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UNIFORM IN BANDWIDTH CONSISTENCY OF
KERNEL-TYPE FUNCTION ESTIMATORS

BY UWE EINMAHL 1 AND DAVID M. M ASON2

Vrije Universiteit Brussel and University of Delaware

We introduce a general method to prove uniform in bandwidth consis-
tency of kernel-type function estimators. Examples include the kernel den-
sity estimator, the Nadaraya–Watson regression estimator and the conditional
empirical process. Our results may be useful to establish uniform consistency
of data-driven bandwidth kernel-type function estimators.

1. Introduction and statements of main results. Let X,X1,X2, . . . be
i.i.d. R

d , d ≥ 1, valued random variables and assume that the common distribution
function of these variables has a Lebesgue density function, which we shall denote
by f. A kernelK will be any measurable function which satisfies the conditions∫

Rd
K(s) ds = 1,(K.i)

‖K‖∞ := sup
x∈Rd

|K(x)| = κ < ∞.(K.ii)

The kernel density estimator off based upon the sampleX1, . . . ,Xn and
bandwidth 0< h < 1 is

f̂n,h(x) = (nh)−1
n∑

i=1

K
(
(x − Xi)/h1/d)

, x ∈ R
d .

Choosing a suitable bandwidth sequencehn → 0 and assuming that the density
f is continuous, one obtains a strongly consistent estimatorf̂n := f̂n,hn of f ,
that is, one has with probability 1,̂fn(x) → f (x), x ∈ R

d . There are also results
concerning uniform convergence and convergence rates. For proving such results
one usually writes the differencêfn(x) − f (x) as the sum of a probabilistic term
f̂n(x) − Ef̂n(x) and a deterministic termEf̂n(x) − f (x), the so-called bias. The
order of the bias depends on smoothness properties off only, whereas the first
(random) term can be studied via empirical process techniques, as has been pointed
out by Stute [29–31] and Pollard [26], among other authors.
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A recent result by Giné and Guillou [14] (see also [5]) shows that ifK is a
“regular” kernel, the density functionf is bounded andhn satisfies the regularity
conditionshn ↘ 0, hn/h2n is bounded,

log(1/hn)/ log logn → ∞ and nhn/ logn → ∞,

one has with probability 1,

‖f̂n − Ef̂n‖∞ = O
(√

log(1/hn)/nhn

)
.(1.1)

Moreover, this rate cannot be improved. Interestingly, one does not need continuity
of f for this result. (Of course, continuity off is crucial for controlling the bias.)

Some related results on uniform convergence over compact subsets have been
obtained by Einmahl and Mason (EM) [11] for a much larger class of estimators
including kernel estimators for regression functions among others. In this general
setting, however, it is often not possible to obtain the convergence uniformly
overRd . Density estimators are in that sense somewhat exceptional.

The main purpose of this paper is to introduce a method to establish consistency
of kernel-type estimators when the bandwidthh is allowed to range in a small
interval which may decrease in length with the sample size. Our results will be
immediately applicable to proving uniform consistency of kernel-type estimators
when the bandwidthh is a function of the locationx or the dataX1, . . . ,Xn.
The resulting “variable bandwidth kernel estimators” are from a statistical point
of view clearly preferable to those bandwidths which are only a function of the
sample sizen, ignoring the data and the location. We discuss this in more detail in
Remark 7 below, after we have stated some of our main results. Furthermore, we
address the issue of bias in Remark 6.

In order to formulate our results let us first specify what we mean by a “regular”
kernelK . Consider the class of functions

K = {
K

(
(x − ·)/h1/d)

:h > 0, x ∈ R
d}

.

For ε > 0, let N(ε,K) = supQ N(κε,K, dQ), where the supremum is taken over
all probability measuresQ on (Rd,B), dQ is the L2(Q)-metric and, as usual,
N(ε,K, dQ) is the minimal number of balls{g :dQ(g, g′) < ε} of dQ-radius
ε needed to coverK . Assume thatK satisfies the following uniform entropy
condition:

(K.iii) for someC > 0 andν > 0, N(ε,K) ≤ Cε−ν, 0< ε < 1.

Pollard [26], Nolan and Pollard [25] and van der Vaart and Wellner [35] provide
a number of sufficient conditions for (K.iii) to hold. For instance, it is satisfied
for generald ≥ 1 wheneverK(x) = φ(p(x)), with p(x) being a polynomial in
d variables andφ being a real-valued function of bounded variation.

Finally, to avoid using outer probability measures in all of our statements, we
impose the following measurability assumption.
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(K.iv) K is a pointwise measurable class, that is, there exists a countable subclass
K0 of K such that we can find for any functiong ∈ K a sequence of
functions{gm} in K0 for which

gm(z) → g(z), z ∈ R
d .

This condition is discussed in [35]. It is satisfied wheneverK is right
continuous.

Our first result concerning density estimators is the following.

THEOREM1. Assuming (K.i)–(K.iv) and f is bounded, we have for any c > 0,

with probability 1,

lim sup
n→∞

sup
c logn/n≤h≤1

√
nh‖f̂n,h − Ef̂n,h‖∞√
log(1/h) ∨ log logn

=: K(c) < ∞.(1.2)

REMARK 1. Though this was not our main goal, we point out that if one
chooses a deterministic sequencehn satisfyingnhn/ logn → ∞ and log(1/hn)/

log logn → ∞, one re-obtains (1.1), which is Theorem 1 of Giné and Guillou [14]
with slightly less regularity. (We do not need to assume, as they do, thathn ↘ 0 or
thathn/h2n is bounded.)

REMARK 2. With applications to variable bandwidth estimators in mind, we
further note that Theorem 1 implies for any sequences 0< an < bn ≤ 1, satisfying
bn → 0 andnan/ logn → ∞, with probability 1,

sup
an≤h≤bn

‖f̂n,h − Ef̂n,h‖∞ = O

(√
log(1/an) ∨ log logn

nan

)
,(1.3)

which in turn implies

lim
n→∞ sup

an≤h≤bn

‖f̂n,h − Ef̂n,h‖∞ = 0 a.s.(1.4)

REMARK 3. It is routine to modify the proof of Theorem 1 to show that it
remains true when (K.iii) is replaced by the bracketing condition:

(K ′.iii) for someC0 > 0 andν0 > 0, N[·](ε,F ,L2(P )) ≤ C0ε
−ν0, 0< ε < 1.

Refer to page 270 of [34] for the definition ofN[·](ε,F ,L2(P )). Essentially all
that one has to do is to substitute the use of Corollary 4 by Lemma 19.34 of van
der Vaart [34].
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For a related result refer to Theorem 1 of Nolan and Marron [24], where almost
sure convergence to zero has been established in a similar setting. On the other
hand, our result provides explicit convergence rates for kernel density estimators.

Let us now look at the bias term. As soon as we know that

sup
an≤h≤bn

‖Ef̂n,h − f ‖∞ → 0,(1.5)

we have under the conditions of Theorem 1,

sup
an≤h≤bn

‖f̂n,h − f ‖∞ → 0.

If f is uniformly continuous onRd , here is a sufficient condition for (1.5) which
is easy to verify: Define

�K(x) = sup
|y|≥|x|

|K(y)|, x ∈ R
d,

and introduce the assumption∫
Rd

�K(x) dx < ∞.(K.v)

Note that this assumption trivially holds for a compactly supported kernel function.

COROLLARY 1. Assuming (K.i)–(K.v) for any sequences 0 < an < bn < 1,

satisfying bn → 0 and nan/ logn → ∞, and any uniformly continuous density f,

we have

lim
n→∞ sup

an≤h≤bn

‖f̂n,h − f ‖∞ = 0 a.s.(1.6)

REMARK 4. If an = c logn/n for somec > 0, then (1.6) does not hold, that
is, the limit in (1.6) is positive. Refer to [4] and [6] for details.

Our method is not restricted to the case of kernel density estimators. To give
the reader an indication of what other kinds of kernel-type estimators can be
treated using our techniques, consider i.i.d. (d + 1)-dimensional random vectors
(Y,X), (Y1,X1), (Y2,X2), . . . , where theY -variables are one-dimensional. We
shall assume thatX has a marginal Lebesgue density functionf and that the
regression function

m(x) = E[Y |X = x], x ∈ R
d,

exists. Let m̂n,h(x) be the usual Nadaraya–Watson estimator ofm(x) with
bandwidth 0< h < 1, that is,

m̂n,h(x) =
∑n

i=1 YiK((x − Xi)/h1/d)∑n
i=1 K((x − Xi)/h1/d)

.
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A huge literature has been developed on the consistency of the Nadaraya–Watson
estimator. Consult [16] and [11] for references to some of the more important
work.

Assuming thatm is p + 1 times differentiable at a fixedx0, one can use the
local polynomial regression techniques of Fan and Gijbels [12] to obtain a better
estimate atx0 than that given by the Nadaraya–Watson estimator. We will not treat
the uniform consistency of such estimators in the present paper. It should, however,
be feasible to apply similar empirical process methods in this setting as well.

With the above setup we have the following uniform in bandwidth result. Set

r̄(x, h) = E
[
YK

(
(x − X)/h1/d)]

/h and f̄ (x, h) = E
[
K

(
(x − X)/h1/d)]

/h.

For any subsetI of R
d , let I ε denote its closedε-neighborhood with respect to the

maximum-norm| · |+ onR
d , that is,|x|+ = max1≤i≤d |xi |, x ∈ R

d . Set further for
any functionψ :Rd → R

d, ‖ψ‖I = supx∈I |ψ(x)|.

THEOREM 2. Let I be a compact subset of R
d and let K satisfy (K.i)–(K.iv)

with support contained in [−1/2,1/2]d . Suppose further that there exists an ε > 0
so that

f is continuous and strictly positive on J := I ε.(1.7)

If there exists an M > 0 such that

|Y |1{X ∈ J } ≤ M a.s.,(1.8)

we have for large enough c > 0 and any bn ↘ 0,

lim sup
n→∞

sup
c logn/n≤h≤bn

√
nh‖m̂n,h − r̄(·, h)/f̄ (·, h)‖I√

log(1/h) ∨ log logn(1.9)

=: K(I, c) < ∞ a.s.

Moreover, if instead of (1.8)we assume that for some p > 2

sup
z∈J

E(|Y |p|X = z) =: α < ∞,(1.10)

we have for any c > 0 and bn ↘ 0 with γ = γ (p) = 1− 2/p,

lim sup
n→∞

sup
c(logn/n)γ ≤h≤bn

√
nh‖m̂n,h − r̄(·, h)/f̄ (·, h)‖I√

log(1/h) ∨ log logn
(1.11)

=: K ′(I, c) < ∞ a.s.

COROLLARY 2. Let I be a compact subset of R
d and let K satisfy

(K.i)–(K.iv) with support contained in [−1/2,1/2]d . Assume that the distribution
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function of (Y,X) has a Lebesgue density (y, x) → p(y, x), so that the marginal
density of X is given by

f (x) =
∫ ∞
−∞

p(y, x) dy, x ∈ R
d .

Suppose further that there exists an ε > 0 so that (1.7)holds and that

for all z ∈ J, lim
z′→z

p(y, z′) = p(y, z) for almost every y ∈ R.(1.12)

If (1.8)holds, then for 0 < an < bn < 1, satisfying bn → 0 and nan/ logn → ∞,

lim
n→∞ sup

an≤h≤bn

‖m̂n,h − m(·)‖I = 0 a.s.(1.13)

If (1.10) holds, then with γ = 1 − 2/p for 0 < c(logn/n)γ < bn < 1 satisfying
bn → 0,

lim
n→∞ sup

c(logn/n)γ ≤h≤bn

‖m̂n,h − m(·)‖I = 0 a.s.(1.14)

REMARK 5. Let us also mention that if, in the bounded case, we choose a de-
terministic bandwidth sequencehn satisfying the standard assumption
nhn/ logn → ∞ and log(1/hn)/ log logn → ∞, we get that with probability 1,

lim sup
n→∞

√
nhn‖m̂n,hn − r̄(·, hn)/f̄ (·, hn)‖I√

2 log(1/hn)
≤ C < ∞.

This is a sharp result. In our previous paper [11] we have shown under additional
assumptions (hn ↘ 0 andnhn ↗, d = 1, I = [a, b] andK satisfies a continuity
condition and is of bounded variation onR) that the lim sup is positive and
actually a limit. [Note, however, that the limiting constant has not been correctly
stated in formula (1.16) of that paper. With the notation of the present paper the
limiting constant is supx∈I (σ (x)‖K‖2)/

√
f (x), whereσ 2(x) = Var(Y |X = x).]

Moreover, if (1.8) holds, then a result of Collomb [3] implies that the condition
nan/ logn → ∞ is necessary for uniform consistency.

REMARK 6. Under additional smoothness assumptions onf one can also
derive explicit convergence rates in (1.6) and (1.14). For instance, if one knows
thatf is uniformly Lipschitz continuous, one easily sees that the bias (1.5) is of
orderO(b

1/d
n ), which permits one to derive a convergence rate in (1.6) one which

depends onan, via the rate from Theorem 1, and onbn, via the rate in (1.5).
For more information on the interplay between smoothness and the size of the
bias term consult [1, 8, 10]. Similarly under extra smoothness conditions the
bias term in the Nadaraya–Watson estimator is well behaved and one also can
specify convergence rates. For appropriate smoothness conditions refer to [1] and,
especially, to Section 2.3 of [7].
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REMARK 7. Suppose now that̂hn = ĥn(x) is a local data-driven bandwidth
sequence satisfying

P{an ≤ ĥn(x) ≤ bn :x ∈ I } → 1,(1.15)

or a constant data-driven bandwidth sequenceĥn satisfying with probability 1, for
all large enoughn ≥ 1,

an ≤ ĥn ≤ bn.(1.16)

For instance, ifd = 1, one often has for appropriate 0< a < b < ∞, an = an−1/5

andbn = bn−1/5. [10] is a good place to read about the various optimality criteria
that lead to then−1/5. In this case and more generally under the assumptions of
Corollary 1, ∥∥f̂n,ĥn

− f
∥∥
I → 0,

and under those of Corollary 2,∥∥m̂n,ĥn
− m(·)∥∥I → 0,

where the convergence is either in probability or with probability 1 depending on
whether (1.15) or (1.16) holds.

Deheuvels and Mason [7] consider local plug-in type estimatorsĥn(x) which
satisfy (1.15) withan = c1hn andbn = c2hn, wherec1 < c2, or

P

(
sup
x∈I

|ĥn(x)/hn − C(x)| > ε

)
→ 0(1.17)

for anyε > 0, whereC is an appropriate continuous function onI. Refer especially
to their Example 2.1, where they show subject to smoothness assumptions that the
optimal ĥn(x) in terms of asymptotic mean square error for estimatingf or m

satisfies (1.17) withhn = n−1/5.

The literature on data-driven bandwidth selection is extensive. We cite, for
instance, [2, 17, 21–23, 27]. For further references and methods consult [18],
Chapter 7 of [10], [7] and [9].

All data-driven bandwidth selection procedures require some smoothness
assumptions in order to get rates. Our results show that even if such assumptions do
not hold, one may still have consistency as long as (1.15) is satisfied for appropriate
an andbn not necessarily of the forman = c1hn andbn = c2hn.

Our next example is a kernel estimator of the conditional distribution function

F(t |z) := P(Y ≤ t |X = z),

defined for a kernelK and bandwidth 0< h < 1 to be

F̂ n,h(t |z) :=
∑n

i=1 1(Yi ≤ t)K((z − Xi)/h1/d)∑n
i=1 K((z − Xi)/h1/d)

.(1.18)

Stute [32] calls this theconditional empirical distribution function and was the
first to establish uniform consistency results for it.
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THEOREM 3. Let I be a compact subset of R
d and let K satisfy (K.i)–(K.iv)

with support contained in [−1/2,1/2]d . Suppose further that there exists an ε > 0
so that (1.7) holds. Then, with probability 1, we have for large enough c > 0 and
any bn ↘ 0,

lim sup
n→∞

sup
c logn/n≤h≤bn

supz∈I

√
nh‖F̂ n,h(·|z) − Fn,h(·|z)‖∞√
log(1/h) ∨ log logn(1.19)

=: K ′′(I, c) < ∞,

where Fn,h(t |z) = E[K((z − X)/h1/d)1{Y ≤ t}]/(hEf̂n,h(z)), t ∈ R.

COROLLARY 3. Let I be a compact subset of R
d and let K satisfy

(K.i)–(K.iv) with support contained in [−1/2,1/2]d . Suppose further that there
exists an ε > 0 so that (1.7)holds and (1.12)is satisfied. Then for 0< an < bn < 1,

satisfying bn → 0 and nan/ logn → ∞,

lim
n→∞ sup

an≤h≤bn

sup
z∈I

‖F̂ n,h(·|z) − F(·|z)‖∞ = 0.(1.20)

REMARK 8. Sometimes one wants to use vector bandwidths (see, in partic-
ular, Chapter 12 of Devroye and Lugosi [9]). With obvious changes of notation,
our results and their proofs remain true whenhn is replaced by a vector band-
width hn = (h

(1)
n , . . . , h

(d)
n ), where min1≤i≤d h

(i)
n > 0. In this situation we set

hn = ∏d
i=1 h

(i)
n , and for any vectorv = (v1, . . . , vd) we replacev/h

1/d
n by

(v1/h
(1)
n , . . . , vd/h

(d)
n ). For ease of presentation we chose to use real-valued band-

widths throughout.

Theorem 1 is proved in Section 2. Theorems 2 and 3 will follow from a more
general result stated and proved in Section 3. Our proofs are based on an extension
of the methods developed in [11]. We use the same idea which was developed
in [11], namely, combining an exponential inequality of Talagrand [33] with a
suitable moment inequality.

2. Proofs of Theorem 1 and Corollary 1. We shall look at a slightly
more general setup than in the Introduction. Let(X,A) be a measurable space.
Throughout this section we assume that on our basic probability space(
,F ,P)

we have independent(F ,A)-measurable variablesXi :
 → X, 1 ≤ i ≤ n, with
common distributionµ.

Let G be a pointwise measurable class of functions fromX to R (see the
Introduction and Example 2.3.4 in [35]). Further letε1, . . . , εn be a sequence of
independent Rademacher random variables, independent ofX1, . . . ,Xn. Let G be
a finite-valued measurable function satisfying for allx ∈ X,

G(x) ≥ sup
g∈G

|g(x)|,(2.1)
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and define

N(ε,G) = sup
Q

N
(
ε
√

Q(G2),G, dQ

)
,(2.2)

where the supremum is taken over all probability measuresQ on(X,A) for which
0< Q(G2) < ∞ anddQ is theL2(Q)-metric.

We need the following version of Proposition A.1 of EM [11].

PROPOSITION1. Let G be a pointwise measurable class of bounded functions
such that for some constants C,ν ≥ 1 and 0 < σ ≤ β and G as above, the
following conditions hold:

(i) E[G(X)2] ≤ β2;
(ii) N(ε,G) ≤ Cε−ν,0< ε < 1;
(iii) σ 2

0 := supg∈G E[g(X)2] ≤ σ 2;
(iv) supg∈G ‖g‖∞ ≤ 1

4
√

ν

√
nσ 2/ log(C1β/σ), where C1 = C1/ν ∨ e.

Then we have for some absolute constant A,

E

∥∥∥∥∥
n∑

i=1

εig(Xi)

∥∥∥∥∥
G

≤ A
√

νnσ 2 log(C1β/σ).(2.3)

PROOF. Our proof is a modification of that of Proposition A.1 of EM [11]. We
denote vectors(x1, . . . , xn) ∈ Xn by x and we define the subsetsFn andGn of Xn

as in this paper, that is,

Gn :=
{

x :n−1
n∑

j=1

G2(xj ) ≤ 256β2

}
,

Fn :=
{

x :n−1 sup
g∈G

n∑
j=1

g2(xj ) ≤ 64σ 2

}
.

We can infer from (A.8)–(A.10) in [11] that onFn ∩ Gn,

E

∥∥∥∥∥
n∑

i=1

εig(xi)

∥∥∥∥∥
G

≤ K ′σ
√

nν log(C1β/σ),

whereK ′ is an absolute constant. Therefore, we have for

t ≥ 96K ′σ
√

nν log(C1β/σ),
(2.4)

P

{∥∥∥∥∥
n∑

i=1

εig(xi)

∥∥∥∥∥
G

> t

}
≤ 1/96 ∀x ∈ Fn ∩ Gn,
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and, consequently, in this range oft that

P

{∥∥∥∥∥
n∑

i=1

εig(Xi)

∥∥∥∥∥
G

> t

}
≤ 1/96+ µn(F c

n ) + µn(Gc
n).

By Markov’s inequality we trivially haveµn(Gc
n) ≤ 1/256. Using Lemma 5.1

of [15] exactly as in [11] and recalling thatC1β/σ ≥ e andν ≥ 1, we see that

µn(F c
n ) ≤ 4µn(Gc

n) + 12· 16ν(C1β/σ)−15ν ≤ 7/256,

which finally implies that

P

{∥∥∥∥∥
n∑

i=1

εig(Xi)

∥∥∥∥∥
G

> t

}
≤ 1/24,

whenever (2.4) holds. A straightforward application of the Hoffmann–Jørgensen
inequality as stated in Proposition 6.8 of Ledoux and Talagrand [20] finally yields
the desired moment inequality.�

From the above moment inequality we can infer the following:

COROLLARY 4. Let G be as in Proposition 1 satisfying (i)–(iii), and instead
of (iv) assume that

(v) supg∈G ‖g‖∞ ≤ U , where σ0 ≤ U ≤ C2
√

nβ, and C2 = 1
4
√

ν logC1
.

Then we have

E

∥∥∥∥∥
n∑

i=1

εig(Xi)

∥∥∥∥∥
G

≤ A
{√

νnσ 2
0 log(C1β/σ0) + 2νU log

(
C3n(β/U)2)},(2.5)

where C3 = C2
1/16ν.

PROOF. Whenever

U ≤ 1

4
√

ν

√
nσ 2

0/ log(C1β/σ0),

inequality (2.5) follows immediately from our proposition by choosingσ = σ0.
Assume now that

1

4
√

ν

√
nσ 2

0/ log(C1β/σ0) < U ≤ C2
√

nβ.

Then using the monotonicity of the functiont → √
nt2/ log(C1β/t) we can find a

uniqueσ ∈]σ0, β] satisfying

U = 1

4
√

ν

√
nσ 2/ log(C1β/σ).
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Applying our proposition with this choice ofσ , it follows that

E

∥∥∥∥∥
n∑

i=1

εig(Xi)

∥∥∥∥∥
G

≤ A
√

νnσ 2 log(C1β/σ) ≤ 4AνU log(C1β/σ).

Next rewriting the equation which definesσ and recalling thatC1β/σ ≥ e, we
readily obtain that

1/σ ≤ σ−1
√

log(C1β/σ) = √
n/

(
4
√

νU
)
,

and thus

C1(β/σ) ≤ C1/
(
4
√

ν
)(√

nβ/U
) =: √

C3
(√

nβ/U
)
.

It follows that

E

∥∥∥∥∥
n∑

i=1

εig(Xi)

∥∥∥∥∥
G

≤ 2AνU log
(
C3n(β/U)2),

which proves the corollary.�

A bound similar to that given in Corollary 4 has been given by Giné and Guillou
[13] using a different method.

As already indicated in the Introduction, our proof is based on an inequality of
Talagrand [33] (see also [19]) which we state here for easy reference later on.

Let αn be the empirical process based on the sampleX1, . . . ,Xn, that is, if
g :X → R, we have

αn(g) =
n∑

i=1

(
g(Xi) − Eg(X)

)
/
√

n,

and set for any classG of such functions∥∥√nαn

∥∥
G = sup

g∈G

∣∣√nαn(g)
∣∣.

INEQUALITY. Let G be a pointwise measurable class of functions satisfying
for some 0 < M < ∞,

‖g‖∞ ≤ M, g ∈ G.

Then we have for all t > 0,

P

{
max

1≤m≤n

∥∥√mαm

∥∥
G ≥ A1

(
E

∥∥∥∥∥
n∑

i=1

εig(Xi)

∥∥∥∥∥
G

+ t

)}

≤ 2
{

exp
(
−A2t

2

nσ 2
G

)
+ exp

(
−A2t

M

)}
,

where σ 2
G = supg∈G Var(g(X)) and A1,A2 are universal constants.
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PROOF OFTHEOREM 1. We first note that

E

(
K2

(
x − X

h1/d

))
= h

∫
Rd

h−1K2
(

x − s

h1/d

)
f (s) ds

= h

∫
Rd

K2(u)f (x − uh1/d) du ≤ h‖f ‖∞‖K‖2
2,

where as usual‖K‖2 = (
∫
Rd K2(s) ds)1/2.

Set forj, k ≥ 0 andc > 0, nk = 2k, hj,k = (2j c lognk)/nk and

Kj,k = {
K

(
(x − ·)/h1/d)

:hj,k ≤ h ≤ hj+1,k, x ∈ R
d}

.

Clearly forhj,k ≤ h < hj+1,k, with κ as in (K.ii),

E
(
K2((x − X)/h1/d)) ≤ κ2 ∧ 2hj,k‖f ‖∞‖K‖2

2 =: κ2 ∧ D0hj,k =: σ 2
j,k.

We now use Corollary 4 to bound

E

∥∥∥∥∥
nk∑
i=1

εig(Xi)

∥∥∥∥∥
Kj,k

.

To that end we note that eachKj,k satisfies (i) withG = β = κ. Further, since
Kj,k ⊂ K, we see by (K.iii) that eachKj,k also fulfills (ii). [W.l.o.g. we assume
thatν,C ≥ 1 in (K.iii).] Noting that

C1β/σ0 ≤ (β2/σ 2
0 ) ∨ C2

1

and the functionh → h log(h−1 ∨ C2
1) is increasing forh ≥ 0 (recall thatC1 ≥ e),

we see by applying Corollary 4 withU = β = κ and using the boundσ0 ≤ σj,k ,
that we have forj ≥ 0,

E

∥∥∥∥∥
nk∑
i=1

εig(Xi)

∥∥∥∥∥
Kj,k

≤ Aβ

√√√√νnkD0hj,k

β2 log
(

β2

D0hj,k

∨ C2
1

)
+ 2Aνκ log(C3nk),

which forD1 = A
√

νD0 andD2 = D0/β
2 is equal to

D1

√
nkhj,k log

(
1

D2hj,k

∨ C2
1

)
+ 2Aνκ log(C3nk).(2.6)

Using once more the fact thath → h log(h−1 ∨C2
1) is increasing forh ≥ 0, we see

that the first term of the above bound is, for largek, greater than or equal to

D1

√
c lognk

√
log(nk/{cD2 lognk}).

Thus the order of the second term is always smaller than or equal to that of the first
one. Consequently, we have forj ≥ 0 and large enoughk,

E

∥∥∥∥∥
nk∑
i=1

εig(Xi)

∥∥∥∥∥
Kj,k

≤ D3

√
nkhj,k

(
log

(
1

D2hj,k

)
∨ log lognk

)
=: D3aj,k,
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whereD3 is a positive constant.
Applying the Inequality withM = κ andσ 2

G = σ 2
Kj,k

≤ D0hj,k, we get for any
t > 0,

P

{
max

nk−1≤n≤nk

∥∥√nαn

∥∥
Kj,k

≥ A1(D3aj,k + t)

}
(2.7)

≤ 2
[
exp

(−A2t
2/(D0nkhj,k)

) + exp(−A2t/κ)
]
.

Setting for anyρ > 1, j ≥ 0 andk ≥ 1,

pj,k(ρ) = P

{
max

nk−1≤n≤nk

∥∥√nαn

∥∥
Kj,k

≥ A1(D3 + ρ)aj,k

}
,

and using the fact thata2
j,k/nkhj,k ≥ log lognk , we can infer that for largek,

pj,k(ρ) ≤ 2
[
exp

(
−ρ2A2

D0
log lognk

)
+ exp

(
−A2ρ

κ

√
nkhj,k log lognk

)]
.

Recalling thathj,k ≥ c lognk/nk , we readily obtain that for largek and anyj ≥ 0,

pj,k(ρ) ≤ 4(lognk)
−ρ̃ ,(2.8)

whereρ̃ = A2
D0

ρ2.
Setlk = max{j :hj,k ≤ 2}. It is easy to see that for largek,

lk ≤ 2 lognk.(2.9)

Hence in view of (2.8) and (2.9) we have for largek andρ ≥ 1,

Pk(ρ) :=
lk−1∑
j=0

pj,k(ρ) ≤ 8(lognk)
1−ρ̃ ,

which implies that if we chooseρ ≥ 2(D0/A2)
1/2 (say), we have

∞∑
k=1

Pk(ρ) < ∞.(2.10)

Notice that by definition oflk for largek,

2hlk,k = hlk+1,k ≥ 2.

Consequently, we then have fornk−1 ≤ n ≤ nk ,[
c logn

n
,1

]
⊂

[
c lognk

nk

, hlk,k

]
.



KERNEL-TYPE ESTIMATORS 1393

Thus for all large enoughk andnk−1 ≤ n ≤ nk,

Ak(ρ) :=
{

max
nk−1≤n≤nk

sup
c logn/n≤h≤1

√
nh‖f̂n,h − Ef̂n,h‖∞√
log(1/h) ∨ log logn

> 2A1(D3 + ρ)

}

⊂
lk−1⋃
j=0

{
max

nk−1≤n≤nk

∥∥√nαn

∥∥
Kj,k

≥ A1(D3 + ρ)aj,k

}
,

and we see thatP(Ak(ρ)) ≤ Pk(ρ). Recalling (2.10), we obtain our theorem via
the Borel–Cantelli lemma.�

REMARK 9. We note that if the density is bounded only overJ := I ε, for
someε > 0, with I a compact subset ofRd , and if K is a kernel with support in
[−1/2,1/2]d we still have for any 0< h0 < (2ε)d , with probability 1,

lim sup
n→∞

sup
c logn/n≤h≤h0

√
nh‖f̂n,h − Ef̂n,h‖I√
log(1/h) ∨ log logn

=: K̃(I, c) < ∞.(2.11)

This follows immediately from the above proof by an obvious modification of the
bound forEK2((x − X)/h1/d) and replacing the setRd by I in the definition
of Kj,k .

PROOF OFCOROLLARY 1. The proof of (1.3) is obvious from (1.2). Turning
to the proof of (1.6), we note that by integrability the assumption thatf is
uniformly continuous onRd is equivalent tof being continuous onRd and
satisfying the condition that

lim
R→∞ sup{f (z) : |z| ≥ R} = 0,

which of course implies that‖f ‖∞ < ∞. This, when combined with the corollary
on page 65 of [28], gives the following lemma.

LEMMA 1. Let f be a uniformly continuous Lebesgue density function on R
d .

Then for any kernel K which satisfies (K.i), (K.ii) and (K.v), we have

sup
z∈Rd

|f ∗ Kh(z) − f (z)| → 0 as h ↘ 0,(2.12)

where f ∗ Kh(z) := h−1 ∫
Rd f (x)K(h−1/d(z − x)) dx.

Observing thatEf̂n,h(z) = f ∗ Kh(z), we see that Lemma 1 and (1.5)
imply (1.6). �
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3. Proofs of Theorems 2 and 3 and Corollaries 2 and 3. We are now ready
to prove Theorems 2 and 3 and Corollaries 2 and 3. We shall consider a slightly
more general setting than in the Introduction, allowing the variablesY,Y1, Y2, . . .

to ber-dimensional, wherer ≥ 1. Further introduce the following process:
Let 
 denote a class of measurable functions onR

r with a finite-valued
measurable envelope functionF , that is,

F(y) ≥ sup
ϕ∈


|ϕ(y)|, y ∈ R
r .(3.1)

Further assume that
 satisfies (K.iii) and (K.iv) withK replaced by
. For any
ϕ ∈ 
 and continuous functionscϕ anddϕ on a compact subset ofJ of R

d , set for
x ∈ J,

ωϕ,n,h(x) =
n∑

i=1

(
cϕ(x)ϕ(Yi) + dϕ(x)

)
K

(
x − Xi

h1/d

)
,

whereK is a kernel with support contained in[−1/2,1/2]d such that

sup
x∈Rd

|K(x)| =: κ < ∞ and
∫

Rd
K(s) ds = 1.

For future use introduce two classes of continuous functions on a compact subset
J of R

d indexed by
,

C := {cϕ :ϕ ∈ 
} and D := {dϕ :ϕ ∈ 
}.
We shall always assume that the classesC andD are relatively compact with re-
spect to the sup-norm topology, which by the Arzela–Ascoli theorem is equivalent
to these classes being uniformly bounded and uniformly equicontinuous.

THEOREM 4. Let I be a compact subset of R
d . Assume that 
 and K satisfy

the above conditions and the classes of continuous functions C and D are as
above, that is, relatively compact with respect to the sup-norm topology, where
J = Iη, for some 0< η < 1. Also assume that

f is continuous and strictly positive on J.(3.2)

Further assume that the envelope function F of the class 
 satisfies

∃M > 0, F (Y )1{X ∈ J } ≤ M a.s.,(3.3)

or for some p > 2,

α := sup
z∈J

E
(
Fp(Y )|X = z

)
< ∞.(3.4)

Then we have for any c > 0 and 0< h0 < (2η)d, with probability 1,

lim sup
n→∞

sup
c(logn/n)γ ≤h≤h0

supϕ∈
 ‖ωϕ,n,h − Eωϕ,n,h‖I√
nh(log(1/h) ∨ log logn)

=: P(c) < ∞,(3.5)

where γ = 1 in the bounded case and γ = 1− 2/p under assumption (3.4).
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Before proving Theorem 4 we shall show how it implies Theorems 2 and 3 and
Corollaries 2 and 3. We need the following lemma.

LEMMA 2. Let H be a class of uniformly equicontinuous functions g :J → R

and let K :Rd → R be a kernel with support in [−1/2,1/2]d so that∫
Rd K(u)du = 1. Then we have for any sequence of positive constants bn → 0,

sup
g∈H

sup
0<h<bn

‖g ∗ Kh − g‖I → 0.

PROOF. A simple transformation shows that ifx ∈ I ,

|g(x) − g ∗ Kh(x)| =
∣∣∣∣ ∫

Rd

(
g(x) − g(x − uh1/d)

)
K(u)du

∣∣∣∣,
which forh ≤ bn and all large enoughn is obviously bounded above by

sup
{|g(x) − g(y)| :x, y ∈ J, |x − y| ≤ b1/d

n /2
} ∫

Rd
|K(u)|du.

Since the function classH is uniformly equicontinuous, we readily obtain the
assertion of the lemma.�

PROOF OFTHEOREM 2. Set

r̂n,h(x) = 1

nh

n∑
i=1

YiK
(
(x − Xi)/h1/d)

, x ∈ I.

Then we obviously have

|m̂n,h(x) − r̄(x, h)/f̄ (x,h)|
(3.6) ≤ 1

|f̂n,h(x)| |r̂n,h(x) − r̄(x, h)| + |r̄(x, h)|
|f̂n,h(x)f̄ (x,h)| |f̂n,h(x) − f̄ (x, h)|.

From Theorem 4 [settingr = 1, 
 = {ϕ1}, whereϕ1(y) = y, y ∈ R] it now
follows that with probability 1,

lim sup
n→∞

sup
(c logn/n)γ ≤h≤bn

√
nh‖̂rn,h(·) − r̄(·, h)‖I√
log(1/h) ∨ log logn

< ∞(3.7)

and by (2.11) that

lim sup
n→∞

sup
c logn/n≤h≤bn

√
nh‖f̂n,h(·) − f̄ (·, h)‖I√
log(1/h) ∨ log logn

< ∞.(3.8)

This last bound of course implies that asn → ∞,

sup
c logn/n<h<bn

‖f̂n,h(·) − f̄ (·, h)‖I = O(1) a.s.,
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where we can make the constant in theO(1)-term arbitrarily small by choosing
c large enough. Combining this observation with the subsequent result following
from Lemma 2 that

sup
0<h≤bn

‖f̄ (·, h) − f (·)‖I → 0(3.9)

and the assumption that the densityf is positive onJ, we can conclude that forc
large enoughf̂n,h is bounded away from 0 onI , uniformly in c logn/n < h < bn.

Combining this with (1.8) or (1.10) it follows that sup0<h≤bn
‖r̄(·, h)/f̄ (·, h)‖I

remains bounded. Therefore, we can infer Theorem 2 from (3.6)–(3.8).�

PROOF OFCOROLLARY 2. We first note that assumption (1.12) in conjunc-
tion with Scheffé’s lemma and also condition (1.10) in the unbounded case im-
plies thatr(x) = E(Y |X = x)f (x) is continuous onJ . Applying Lemma 2 with
H = {r}, we see that

sup
0<h≤bn

‖r̄(·, h) − r(·)‖I → 0,(3.10)

which with (3.9) and Theorem 2 completes the proof of the corollary.�

PROOFS OF THEOREM 3 AND COROLLARY 3. To see how Theorem 3
follows from Theorem 4, set
 = {ϕt }, whereϕt(y) = 1{y ≤ t}, t, y ∈ R,

C = {1/f (·)} and D = {−F(t |·)/f (·) : t ∈ R}.
The classes
 andC clearly satisfy the assumptions of Theorem 4. To see that the
function classD is a relatively compact class of continuous functions onJ refer
to pages 6 and 7 of [11], which also implies that the class

H = {gt : t ∈ R},
where for eacht ∈ R, gt (·) = F(t |·)f (·), is also a relatively compact class of
functions defined onJ . Therefore Theorem 3 and Corollary 3 follow in the same
way that Theorem 2 and Corollary 2 did from Theorem 4 and Lemma 2.�

PROOF OFTHEOREM 4. We first note that

lim sup
n→∞

sup
c logn/n≤h≤h0

supϕ∈
 ‖dϕ(x)
∑n

i=1{K(x−Xi

h1/d ) − EK(x−Xi

h1/d )}‖I√
nh(log(1/h) ∨ log logn)

≤ sup
ϕ∈


‖dϕ‖I lim sup
n→∞

sup
c logn/n≤h≤h0

‖∑n
i=1{K(x−Xi

h1/d ) − EK(x−Xi

h1/d )}‖I√
nh(log(1/h) ∨ log logn)

.

In view of (2.11) it is obvious that this quantity is finite with probability 1.
Therefore, if we set forϕ ∈ 
, x ∈ I andh > 0,

ηϕ,n,h(x) = cϕ(x)

n∑
i=1

ϕ(Yi)K

(
x − Xi

h1/d

)
,(3.11)
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it clearly suffices to show:

PROPOSITION2. Under the assumptions of Theorem 4, for all c > 0, there
exists a Q(c) > 0 such that with probability 1,

lim sup
n→∞

sup
c(logn/n)γ ≤h≤h0

supϕ∈
 ‖ηϕ,n,h − Eηϕ,n,h‖I√
nh(log(1/h) ∨ log logn)

=: Q(c).(3.12)

PROOF. We shall prove Proposition 2 under assumption (3.4), as it follows in
the bounded case directly from the proof of Theorem 1 and Remark 9. Just replace
the classesKj,k by the classes

Gj,k = {
(y, z) → ϕ(y)cϕ(z)K

(
(x − z)/h1/d)

:ϕ ∈ 
,x ∈ I, hj,k ≤ h ≤ hj+1,k

}
.

Observe that these classes also satisfy conditions (i)–(iii) of Proposition 1 with
G = β = κ supϕ∈
 ‖cϕ‖I and our proof of Theorem 1 still works after some minor
modifications.

We turn to the unbounded case, that is, assume (3.4) for somep > 2. Recall that
γ = 1 − 2/p. For anyk = 1, 2, . . . andϕ ∈ 
, setnk = 2k, ak = c(lognk/nk)

γ

and

ϕk(y) = ϕ(y)1{F(y) < (nk/k)1/p}.(3.13)

Fornk−1 ≤ n ≤ nk, x ∈ I , ak ≤ h ≤ h0 andϕ ∈ 
, let

η
(k)
ϕ,n,h(x) = cϕ(x)

n∑
i=1

ϕk(Yi)K

(
x − Xi

h1/d

)
.(3.14)

The proof of Proposition 2 in the unbounded case will be a consequence of two
lemmas. We will first show:

LEMMA 3. There exists a constant Q1(c) < ∞, such that with probability 1,

lim sup
k→∞

�k = Q1(c),(3.15)

where

�k = max
nk−1≤n≤nk

sup
ak≤h≤h0

supϕ∈
 ‖η(k)
ϕ,n,h − Eη

(k)
ϕ,n,h‖I√

nh(log(1/h) ∨ log logn)
.

PROOF. Forx ∈ I , ak ≤ h ≤ h0 andϕ ∈ 
, let

υϕ,h,x(u, v) = cϕ(x)ϕ(v)K

(
x − u

h

)
(3.16)

and

υ
(k)
ϕ,h,x(u, v) = cϕ(x)ϕk(v)K

(
x − u

h

)
.(3.17)
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Notice that

η
(k)
ϕ,n,h(x) − Eη

(k)
ϕ,n,h = n1/2αn

(
υ

(k)
ϕ,h,x

)
,(3.18)

whereαn is the empirical process based on(X1, Y1), . . . , (Xn,Yn). For k ≥ 1 let

Gk(h) := {
υ

(k)
ϕ,h,x :ϕ ∈ 
 andx ∈ I

}
.

We see that

�k = max
nk−1≤n≤nk

sup
ak≤h≤h0

‖αn‖Gk(h)√
nh(log(1/h) ∨ log logn)

.

Note that for eachυ(k)
ϕ,h,x ∈ Gk(h),∥∥υ(k)

ϕ,h,x

∥∥∞ ≤ ‖K‖∞ sup
ϕ∈


∥∥cϕ

∥∥∞(nk/k)1/p =: D0(nk/k)1/p.(3.19)

Also observe that

E
[(

υ
(k)
ϕ,h,x

)2
(X,Y )

] ≤ E[υ2
ϕ,h,x(X,Y )] ≤ E

[(
cϕ(x)ϕ(Y )

)2
K2

(
x − X

h1/d

)]
.

Using a conditioning argument, we infer that this last term is uniformly overx ∈ I

≤ ‖cϕ‖2
J

∫
|x−t |≤h1/d/2

E[F 2(Y )|X = t]fX(t)K2
(

x − t

h1/d

)
dt

≤ ‖cϕ‖2
J α2/p

∫
|x−t |≤h1/d/2

fX(t)K2
(

x − t

h1/d

)
dt

≤ h‖cϕ‖2
J α2/p

∫
[−1/2,1/2]d

fX(x − h1/du)K2(u) du

≤ hα2/p sup
ϕ∈


‖cϕ‖2
J ‖fX‖J ‖K‖2

2 =: hD1.

Thus

sup
υ∈Gk(h)

Eυ2(X,Y ) ≤ hD1.(3.20)

Set forj, k ≥ 0, hj,k = 2j ak and

Gj,k := {
υ

(k)
ϕ,h,x :ϕ ∈ 
, x ∈ I andhj,k ≤ h ≤ hj+1,k

}
.

Clearly by (3.20), for allx ∈ I, ϕ ∈ 
 andhj,k ≤ h < hj+1,k,

E
[(

υ
(k)
ϕ,h,x

)2
(X,Y )

] ≤ hD1 ≤ 2D1hj,k,

which gives

sup
υ∈Gj,k

Eυ2(X,Y ) ≤ 2D1hj,k.(3.21)
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We shall use Corollary 4 to boundE‖∑nk

i=1 εiυ(Xi, Yi)‖Gj,k
. Note first that by

arguing as in the proof of Lemma 5 of EM [11], eachGj,k ⊂ G, where G is
a class that satisfies (K.iii) and (K.iv) withK replaced byG. Next by setting
U = D0(nk/k)1/p andβ2 = α2/p it follows that

E

∥∥∥∥∥
nk∑
i=1

εiυ(Xi, Yi)

∥∥∥∥∥
Gj,k

≤ A
√

νnkσ
2
0 log(C1β/σ0)

+ 2AD0ν(nk/k)1/p log(C3D
−2
0 β2nk

1−2/pk2/p).

Replacingσ 2
0 in the first term by the upper bound 2D1hj,k ∧ β2 and recalling that

hj,k ≥ ak = c(lognk/nk)
1−2/p,

we obtain after a small calculation that for suitable positive constantsD2 andD3,

E

∥∥∥∥∥
nk∑
i=1

εiυ(Xi, Yi)

∥∥∥∥∥
Gj,k

≤ D3

√
nkhj,k log

(
(D2hj,k)

−1 ∨ C1
)
.(3.22)

Set

aj,k =
√

nkhj,k

(
log

(
1

D2hj,k

)
∨ log lognk

)
, k ≥ 1, j ≥ 0.

Applying Talagrand’s inequality withM = D0(nk/k)1/p and σ 2
G = σ 2

Gj,k
≤

2D1hj,k, we get for anyt > 0 and large enoughk,

P

{
max

nk−1≤n≤nk

∥∥√nαn

∥∥
Gj,k

≥ A1(D3aj,k + t)

}
≤ 2

[
exp

(−A2t
2/(2D1nkhj,k)

) + exp
(−A2tk

1/p/(D0n
1/p
k )

)]
.

Set for anyρ > 1, j ≥ 0 andk ≥ 1,

pj,k(ρ) = P

{
max

nk−1≤n≤nk

∥∥√nαn

∥∥
Gj,k

≥ A1(D3 + ρ)aj,k

}
.

Using the facts thata2
j,k/(nkhj,k) ≥ log lognk andhj,k ≥ c(lognk/nk)

1−2/p, we
readily obtain for largek andj ≥ 0 that

pj,k(ρ) ≤ 2exp
(
−ρ2A2

D1
log lognk

)
+ 2exp

(
−

√
cρA2

D0

√
lognk log lognk

)
,

which for ρ̃ = A2
D1

ρ2 and largek is less than or equal to 4(lognk)
−ρ̃ . Set lk =

max{j :hj,k ≤ 2h0} if this set is nonempty, which is obviously the case for large
enoughk. Then we havelk ≤ k for large enoughk and, consequently,

Pk(ρ) :=
�k−1∑
j=0

pj,k(ρ) ≤ 4�k(lognk)
−ρ̃ ≤ k−2,
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provided we have chosenρ large enough.
Further notice that by the definition oflk for largek,

2h�k,k = hlk+1,k ≥ 2h0,

which implies that we have fornk−1 ≤ n ≤ nk,

[ak, h0] ⊂ [
ak, h�k,k

]
.

Thus for all large enoughk,

Ak(ρ) := {�k ≥ 2A1(D3+ρ)} ⊂
�k−1⋃
j=0

{
max

nk−1≤n≤nk

∥∥√nαn

∥∥
Gj,k

≥ A1(D3+ρ)aj,k

}
.

It follows now with the above choice forρ,

P
(
Ak(ρ)

) ≤ Pk(ρ) ≤ k−2,

which by the Borel–Cantelli lemma implies Lemma 3.�

Write

ϕk(y) = ϕ(y)1{F(y) ≥ (nk/k)1/p}.(3.23)

Forϕ ∈ 
, x ∈ I andnk−1 ≤ n ≤ nk, let

η
(k)
ϕ,n,h(x) = cϕ(x)

n∑
i=1

{
ϕk(Yi)K

(
x − Xi

h1/d

)}
.(3.24)

LEMMA 4. With probability 1,

lim
k→∞ max

nk−1≤n≤nk

sup
c(lognk/nk)

1−2/p≤h≤h0

supϕ∈
 ‖η(k)
ϕ,n,h − Eη

(k)
ϕ,n,h‖I√

nh(log(1/h) ∨ log logn)
= 0.(3.25)

PROOF. First note that for anyh ≤ h0, ϕ ∈ 
 andnk−1 ≤ n ≤ nk,∥∥Eη
(k)
ϕ,n,h

∥∥
I ≤ κ sup

ϕ∈


‖cϕ‖I nkE[F(Y )1{X ∈ J,F (Y ) ≥ (nk/k)1/p}].

We further have by (3.4),

EFp(Y )1{X ∈ J } < ∞,

and we see that uniformly innk−1 ≤ n ≤ nk , h ≤ h0 andϕ ∈ 
,∥∥Eη
(k)
ϕ,n,h

∥∥
I = o(n

1/p
k k1−1/p) = o

(√
nkak log(1/ak)

)
ask → ∞, whereak = c(lognk/nk)

1−2/p.
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By monotonicity of the functionh → h log(1/h),h ≤ 1/e, we readily obtain
that

lim
k→∞ max

nk−1≤n≤nk

sup
ak≤h≤h0

supϕ∈
 ‖Eη
(k)
ϕ,n,h‖I√

nh(log(1/h) ∨ log logn)
= 0.(3.26)

It remains to be shown that, with probability 1,

lim
k→∞ max

nk−1≤n≤nk

sup
ak≤h≤h0

supϕ∈
 ‖η(k)
ϕ,n,h‖I√

nh(log(1/h) ∨ log logn)
= 0.(3.27)

Similarly as above we have

max
nk−1≤n≤nk

sup
ak≤h≤h0

sup
ϕ∈


∥∥η(k)
ϕ,n,h

∥∥
I

≤ κ sup
ϕ∈


‖cϕ‖I

nk∑
i=1

F(Yi)1{Xi ∈ J,F (Yi) > (nk/k)1/p}.

Inspecting the proof of Lemma 1 of [11], we see that the argument there also
applies if we sethn = c(logn/n)1−2/p to give

nk∑
i=1

F(Yi)1{Xi ∈ J,F (Yi) > (nk/k)1/p} = o
(√

nkak log(1/ak)
)
,

ask → ∞, and we see by the same argument as in (3.26) that (3.27) holds, thereby
finishing the proof of Lemma 4.�

Proposition 2 now follows from Lemmas 3 and 4.�
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