) ∂

∂θ
f −1(x, y, θ0) dx dy.

Recall that θ ′
0 = (α0, β0, d10, d20) denotes the true parameters. The following

notation is used:

g(x,α, d1) = |1 − e−ix |−2d1 |1 − αe−ix |−2,

h(y,β, d2) = |1 − e−iy |−2d2 |1 − βe−iy |−2,

ak1 =
∫
I
eikxg(x,α0, d10) dx, a�2 =

∫
I
ei�yh(y,β0, d20) dy,

(4.2)

b�2 =
∫
I
ei�yh−1(y,β0, d20) dy, ck1 =

∫
I
eikx ∂g−1

∂d1
(x,α0, d10) dx,

ψ(y) =
∫
I
g(y − x,α0, d10)

∂g−1

∂d1
(x,α0, d10) dx.
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It remains to determine the limit of the sequence {N(LogN)−3E( ∂
∂θ

σ 2∗
N (θ0))}. For

the sake of brevity, verification is presented here only for the d1-component of θ .
Employing the notation in (4.2), f −1(x, y, θ) = 4π2

σ 2 g−1(x,α, d1) · h−1(y,β, d2)

and, thus, (4.1) becomes

E

(
∂

∂d1
σ 2∗

N (θ0)

)
= ∑

|k|<N

(
1 − |k|

N

)
ak1ck1 · ∑

|�|<N

(
1 − |�|

N

)
a�2b�2.(4.3)

Observe that the second summation converges to 8π3 as N → ∞ since the limit is
precisely 4π2 times the Cesàro sum of the convolution of h and h−1 evaluated at
zero.

LEMMA 4.1. Suppose that the assumptions listed in Theorem 2.1 are satisfied.
Employing the notation of (4.2) gives the following:

(i) ψ(y) = −8d10 sin y
2 Log2 siny + O(y|Logy|) as y → 0+;

(ii) E( ∂
∂α

σ 2
N(θ0)) = O(

Log2 N
N

),E( ∂
∂β

σ 2
N(θ0)) = O(

Log2 N
N

) and N

Log3 N
×

E( ∂
∂di

σ 2
N(θ0)) → −64

3 π2di0, i = 1,2, as N → ∞.

PROOF. Verification of (i) involves applications of Lemmas A.1 and A.2 in
the Appendix, together with several technical arguments of approximation and
expansion. The complete details of the proof are available on request from the
authors.

(ii). Proof of the third part for i = 1 is supplied here. According to (4.3),
it remains to determine the limit of sequence N

Log3 N
VN := N

Log3 N
�|k|<N(1 −

|k|
N

)ak1ck1. Then VN is the N th Cesàro sum for ψ evaluated at zero and thus has
the integral representation VN = ∫

I ψ(y)KN(y) dy, where

KN(y) =




1

2πN

sin2 Ny/2

sin2 y/2
, y 
= 0,

N

2π
, y = 0,

(4.4)

denotes the Fejér kernel (e.g., [7], page 71, or [26], page 88). Since ψ is
an even function, 1

2VN = ∫
(0,1/N) ψ(y)KN(y) dy + ∫

[1/N,c) ψ(y)KN(y) dy +∫
[c,π ] ψ(y)KN(y)dy := JN1 + JN2 + JN3, where c ∈ (0,1). Choosing c suffi-

ciently small, according to Lemma A.2, ψ(y) = O(y Log2 y) as y → 0+ and, thus,

|JN1| ≤ K1N
∫
(0,1/N) y Log2 y dy = O(

Log2 N
N

). Let ‖ψ‖1 denote the L1-norm

of ψ . Then |JN3| ≤ K3
N

‖ψ‖1 = O( 1
N

).
It remains to estimate JN2. Using the expansion for ψ in (i) when c is suffi-

ciently small and N sufficiently large,

JN2 =
∫
[1/N,c)

(
−8d10 sin

y

2
Log2 siny + O(y|Logy|)

)
KN(y)dy.
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The integral of the second term is O(
Log2 N

N
) and

∫
[1/N,c)

Log2 siny
sin2 Ny/2

siny/2
dy

=
∫
[1/N,c)

(
Log2 siny

siny/2
− 2

Log2 y

y

)
sin2 Ny

2
dy

+ 2
∫
[1/N,c)

Log2 y
sin2 Ny/2

y
dy

=
∫
[1/N,c)

O(y Log2 y) sin2 Ny

2
dy + 2

∫
[1/N,c)

Log2 y
sin2 Ny/2

y
dy

=: I1 + I2.

The first integral I1 is O(1) and I2 = ∫
[1/N,c)

Log2 y
y

dy − ∫
[1/N,c)

Log2 y
y

cosNy dy.

Integrating by parts, it is shown that the second integral is O(Log2 N) and, thus,
I2 = 1

3 Log3 N + O(Log2 N). Hence,

∫
[1/N,c)

Log2 siny
sin2 Ny/2

siny/2
dy = I1 + I2 = O(1) + 1

3
Log3 N + O(Log2 N)

= 1

3
Log3 N + O(Log2 N)

and, thus,

JN2 = − 8d10

2πN

∫
[1/N,c)

Log2 siny
sin2 Ny/2

siny/2
dy + O

(
Log2 N

N

)

= −4d10 Log3 N

3πN
+ O

(
Log2 N

N

)
.

Combining the above results,

VN = 2(JN1 + JN2 + JN3)

= O

(
Log2 N

N

)
+

(
−8d10 Log3 N

3πN
+ O

(
Log2 N

N

))
+ O

(
1

N

)

= −8d10 Log3 N

3πN
+ O

(
Log2 N

N

)

and, thus, N

Log3N
VN → −8d10

3π
as N → ∞. It follows from (4.3) that

N

Log3 N
E

(
∂

∂d1
σ 2

N

∗
(θ0)

)
→ −8d10

3π
8π3 = −64π2d10

3
.
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As mentioned earlier, NE( ∂
∂θ

σ 2
N(θ0) − ∂

∂θ
σ 2

N

∗
(θ0)) → 0 and, hence,

N

Log3 N
E

(
∂

∂d1
σ 2

N(θ0)

)
→ −64π2d10

3
. �

PROOF OF THEOREM 1.2(b). Recall from (3.3) and (3.5) that A−1
N → �−1 =

K · (δij ) almost surely. According to Theorem 1.2(a) and Lemma 4.1,

N

Log3 N
(θ̂N − θ0) + N

Log3 N
A−1

N E

(
∂

∂θ
σ 2

N(θ0)

)
P→ 0

and N(Log3 N)−1E( ∂
∂θ

σ 2
N(θ0))

P→ ξ , where ξ ′ = −64π2

3 (0,0, d10, d20). It follows
that

N

Log3 N
(θ̂N − θ0)

P→ −�−1 · ξ.

In particular, N(Log3 N)−1(α̂N − α0)
P→ −K · ∑4

j=1 δ1j ξj = −Kδ13ξ3 since

δ14 = 0. Likewise, N(Log3 N)−1(β̂N − β0)
P→ −Kδ24ξ4 since δ23 = 0. Further,

N(Log3 N)−1(d̂1 − d10)
P→ −Kδ33ξ3, N(Log3 N)−1(d̂2 − d20)

P→ −Kδ44ξ4 and,
hence, Theorem 1.2(b) follows. �

APPENDIX

The reader is referred to Boissy [6] for detailed proofs of the following lemmas.

LEMMA A.1. Assume that 0 < d < 1 is fixed. Then for y > 0 sufficiently
small,

(i) 0 ≤ d(cos y
2 )1−dcot(x−y

2 ) sin y
2 ≤ (

sinx/2
sin (x−y)/2)d −(cos y

2 )d ≤ d(cos y
2 )d−1×

cot(x−y
2 ) sin y

2 when x ∈ [−π,−π + y];
(ii) 0 ≤ −d cot(x−y

2 ) sin y
2 ≤ (cos y

2 )d − (
sinx/2

sin (x−y)/2)d ≤ −2d cot(x−y
2 ) sin y

2
when x ∈ [−π + y,−y];

(iii) 0 ≤ d2d−1 cot(x−y
2 ) sin y

2 ≤ (
sinx/2

sin (x−y)/2)d − (cos y
2 )d ≤ d(cos y

2 )d−1 ×
cot(x−y

2 ) sin y
2 when x ∈ [2y,π ].

LEMMA A.2. Fix 0 < d < 1. Then there exist positive constants C1,C2
and δ such that, for 0 < y < δ, C1y(Logy)2 ≤ | ∫I |2 sin x−y

2 |−d |2 sin x
2 |d ×

Log |2 sin x
2 |dx| ≤ C2y(Logy)2.
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