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ANALYSIS OF BINARY SPATIAL DATA BY QUASI-LIKELIHOOD
ESTIMATING EQUATIONS
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The goal of this paper is to describe the application of quasi-likelihood
estimating equations for spatially correlated binary data. In this paper,
a logistic function is used to model the marginal probability of binary
responses in terms of parameters of interest. With mild assumptions on the
correlations, the Leonov–Shiryaev formula combined with a comparison of
characteristic functions can be used to establish asymptotic normality for
linear combinations of the binary responses. The consistency and asymptotic
normality for quasi-likelihood estimates can then be derived. By modeling
spatial correlation with a variogram, we apply these asymptotic results to test
independence of two spatially correlated binary outcomes and illustrate the
concepts with a well-known example based on data from Lansing Woods. The
comparison of generalized estimating equations and the proposed approach
is also discussed.

1. Introduction. This paper was originally motivated by a question arising
in forest ecology. Specifically, for each of a number of trees in a plantation,
it is possible to determine the status of the tree (alive or dead) and whether a
particular insect pest is present on the tree. The ecological question of interest
is whether tree status is independent of the presence/absence of the pest. Due
to biotic interaction such as mutualism or competition, observations recorded at
locations usually exhibit spatial autocorrelation and this renders the traditional
methods unsuitable. The question then becomes: how do we test for independence
of two binary variables in the presence of spatial autocorrelation?

To abstract the problem, suppose that we have observationsY = (Y (s1),

. . . , Y (sN))T that are binary responses drawn from a random field on anm×n grid
with N = mn, and wheresi ∈ R2 denotes the location of theith binary variable.
The mean responseθ = E(Y) is assumed to be associated with the measurements
of explanatory variablesT through a link functionh(θ) = Tβ. The problem of
detecting association then turns to the estimation of the parametersβ.

There is relatively little literature on the estimation of fixed effectsβ when
observations are binary and spatially dependent. Albert and McShane [2] and
Gotway and Stroup [11] mentioned the use of generalized estimating equations
(GEE) in this setting. However, the GEE approach has been most fully developed
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for longitudinal data [15]. These methods do not directly apply to spatial data, and
therefore there is a need to develop an estimating equation approach corresponding
to the covariance structures typically found in spatial statistics, which are neither
diagonal nor block diagonal.

To proceed, we will rely on quasi-likelihood (QL) ideas. The concept of quasi-
likelihood functions was first introduced by Wedderburn [25] for observations
from the exponential family of distributions with only mean and variance
being specified. McCullagh [18] and McCullagh and Nelder [20] broadened the
application to multivariate cases and discuss asymptotic properties. A potential
obstacle in applying QL methods is that most of the developed methods
were mainly based on the assumption of independent observations. Although
QL functions can be defined for dependent data, McCullagh and Nelder [20] raised
some concerns about the application to dependent data.

There are some examples in the literature of the application of QL estimating
equations to correlated data, although most of these are focused on count data.
Zeger [26] developed QL estimating equations for time series count data for
a specific type of covariance function, and this approach was also applied by
McShane, Albert and Palmatier [21] to spatial data. Papers more closely related to
the current one are those of Heagerty and Lumley [13] and Lumley and Heagerty
[17]. They developed a useful approach for the variance estimation of spatially
correlated count data by combining the concept of window subsampling and the
QL estimating function. (We discuss the contrast between their approach and ours
below.)

We next review the concept of QL functions preliminary to our extension of
QL functions to spatially dependent data. The definition of QL functions used
in this paper is the same as that of McCullagh and Nelder ([20], page 327). On
the assumption that the covariance matrix cov(Y) = ψ2V is proportional to some
function of the mean, the quasi-score function is given by

U(β;Y) = PT V−1[Y − θ(β)]/ψ2.(1.1)

Here ψ2 is a constant independent ofθ and P is the derivative matrix∂θ/∂β.
The quasi-score function (1.1) is still relevant when observations are dependent,
although some restrictions must be imposed on the covariance matrixV in
order that some scalar functions whose gradient vector is equal toU(β) exist
([20], page 333). At the observedY = y, the QL estimateβ is the solution
of a QL estimating equationU(β̂;Y = y) = 0. For nonlinear models, a closed-
form expression forβ is usually impossible to obtain. McCullagh [18] suggested
investigating statistical properties ofβ̂ by considerinĝβ as a root of the quasi-score
function within a neighborhood of the true parameter point.

In the next section we follow this idea to establish consistency and asymptotic
normality of QL estimates. Some assumptions are made such that the central
limit theory for correlated response variablesY holds. An example is used
to illustrate how QL estimating equations can test dependence between cross-
classified response variables in Section 3.
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2. Asymptotic normality of quasi-likelihood estimates. In this paper we
focus on a logistic link function: logit(θ) = Tβ, whereβ = (β0, . . . , βu)

T and
theith row ofT is ti = (1, ti1, . . . , tiu) with tij = 0 or 1. The individual parameters
θi = E(Y (si )|ti ) are thus given by exp(tTi β)/(1+exp(tTi β)) for i = 1, . . . ,N , and
the(ij)th component ofP of (1.1) is

(P)ij =
{

θi(1− θi), if j = 1,

ti,j−1θi(1− θi), if j = 2, . . . , u + 1.
(2.1)

Let γij = corr(Y (si ), Y (sj )) denote the correlation between response variables
at sitessi and sj . In this paperY is assumed to be an isotropic process, so that
γij depends only on the distance betweensi andsj and is independent ofθ . For
QL estimates to exist, the covariance structure must follow certain restrictions [26].
In our covariance matrix, the(ij)th entry of its inverse can be represented by
V−1

ij = (σiσjγij )
−1, whereσi = √

θi(1− θi). ThusV−1
ij is independent ofθk and

∂V−1
ij /∂θk , ∂V−1

ik /∂θj , ∂V−1
kj /∂θi are equal to zero. This satisfies the condition for

existence provided by McCullagh and Nelder ([20], page 334).
To ensure that the central limit theory holds, some restrictions should be

imposed onγij . One typical assumption is that the observations should satisfy
long-range independence [6]. With this assumption, the random variables can be
divided into blocks and treated as independent. The classical central limit theorem
then leads to asymptotic normality for the sum of random variables immediately.

A condition more general than long-range independence is strong mixing [24].
For a stationary random field satisfying appropriate mixing conditions, Bolthausen
[4] showed that the central limit theorem holds for grided data onZk . This version
of a central limit theorem has been cited several times in the literature of spatial
statistics [12, 13, 22]. Nevertheless, one of the assumptions for this central limit
theorem is that the random fields are described with respect to anL∞ norm ([4],
page 1047, and [22], page 56).

In contrast, in this paper we show the existence of asymptotic normality with
respect to anyLp norm by requiring correlations to decrease exponentially with
distance. This allows us to extend the QL estimating function to theL1 or
Euclidean distance, which are the metrics most commonly used in spatial data.
(Although we do not pursue the idea here, we conjecture that Assumption 2.1
could be adapted to more general conditions, including mixing conditions. Doing
so would permit a tighter linkage between our results and those of the above-cited
authors.)

ASSUMPTION 2.1. γij = aρd(si ,sj ), wherea is a positive constant such that
0≤ aρ ≤ 1, ρ ∈ [0,1]. d(si1, si2) denotes theLp distance betweensi andsj .

Let ck(s1, . . . , sk) andmk(s1, . . . , sk) denote the cumulant and product moment
functions of orderk, respectively, for centered variablesZ = Y − θ . The Leonov–
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Shiryaev formula ([14], page 21) leads to

mk

(
si1, . . . , sik

) − ∑
ϒ

1,...,k
k/2

m2
(
sω1, sω2

) × · · · × m2
(
sωk−1, sωk

) = ck(s1, . . . , sk)

for evenk, whereϒ1,...,k
k/2 denotes the collection of all possible sets whose elements

are k
2 disjoint pairs from{1, . . . , k}. For oddk, mk(s1, . . . , sk) = ck(s1, . . . , sk). We

now make some assumptions onck(s1, . . . , sk).

ASSUMPTION 2.2. Someαk < k
2 exist such that

∑N
i1 �=···�=ik

ck(si1, . . . , sik ) =
O(Nαk).

There are a number of processes for which this assumption holds, including
examples such as independent andm-dependent processes ([5], page 20). In a sep-
arate paper we hope to characterize more thoroughly the set of processes satisfying
Assumption 2.2. We use Assumptions 2.1 and 2.2 to establish Theorem 2.1, whose
proof is outlined in the Appendix.

THEOREM 2.1. For binary variablesY satisfying Assumptions2.1 and 2.2,
1√
N

a′(Y − θ) ∼ N(0, 1
N

a′Va) + OP ( 1√
N

) for any bounded vectora.

From a geometrical perspective, the matrixPT V−1 in the QL estimating
equations represents a projection matrix of the residual vectory− θ onto the space
spanned by the columns ofT. Before showing consistency of the QL estimates,
we first study some properties of this matrix.

NOTATION. For matricesA andB, the symbolA � B means that, for any
i andj , the(ij)th entry ofA − B is nonnegative.

To simplify matters, we assume that them × n lattice of locationssi is labeled
columnwise, so that the first column of locations is labeleds1, s2, . . . , sm, the
second column is labeledsm+1, sm+2, . . . , s2m, and so on. Also, in the following
proofs, the notation�a(ρ;Lp) is used to indicate that the correlation matrix
depends ona, ρ and theLp distance.a is assumed to lie within(0,1] because
if a = 0, � is a zero matrix and there is nothing to discuss.

LEMMA 2.1. max{|(�−1
a (ρ;L1))ij | : i, j = 1, . . . ,N} involves onlya andρ.

PROOF. First we study the correlation matrix�a(ρ;L1) for a = 1 and then
extend the result to othera ∈ (0,1). Let�n denote ann×n matrix with(�n)ij = 1
if i = j and ρ|i−j | otherwise. Then,�1(ρ;L1) = �n ⊗ �m, where⊗ is the
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Kronecker product. It is possible to show ([23], page 255) that�−1
1 (ρ;L1) =

�−1
n

⊗
�−1

m , where

�−1
n = (1− ρ2)−1




1 −ρ 0 0 · · · 0 0
−ρ 1+ ρ2 −ρ 0 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · −ρ 1




n×n

.(2.2)

Therefore, the maximum absolute value in�−1
1 (ρ;L1), say ρ∗, only involves

a andρ.
For a general matrix�a(ρ), a ∈ (0,1), first notice that�a(ρ;L1) is a positive-

definite matrix. Since�1(ρ;L1) � �a(ρ;L1) � a �1(ρ;L1), applying the strong
partial ordering of positive-definite matrices ([20], page 335) gives

1

a
�−1

1 (ρ;L1) � �−1
a (ρ;L1) � �−1

1 (ρ;L1).(2.3)

Thus it follows that the maximum value in�−1
a (ρ;L1) is bounded between

ρ∗/a andρ∗, and these only involvea andρ. �

LEMMA 2.2. With correlations under theL1 metric, max{|(PT V−1)ij | : i, j =
1, . . . ,N} ≤ C0 for some constantC0 independent ofN . Moreover, some
constantC1 exists such thatlim supN→∞ 1

N
(PT V−1P)kl ≤ C1 for all k, l =

1, . . . ,N .

PROOF. For convenience in the proof, letVa denote the covariance matrix
corresponding to�a(ρ;L1). To evaluate the first row ofPT V−1

1 , note from (2.2)
that each row or column of�−1

n has at most three nonzero entries. The Kronecker
product then implies that each column of�−1

1 (ρ;L1) has at most nine nonzero
entries. So, simple algebra gives|(P′V−1

1 )1j | ≤ 9ρ∗θ∗, where ρ∗ is given in

the proof of Lemma 2.1 andθ∗ = max{
√

θl(1−θl)
θk(1−θk)

: l, k = 1, . . . ,N}. This θ∗ is
independent ofN because at most 2u possible values ofθ exist due toθk only
involving β and the binary vectortk . From (2.1), the distinction between the first
and other rows ofPT V−1

1 is the multipliertij . It then follows that|(PT V−1
1 )ij | ≤

|(PT V−1
1 )1j | for all i and j becausetij = 0 or 1. This implies that 9ρ∗θ∗ is an

upper bound for the absolute values inPT V−1
1 .

Next, it is easy to see that|(PT V−1
1 P)kl| ≤ ∑N

m=1 |(PT V−1
1 )km(PT )ml| ≤

9
4Nρ∗θ∗ for all k and l because all entries ofP in (2.1) are not larger than14.
Consequently, lim supN→∞ 1

N
(PT V−1

1 P)kl ≤ C for some constantC.
Finally, to generalize the above toVa, a ∈ (0,1), note that all entries in

P and�−1/2 are nonnegative. Thus (2.3) implies that

1

a
PT V−1

1 � PT V−1 � PT V−1
1(2.4)
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and

1

a
PT V−1

1 P � PT V−1P � PT V−1
1 P.(2.5)

Applying the results forV1 to (2.4) and (2.5) gives the desired result.�

The results of Lemma 2.2 can now be extended to anyLp space, 1≤ p < ∞.
The following theorem provides this general result.

THEOREM 2.2. Lemma2.2holds for theLp metric, 1≤ p < ∞.

PROOF. By Minkowski’s inequality, we know that theL1 metric is greater
than the otherLp metrics, 1≤ p < ∞. Sinceρ is between 0 and 1, we have
�a(ρ;Lp) � �a(ρ;L1) and thus the strong partial ordering of positive-definite
matrices implies(�a(ρ;L1))

−1 � (�a(ρ;Lp))−1. Lemma 2.2 and an argument
similar to the discussion of (2.4) and (2.5) give the desired result.�

The previous theorems show thatPT V−1 is a bounded vector. So, by
Theorem 2.1,U(β) is asymptotically normal. We now focus on theL1 andL2
distances. For simplicity, we note that the role ofPT V−1P in quasi-score functions
is similar to Fisher’s information in ordinary likelihood functions, and therefore
I(β) is used below to denotePT V−1P.

THEOREM 2.3. For Y satisfying Assumptions2.1and2.2,we have

1√
N

U(β) ∼ N

(
0,

1

N
I(β)

)
+ OP

(
1√
N

)
asN → ∞.

Next we derive the limiting distribution of the QL estimate.

NOTATION. (a) We use O(Np) to denote a matrix A satisfying
lim supN→∞ 1

Np (A)ij ≤ K for all i andj and for some constantK . (b) abs(A)

represents a matrix whose(ij)th element equals the absolute value of the(ij)th
element ofA. (c) Dβj andDβ denote partial derivatives with respect toβj andβ,
respectively.

ASSUMPTION 2.3. The matrix 1
N

DβU(β) is negative definite at the true
parameterβ0 with probability going to1 asN → ∞.

Assumption 2.3 is a common assumption used for the derivative of score
functions (e.g., [19]).

LEMMA 2.3. The QL estimatêβ is consistent.
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PROOF. It is easy to see that

DβU(β) = (DβPT )V−1(Y − θ) + PT (DβV−1)(Y − θ) − I(β).

Let (t10, . . . , tN0)
T = 1 represent the first column of the design matrix and let

ξ i = (t1iθ1(1− θ1), . . . , tNiθN(1− θN)), i = 0, . . . , u, represent the(i + 1)st row
of PT . ThenDβjξ i = (t1i t1j θ1(1− θ1)(1− 2θ1), . . . , tNitNj θN(1− θN)(1− 2θN))

for j = 0, . . . , u. Since thetij are binary and|1 − 2θi | ≤ 1, it follows that
ξ i � abs(Dβjξ i ) and thusPT � abs(DβPT ). Similarly, we can show that�−1/2 �
abs(Dβj�

−1/2), where� = diag(θi(1− θi), and thus 2V−1 � abs(DβV−1).
Therefore, an argument similar to the proof of Theorem 2.2 gives that

(DβPT )V−1 and PT (DβV−1) are O(1). By Theorem 2.1, a normal variableZ∗
exists for any bounded vectora such that 1√

N
aT (Y − θ) = Z∗ + OP ( 1√

N
) as

N → ∞. It then follows from the Cramér–Wold device and Theorem 2.1 that

(DβPT )V−1(Y − θ) + PT (DβV−1)(Y − θ) = OP

(√
N

)
and therefore

DβU(β) = OP

(√
N

) − I(β) asN → ∞.(2.6)

As a result,1
N

DβU(β)|β=β0
→ − 1

N
I(β0) with probability going to 1 asN → ∞.

From Assumption 2.4, therefore1
N

I(β0) has a positive-definite limit.
It follows next by the inverse theorem [3] that an open ballB(β0, r) exists

such that 1
N

U(β) is one-to-one on the ball with probability going to 1. Also,
1
N

U(B(β0, r)) contains an open ballB( 1
N

U(β0), r
∗) for somer∗. By Theorem 2.3,

1
N

U(β0) → E(U(β0)) = 0 in probability. Hence for thisr∗, ‖ 1
N

U(β0) − 0‖ < r∗
with probability going to 1, where‖ · ‖ denotes the Euclidean norm. This then
implies that0 ∈ B( 1

N
U(β0), r

∗) ⊆ 1
N

U(B(β0, r)) with probability going to 1.

Since 1
N

U(β) is one-to-one onB(β0, r) andr can be arbitrarily small,1
N

U(β̂) = 0

a.e. implies that̂β → β0 in probability. �

THEOREM 2.4. For Y satisfying Assumptions2.1–2.3,the QL estimatêβ has
the limiting distribution

√
N(β̂ − β0) ∼ N

(
0,NI−1(β0)

) + OP

(
1√
N

)
asN → ∞.

PROOF. The first-order Taylor series expansion gives

U(β̂) = U(β0) + DβU(β)|β=β0
(β̂ − β0) + op(‖β̂ − β0‖).(2.7)

Assume that the inverse ofDβU(β) exists atβ0. Then (2.7) implies that(β̂ −
β0)(1 + oP (1)) = −(DβU(β))−1|β=β0

U(β0) becauseU(β̂) = 0. In addition, it
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follows from (2.6) that(
DβU(β)

)−1 = −(
OP

(√
N

) − I(β)
)−1

= −(I(β))−1 + (I(β))−2 · OP

(√
N

) + O
(

1

N2

)
.

Thus(β̂ − β0)(1+ o(1)) can be written as

(I(β0))
−1U(β0) + (I(β0))

−2OP

(
1√
N

)
U(β0) + O

(
1

N2

)
U(β0).

BecauseI(β0) = O(N) and U(β0) = Op(
√

N ) from Theorems 2.1 and 2.2,
it follows that (β̂ − β0)(1 + oP (1)) = (I(β0))

−1U(β0) + OP ( 1
N

). Since β̂ is

consistent, this implies that̂β − β0 = (I(β0))
−1U(β0) + OP ( 1

N
) asN → ∞. The

theorem then follows immediately from Theorem 2.3.�

The average rate of convergence forβ̂ to β0 can be computed as follows.

COROLLARY 2.1. E(β̂ − β0) = O( 1
N

) asN → ∞.

PROOF. This result follows immediately from Theorem 2.4.�

It follows from Theorem 2.4 thatE(β̂) → β0 and cov(β) → I−1(β0) as the
sample size increases. In the terminology of Godambe [10], it can be shown
that the QL estimating equation is an asymptotically unbiased optimal estimating
equation [19].

3. Application of quasi-likelihood functions. In this section we illustrate the
use of the previously developed theory to data cited by Fingleton [9]. These well-
known data [8, 9] were collected from Lansing Woods to examine whether the
presence of hickory near a sample site tends to discourage the presence of maple.

For notational convenience, letX(s) and Y(s) denote the corresponding
indicator variables for the presence of hickory and maple at sites, respectively.
We define the leftmost of a horizontal pair as the “first” and the uppermost of a
vertical pair as the “first” as Fingleton did in his 1986 paper. One approach for
testing independence between two correlated binary variables is to model these
two variables by a conditional logistic model,

θi = P
(
Y(si ) = 1|X(si ) = xi

) = exp(β0 + β1xi)

1+ exp(β0 + β1xi)
, i = 1, . . . ,256.(3.1)

That is, at a specific sitesi , given the information whether hickory is present or
not, the model indicates how likely it is that maple is present. Thus, if the estimate
of β1 in (3.1) is not significantly different from zero, we may say thatX andY are
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independent. The concept of this model is not very far from the traditional chi-
squared approach. In fact, when no spatial dependence exists among observations,
this approach is asymptotically equivalent to a chi-squared test in the analysis of
contingency tables [1].

In geostatistics the elements of the matrix of correlations between sites are
usually obtained from semivariogram models parameterized by constants denoting
the nugget effect, the sill and the range [7]. For the maple data, we fit the
exponential semivariogram model depicted in Figure 1. The correlation of maples
at sitessi andsj can therefore be estimated byρy (si , sj ) = exp(−d(si , sj )/1.091),
where 1.091 comes from the “effective” range of the fitted exponential variogram
model andd(si , sj ) is theL2 distance between sitessi andsj .

Since the quasi-score function is nonlinear, the Newton–Raphson method,
β̂j+1 = β̂j + (P̂′

j V̂−1
j P̂′

j )
−1P̂′

j V̂−1
j (y − θ̂ j ), was used to derive a numerical so-

lution. An approximation of̂β obtained by iteration is(β̂0, β̂1) = (−0.34,−0.26)
and ˆvar(β̂0) = 0.138, ˆvar(β̂1) = 0.001 and ˆcov(β̂0, β̂1) = −0.003.

According to Theorem 2.4, we know thatβ̂ is asymptotically normal. So, we can
construct an approximate chi-squared test for the hypothesis that the parameter of
independenceβ1 is zero by usingβ̂2

1/σ̂ 2(β̂1) = 6.76. This value is between those
of the traditional chi-squared test (25.7) and Fingleton’s deflated chi-squared value
of 2.77 [9]. Therefore we may say that our approach provides a balanced point of
view between the conservative traditional chi-squared test and the liberal Fingleton
deflated chi-squared test. In addition, the negativeβ̂1 (−0.26) with a significant
p-value (0.007 comparing to theχ2

1 table) shows strong evidence that the presence
of hickory discourages the presence of maple. Note that neither the traditional chi-

FIG. 1. Empirical semivariogram for the maple data. The solid line indicates the fitted variogram
model with absolute sill0.246and range1.091.
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squared test nor Fingleton’s method could tell us whether the interaction between
maple and hickory is positive or negative.

4. Discussion. Analysis of non-Gaussian spatially correlated data is usually
difficult because of the complexity of the associated distributional forms. In
this paper we have extended quasi-likelihood estimating equations to deal with
spatially correlated data when the response variables are binary. We model the
marginal response probability by a logistic regression; one benefit of this is that
we can avoid the specification of likelihood functions. To employ the proposed
method we only need to know the means and covariances between observations.
If correlations between observations are decreasing exponentially with distance
(a reasonable assumption in many spatial settings), the QL estimates are shown to
be asymptotically normal and consistent. This allows us to estimate and test fixed
effects for data with correlation between sites.

Although the QL approach discussed in this paper was originally motivated by
a question in spatial statistics, the proposed approach is potentially applicable in
other settings. In previous literature, estimating equation approaches developed
for dependent observations have mostly focused on repeated measurements with
block-diagonal covariance matrices, that is, with independence between subjects.
The QL approach developed in this paper generalizes such methods; in this paper
we show that, under good control on correlations, the asymptotics of QL estimates
can hold for non-block-diagonal covariance matrices. This opens the possibility
of applying QL approaches to other situations where the data do not exhibit
independence between subjects.

We briefly outline a number of extensions of this work which we are currently
pursuing. First, the proposed approach developed in this paper is for complete data.
The forest ecology problem referred to in Section 1 is not presented in this paper
partly because observations are missing from several of the sites. Interestingly, the
problem of missing data is related to the problem of analyzing data on an irregular
lattice, another issue of note. In addition, the forest ecology data show possible
large-scale spatial trends among observations. Conceivably this could be addressed
by including appropriate covariates in the modeling work, although it remains to
be seen how this would influence the asymptotics. On the other hand, as suggested
by an anonymous referee, another possible solution for this problem is to fit two
estimating equations simultaneously, one for the mean structure and the other for
correlation structure. This approach was taken by Zeger [26] and McShane, Albert
and Palmatier [21] for time series data by conditioning on a latent process.

Our work in this paper has been restricted to exponential variograms, although
the flexibility exists to allow differentLp metrics. Nonetheless, it would be
interesting to extend the methods of this paper to other variogram models that
frequently occur in the analysis of spatial data. Moreover, the proposed method
in this paper could be generalized to spatially correlated count data. However,
this would involve reconstructing the covariance structure, which itself would be a
considerable task. We leave this to future work.
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APPENDIX

Here we list some important results used in the proof of Theorem 2.1.Z is used
to denoteY − θ .

LEMMA A.1. For centered binary variablesZi = Yi − θi , we have

E[Z2
1Z

p2
2 · · ·Zpk

k ] = Var(Z1)E[Zp2
2 · · ·Zpk

k ] + (1− 2θ1)E[Z1Z
p2
2 · · ·Zpk

k ].

PROOF. The expectationE[Z2
1Z

p2
2 · · ·Zpk

k ] can be expanded to

E[Z2
1Z

p2
2 · · ·Zpk

k ]
= θ2

1E[Zp2
2 · · ·Zpk

k ]
(A.1) + (1− 2θ1)

∑ · · ·∑
(z2,...,zk)

z
p2
2 · · · zpk

k

× P(Z1 = 1− θ1,Z2 = z2, . . . ,Zk = zk).

Thek-fold summation in the second line can be converted toE(Z1Z
p2
2 · · ·Zpk

k ) +
θ1E(Z

p2
2 · · ·Zpk

k ). Inserting this result back into (A.1) gives the desired result.�

Lemma A.1 focuses on the “dependent” item in the expectation. When
Z1 is independent of(Z2, . . . ,Zk), E(Z2

1Z
p2
2 · · ·Zpk

k ) = var(Z1)E(Z
p2
2 · · ·Zpk

k ),
which is exactly the same form of Lemma A.1 whenθ1 = 0.5. Thus (1 −
2θ1)E(Z1Z

p2
2 · · ·Zpk

k ) of Lemma A.1 can be considered to be the impact of
dependence on the expected value, and we can expect that this impact is reduced
for θ1 close to 0.5. In fact,E(Z1Z2Z3) = 0 if Z1,Z2 andZ3 are from a truncated
Gaussian random field.

LEMMA A.2. For variablesZ satisfying Assumption2.1with theL1 metric,

N∑ N∑
i1 �=i2

cov
(
Z

(
si1

)
,Z

(
si2

)) ≤ 2ρ − ρ2

(1− ρ)2 aN.

PROOF. The sum of correlations between a given sitesi1 and all other sites
over a region has a maximum value whensi1 is the center. So

∑N
i2=1 cov(X(si1),

X(si2)) ≤ ∑
si2∈Rm

ρd(([bt]�m/2�+1,[bt]�n/2�+1),si2), whereRm denotes the upper
right quarter of the region. This holds because var(Z(s)) ≤ 1

4 and the sum of
correlations in each quarter is the same. This lemma then follows from

∑
si2∈Rm

ρd(([bt]�m/2�+1,[bt]�m/2�+1),si2) = −1+
m/2∑
u=0

n/2∑
t=0

ρt+u ≤ 2ρ − ρ2

(1− ρ)2 .

�
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LEMMA A.3. For variablesZ satisfying Assumption2.1with theL2 metric,

N∑ N∑
i1 �=i2

cov
(
Z

(
si1

)
,Z

(
si2

)) ≤
(

2ρ

1− ρ
+ π

2

(
1

log(ρ)

)2)
aN.

PROOF. The sum of correlations between the center of the study region and

all sites inRm is −1+ ∑m/2
u=0

∑n/2
t=0 ρ

√
t2+u2

, which can be shown to be less than
2ρ

1−ρ
+ π

2 ( 1
log(ρ)

)2 by an integral test. An argument similar to Lemma A.2 gives the
desired result. �

Lemmas A.2 and A.3 are used to control correlations. Other details for
controlling higher-order correlations are shown in [16] and omitted here.

Let φ(s) andϕ(s) denote the corresponding characteristic functions of1√
N

a′Z
and a normal random variable with mean zero and variance1

N
a′Va, respectively.

Our approach to show Theorem 2.1 is to prove thatφ(s) = ϕ(s) + O( 1√
N

).

Let φ∗(s) denote theN th truncated Taylor series ofφ(s). Under Assumptions
2.1 and 2.2, we can show that the imaginary part ofφ∗(s) is O( 1√

N
) and the real

partφ∗(s) has an approximation

1+
�N/2�∑
q=1

s2q

q!2q

1

Nq

(A.2)

×
q∑

j=0

(
q

j

) N∑ · · ·
N∑

i1 �=···�=iq+j

νi1 · · ·νiq−j
ξiq−j+1,iq−j+2 · · · ξiq+j−1,iq+j

with errorO( 1√
N

), where

νi = a2
i θi(1− θi) and ξi,j = aiaj [bt]

√
θi(1− θi)θj (1− θj )aρ

d(si ,sj ).

The proof requires numerous steps involving combinatorial analysis. Readers
interested in the process can find the details in [16].

In addition, it can be shown that

|φ(s) − φ∗(s)| ≤ |s|N
(N + 1)!E min

(
|s| ·

∣∣∣∣ a′Z√
N

∣∣∣∣
N+1

,2(N + 1)

∣∣∣∣ a′Z√
N

∣∣∣∣
N)

= o(sN).

The N th truncated Taylor series ofϕ(s), denoted byϕ∗(s), can also be shown
to have an approximation (A.2) with errorO( 1

N
). The finite value of 1

N
a′Va

from Lemma A.1 or A.2 (depending on the metric employed) then implies
|ϕ(s) − ϕ∗(s)| = o(sN). Theorem 2.1 is then obvious from these results.
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