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UNIFORM IN BANDWIDTH CONSISTENCY OF
KERNEL-TYPE FUNCTION ESTIMATORS

By UwE EINMAHL 1 AND DAVID M. MASON?
Vrije Universiteit Brussel and University of Delaware

We introduce a general method to prove uniform in bandwidth consis-
tency of kernel-type function estimators. Examples include the kernel den-
sity estimator, the Nadaraya—\Watson regression estimator and the conditional
empirical process. Our results may be useful to establish uniform consistency
of data-driven bandwidth kernel-type function estimators.

1. Introduction and statements of main results. Let X, X1, Xo,... be
i.i.d. R4, d > 1, valued random variables and assume that the common distribution
function of these variables has a Lebesgue density function, which we shall denote
by 7. A kernel K will be any measurable function which satisfies the conditions

(K.i) /R K()ds=1,
(K.ii) 1K |loo := SUP |K (x)| =k < 0.
xeRd

The kernel density estimator of based upon the sampl®4,..., X, and
bandwidth O<# < 1is
n

Fan@) = @)Y K ((x = X))/hYY),  xeR

i=1
Choosing a suitable bandwidth sequehge— 0 and assuming that the density
f is continuous, one obtains a strongly consistent estimatoe= fn,hn of f,
that is, one has with probability 7, (x) — f(x), x € R?. There are also results
concerning uniform convergence and convergence rates. For proving such results
one usually writes the differencﬁ,(x) — f(x) as the sum of a probabilistic term
fa(x) — Ef,(x) and a deterministic terf f, (x) — f(x), the so-called bias. The
order of the bias depends on smoothness propertigs aily, whereas the first
(random) term can be studied via empirical process techniques, as has been pointed
out by Stute [29-31] and Pollard [26], among other authors.
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KERNEL-TYPE ESTIMATORS 1381

A recent result by Giné and Guillou [14] (see also [5]) shows th& ils a
“regular” kernel, the density functior is bounded and,, satisfies the regularity
conditionsh,, \, O, A,/ ho, is bounded,

log(1/hy,)/loglogn — oo and nh,/logn — oo,

one has with probability 1,
(1.1) | /o =Efulloo = O(V109(L/ h) /nhy ).

Moreover, this rate cannot be improved. Interestingly, one does not need continuity
of f for this result. (Of course, continuity of is crucial for controlling the bias.)

Some related results on uniform convergence over compact subsets have been
obtained by Einmahl and Mason (EM) [11] for a much larger class of estimators
including kernel estimators for regression functions among others. In this general
setting, however, it is often not possible to obtain the convergence uniformly
overR?. Density estimators are in that sense somewhat exceptional.

The main purpose of this paper is to introduce a method to establish consistency
of kernel-type estimators when the bandwidths allowed to range in a small
interval which may decrease in length with the sample size. Our results will be
immediately applicable to proving uniform consistency of kernel-type estimators
when the bandwidth is a function of the locatiorx or the dataXj, ..., X,.

The resulting “variable bandwidth kernel estimators” are from a statistical point
of view clearly preferable to those bandwidths which are only a function of the
sample size:, ignoring the data and the location. We discuss this in more detail in
Remark 7 below, after we have stated some of our main results. Furthermore, we
address the issue of bias in Remark 6.

In order to formulate our results let us first specify what we mean by a “regular”
kernel K. Consider the class of functions

K ={K((x—)/hY"):h>0xeR).

Fore >0, let N(e, K) =supy N(«e, K, dg), where the supremum is taken over
all probability measure® on (R?, 8), do is the Lp(Q)-metric and, as usual,

N(e, K,dg) is the minimal number of ball§g:dp(g,g’) < €} of dp-radius

¢ needed to coverK. Assume thatX satisfies the following uniform entropy

condition:

(K.iii) forsomeC >0andv >0, N(g, KX) <Ce™V,0<e < 1L

Pollard [26], Nolan and Pollard [25] and van der Vaart and Wellner [35] provide
a number of sufficient conditions for (K.iii) to hold. For instance, it is satisfied
for generald > 1 wheneverk (x) = ¢ (p(x)), with p(x) being a polynomial in
d variables an@ being a real-valued function of bounded variation.

Finally, to avoid using outer probability measures in all of our statements, we
impose the following measurability assumption.
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(K.iv) X is a pointwise measurable class, that is, there exists a countable subclass
Ko of K such that we can find for any functione X a sequence of
functions{g,,} in Ko for which

(@) = g(x), zeR%

This condition is discussed in [35]. It is satisfied whene¥eris right
continuous.

Our first result concerning density estimators is the following.

THEOREM1. Assuming (K.i)—(K.iv) and f isbounded, we havefor any ¢ > O,
with probability 1,

V| fun = E funlloo
(1.2) limsup  sup nhll o Juhl =: K(c) < 00.
n—00 clogn/n<h<1+/109(1/h) v loglogn

REMARK 1. Though this was not our main goal, we point out that if one
chooses a deterministic sequengesatisfyingnh,, /logn — oo and log1/h,)/
loglogn — oo, one re-obtains (1.1), which is Theorem 1 of Giné and Guillou [14]
with slightly less regularity. (We do not need to assume, as they do;th&at0 or
thath,, / ho, is bounded.)

REMARK 2. With applications to variable bandwidth estimators in mind, we
further note that Theorem 1 implies for any sequencess) < b, < 1, satisfying
b, — 0 andna,/logn — oo, with probability 1,

a,<h<b, nan

(1.3) sup [ Fn —Efunlloe = 0(\/Iog(1/an) v loglogn )

which in turn implies

(1.4 n“—>m sup |l fuh —Efunlloo=0 a.s.

an<h=<b,
REMARK 3. It is routine to modify the proof of Theorem 1 to show that it
remains true when (K.iii) is replaced by the bracketing condition:
(K".iii) for someCq > 0 andvg > 0, Np.j(e, F, L2(P)) <Coe™",0<e < 1.

Refer to page 270 of [34] for the definition ofi.i(e, #, L2(P)). Essentially all
that one has to do is to substitute the use of Corollary 4 by Lemma 19.34 of van
der Vaart [34].
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For a related result refer to Theorem 1 of Nolan and Marron [24], where almost
sure convergence to zero has been established in a similar setting. On the other
hand, our result provides explicit convergence rates for kernel density estimators.

Let us now look at the bias term. As soon as we know that

(1.5) sup [IEfus — flloo = O,

ap<h<b,

we have under the conditions of Theorem 1,

sup [ fun — flloo — 0.

an<h=by

If f is uniformly continuous ofiR?, here is a sufficient condition for (1.5) which
is easy to verify: Define

Wg(x)= sup [K()|, xeR?

[yl=lx]

and introduce the assumption

(K.v) /Rd Wk (x)dx < oo.

Note that this assumption trivially holds for a compactly supported kernel function.

COROLLARY 1. Assuming (K.i)—(K.v) for any sequences 0 < a, < b, < 1,
satisfying b, — 0 and na, /logn — oo, and any uniformly continuous density f,
we have

(1.6) Jimsup [ fun— flle=0  as.

an<h=by

REMARK 4. |If a, = clogn/n for somec > 0, then (1.6) does not hold, that
is, the limit in (1.6) is positive. Refer to [4] and [6] for details.

Our method is not restricted to the case of kernel density estimators. To give
the reader an indication of what other kinds of kernel-type estimators can be
treated using our techniques, consider i.idl-{ 1)-dimensional random vectors
(Y, X), (Y1, X1), (Y2, X2), ..., where theY-variables are one-dimensional. We
shall assume thaX has a marginal Lebesgue density functibnand that the
regression function

m(x) =E[Y|X = x], x e RY,

exists. Letm, ,(x) be the usual Nadaraya—Watson estimatorrafc) with
bandwidth O< 4 < 1, that is,

S YiK((x — X;)/hY4)
S K((x — X;)/hYd) T

fﬁn,h(x) =
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A huge literature has been developed on the consistency of the Nadaraya—\Watson
estimator. Consult [16] and [11] for references to some of the more important
work.

Assuming thatn is p + 1 times differentiable at a fixedp, one can use the
local polynomial regression techniques of Fan and Gijbels [12] to obtain a better
estimate akg than that given by the Nadaraya—Watson estimator. We will not treat
the uniform consistency of such estimators in the present paper. It should, however,
be feasible to apply similar empirical process methods in this setting as well.

With the above setup we have the following uniform in bandwidth result. Set

Fx,h) =E[YK((x — X)/hY)])/h and f(x,h) =E[K((x — X)/hY")]/h.

For any subsef of R?, let /¢ denote its closed-neighborhood with respect to the
maximum-norm - | onRY, that is,|x|; = max<;<q |x;|, x € RY. Set further for
any functiony : R — R?, ||y ||; = sup,; [¥ (x)].

THEOREM2. Let I be a compact subset of RY and let K satisfy (K.i)—(K.iv)
with support contained in [—1/2, 1/2]¢. Suppose further that there existsan ¢ > 0
so that

@.7) f iscontinuous and strictly positiveon J := I°.
If there existsan M > 0 such that

(1.8) Y|I{XelJ}<M as,

we have for large enough ¢ > 0 and any b,, \ O,

limsup  sup Vah|i = FC R/ FC R
(19) n—0o0 clogn/n<h<b, \/Iog(l/h) v loglogn

=:K(,c) <o a.s.
Moreover, if instead of (1.8)we assume that for some p > 2

(1.10) SUPE([Y|P|X =2) =1 a < 00,

zelJ
we havefor any ¢ > 0and b, \\Owithy =y(p) =1-2/p,

limsup  sup Vahl|lm, p —r¢ R/ fC M
n—o00 c(logn/my¥<h<b,  ~/109(1/h) Vv loglogn

(1.11)

=:K'(I,c) <0 a.s.

COROLLARY 2. Let I be a compact subset of RY and let K satisfy
(K.i)—(K.iv) with support contained in [—1/2, 1/2]¢. Assume that the distribution
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function of (Y, X) has a Lebesgue density (y, x) — p(y, x), so that the marginal
density of X isgiven by

o
fx) 2/ p(y,x)dy, xeRY.
—0
Suppose further that there exists an ¢ > 0 so that (1.7) holds and that
(2.122) forall z € J, I,im p(yv,7)=p,2) for almost every y € R.
77—z

If (1.8)holds, then for 0 < a, < b, < 1, satisfying b, — 0 and na, /logn — oo,
(1.13) lim sup |myp—m@)|;=0 a.s.

nﬁoo“nfhfbn
If (1.10)holds, then with y =1 —2/p for O < c(logn/n)¥ < b, < 1 satisfying
b, — 0,

(1.14) lim sup lmyn—mQ)|;=0 a.s.
=90 .(logn/n)¥ <h<by "

REMARK 5. Let us also mention that if, in the bounded case, we choose a de-
terministic bandwidth sequencé:, satisfying the standard assumption
nh,/logn — oo and log1/h,)/loglogn — oo, we get that with probability 1,

”msup\/MIIﬁn,hn —7(, hn)/ fC ha)lln <c

n— 00 «/2|Og(1/h,1)
This is a sharp result. In our previous paper [11] we have shown under additional
assumptionsi, \, 0 andnh, /,d =1, I =[a,b] and K satisfies a continuity
condition and is of bounded variation dR) that the limsup is positive and
actually a limit. [Note, however, that the limiting constant has not been correctly
stated in formula (1.16) of that paper. With the notation of the present paper the
limiting constant is sup.; (c (x)|K[12)/V/ f (%), whereo?(x) = Var(Y |X = x).]
Moreover, if (1.8) holds, then a result of Collomb [3] implies that the condition
nay/logn — oo is necessary for uniform consistency.

REMARK 6. Under additional smoothness assumptionsfoone can also
derive explicit convergence rates in (1.6) and (1.14). For instance, if one knows
that f is uniformly Lipschitz continuous, one easily sees that the bias (1.5) is of
orderO(b,l,/d), which permits one to derive a convergence rate in (1.6) one which
depends on,, via the rate from Theorem 1, and @), via the rate in (1.5).

For more information on the interplay between smoothness and the size of the
bias term consult [1, 8, 10]. Similarly under extra smoothness conditions the
bias term in the Nadaraya—Watson estimator is well behaved and one also can
specify convergence rates. For appropriate smoothness conditions refer to [1] and,
especially, to Section 2.3 of [7].
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REMARK 7. Suppose now that, = 7, (x) is a local data-driven bandwidth
sequence satisfying

(1.15) Pla, < hp(x) <bp:xel}— 1,

or a constant data-driven bandwidth sequéncsatisfying with probability 1, for
all large enoughe > 1,

(1.16) an < hy < by.

For instance, it/ = 1, one often has for appropriatea < b < 00, a, = an~/°
andb, = bn—1/5.[10] is a good place to read about the various optimality criteria
that lead to thez—1/°. In this case and more generally under the assumptions of
Corollary 1,

| 7z, = £l =0,
and under those of Corollary 2,
|, 5, —mO)]; >0,

where the convergence is either in probability or with probability 1 depending on
whether (1.15) or (1.16) holds.

Deheuvels and Mason [7] consider local plug-in type estimaig(s) which
satisfy (1.15) witha,, = c1h,, andb,, = coh,,, wherecy < ¢2, or

(1.17) P(supmn(x)/hn —C(x)| > g> -0
xel

foranye > 0, whereC is an appropriate continuous function brkRefer especially

to their Example 2.1, where they show subject to smoothness assumptions that the

optimal /2, (x) in terms of asymptotic mean square error for estimatingr m

satisfies (1.17) with,, = n=1/5.

The literature on data-driven bandwidth selection is extensive. We cite, for
instance, [2, 17, 21-23, 27]. For further references and methods consult [18],
Chapter 7 of [10], [7] and [9].

All data-driven bandwidth selection procedures require some smoothness
assumptions in order to get rates. Our results show that even if such assumptions do
not hold, one may still have consistency as long as (1.15) is satisfied for appropriate
a, andb,, not necessarily of the form, = c1h,, andb,, = coh,,.

Our next example is a kernel estimator of the conditional distribution function

F(t]z) =P <1|X =2),
defined for a kernek and bandwidth G< 2 < 1 to be
1Y <K (2 — Xi)/ )
Y K((z— Xi)/htd)

Stute [32] calls this theonditional empirical distribution function and was the
first to establish uniform consistency results for it.

(1.18) Fon(tlz) =
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THEOREM 3. Let I be a compact subset of R? and let K satisfy (K.i)—(K.iv)
with support contained in [—1/2, 1/2]¢. Suppose further that there existsan ¢ > 0
so that (1.7) holds. Then, with probability 1, we have for large enough ¢ > 0 and
any b, \( 0,

i SUR. v/l Fy i (-12) = Fun(-12) I
imsup  sup
(1.19) n—00 clogn/n<h<b, J/1og(1/h) v loglogn
=:K"(1,c) < o0,

where F, 5 (t|z) = E[K ((z — X)/hY)1{Y < 1}]/(hE fu.1(2)), t €R.

COROLLARY 3. Let I be a compact subset of R? and let K satisfy
(K.)—(K.iv) with support contained in [—1/2, 1/2]¢. Suppose further that there
existsan e > 0 sothat (1.7)holdsand (1.12)is satisfied. Thenfor 0 < a, < b, < 1,
satisfying b,, — 0 and na, /logn — oo,

(1.20) lim_ sup sup|| F 5 (-12) = F(|2)llec =0.

a,<h<b, zel

REMARK 8. Sometimes one wants to use vector bandwidths (see, in partic-
ular, Chapter 12 of Devroye and Lugosi [9]). With obvious changes of notation,
our results and their proofs remain true whignis replaced by a vector band-
width h, = (h,(ll),...,hﬁ,d)), where min<; <4 hﬁ,i) > 0. In this situation we set
h, = ]‘[l?’:lh,(f), and for any vectov = (v1,...,v7) we replacev/h,%/d by
(v1/ IS vd/hﬁ,d)). For ease of presentation we chose to use real-valued band-
widths throughout.

Theorem 1 is proved in Section 2. Theorems 2 and 3 will follow from a more
general result stated and proved in Section 3. Our proofs are based on an extension
of the methods developed in [11]. We use the same idea which was developed
in [11], namely, combining an exponential inequality of Talagrand [33] with a
suitable moment inequality.

2. Proofs of Theorem 1 and Corollary 1. We shall look at a slightly
more general setup than in the Introduction. (& A) be a measurable space.
Throughout this section we assume that on our basic probability sgacg, P)
we have independeritr, 4)-measurable variableX; : Q2 — X, 1 <i < n, with
common distribution..

Let ¢ be a pointwise measurable class of functions frémto R (see the
Introduction and Example 2.3.4 in [35]). Further kgt ..., ¢, be a sequence of
independent Rademacher random variables, independént of., X,,. Let G be
a finite-valued measurable function satisfying fora# X,

(2.1) G(x) > sup|g(x)l,
8€§
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and define

(2.2) N, §) = sgpN(w 0(G?),4,dg),

where the supremum is taken over all probability measg@res (X, ) for which
0 < 0(G?) < 00 anddy is the Lo(Q)-metric.
We need the following version of Proposition A.1 of EM [11].

PROPOSITIONL. Let g bea pointwise measurable class of bounded functions
such that for some constants C,v > 1 and 0 < o < 8 and G as above, the
following conditions hold:

() EIG(X)?] < B4
(i) N,g9)<Ce",0<e<l;
(iii) 0§ :=sup,eq Elg(X)?] <02
(V) SUP,cq lIglloo < 7%vno?/log(C1B/0), where C1 = CY/" v e.

Then we have for some absolute constant A,

(2.3) E < AVvna?log(C1B/0).

Zeig(Xi)‘
i=1 9

ProoFr Our proof is a modification of that of Proposition A.1 of EM [11]. We
denote vectorsgxy, ..., x,) € X" by x and we define the subsefis andG,, of X"
as in this paper, that is,

G = :x:n—lz G2(xj) < 25682},

j=1
n
F, = :x:n_lsupz gz(xj) < 6402}.
8€§ j=1

We can infer from (A.8)—(A.10) in [11] that oR,, N G,,,

Y eigx))| <K'ovnvlog(CiB/0),
i=1 9

whereK’ is an absolute constant. Therefore, we have for

t >96K’cv/nvlog(C18/0),
|

> eig(xi)
i=1

E

(2.4)

>z} <1/96  Vxe F,NG,,
9
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and, consequently, in this rangerahat

gl

> eig(Xp)
i=1
By Markov’s inequality we trivially haveu”(G¢) < 1/256. Using Lemma 5.1
of [15] exactly as in [11] and recalling th&h 8/0 > ¢ andv > 1, we see that

W (FS) < 4u™(GS) + 12 16°(C18/0) 1 < 7/256

which finally implies that

IP’{ D eig(Xi)
i=1

whenever (2.4) holds. A straightforward application of the Hoffmann—Jgrgensen

inequality as stated in Proposition 6.8 of Ledoux and Talagrand [20] finally yields
the desired moment inequalityl]

> t} <1/96+ u"(Fy) + 1" (Gy).
9

>t} <1/24,
)

From the above moment inequality we can infer the following:

COROLLARY 4. Let g beasin Proposition 1 satisfying (i)—(iii), and instead
of (iv) assume that
1

(V) SUR,cg llglloo < U, Where oo < U < Cay/nf, and C2 =

4/vTogCy
Then we have
(2.5) E|Y eig(Xn)| < A{Vvnoglog(C1/o0) +2vU log(Can(B/U)?)},
i=1 g

where C3 = C2/16v.

PROOE Whenever

1
U< rﬁ/nag/log(clﬂ/ao),

inequality (2.5) follows immediately from our proposition by choosing: og.
Assume now that

1
4—ﬁJno§/ log(C18/00) < U < Ca/np.

Then using the monotonicity of the functior> +/nr?/log(C18/t) we can find a
unigueo € loo, B] satisfying

1
U= 4—ﬁx/n02/ log(C18/0).
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Applying our proposition with this choice af, it follows that

> eig(Xi)
i=1 9

Next rewriting the equation which definesand recalling thatC18/0 > e, we
readily obtain that

1/o <o Wlog(C18/0) = /n/(4/vU),

E < AVvna?log(C1B/0) < 4AvU l0g(C1p/0).

and thus

C1(B/0) < C1/(4J/v)(vnB/U) =:v/C3(v/nB/ U).

It follows that

E <2AvU log(Can(B/U)?),

> eig(Xi)
i=1

which proves the corollary.

4

A bound similar to that given in Corollary 4 has been given by Giné and Guillou
[13] using a different method.

As already indicated in the Introduction, our proof is based on an inequality of
Talagrand [33] (see also [19]) which we state here for easy reference later on.

Let «,, be the empirical process based on the san¥le..., X,, that is, if
g:X — R, we have

n

an(g) =Y (¢(Xi) — Eg(X))//n.

i=1
and set for any clasg of such functions

” \/Han ”g = Sugp}\/”_lan (8)|
ge

INEQUALITY. Let ¢ be a pointwise measurable class of functions satisfying
for some 0 < M < o0,

lglloo <M, 8€G.
Then we have for all ¢ > 0O,

]P’{ max | mapg = Al(IE
1<m<n

N

A2t2 Aot
ool 2) e 22)].
nog M

where 092 = SUp,¢g Var(g(X)) and A4, A, are universal constants.
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PROOF OFTHEOREM 1. We first note that

2 x—X _ _1,2(X—S
2125 25)) = (St s
=h/d K2@u) f(c —uh) du < | fll K113,
R
where as usudlK ||2 = (fga K2(s) ds)*/2. ‘
Setforj, k> 0andc > 0, ny = 2%, h; ;= (2/clogny)/nx and
Kir={K(x—=)/mY):hjx<h<hji1s x eRY.
Clearly forhjx <h < hjy1x, with « asin (K.ii),
E(K?((x — X)/hM?)) < k% A 2hj k]l f ool K115 =: k% A Dohj i =: 7.

We now use Corollary 4 to bound

ng
> eig(Xi)
i=1 :Kj_’k

To that end we note that eacli; ; satisfies (i) withG = g = «. Further, since
K C K, we see by (K.iii) that eack; , also fulfills (ii). [W.l.o.g. we assume
thatv, C > 1 in (K.iii).] Noting that

C1B/o0 < (B%/0d) v CF

and the functiorh — hlog(h~1 v Cf) is increasing for: > 0 (recall thatCy > e),
we see by applying Corollary 4 with = g = « and using the boundoy < o &,

that we have forj > 0,
Doh ; 2
< AﬂJ Tk Z0R k |og< Y cf) + 2Avk 10g(Cang),
Kk

E

E

ni
& g(X;)
i; B2 Dohj i

which for D1 = A/vDg and D> = Do/ 2 is equal to

1
(2.6) Dl\/nkhj,k |Og(— \% C%) + 2Avk log(Cany).
Doh «

Using once more the fact that— & log(h—1 v Cf) is increasing fok > 0, we see
that the first term of the above bound is, for latgegreater than or equal to

Dl\/c Iognk\/log(nk/{ch logni}).

Thus the order of the second term is always smaller than or equal to that of the first
one. Consequently, we have fpe= 0 and large enough,

ng 1
> eig(Xi) < Dg\/l’lkh]”k<log<D . >v|og Iognk>
i=1 Kjﬁk 21 j.k

=: Dazaj,

E

A
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whereDs is a positive constant.
Applying the Inequality withM = « andog = °§Cjk < Dohj x, we get for any
t >0, '

]P’{ max | v/nay | %, = Ar(Daaji + l)}

ng—1=n=ng

(2.7)
< 2[exp(—Aat?/(Donih j 1)) + exp(—Aat k)]

Setting for anyp > 1, j > 0 andk > 1,

Pik(p) = ]P’{ max |vnany,, = A1(Ds+ p)aj,k},

ng—_1=<n=ng

and using the fact thatjz-,k/nkhj’k > log logny, we can infer that for large,

2
Pik(p) < Z[exp(— 'ODAZ log Iognk> + exp(—@ nihjlog Iognk)]
4 0 P AL

Recalling that:; ; > clogn/ni, we readily obtain that for largeand any; > 0,

(2.8) pjk(p) < 4(logny) ",
wherep = £2p?.
Setly =maxj:hj <2}. Itis easy to see that for large
(2.9) Iy < 2logng.
Hence in view of (2.8) and (2.9) we have for laigandp > 1,

k-1

Pe(p) ==Y pjx(p) <8(logn)*~?,
j=0

which implies that if we choosg > 2(Do/A2)/? (say), we have

o
(2.10) Z Pr(p) < 0.
k=1
Notice that by definition of;, for largek,
2hy k= hi+1.k > 2.

Consequently, we then have fof_1 <n < ny,

[clogn’ 1] c [clognk

n

,hzk,k]
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Thus for all large enough andn;_1 <n < ng,

Vnh| fun —Ef,
Ax(p) :={ max sup el foh = E oo > 2A1(Dg—|—p)}
n-1=n=nk ¢ logn/n<h<1 ~/109(1/ h) Vv loglogn

I—1

c U, max, IVl = AsxDa+ plajuf.
j=0""T T '

and we see thaP(Ax(p)) < Pr(p). Recalling (2.10), we obtain our theorem via

the Borel-Cantelli lemma.d

REMARK 9. We note that if the density is bounded only over= ¢, for
somee > 0, with / a compact subset @&¢, and if K is a kernel with support in
[—1/2,1/2]¢ we still have for any G< hg < (2¢)?, with probability 1,

. Vil fan —EF, _
(2.11) limsup sup nhll fo Junlls =:K(l,c) <o0.
n—00 clogn/n<h<ho ~/109(1/h) v loglogn

This follows immediately from the above proof by an obvious modification of the
bound forEK?((x — X)/h'/?) and replacing the sé&< by I in the definition
of JCj,k.

PROOF OFCOROLLARY 1. The proof of (1.3) is obvious from (1.2). Turning
to the proof of (1.6), we note that by integrability the assumption thas
uniformly continuous onR? is equivalent tof being continuous oiR? and
satisfying the condition that

Rliinmsunf(z) ‘1zl = R} =0,

which of course implies thatf || < co. This, when combined with the corollary
on page 65 of [28], gives the following lemma.

LEMMA 1. Let f beauniformly continuous Lebesgue density function on R?.
Then for any kernel K which satisfies (K.i), (K.ii) and (K.v), we have

(2.12) sup|f * Kn(z) — f(2)| >0  ash\0,

zeR4

where f % K, (z) := h ™1 fpa fOK (Y4 (z — x)) dx.

Observing thatIEfn,h(z) = f * K;(z), we see that Lemma 1 and (1.5)
imply (1.6). O
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3. Proofsof Theorems 2 and 3 and Corollaries2 and 3. We are now ready
to prove Theorems 2 and 3 and Corollaries 2 and 3. We shall consider a slightly
more general setting than in the Introduction, allowing the variablas, Yo, ...
to ber-dimensional, where > 1. Further introduce the following process:

Let ® denote a class of measurable functions ®h with a finite-valued
measurable envelope functidh that is,

(3.1) F(y) = suple()l, yeR".
ped

Further assume thai satisfies (K.iii) and (K.iv) withX replaced byd. For any
¢ € ® and continuous functions, andd,, on a compact subset dfof R?, set for
xeld,

n — Xi
Opnn(X) =) _(cp()p (Y1) + dy (1)) K (XTW )
i=1

whereKk is a kernel with support contained ir1/2, 1/2]¢ such that
sup|K(x)|=:k <oo and K(s)ds =1.
xeR4 Re
For future use introduce two classes of continuous functions on a compact subset
J of R4 indexed by,
C:={cy:pec® and D:={d,.pc D}

We shall always assume that the clasSeend D are relatively compact with re-
spect to the sup-norm topology, which by the Arzela—Ascoli theorem is equivalent
to these classes being uniformly bounded and uniformly equicontinuous.

THEOREM4. Let I be a compact subset of R?. Assume that & and X satisfy
the above conditions and the classes of continuous functions ¢ and £ are as
above, that is, relatively compact with respect to the sup-norm topology, where
J =1", for some0 < n < 1. Also assume that

(3.2) f iscontinuous and strictly positive on J.
Further assume that the envel ope function F of the class ® satisfies

(3.3) iM >0, FW1{XelJl<M as.,
or for some p > 2,
(3.4) o :=SUpE(F?(Y)|X =z) < o0.

zeJ

Then we have for any ¢ > 0 and 0 < kg < (21)¢, with probability 1,
su wen.h —Ew
(3.5) limsup  sup Rpea I 0g.n.n pnnls _ P(c) < 00,
n—>00 c(logn/ny’ <h<hg ~/Nh(109(1/h) Vv loglogn)

where y = 1 inthe bounded caseand y = 1 — 2/p under assumption (3.4).
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Before proving Theorem 4 we shall show how it implies Theorems 2 and 3 and
Corollaries 2 and 3. We need the following lemma.

LEMMA 2. Let # bea class of uniformly equicontinuous functions g : J — R
and let K:R? - R be a kernel with support in [—1/2,1/2]¢ so that
Jra K (1) du = 1. Then we have for any sequence of positive constants ,, — 0,

sup sup |lg*Kp—gllr — 0.
geH O<h<b,

PrROOF A simple transformation shows thatife I,

() — g * Kn(x)| = Md(g(x) — g(x —uh™)K (u) du

’

which for i < b, and all large enough is obviously bounded above by

SuRlg(x) — gl ixy € Ik =y <572} [ 1K @l du.

Since the function clasg¢ is uniformly equicontinuous, we readily obtain the
assertion of the lemma.lJ

PROOF OFTHEOREM?2. Set
1 n
Fan(x) = — Y YK (x—X)/nYY),  xel
nn:
i=1

Then we obviously have
|1t (X) — F(x, )/ £ (x, )]
3.6 7
B0 o1 @ =)+
|fn,h(x)| |fn,h(x)f(x’h)|

From Theorem 4 [setting = 1, ® = {¢1}, wheregp1(y) = y,y € R] it now
follows that with probability 1,

| fan () — Fx, ).

(3.7) imsup  sup  YAIEAO) —FC Dl
n—00 (clogn/n)Y <h<b, Jlog(l/h) V; Ioglogn
and by (2.11) that

_ bl Fon() — FC R

(3.8) limsup sup nhll fnn©) = JC Dl < 00
n—>00 clogn/n<h<b, \/Iog(l/h) \ IOgIOgn

This last bound of course implies thatias> oo,

sup N fun() = fGMII=0@Q)  as,

clogn/n<h<b,
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where we can make the constant in t€l)-term arbitrarily small by choosing
¢ large enough. Combining this observation with the subsequent result following
from Lemma 2 that

(3.9) sup |fC¢h)— fCOIlr—0
O<h<b,

and the assumption that the densjtys positive onJ, we can conclude that fer

large enougrfn,h is bounded away from 0 oh, uniformly inclogn/n < h < by.
Combining this with (1.8) or (1.10) it follows that syip, <, [I7(-, )/ f (-, B)l1

remains bounded. Therefore, we can infer Theorem 2 from (3.6)—(I3B).

PROOF OFCOROLLARY 2. We first note that assumption (1.12) in conjunc-
tion with Scheffé’s lemma and also condition (1.10) in the unbounded case im-
plies thatr(x) = E(Y|X = x) f (x) is continuous or/. Applying Lemma 2 with
J = {r}, we see that

(3.10) sup (17, h) —r)llr — 0,
O<h<b,

which with (3.9) and Theorem 2 completes the proof of the corollary.

PROOFS OF THEOREM 3 AND COROLLARY 3. To see how Theorem 3
follows from Theorem 4, seb = {¢;}, whereg,(y) =1{y <t},t,y € R,

C={1/f()} and D={-F@|)/f():teR}.

The classe® andC clearly satisfy the assumptions of Theorem 4. To see that the
function classD is a relatively compact class of continuous functionsjorefer
to pages 6 and 7 of [11], which also implies that the class

H ={g 1t R},

where for eaclr e R, g,(-) = F(¢]-)f(-), is also a relatively compact class of
functions defined ory. Therefore Theorem 3 and Corollary 3 follow in the same
way that Theorem 2 and Corollary 2 did from Theorem 4 and Lemmad2R.

PROOF OFTHEOREM4. We first note that

lim sup sup SURco lldy(x) Z?=1{K(x—h_1/)§i) —EK()C}l_l—/)gf)}||I
n—00 clogn/n<h<hg /nh(og(1/h) vloglogn)

_ I UK () — EK Gl
< suplldyll7 limsup sup
ped n—>00 clogn/n<h<hg vnh(log(1/h) vloglogn)

In view of (2.11) it is obvious that this quantity is finite with probability 1.
Therefore, if we setfop € ®, x € I andh > 0,

(3.11) Ngn,h (X) = € (x) Z‘P(Yi)K<x_h1/d >
i=1
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it clearly suffices to show:

PrRoOPOSITION2. Under the assumptions of Theorem 4, for all ¢ > 0, there
existsa Q(c) > 0 such that with probability 1,

su an—Eng .
(3.12) limsup sup Roco 1Mp.n,n —Eng n,nlls
n—00 c(logn/n) <h<ho ~/nh(109(1/ ) v loglogn)

=: Q(c).

PrROOF We shall prove Proposition 2 under assumption (3.4), as it follows in
the bounded case directly from the proof of Theorem 1 and Remark 9. Just replace
the classes; ; by the classes

Gik={02) = oM, DK ((x —2)/ W) o e d,x e L hjx <h<hji1x).

Observe that these classes also satisfy conditions (i)—(iii) of Proposition 1 with
G = B =k SUR,eq llcyll; and our proof of Theorem 1 still works after some minor
modifications.

We turn to the unbounded case, that is, assume (3.4) for pam2. Recall that
y=1—-2/p. Foranyk =1, 2,... andg € ®, setn; = 2%, ar = c(logny/n)?
and

(3.13) o (V) = e L{F () < (mi/)YP).
Forng_1<n<mng,xel,ar <h<hgpandg € o, let

X.
(3.14) noon. h(x)_c(p(X)Z(Pk(Y)K( 1 )

The proof of Proposition 2 in the unbounded case will be a consequence of two
lemmas. We will first show:

LEMMA 3. Thereexistsa constant Q1(c) < oo, such that with probability 1,

(3.15) limsupAy; = Q1(c),
k— 00
where
(k) (k)
su —-E I

su
M—1=N=Nk g <h<hg Jnh(log(l/h) v log Iogn)
PROOE Forxel,a; <h<hgandy € Q, let
X —U
(3.16) U (1, v) = c¢<x>w<v>K(T>
and

(3.17) v& )= c(p(x)gok(v)l((x - ”).
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Notice that

(3.18) né)kzl p(X) — En(p wh = =nt?q, (véf}l’x),

whereq,, is the empirical process based Oty, Y1), ..., (X,, Y;,). Fork > 1 let
Gu(h) =={vy) 1o e ®andx e I}.

We see that

A= max su llown ll g cny
K 1=n=ng  <p<no ~/nh(109(1/h) vIoglogn)

Note that for each;(k) L €Gi(h),

(319 | ugf,)qvxnoo < 1Klloo squ)Hc(p | (/)P =: Do(ng/ k) YP.
pe

Also observe that
- X
[ " 1] <EL2 (X 1) E (e, 000K (S ) |

Using a conditioning argument, we infer that this last term is uniformly ever

< 2/ E[F%(Y)|X =1] tKZ( )dt
= “CQD”J |x—t‘§hl/d/2 ( )| fX() hl/d

< 2 2/1’/ ZKZ(X—_t>dt
= ”C(P”]a |x_t‘§hl/d/2 fX( ) hl/d

<hleglfo?” [ S = h 0K du

< ha?/? supuc(pu I fx|l7IK 13 =: hDy.
we

Thus

(3.20) sup Ev?(X,Y) <hDs.
veg(h)

Setforj,k>0,h;x =2/ax and

9]'7](2—{ ;Lx goE‘D,xEIandhj7k§h§hj+1,k}.

Clearly by (3.20), foralk e I, p e ® andhx <h <hji1x,

E[(v\),.)2(X. Y)] < hDy < 2D1h 4.

which gives
(3.21) sup Ev?(X,Y) <2D1h ;.

Uég,j’k
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We shall use Corollary 4 to bound| Z:’ileiu(xi, Yi)lg,,- Note first that by
arguing as in the proof of Lemma 5 of EM [11], eagh C §, where§ is
a class that satisfies (K.iii) and (K.iv) wittk' replaced byg. Next by setting
U = Do(n/ k)P and g2 = o?/? it follows that

<AV vngoé log(C18/00)
Gjk

ng
E|Y ev(Xi, Yi)

i=1

+ 2ADov(ny/ k)P log(C3Dy 2p2n 1 =2/Pk?/P).
Replacingoo2 in the first term by the upper bound2h; x A B2 and recalling that
hjx > ax = c(logng/ng)*=%P,

we obtain after a small calculation that for suitable positive constaptsnd D3,

< D3Vnih i log((D2h )"t v Cy).
Gjk

n
E| > &v(Xi, Yi)

i=1

(3.22)

Set

1
ajk= \/l’lk]’lj’k <Iog<D2h : k) \Y, Ioglognk>, k>1j>0.
Js

Applying Talagrand’s inequality withM = Do(nx/k)Y? and 092 = ‘792,-k <
2D1hj i, we get for any > 0 and large enough,

P{ max |vnay, lg, . = A1(D3ajk +f)}

ng—1=n=<ng

< 2[exp(—A2t?/(2D1nch 1)) + exp(—A2tk™? /(Don! "))
Setforanyp > 1, j > 0andk > 1,

pia(p) =P Vil = Av(Da+ p)ase.

{ ng— 1<n<nk

Using the facts that?, /(nxh 1) > loglogn andh; x > c(logni/n)=2/7, we
readily obtain for Iarg& and; > 0 that

) +2 exp(— ﬁpsz logny log Iognk>,

which for g = A2 p? and largek is less than or equal to(bgn)—?. Setl, =
max{(j:hji < 2h0} if this set is nonempty, which is obviously the case for large
enoughk. Then we havé, < k for large enouglt and, consequently,

lr—1

Pe(p):= Y pjx(p) < A(logny) ™" <k~2,
j=0

pix(p) <2 exp(—
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provided we have chosenlarge enough.
Further notice that by the definition §f for largek,

2hg, k = hyt1.6 = 2ho,
which implies that we have for,_1 < n < ng,
lak, hol C [ak, heg k]

Thus for all large enough,

l—1

Ak(p) :={Ar = 2A1(D3+p)} C |

N >A1<D3+p>ajk}
j=0

{”lk 1=n=nj

It follows now with the above choice far,

P(Ax(p)) < Pi(p) <k~ 2,

which by the Borel-Cantelli lemma implies Lemma 3.

Write
(3.23) 7 () = eWMLF () > (ni/ k)YPY.

Forope @, x e I andny_1 <n <ny, let

(3.24) Tipon () = € (1) Z{‘/’k(y )K( hl/f >}

i=1

LEMMA 4. Wth probability 1,

® )

(3.25) lim  max sup SUReo g — Elgmalls _
k=00 Mk-1SN=NE ((joq . 1120 <p<py ~/11H(10Q(L/h) v 1og logn)

PROOFE First note that for anyt < hg, ¢ € ® andny_1 <n < ng,

IS 4l <k suplicllinELF (NLX & J, F(Y) = (ni/K)YP}].

We further have by (3.4),
EFP(Y)1{X € J} < 00,
and we see that uniformly im;_1 <n <ng, h < hg andg € o,

HEﬁ(k) I; = O(Hk/pkl Yry = o(Vniailog(1/ax) )

o,n,h

ask — oo, whereqy = c(logny/ng)1=%/P.
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By monotonicity of the functiorh — hlog(1/h),h < 1/e, we readily obtain
that

su E7&
(3.26) Jim max su Roco IEN, 5, 41
—oon-1=n=nk o <p<po /nh(l0g(1/h) vlog IOgn)

It remains to be shown that, with probability 1

—(k)
Su
—oong-1=n=n o <p<po /nh(l0g9(1/h) v Iog |Ogn)

Similarly as above we have

max, sup supli;,

Ng—1=n=nj ar<h<hgped
ng
</csup||C(pIIIZF(Y)]l{X e J, F(Y)) > (ni/ k)YP.
i=1

Inspecting the proof of Lemma 1 of [11], we see that the argument there also
applies if we set,, = c(logn/n)1=%/? to give

Nk

Y FY)UX; € J, F(Y:) > (ne/)YP} = o(Vngarlog(1/ax) ),

i=1
ask — oo, and we see by the same argument as in (3.26) that (3.27) holds, thereby
finishing the proof of Lemma 4.

Proposition 2 now follows from Lemmas 3 and 4.]
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