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The goal of this paper is to describe the application of quasi-likelihood
estimating equations for spatially correlated binary data. In this paper,
a logistic function is used to model the marginal probability of binary
responses in terms of parameters of interest. With mild assumptions on the
correlations, the Leonov—Shiryaev formula combined with a comparison of
characteristic functions can be used to establish asymptotic normality for
linear combinations of the binary responses. The consistency and asymptotic
normality for quasi-likelihood estimates can then be derived. By modeling
spatial correlation with a variogram, we apply these asymptotic results to test
independence of two spatially correlated binary outcomes and illustrate the
concepts with a well-known example based on data from Lansing Woods. The
comparison of generalized estimating equations and the proposed approach
is also discussed.

1. Introduction. This paper was originally motivated by a question arising
in forest ecology. Specifically, for each of a number of trees in a plantation,
it is possible to determine the status of the tree (alive or dead) and whether a
particular insect pest is present on the tree. The ecological question of interest
is whether tree status is independent of the presence/absence of the pest. Due
to biotic interaction such as mutualism or competition, observations recorded at
locations usually exhibit spatial autocorrelation and this renders the traditional
methods unsuitable. The question then becomes: how do we test for independence
of two binary variables in the presence of spatial autocorrelation?

To abstract the problem, suppose that we have observaifoas(Y(sp),
..., Y(sy)T that are binary responses drawn from a random field on am grid
with N = mn, and wheres; € R? denotes the location of thi¢h binary variable.
The mean responge= E(Y) is assumed to be associated with the measurements
of explanatory variable3 through a link functionk(#) = TB. The problem of
detecting association then turns to the estimation of the parangeters

There is relatively little literature on the estimation of fixed effeStsvhen
observations are binary and spatially dependent. Albert and McShane [2] and
Gotway and Stroup [11] mentioned the use of generalized estimating equations
(GEE) in this setting. However, the GEE approach has been most fully developed
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for longitudinal data [15]. These methods do not directly apply to spatial data, and
therefore there is a need to develop an estimating equation approach corresponding
to the covariance structures typically found in spatial statistics, which are neither
diagonal nor block diagonal.

To proceed, we will rely on quasi-likelihood (QL) ideas. The concept of quasi-
likelihood functions was first introduced by Wedderburn [25] for observations
from the exponential family of distributions with only mean and variance
being specified. McCullagh [18] and McCullagh and Nelder [20] broadened the
application to multivariate cases and discuss asymptotic properties. A potential
obstacle in applying QL methods is that most of the developed methods
were mainly based on the assumption of independent observations. Although
QL functions can be defined for dependent data, McCullagh and Nelder [20] raised
some concerns about the application to dependent data.

There are some examples in the literature of the application of QL estimating
equations to correlated data, although most of these are focused on count data.
Zeger [26] developed QL estimating equations for time series count data for
a specific type of covariance function, and this approach was also applied by
McShane, Albert and Palmatier [21] to spatial data. Papers more closely related to
the current one are those of Heagerty and Lumley [13] and Lumley and Heagerty
[17]. They developed a useful approach for the variance estimation of spatially
correlated count data by combining the concept of window subsampling and the
QL estimating function. (We discuss the contrast between their approach and ours
below.)

We next review the concept of QL functions preliminary to our extension of
QL functions to spatially dependent data. The definition of QL functions used
in this paper is the same as that of McCullagh and Nelder ([20], page 327). On
the assumption that the covariance matrix @v= 2V is proportional to some
function of the mean, the quasi-score function is given by

(1.1) UB; Y) =P V=YY —0(8)1/v2.

Here 2 is a constant independent 8fand P is the derivative matrixd8 /3.

The quasi-score function (1.1) is still relevant when observations are dependent,
although some restrictions must be imposed on the covariance Matiix
order that some scalar functions whose gradient vector is equal g9 exist

([20], page 333). At the observed =y, the QL estimatef is the solution

of a QL estimating equatiohJ(B; Y =y) = 0. For nonlinear models, a closed-
form expression fog is usually impossible to obtain. McCullagh [18] suggested
investigating statistical propertiesﬂiby consideringﬁ as aroot of the quasi-score
function within a neighborhood of the true parameter point.

In the next section we follow this idea to establish consistency and asymptotic
normality of QL estimates. Some assumptions are made such that the central
limit theory for correlated response variabl®s holds. An example is used
to illustrate how QL estimating equations can test dependence between cross-
classified response variables in Section 3.
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2. Asymptotic normality of quasi-likelihood estimates. In this paper we
focus on a logistic link function: logi®) = T8, whereg = (Ao, ..., B.)T and
theithrow of T ist; = (1, #i1, ..., t;y) With t;; = 0 or 1. The individual parameters
6; = E(Y(s)[t;) are thus given by exp/ B)/(1+expit! p)) fori =1,..., N,and
the (ij)th component oP of (1.1) is

0;,(1—6,), if j=1,

2.1 P);j = .
(2.1) ( )j t,-,j_le,-(l—Gi), if j=2,...,u+1.

Let y;; = corr(Y (s;), Y (s;)) denote the correlation between response variables
at sitess; ands;. In this paperY is assumed to be an isotropic process, so that
vij depends only on the distance betwegands; and is independent &. For
QL estimates to exist, the covariance structure must follow certain restrictions [26].
In our covariance matrix, théj)th entry of its inverse can be represented by
Vl.;l = (0:10;y:)) "L, whereo; = /6;(1— 6;). ThusV,._jl is independent of; and
OV /06r, 0V /065, 0V, /06, are equal to zero. This satisfies the condition for
existence provided by McCullagh and Nelder ([20], page 334).

To ensure that the central limit theory holds, some restrictions should be
imposed ony;;. One typical assumption is that the observations should satisfy
long-range independence [6]. With this assumption, the random variables can be
divided into blocks and treated as independent. The classical central limit theorem
then leads to asymptotic normality for the sum of random variables immediately.

A condition more general than long-range independence is strong mixing [24].
For a stationary random field satisfying appropriate mixing conditions, Bolthausen
[4] showed that the central limit theorem holds for grided data&briThis version
of a central limit theorem has been cited several times in the literature of spatial
statistics [12, 13, 22]. Nevertheless, one of the assumptions for this central limit
theorem is that the random fields are described with respect ig@anorm ([4],
page 1047, and [22], page 56).

In contrast, in this paper we show the existence of asymptotic normality with
respect to any., norm by requiring correlations to decrease exponentially with
distance. This allows us to extend the QL estimating function to Itheor
Euclidean distance, which are the metrics most commonly used in spatial data.
(Although we do not pursue the idea here, we conjecture that Assumption 2.1
could be adapted to more general conditions, including mixing conditions. Doing
so would permit a tighter linkage between our results and those of the above-cited
authors.)

ASSUMPTION2.1. y;; = ap?S-S)  wherea is a positive constant such that
O<ap <1, pel0,1].d(s;,s,) denotes the. , distance betwees ands;.

Letcr(sy, ..., S) andmg(sy, ..., S) denote the cumulant and product moment
functions of ordek, respectively, for centered variablgs=Y — 0. The Leonov—
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Shiryaev formula ([14], page 21) leads to

Mi(Sigs -2 Si) — Y M2(Swy Swp) X+ X M2(Swy_y Sop) = Ck(SLy - -+, SK)

are% disjoint pairs from{1, ..., k}. For oddk, mg(sy, ..., ) = ck(S1, ..., S). We
now make some assumptions @isy, ..., S)-

ASSUMPTION2.2. Somew; < 5 exist such thagf\l’;ém#k ck(Sips .. .»S,) =
O (N9),

There are a number of processes for which this assumption holds, including
examples such as independent antdependent processes ([5], page 20). In a sep-
arate paper we hope to characterize more thoroughly the set of processes satisfying
Assumption 2.2. We use Assumptions 2.1 and 2.2 to establish Theorem 2.1, whose
proof is outlined in the Appendix.

THEOREM 2.1. For binary variablesY satisfying Assumption.1 and 2.2,
ﬁa’(Y —0)~ N, taVa) + Op(Tlﬁ) for any bounded vecta.

From a geometrical perspective, the matBXV~! in the QL estimating
eguations represents a projection matrix of the residual vgetd onto the space
spanned by the columns @f. Before showing consistency of the QL estimates,
we first study some properties of this matrix.

NOTATION. For matricesA and B, the symbolA > B means that, for any
i andj, the(ij)th entry of A — B is nonnegative.

To simplify matters, we assume that thex n lattice of locationss; is labeled
columnwise, so that the first column of locations is labededs,, ..., s,, the
second column is labeles}, 11, Sn12, ..., S2m, and so on. Also, in the following
proofs, the notatiorl',(p; L) is used to indicate that the correlation matrix
depends o, p and theL, distancea is assumed to lie withiri0, 1] because
if a =0, T is a zero matrix and there is nothing to discuss.

LEMMA 2.1. maX|(T;Y(p; L1))ij|:i, j =1,..., N} involves only andp.
PrROOF First we study the correlation matriX,(o; L1) for a = 1 and then

extend the resu.lt to othere (0, 1). Let 2, denote am x n matrix with (£2,,);; =1
if i = and p'=/! otherwise. ThenI'1(p; L1) = R, ® ,,, Where® is the
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Kronecker product. It is possible to show ([23], page 255) tﬁgil(p; L) =
e e ! where

1 —-p 0 0 -+ 0 O
- =0 1402 —p 0 ... 0 O
(2.2) ﬂnlz(l_pz) ! : : : : : :
0 0 0 0 - —p 1/,

Therefore, the maximum absolute value Iﬂjl(,o; L1), say p*, only involves
a andp.

For a general matriX', (o), a € (0, 1), first notice thafl,(p; L1) is a positive-
definite matrix. Sincd'1(p; L1) = T'y(p0; L1) = aT'1(p; L1), applying the strong
partial ordering of positive-definite matrices ([20], page 335) gives

1 _ _
(2.3) - T ;L) = T;Yp; L) = T1(p; La).

Thus it follows that the maximum value ilTa_l(,o;Ll) is bounded between
p*/a andp*, and these only involve andp. [

LEMMA 2.2. With correlations under thé 1 metric, max{l(PTV—l)ijl i, j=
1,...,N} < Co for some constantCy independent ofN. Moreovey some
constantC1 exists such thalimsupN_,oo%(PTV‘lP)kl < Cq for all k,1 =
1,...,N.

PrROOF For convenience in the proof, |&, denote the covariance matrix
corresponding td,(p; L1). To evaluate the first row dEPTvl‘l, note from (2.2)
that each row or column &2, has at most three nonzero entries. The Kronecker
product then implies that each column Dfl(,o; L1) has at most nine nonzero
entries. So, simple algebra giveeP/Vl‘l)lﬂ < 9p*0*, where p* is given in
the proof of Lemma 2.1 ané* = max % ‘I,k=1,...,N}. This 6* is
independent ofV because at most‘2possible values of exist due tod; only
involving B and the binary vectar,. From (2.1), the distinction between the first
and other rows oP” V! is the multipliers;. It then follows that (PTV 1) | <

|((PTVTY)4;] for all i and j because;; = 0 or 1. This implies that §*6* is an
upper bound for the absolute valuesihv 2.

Next, it is easy to see thatP’Vi'P)ul < XN _ 1(PTVIYim Pl <
%N,o*@* for all k and! because all entries d® in (2.1) are not larger thaé.

Consequently, limsup , %(PTVIIP)M < C for some constant.
Finally, to generalize the above t4,, a € (0,1), note that all entries in
P and X Y2 are nonnegative. Thus (2.3) implies that

1
(2.4) “Prvit=pPIvt-plyt
a



SPATIAL DATA AND ESTIMATING EQUATIONS 547

and

1
(2.5) PV P> PTVIP =PIV TP,
a

Applying the results fol1 to (2.4) and (2.5) gives the desired resulfl

The results of Lemma 2.2 can now be extended to apppace, k< p < co.
The following theorem provides this general result.

THEOREM2.2. Lemma2.2holds for theL , metric 1< p < oo.

PROOF By Minkowski’s inequality, we know that thé; metric is greater
than the otherL, metrics, 1< p < oco. Sincep is between 0 and 1, we have
T'u(p; Lp) = Tu(p; L) and thus the strong partial ordering of positive-definite
matrices implieS(T,(p; L1)) ™1 > (T4 (p; L))~1. Lemma 2.2 and an argument
similar to the discussion of (2.4) and (2.5) give the desired restit.

The previous theorems show th& V-1 is a bounded vector. So, by
Theorem 2.1U(B) is asymptotically normal. We now focus on tlig and L»
distances. For simplicity, we note that the rolé®8%/ ~1P in quasi-score functions
is similar to Fisher’s information in ordinary likelihood functions, and therefore
[ (B) is used below to denofe’ V—1p.

THEOREMZ2.3. For Y satisfying Assumptiorisland2.2,we have

\/—%U(ﬂ)wN(O,%I(ﬂ))—i—Op(\/—]'ﬁ) asN — oo.

Next we derive the limiting distribution of the QL estimate.

NOTATION. (a) We use O(NP) to denote a matrix A satisfying
limsupy_, o 55 (A);; < K for all i and j and for some constarit. (b) abgA)
represents a matrix whoggj)th element equals the absolute value of ¢hgth
element ofA. (c) Dg; andDg denote partial derivatives with respectfpandp,
respectively.

ASSUMPTION 2.3. The matrix %DﬂU(ﬂ) is negative definite at the true
parameterg with probability going tol as N — oo.

Assumption 2.3 is a common assumption used for the derivative of score
functions (e.g., [19]).

LEmMmA 2.3. The QL estimatq@ is consistent
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PROOE ltis easy to see that
DgU(B) = (DgPHIVHY —8) + PT(DgV (Y —80) —1(B).

Let (110, ...,tn0)] = 1 represent the first column of the design matrix and let
& =(t1,01(1—61),...,tniON(1—0y)), i =0, ..., u, represent thé& + 1)st row

of PT, ThenD,gj’g',- = (111611 —01) (1 — 201), ..., tnitnjON (L= On) (1 — 20N))

for j =0,...,u. Since ther;; are binary and1 — 26;| < 1, it follows that

&; = absDg £;) and thusP” > abgDgPT). Similarly, we can show that ~/2 >
absDg, X ~1/2), whereX = diag; (1 — 6;), and thus ¥ 1 > abgDgV1).

Therefore, an argument similar to the proof of Theorem 2.2 gives that

(DgPT)V~1 andPT (DgV~1) are O(1). By Theorem 2.1, a normal variablg*
exists for any bounded vecter such that\/iﬁaT(Y —0) =2+ Op(ﬁ) as

N — oo. It then follows from the Cramér—Wold device and Theorem 2.1 that
(DgPHVTLY —0) + PT(DgVL)(Y —0) =0p(V/N)

and therefore

(2.6) DgU(B) =O0p(VN)—1(B)  asN — oo.

As aresult zDgU(B)lg=g, — —=!(Bo) with probability going to 1 asV — oo.
From Assumption 2.4, therefo%l (Bo) has a positive-definite limit.

It follows next by the inverse theorem [3] that an open &B,, r) exists
such that%U(ﬂ) is one-to-one on the ball with probability going to 1. Also,
LU(B(Bo. r)) contains an open bal(+U(B), r*) for somer*. By Theorem 2.3,
£U(Bo) = E(U(Bp)) = 0in probability. Hence for this*, || +U(Bg) — 0|l < r*
with probability going to 1, wherd| - | denotes the Euclidean norm. This then
implies that0 € B(£U(Bg), r*) € +U(B(Bo,r)) with probability going to 1.
Since%U(ﬂ) is one-to-one oB (B, r) andr can be arbitrarily smal%U(ﬁ) =0
a.e. implies thaB — B, in probability. [

THEOREMZ2.4. ForY satisfying Assumptioris1-2.3the QL estimaté has
the limiting distribution

. 1
INB = Bo) ~ N (0, NI"1(Bg)) + op<ﬁ> asN — oo,

PrROOE The first-order Taylor series expansion gives
(27)  U(B) =U(Bo) + DgU(B)ls=p,(B — Bo) + 0, (B — Bol)-

Assume that the inverse @gU(B) exists atBy. Then (2.7) implies thatg —
Bo)(1+o0p(1) = —(D,gU(ﬂ))‘lhg:ﬂOU(ﬂo) becauseU(,B) = 0. In addition, it
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follows from (2.6) that
(DpUB) " =—(0p(VN) = 1(B)

1
=)+ 1B 2-0p (VW) +0( 35
Thus(B — Bo)(1+ o(1)) can be written as

1 1
(180 U(Bo) + (1 (B0) 201 (= )UB) + O 373 )U(Bo)

Becausel (8p) = O(N) and U(Bq) = O,(+/N) from Theorems 2.1 and 2.2,
it follows that (8 — Bo)(L + 0p(1) = (1(Bo)) *U(By) + Op(3). Since is

consistent, this implies th&— Bo=1( (,BO))‘1U(ﬂ0) + OP(%) asN — oo. The
theorem then follows immediately from Theorem 2.8

The average rate of convergence ﬁ)to Bo can be computed as follows.
COROLLARY 2.1. E(B — Bg) = O(%) asN — .
PROOF  This result follows immediately from Theorem 2.4]

It follows from Theorem 2.4 thaE(B) — Bo and cop) — 171(By) as the
sample size increases. In the terminology of Godambe [10], it can be shown
that the QL estimating equation is an asymptotically unbiased optimal estimating
equation [19].

3. Application of quasi-likelihood functions. In this section we illustrate the
use of the previously developed theory to data cited by Fingleton [9]. These well-
known data [8, 9] were collected from Lansing Woods to examine whether the
presence of hickory near a sample site tends to discourage the presence of maple.
For notational convenience, leX(s) and Y(s) denote the corresponding
indicator variables for the presence of hickory and maple atssitespectively.
We define the leftmost of a horizontal pair as the “first” and the uppermost of a
vertical pair as the “first” as Fingleton did in his 1986 paper. One approach for
testing independence between two correlated binary variables is to model these
two variables by a conditional logistic model,

_exp(Bo+ Bixi)
1+ exp(Bo+ Brxi)’

That is, at a specific sitg, given the information whether hickory is present or
not, the model indicates how likely it is that maple is present. Thus, if the estimate
of B1in (3.1) is not significantly different from zero, we may say thaandY are

(3.1) 6;=P(Y(s)=1X(s)=x;) i=1,...,256
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independent. The concept of this model is not very far from the traditional chi-
squared approach. In fact, when no spatial dependence exists among observations,
this approach is asymptotically equivalent to a chi-squared test in the analysis of
contingency tables [1].

In geostatistics the elements of the matrix of correlations between sites are
usually obtained from semivariogram models parameterized by constants denoting
the nugget effect, the sill and the range [7]. For the maple data, we fit the
exponential semivariogram model depicted in Figure 1. The correlation of maples
at sitess; ands; can therefore be estimated py(s;, s;) = exp(—d(s;, s;)/1.09D),
where 1.091 comes from the “effective” range of the fitted exponential variogram
model andi(s;, s;) is the L, distance between sitgsands; .

Since the quasi-score function is nonlinear, the Newton—Raphson method,
Bji1=8;+ PV 'P)7P.V i (y — 6,), was used to derive a numerical so-

lution. An apprOX|mat|on oﬁ obtained by |terat|on |$,30 ;31) = (—0.34, —0.26)
andvar(Bg) = 0.138 var(3;) = 0.001 andcov(ﬂo, B1) = —0.003.

According to Theorem 2.4, we know th&is asymptotically normal. So, we can
construct an approximate chi-squared test for the hypothesis that the parameter of
independencg; is zero by usmgﬁl/oz(ﬂl) = 6.76. This value is between those
of the traditional chi-squared test (25.7) and Fingleton’s deflated chi-squared value
of 2.77 [9]. Therefore we may say that our approach provides a balanced point of
view between the conservative traditional chi-squared test and the liberal Fingleton
deflated chi-squared test. In addition, the negativé—0.26) with a significant
p-value (0.007 comparing to th@f table) shows strong evidence that the presence
of hickory discourages the presence of maple. Note that neither the traditional chi-
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FiGc. 1. Empirical semivariogram for the maple dafghe solid line indicates the fitted variogram
model with absolute si.246 and rangel.091.
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squared test nor Fingleton’s method could tell us whether the interaction between
maple and hickory is positive or negative.

4. Discussion. Analysis of non-Gaussian spatially correlated data is usually
difficult because of the complexity of the associated distributional forms. In
this paper we have extended quasi-likelihood estimating equations to deal with
spatially correlated data when the response variables are binary. We model the
marginal response probability by a logistic regression; one benefit of this is that
we can avoid the specification of likelihood functions. To employ the proposed
method we only need to know the means and covariances between observations.
If correlations between observations are decreasing exponentially with distance
(a reasonable assumption in many spatial settings), the QL estimates are shown to
be asymptotically normal and consistent. This allows us to estimate and test fixed
effects for data with correlation between sites.

Although the QL approach discussed in this paper was originally motivated by
a question in spatial statistics, the proposed approach is potentially applicable in
other settings. In previous literature, estimating equation approaches developed
for dependent observations have mostly focused on repeated measurements with
block-diagonal covariance matrices, that is, with independence between subjects.
The QL approach developed in this paper generalizes such methods; in this paper
we show that, under good control on correlations, the asymptotics of QL estimates
can hold for non-block-diagonal covariance matrices. This opens the possibility
of applying QL approaches to other situations where the data do not exhibit
independence between subjects.

We briefly outline a number of extensions of this work which we are currently
pursuing. First, the proposed approach developed in this paper is for complete data.
The forest ecology problem referred to in Section 1 is not presented in this paper
partly because observations are missing from several of the sites. Interestingly, the
problem of missing data is related to the problem of analyzing data on an irregular
lattice, another issue of note. In addition, the forest ecology data show possible
large-scale spatial trends among observations. Conceivably this could be addressed
by including appropriate covariates in the modeling work, although it remains to
be seen how this would influence the asymptotics. On the other hand, as suggested
by an anonymous referee, another possible solution for this problem is to fit two
estimating equations simultaneously, one for the mean structure and the other for
correlation structure. This approach was taken by Zeger [26] and McShane, Albert
and Palmatier [21] for time series data by conditioning on a latent process.

Our work in this paper has been restricted to exponential variograms, although
the flexibility exists to allow differentL, metrics. Nonetheless, it would be
interesting to extend the methods of this paper to other variogram models that
frequently occur in the analysis of spatial data. Moreover, the proposed method
in this paper could be generalized to spatially correlated count data. However,
this would involve reconstructing the covariance structure, which itself would be a
considerable task. We leave this to future work.



552 P.-S. LIN AND M. K. CLAYTON

APPENDIX

Here we list some important results used in the proof of Theoren¥Aslused
to denoteY — 6.

LEMMA A.l. For centered binary variableg; =Y; — 6;, we have

E[Z3Z5% ... ZP"1 =Nar(Z)E[Z5? - ZP* 1+ (1 — 200 E[Z1Z5% - Z]1.

PROOF  The expectatiorE[Z2Z4? - .- ZI*] can be expanded to
E[Z32%%... 7%
= 02E[Z52... 7%
(A1) +(1_291)Z...ZZ§2...Z11€”‘

(225+-52k)
X P(Z1=1-01,Z2=2z2,...,Zk = 2x).

Thek-fold summation in the second line can be convertefi td125%- - - Z/*) +
01E(Z5?--- Z}*). Inserting this result back into (A.1) gives the desired result.

Lemma A.1 focuses on the “dependent” item in the expectation. When
Zy is independent ofZy, ..., Zy), E(Z2Z%% ... ZP*) = van(Z1)E(Z5?--- 21",
which is exactly the same form of Lemma A.1 whén= 0.5. Thus (1 —
201)E(Z1Z%%---Z*) of Lemma A.1 can be considered to be the impact of
dependence on the expected value, and we can expect that this impact is reduced
for 61 close to 0.5. InfactE(Z1Z,7Z3) =0 if Z1, Z» andZ3 are from a truncated
Gaussian random field.

LEMMA A.2. For variablesZ satisfying Assumptio®.1with the L1 metric

N N 2p_ o2
ZZCOV(Z(SM)’Z(SI'Z)) = W(IN

1702

PROOF The sum of correlations between a given siteand all other sites
over a region has a maximum value wiggnis the center. SQN_l cov(X (s;,),
X(8,) < Y e, pd(brllm /211 1bi1n/21+D).S5) - \where R,), denotes the upper
right quarter of the region. This holds because(¥ds)) < 21 and the sum of
correlations in each quarter is the same. This lemma then follows from

m/2n/2 2
Z pd(([bt]Lm/Zj—l—l,[bt]Lm/2j+1),s,-2) — 1+ Zzpwru < 0 — /02
Sy € Rum u=01=0 1=p) O
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LEMMA A.3. ForvariablesZ satisfying Assumptio®.1with the L, metric

iiCOV(Z(sil)»Z(sz))f(lz_—pﬁ%( ! )2>aN

i1in IOg(P)

PrROOFE The sum of correlations between the center of the study region and
all sites inR,, is —1 + ¥."/25°"/2 p¥/ 4% which can be shown to be less than

lz__pp + %(Iogl(p))2 by an integral test. An argument similar to Lemma A.2 gives the

desired result. O

Lemmas A.2 and A.3 are used to control correlations. Other details for
controlling higher-order correlations are shown in [16] and omitted here.

Let ¢ (s) andg(s) denote the corresponding characteristic function&lﬁh’z
and a normal random variable with mean zero and vari%va’éva, respectively.
Our approach to show Theorem 2.1 is to prove that) = ¢(s) + 0(\/%).

Let ¢*(s) denote theNth truncated Taylor series @f(s). Under Assumptions
2.1 and 2.2, we can show that the imaginary patfs) is O(Tlﬁ) and the real

part¢*(s) has an approximation

IN/2l 2 4
1+

q N N
) (J) T 2 Vint Vig g jinidg-jaa " Sigejvigs)
j=0

ine i

with errorO(Tlﬁ), where

v =a?0;(1—6) and & ;=aa; [bt]\/e,-(l —6))0;,(1—60,)ap? S-S,

The proof requires numerous steps involving combinatorial analysis. Readers
interested in the process can find the details in [16].
In addition, it can be shown that

sV

lp(s) — @™ (s)] < m

a/z N+1 alZ N
‘ ) = o(sN).
VN VN

The Nth truncated Taylor series a@f(s), denoted byy*(s), can also be shown

to have an approximation (A.2) with errc(D(%). The finite value of%a/Va
from Lemma A.1 or A.2 (depending on the metric employed) then implies
lp(s) — @*(s)| = o(sN). Theorem 2.1 is then obvious from these results.

Emin<|s|-‘ ,2(N+1)‘
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