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SELECTING LIKELIHOOD WEIGHTS BY CROSS-VALIDATION1
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The (relevance) weighted likelihood was introduced to formally embrace
a variety of statistical procedures that trade bias for precision. Unlike
its classical counterpart, the weighted likelihood combines all relevant
information while inheriting many of its desirable features including good
asymptotic properties. However, in order to be effective, the weights involved
in its construction need to be judiciously chosen. Choosing those weights is
the subject of this article in which we demonstrate the use of cross-validation.
We prove the resulting weighted likelihood estimator (WLE) to be weakly
consistent and asymptotically normal. An application to disease mapping data
is demonstrated.

1. Introduction. The weighted likelihood (WL for short) has been developed
for a variety of purposes. Moreover, it shares its underlying purpose with other
methods such as weighted least squares and kernel smoothers which can reduce
an estimator’s variance while increasing its bias to reduce mean-squared error
(MSE), that is, increase its precision. However, the achievement of these gains
depends on choosing the weights well, which is the subject of this article. More
specifically, we show that they may be data dependent (i.e., “adaptive”) and chosen
by cross-validation. The idea of data-dependent weights goes back at least to the
celebrated James–Stein estimator, a WL estimator with adaptive weights that does
successfully trade bias for variance [Hu and Zidek (2002)].

To describe the WL, we assume independent random response vectors
X1, . . . ,Xm with probability density functionsf1(·; θ1), . . . , fm(·; θm), where
Xi = (Xi1, . . . ,Xini

)t . Further suppose that only population 1, in particularθ1,
an unknown vector of parameters, is of inferential interest. Given dataX = x, the
classical likelihood would be

L1(x1, θ1) =
n1∏

j=1

f (x1j ; θ1).
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When the remaining parametersθ2, . . . , θm are thought to resembleθ1, the WL
is defined as

WL(x; θ1) =
m∏

i=1

ni∏
j=1

f1(xij ; θ1)
λi ,

where λ = (λ1, . . . , λm), the “weights vector,” must be specified. Notice that
the parameters from the remaining populations,θ2, . . . , θm, unlike the data they
generate, do not appear in the WL, since inferential interest focuses onθ1. It
follows that

log WL(x; θ1) =
m∑

i=1

ni∑
j=1

λi logf1(xij ; θ1).

The WL extends the local likelihood method of Tibshirani and Hastie (1987) for
nonparametric regression, although the idea predates them [see Hu and Zidek
(2002) for a review]. Following Hu (1997), Hu and Zidek (1995, 2001, 2002)
extend the local likelihood to a more general setting. However, the aim is the same.
Their method also combines all relevant information in samples from populations
thought to resemble the one of inferential interest.

The maximum WL estimator (WLE) forθ1, sayθ̃1, is defined by

θ̃1 = arg sup
θ1∈�

WL(x; θ1).

In many cases the WLE may be obtained by solving theestimating equation:

(∂/∂θ1) log WL(x; θ1) = 0.

Note that uniqueness of the WLE is not assumed.
Like the MLE, the WLE has a number of desirable properties [Hu and Zidek

(2002)], in particular consistency and asymptotic normality under reasonable
general conditions [Hu (1997) and Wang, van Eeden and Zidek (2004)]. However,
these asymptotic properties have only been shown with fixed weights and hence
need to be extended in this article to cover the estimators we obtain using cross-
validation.

In its most primitive but nevertheless useful form, the cross-validation procedure
consists of controlled and uncontrolled division of the data sample into two
subsamples. For example, a subsample can be generated by deleting one or more
observations or it can be a random sample from the data set. Stone (1974) began the
systematic study of cross-validatory choice and assessment in statistical prediction.
Both Stone (1974) and Geisser (1975) discuss its application to theK-group
problem and use a linear combination of the sample means from different groups
to estimate a common mean. Breiman and Friedman (1997) also demonstrate the
benefit of using cross-validation to obtain linear combinations of predictors that
perform well in multivariate regression.
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The article is organized as follows. The adaptive weights are derived in
Section 2. The asymptotic properties of the resulting WLE are presented
in Section 3. Results of simulation studies are discussed in Section 4. In Section 5
an application to disease mapping data demonstrates the benefits of using the
proposed method in conjunction with the WLE when compared with traditional
estimators.

2. Choosing adaptive weights. For cross-validation there are many ways of
dividing the entire sample into subsets, such as a random selection technique.
However, we use the simplestleave-one-out approach in this article since the
analytic forms of the optimum weights are then completely tractable for the
linear WLE. Denote the vector of parameters and the weight vector byθ =
(θ1, θ2, . . . , θm,ρ) andλ = (λ1, λ2, . . . , λm), respectively. Letλopt

e andλ
opt
u denote

the optimum weight vectors to be defined in the sequel for samples with equal
and unequal sizes, respectively. We require that

∑m
i=1 λi = 1 in this section and

throughout this article.
Suppose that we havem populations which might be related to each other. The

probability density functions or probability mass functions are of the formfi(x; θi)

with θi as the parameter vector for populationi. Assume that

X11, X12, X13, . . . , X1n1

i.i.d.∼ f1(x; θ1),

X21, X22, X23, . . . , X2n2

i.i.d.∼ f2(x; θ2),
...

...

Xm1, Xm2, Xm3, . . . , Xmnm

i.i.d.∼ fm(x; θm),

where, for fixedi, the {Xij } are observations obtained from populationi and so
on. Assume that observations obtained within each population are independent and
identically distributed. Also observations from one population are independent of
those from other populations except that Corr(Xij ,Xkj ) = ρ, for any fixedj and
i �= k. That is, observations having the same second subscripts are not necessarily
independent even though they are from different populations. This would allow a
spatial correlation structure but not a temporal one. We also assume thatE(Xij ) =
φ(θi) = φi , say, forj = 1,2, . . . , ni, i = 1,2, . . . ,m. The population parameter of
the first population,θ1, is of inferential interest.

Our cross-validatory approach of estimating the weights for the WLE flows
from taking prediction as our inferential objective. In other words, we seek an
estimatorθ̂1 of θ1 that enables us to predict accurately, in some sense, a randomly
drawn elementX∗

1 from the first population. But how should the precision ofθ̂1 be
assessed?

One answer is the expected log score. Denoting by “E” the expectation
with respect to the conditional distribution ofX1 given θ1, that score is
E[logf1(X1|θ̂1)], an index ofθ̂1’s performance.
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However, the complexity of that index makes its use impractical in applications
such as that in Section 5. We therefore adopt an approximation as a compromise.
To obtain the approximation, we assume a one-to-one mapping ofθ1 into (φ1, τ1)

where the range ofφ1 covers that ofX1. In fact, with an abuse of notion we
representθ1 by θ1 = (φ1, τ1) andθ̂1 in a similar way. We further assume that

∂ logE[f1(X1|θ̂1)]
∂φ̂1

∣∣∣∣
θ̂1=θ1

= 0

and

∂2 logE[f1(X1|θ̂1)]
∂2φ̂1

∣∣∣∣
θ̂1=θ1

< 0,

for all θ with all higher-order derivatives being assumed to exist. These assump-
tions are satisfied for the normal distribution, for example, and more importantly
for our application in Section 5, the Poisson distribution.

Under these assumptions, the first-order term in a three-term Taylor expansion
of the expected log score vanishes. Therefore, ignoring irrelevant terms and
factors, we obtain(φ̂1 − φ1)

2 as an approximation to the negative expected log
score as a measure ofφ̂1’s precision. Finally, for its empirical assessment, we
estimate the unknownφ1 in this measure byX1. Moreover, we adopt that empirical
measure to obtain adaptive weights by cross-validation. To that end, we use(−j)

to indicate that thej th item has been dropped from the sample.
Taking the usual path, we predictX1j by φ(θ̃

(−j)
1 ), the WLE of its mean without

using theX1j . Note thatφ(θ̃
(−j)
1 ) is a function of the weight vectorλ by the

construction of the WLE. Based on the log score approximation above, a natural
measure for the discrepancy of the WLE becomes

D(λ) =
n1∑

j=1

(
X1j − φ

(
θ̃

(−j)
1

))2
.(1)

The optimum weights are derived such that the minimum ofD(λ) is achieved for
fixed sample sizesn1, n2, . . . , nm and

∑m
i=1 λi = 1.

If the inferential interest is on the means of some commonly used distributions
from the exponential family, such as normal, binomial, exponential and Poisson
distributions, it then follows thatφ(θ̃) is simply a linear combination of those
MLEs for each population. In this section we will investigate the behavior of the
optimum weights by cross-validation for the linear case since we can derive the
analytical forms of the optimum weights from (1).

2.1. Linear WLEs for equal sample sizes. Stone (1974) and Geisser (1975)
discuss the application of the cross-validation approach to the so-calledK-group
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problem. Suppose that the data setS consists ofn observations in each ofK
groups. The mean predictor for theith group is

µ̂i = (1− α)Xi· + αX··,

whereXi· = 1
n

∑n
j=1 Xij andX·· = 1

K

∑m
i=1 Xi·. If our interest focuses on group 1,

the relevant predictor is

µ̂1 =
(

1− K − 1

K
α

)
X1· +

m∑
i=2

α

K
Xi·,

whereα is a parameter. Stone (1974) uses cross-validation to derive an optimal
value for α. We remark that the above formula is just a particular linear
combination of the sample means.

We consider more general linear combinations and throughout this section
assumen1 = n2 = · · · = nm = n. Let θ̃ (e)

1 denote the WLE obtained through cross-
validation. Ifφ(θ) = θ , the linear WLE forθ1 is then defined as

θ̃
(e)
1 =

m∑
i=1

λiXi·,

where
∑m

i=1 λi = 1.
In this section we will use cross-validation by simultaneously deleting

X1j ,X2j , . . . ,Xmj for each fixedj . That is, we delete one data point from each
sample at each step. This might be appropriate if these data points are obtained at
the same time point and strong associations exist among them. By simultaneously
deletingX1j ,X2j , . . . ,Xmj for each fixedj , we might achieve numerical stabil-
ity of the cross-validation procedure. An alternative approach is to delete a data
point from only the first sample at each step. That approach will be studied in this
section as well.

Let X
(−j)

i· be the sample mean of theith sample withj th element in that sample
excluded. A natural measure for the discrepancy ofθ̃1 might be

D(m)
e =

n∑
j=1

(
X1j −

m∑
i=1

λiX
(−j)

i·

)2

= c(X ) − 2λt be(X ) + λtAe(X )λ,

where c(X ) = ∑n
j=1 X2

1j , (be(X ))i = ∑n
j=1 X1jX

(−j)

i· and (Ae(X ))ik =∑n
j=1 X

(−j)

i· X
(−j)

k· , i = 1,2, . . . , n, k = 1,2, . . . ,m. For expository simplicity, let
be = be(X ) andAe = Ae(X ) in this article.

An optimum weight vector by the cross-validation procedure is defined to be a
vector that minimizes the objective functionD(m)

e and satisfies
∑m

i=1 λi = 1.
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2.1.1. Two-population case. For simplicity, first consider the simple case of
just two populations,

X11, X12, X13, . . . , X1n
i.i.d.∼ f1(x; θ1, σ

2
1 ),

X21, X22, X23, . . . , X2n
i.i.d.∼ f2(x; θ2, σ

2
2 ),

with E(X1j ) = θ1, E(X2j ) = θ2, Var(X1j ) = σ 2
1 and Var(X2j ) = σ 2

2 . Further-

more, assume thatρ = cor(X1j ,X2j ), j = 1,2, . . . , n. Denoteθ0 = (θ0
1 , θ0

2) where
θ0

1 andθ0
2 are the true values forθ1 andθ2, respectively.

We seek the optimum weightsλ1 and λ2 with λ1 + λ2 = 1 such that they
minimize the following objective function:

D(2)
e =

n∑
j=1

(
X1j − λ1X

(−j)

1· − λ2X
(−j)

2·
)2 − γ (λ1 + λ2 − 1).

DifferentiatingD
(2)
e with respect toλ1 andλ2, we have

∂D
(2)
e

∂λ1
= −

n∑
j=1

X
(−j)

1·
(
X1j − λ1X

(−j)

1· − λ2X
(−j)

2·
) − γ = 0,

∂D
(2)
e

∂λ2
= −

n∑
j=1

X
(−j)

2·
(
X1j − λ1X

(−j)

1· − λ2X
(−j)

2·
) − γ = 0.

(2)

It follows that

λ
opt
1 (X) = 1−

∑n
j=1(X

(−j)

1· − X
(−j)

2· )(X
(−j)

1· − X1j )∑n
j=1(X

(−j)

1· − X
(−j)

2· )2
,

λ
opt
2 (X) = 1− λ

opt
1 (X).

(3)

LEMMA 2.1. The following identity holds:

λ
opt
1 = 1− λ

opt
2 and λ

opt
2 = Se

2/S
e
1,

where

Se
1 = n(n − 2)

(n − 1)2 (X1· − X2·)2 + 1

n(n − 1)2

n∑
j=1

(X1j − X2j )
2,

Se
2 = n

(n − 1)2 (σ̂ 2
1 − ĉov),

where σ̂1
2 = 1

n

∑n
j=1(X1j − X1·)2 and ĉov= 1

n

∑n
j=1(X1j − X1·)(X2j − X2·).

The value ofλopt
2 can be seen as some sort of measure of relevance between the

two samples. If this “measure” is almost zero, the formula forλ
opt
2 will assume a
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very small value. This implies that there is no need to combine the two populations
if the difference between the two sample means is relatively large or the second
sample has little relevance to the first one. The weights chosen by the cross-
validation procedure will then guard against the undesirable scenario in which
too much bias might be introduced into the estimation procedure. On the other
hand, if the second sample does contain valuable information about the parameter
of interest, then the cross-validation procedure will recognize that by assigning a
nonzero value toλopt

2 . Note that knowledge of the variances and correlation is not
assumed.

PROPOSITION2.1. If ρ < σ1
σ2

, then

Pθ0(λ
opt
2 > 0)

P
θ0−→ 1.

We remark that the conditionρ < σ1/σ2 is satisfied ifσ2 < σ1 or ρ < 0. If
the conditionρ < σ1/σ2 is not satisfied, thenλopt

2 will have a negative sign for
sufficiently largen. However, the value ofλopt

2 will converge to zero as shown in
the next proposition.

PROPOSITION2.2. If θ0
1 �= θ0

2 , then, for any given ε > 0,

Pθ0(|λopt
1 − 1| ≤ ε) −→ 1 and Pθ0(|λopt

2 | < ε) −→ 1.

The asymptotic limit of the weights will not exist ifθ0
1 equalsθ0

2 . The cross-
validation procedure will not be able to detect the difference of the two populations

if there is none. This problem can be solved by definingλ
opt
2 = Se

2
Se

1+δe
whereδe is

a small positive constant.

2.1.2. Alternative matrix representation of the optimum weights. In order to
handle more than two populations, it is necessary to derive an alternative matrix
representation ofλopt. Defineen = n

n−1. It can be verified that

x
(−j)
i· x

(−j)
k· =

(
enxi· − 1

n − 1
xij

)(
enxk· − 1

n − 1
xkj

)

= e2
nxi·xk· − en

n − 1
xij xk· − en

n − 1
xkjxi· +

(
1

n − 1

)2

xij xkj .

Thus, we have

n∑
j=1

x
(−j)
i· x

(−j)
k· =

(
e2
n(n − 2) + en

n − 1

)
θ̂i θ̂k + en

n − 1
ĉov2

ik,(4)
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where

θ̂i = xi·, i = 1,2, . . . ,m,

ĉovik = 1

n

n∑
j=1

(xij − xi·)(xkj − xk·).

Recall that, for 1≤ i ≤ m and 1≤ k ≤ m,

Ae(ik) =
n∑

j=1

x
(−j)
i· x

(−j)
k· .

It follows that

Ae = en

n − 1

̂ +

(
e2
n(n − 2) + en

n − 1

)
θ̂ θ̂

t
,(5)

where
ik = ĉovik andθ̂ = (x1·, . . . , xm·).
We also have

be(i)(x) = A1i − en

n − 1

n∑
j=1

(x1j − x1·)xij .(6)

It then follows that

be(x) = A1 − e2
n
̂1,(7)

whereA1 is the first column ofAe and 
̂1 is the first column of the sample
covariance matrix̂
. We are now in a position to derive the optimum weights
in matrix form when the sample sizes are equal.

PROPOSITION2.3. The optimum weight vector which minimizes D
(m)
e takes

the form

λopt
e = (1,0,0, . . . ,0)t − e2

n

(
A−1

e 
̂1 − 1tA−1
e 
̂1

1tA−1
e 1

A−1
e 1

)
.

We remark thatAe is invertible since
̂ is invertible. Note that the expression
of the weight vector in the two-population case can also be derived by using the
matrix representation given as above.

2.2. Linear WLE for unequal sample sizes. In the previous section we
discussed choosing the optimum weights when the samples sizes are equal. In this
section we propose to use the cross-validation procedure for choosing adaptive
weights for unequal sample sizes. If the sample sizes are not equal, it is not clear
whether thedelete-one-column approach is reasonable. For example, suppose that
there are 10 observations in the first sample and there are 5 observations in the
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second. Then there is no observation to delete for the second sample for the
second half of the cross-validation steps. Furthermore, we might lose accuracy
in prediction by deleting one entire column when sample sizes are small. Thus,
we propose an alternative method that deletes only one data point from the first
sample and keeps all the data points from the rest of the samples when the sample
sizes are not equal.

2.2.1. Two-population case. Let us again consider the two populations. The
optimum weightsλopt

u are obtained by minimizing the objective function

D(2)
u (λ) =

n1∑
j=1

(
X1j − λ1X

(−j)

1· − λ2X2·
)2

,

where
∑m

i=1 λi = 1 and X
(−j)

1· = 1
n1−1

∑n1
k �=j X1k . We remark that the major

difference betweenD(2)
e andD

(2)
u is that only thej th data point of the first sample

is left out for thej th term inD
(2)
u .

Under the condition thatλ1 + λ2 = 1, we can rewriteD(2)
u as a function ofλ1:

D(2)
u =

n1∑
j=1

(
X1j − λ1X

(−j)

1· − (1− λ1)X2·
)2

=
n1∑

j=1

(
(X1j − X2·) + λ1

(
X2· − X

(−j)

1·
))2

.

By differentiatingD
(2)
u with respect toλ1, we then have

λ
opt
1 = n1(X1· − X2·)2 − (n1/(n1 − 1))σ̂ 2

1

n1(X1· − X2·)2 + (n1/(n1 − 1)2)σ̂ 2
1

, λ
opt
2 = 1− λ

opt
1 .(8)

The adaptive optimum weights still converge to(1,0) when the sample sizes are
not equal.

PROPOSITION2.4. If θ0
1 �= θ0

2 , then λ
opt
1

P
θ0−→ 1 and λ

opt
2

P
θ0−→ 0.

2.2.2. Optimum weights by cross-validation. We now derive the matrix
representation for the optimum weights by cross-validation when the sample sizes
are not all equal. The objective function is defined as follows:

D(m)
u =

n1∑
j=1

(
X1j − λ1X

(−j)

1· −
m∑

i=2

λiXi·
)2

= c(X ) − 2b(X )λu + λt
uA(X )λu,
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where

b1 =
n1∑

j=1

X1j

(
X1· + 1

n1 − 1
(X1· − X1j )

)
= n1X

2
1· −

n1

n1 − 1
σ̂ 2

1 ,

bi = n1X1·Xi·, i = 2, . . . ,m,

and

a11 =
n1∑

j=1

(
X1· + 1

n1 − 1
(X1· − X1j )

)2

= n1X
2
1· +

n1

(n1 − 1)2 σ̂ 2
1 ,

aij = n1Xi·Xj ·, i �= 1 or j �= 1.

It then follows that

A = n1(θ̂1, θ̂2, . . . , θ̂m)t (θ̂1, θ̂2, . . . , θ̂m) + D,

where

d11 = n1

(n1 − 1)2 σ̂ 2
1 ,

dij = 0, i �= 1 or j �= 1.

By the elementary rank inequality, it follows that

rank(A) ≤ rank(θ̂ t θ̂ ) + rank(D) = 2.

It implies that

rank(A) < m if m > 2.

SinceA is not invertible form > 2, the Lagrange method will not work in this
case. Theg-inverse of the matrixA could be used instead.

3. Asymptotic properties of the weights. In this section we present the
asymptotic properties of the cross-validated weights for the general case. Letθ̂

(n1)
1

be the MLE based on the first sample of sizen1. Let θ̂ (−j)
1 andθ̃

(−j)
1 be the MLE

and WLE, respectively, based onm samples without thej th data point from the
first sample. This generalizes the two cases where either only thej th data point
is deleted from the first sample or thej th data point from each sample is deleted.
Note thatθ̃ (−j)

1 is a function of the weights functionλ. Let 1
n1

Dn1 be the average
discrepancy in the cross-validation given by

1

n1
Dn1(λ) = 1

n1

n1∑
j=1

(
X1j − φ

(
θ̃

(−j)
1

))2
.

Let λ(cv) be the optimum weights chosen by cross-validation. We require that∑m
i=1 λi = 1. Let θ0 = (θ0

1 , θ2, . . . , θm), whereθ0
1 is the true value ofθ1. We then

have the following theorem.
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THEOREM 3.1. Assume that:

(i) 1
n1

Dn1 has a unique minimum for any fixed n1;

(ii) 1
n1

∑n1
j=1(φ(θ̂

(−j)
1 ) − φ(θ0

1))
P

θ0−→ 0 as n1 → ∞;

(iii) Pθ0( 1
n1

∑n1
j=1(X1j − φ(θ̂

(−j)
1 ))2 < K)

P
θ0−→ 1 for some constant

0< K < ∞;
(iv) Pθ0(|φ(θ̂

n1
1 )−φ(θ̃

n1
1 )| > M) = o( 1

n1
) for some constant 0< M < ∞. Then

λ(cv)
P

θ0−→ w0 = (1,0,0, . . . ,0)t .(9)

The assumptions of the above theorem are satisfied by the linear-WLE case
presented in Section 2. We state that fact in the following corollary whose proof is
straightforward and omitted for brevity.

COROLLARY 3.1. Suppose Xi1,Xi2, . . . ,Xin are independent with density
function f (x, θi), i = 1,2. If the WLE has linear form and µ1 �= µ2, then

λ(cv)
P

θ0−→ w0 = (1,0)t .(10)

Furthermore, Theorem 3.1 also applies to cases in which the WLE does not
have the linear form. One such important case involves the log-normal distribution,

which is widely used in practice. SupposeXij
ind.∼ LN(µi,1), j = 1, . . . , n, i =

1,2, whereµi and 1 denote, respectively, the mean and standard deviation of the
logXij for all i andj . It can be verified that, fori = 1,2,

Eµ0
1
(Xij ) = φ(µ0

i ) = eµ0
i +1/2, j = 1,2, . . . , n.

It also follows that the MLE and the WLE are given by

MLE(µ1) = µ̂1 = 1

n

n∑
j=1

log(x1j ),(11)

WLE(µ1) = µ̃1 = λ1

n

n∑
j=1

log(x1j ) + λ2

n

n∑
j=1

log(x2j ),(12)

whereλ1 + λ2 = 1.
Therefore,

φ
(
µ̂

(−j)
1

) = exp

{
1

n − 1

∑
k �=j

log(X1k) + 1/2

}
,(13)

φ
(
µ̃

(−j)
1

) = exp

{
λ1

n − 1

∑
k �=j

log(X1k) + λ2

n − 1

∑
k �=j

log(X2k) + 1/2

}
,(14)
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for j = 1,2, . . . , n.

Therefore the average discrepancy of cross-validation for the log-normal case is
given by

1

n
Dn(λ1, λ2) = 1

n

n∑
j=1

(
X1j − exp

{
λ1

n − 1

∑
k �=j

log(x1k)

+ λ2

n − 1

∑
k �=j

log(x2k) + 1/2

})2

.

(15)

Since we require thatλ1 + λ2 = 1, we can rewrite the average discrepancy as

1

n
Dn(1− λ2, λ2) = 1

n

n∑
j=1

(
X1j − eY

(−j)
1· +λ2(Y

(−j)
2· −Y

(−j)
1· )+1/2)2

,(16)

where

Y
(−j)

i· = 1

n − 1

∑
k �=j

Yik and Yij = log(Xij ), i = 1,2, j = 1,2, . . . , n.

We then have the following lemma and corollary.

LEMMA 3.1. Assume that Xi1,Xi2, . . . ,Xin are independent random vari-
ables and follow the log-normal distribution with parameters (µi,1), i = 1,2.
Let λ∗

2(n) be the optimum weight that minimizes 1
n
Dn(1− λ2, λ2) for any fixed n.

If µ1 �= µ2, then (i) 1
n
Dn(1 − λ2, λ2) is strictly convex; (ii) lim n→∞ λ∗

2(n) exists
and | limn→∞ λ∗

2(n)| < 1 with probability 1.

COROLLARY 3.2. Under the assumptions of Lemma 3.1,if µ1 �= µ2, then

λ(cv)
P

µ0−→ w0 = (1,0)t .(17)

Wang, van Eeden and Zidek (2004) establish the asymptotic normality of the
WLE for fixed weights. Under certain regularity conditions and by Theorem 3.1,
we then have the following asymptotic results for using adaptive weights.

THEOREM 3.2. For each θ0
1 , the true value of θ1, and each θ1 �= θ0

1 ,

lim
n1→∞Pθ0

(
m∏

i=1

ni∏
j=1

f (Xij ; θ0
1)λ

(n)
i (X) >

m∏
i=1

ni∏
j=1

f (Xij ; θ1)
λ

(n)
i (X)

)
= 1,

for any θ2, θ3, . . . , θm, θi ∈ �, i = 2,3, . . . ,m.
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THEOREM 3.3. For any sequence of maximum weighted likelihood esti-
mates θ̃

(n1)
1 of θ1 constructed with adaptive weights λ

(n)
i (X), and for all ε > 0,

lim
n1→∞Pθ0

(∥∥θ̃ (n1)
1 − θ0

1

∥∥ > ε
) = 0,

for any θ2, θ3, . . . , θm, θi ∈ �, i = 2,3, . . . ,m.

We assume that the parameter space is an open subset ofRp. The asymptotic
normality of the WLE constructed by cross-validated weights follows.

THEOREM 3.4 (Multidimensional). Suppose:

(i) for almost all x the first and second partial derivatives of f1(x; θ) with
respect to θ exist, are continuous in θ ∈ �, and may be passed through the integral
sign in

∫
f1(x; θ) dν(x) = 1;

(ii) there exist three functions G1(x), G2(x) and G3(x) such that for all
θ2, . . . , θm, Eθ0|Gl(Xij )|2 ≤ Kl < ∞, l = 1,2,3, i = 1, . . . ,m, and in some
neighborhood of θ0

1 each component of ψ(x) = ∂
∂θ

f1(x; θ) [resp. ψ̇(x)] are
bounded in absolute value by G1(x) [resp. G2(x)] uniformly in θ1 ∈ �. Further,

∂3 logf1(x; θ1)

∂θ1k1 ∂θ1k2 ∂θ1k3

,

k1, k2, k3 = 1, . . . , p, are bounded by G3(x) uniformly in θ1 ∈ �;
(iii) I (θ0

1) is positive definite.
Then there exists a sequence of roots of the weighted likelihood function based

on adaptive weights θ̃
(n1)
1 that is weakly consistent and

√
n1

(
θ̃

(n1)
1 − θ0

1
) D−→ N

(
0, I (θ0

1)
)

as n1 → ∞.

4. Simulation studies. To demonstrate and verify the benefits of using cross-
validation procedures described in previous sections, we perform simulations
according to the following algorithm that deletes thej th point from each sample,
that is, adelete-one-column approach. Letµ0

1 andµ0
2 denote the true values of the

parameters. LetC = µ0
1 − µ0

2, which is the difference between the two population
means.

STEP 1. Draw random samples of sizen from f1(x;µ0
1) andf2(x;µ0

2).

STEP 2. Calculate the cross-validated optimum weights by using (3).

STEP 3. Calculate(MLE − µ0
1)

2 and(WLE − µ0
1)

2.
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TABLE 1
MSE ∗ 100of the MLE and the WLE and their standard deviations ∗ 100 for samples of equal sizes

generated from N(0,1) and N(0.3,1). A correction term is employed in the calculations of the
optimum weights to handle numerical instability

n MSE(MLE) SD of (MLE − θ0
1 )2 MSE(WLE) SD of (WLE − θ0

1 )2 MSE(WLE)
MSE(MLE)

10 10 15 8 12 80
20 4 6 4 5 85
30 3 4 3 4 87
40 3 4 2 3 91
50 2 3 2 2 92
60 2 2 2 2 94

Repeat Steps 1–3, 1000 times. Calculate the averages and standard deviations
of the squared estimation error differences for both the MLE and WLE. Calculate
the averages and standard deviations of the optimum weights.

We generate random samples fromN(µ0
1, σ

2
1 ) and N(µ0

2, σ
2
2 ) where we set

σ1 = σ2 = 1 for simplicity. For the purpose of the demonstration, we setµ0
1 = 0

andµ0
2 = 0.3, which is 30% of the variance. Table 1 shows some results for the

caseµ0
1 = 0 andµ0

2 = 0.3. Settingµ0
1 = 0, we tried other values forC. In general,

the larger the value ofC, the less improvement in the MSE. For example, if we set
σ 0

1 = σ 0
2 = 1 andC = µ0

2 − µ0
1 = 1, the ratio of the MSE for MLE and WLE will

be almost 1. This implies that the cross-validation procedure will not make much
use of the second sample in this situation.

It is obvious from Table 1 that the MSE of the WLE is much smaller than
that of the MLE for small and moderate sample sizes. The standard deviations
of the squared differences for the WLE are less than or equal to those of the MLE.
This suggests that not only the WLE achieves smaller MSE but also its MSE has
less variation than that of the MLE. Intuitively, as the sample size increases, the
importance of the second sample diminishes. As indicated by Table 2, the cross-

TABLE 2
Average optimum weights ∗ 100and their standard

deviations ∗ 100 for samples of equal sizes
generated from N(0,1) and N(0.3,1). A correction
term is employed in the calculations of the optimum

weights to handle numerical instability

n AVE. of λ1 AVE. of λ2 SD of λ1 and λ2

10 79 21 6
20 85 15 4
30 88 11 3
40 90 10 3
50 91 9 2
60 92 8 2
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TABLE 3
MSE ∗ 100of the MLE and the WLE and their standard deviations ∗ 100 for samples of equal sizes
generated from P (3) and P (3.6). A correction term is employed in the calculations of the optimum

weights to handle numerical instability

n MSE(MLE) SD of (MLE − θ0
1 )2 MSE(WLE) SD of (WLE − θ0

1 )2 MSE(WLE)
MSE(MLE)

10 31 45 27 40 86
20 15 22 14 19 90
30 10 14 9 13 94
40 8 11 8 10 96
50 6 8 5 8 97
60 5 8 5 7 97

validation procedure realizes this and then assigns a larger value toλ1 as the first
sample size increases. The optimum weights do increase towards the asymptotic
weights(1,0) for the normal case, albeit quite slowly.

We repeat the procedure for Poisson distributions withP (3) andP (3.6). Some
of the results are shown in Tables 3 and 4. The results for the Poisson distributions
differ from the normal case. The most striking difference is in the ratio of the
WLE’s average MSE versus that of the MLE. The WLE achieves a smaller average
MSE when the sample sizes are less than 30. These results contrast with the normal
case, where the critical sample size is 45.

We remark that the reduction in MSE will disappear if we setC = µ0
2−µ0

1 = 1.5
in the above case. Thus, the cross-validation procedure will not combine the two
samples if the second sample does not help to predict the behavior of the first. We
should emphasize that the valueC in both cases is not used in the cross-validation
procedure itself.

We remark that simulations using thedelete-one-point approach have also been
done. They give quite similar results.

TABLE 4
Average optimum weights ∗ 100and their standard

deviations ∗ 100 for samples of equal sizes
generated from P (3) and P (3.6). A correction term

is employed in the calculations of the optimum
weights to handle numerical instability

n AVE. of λ1 AVE. of λ2 SD of λ1 and λ2

10 80 20 7
20 86 14 5
30 88 12 4
40 90 10 3
50 92 8 3
60 92 8 2
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5. Application to disease mapping. In this section we address the problem
of analyzing disease mapping data. In particular, we demonstrate a weighted
likelihood alternative to the hierarchical Bayes approach that has been used in
references cited in the discussion section. Our approach allows the data themselves
to select the weights through cross-validation. We thereby avoid the (need of a
prior for modeling) in order to guess the latent patterns of environmental hazards
that may lead to the adverse health effects being mapped. Such hazards include
air pollution that has been associated with respiratory morbidity [see, e.g., Burnett
and Krewski (1994) and Zidek, White and Le (1998)].

Our demonstration involves parallel time series of weekly hospital admissions
for respiratory disease in residents of 733 census subdivisions (CSD) in southern
Ontario. The data are collected from the May-to-August periods from 1983 to
1988. In this demonstration we confine attention to certain densely populated
areas.

Let us consider the problem of estimating the rate of weekly hospital admissions
of CSD 380, the one with the largest total annual hospital admissions among
all CSDs from 1983 to 1988. This proves to be a challenging task due to the
sparseness of the data set. The original data set contains many 0’s, representing no
hospital admissions. For example, although CSD 380 has the largest total number
of hospital admissions among all the CSDs, no patient was admitted during 112
out of the 123 days in the summer of 1983. On some days, however, quite a number
of people sought treatment for acute respiratory disease possibly due to high levels
of air pollution in their regions. Again referring to CSD 380, 17 patients were
admitted on day 51 alone in 1983.

A more graphical description of these irregularities in admission counts for this
CSD is seen in Figure 1. There daily counts are shown and the problems of data
sparseness and high level of variations are extreme. In fact, in this demonstration
we have chosen to avoid the complexities of modeling these daily data series and
we turn instead to weekly counts. While those problems remain, they are not nearly
so acute. In total, each of the summers in the years covered by our study has 17
weeks. For simplicity, the data obtained in the last few days of each summer are
dropped from the analysis since they do not constitute a whole week.

5.1. Weighted likelihood estimation. We assume the weekly hospital admis-
sions for any given CSD follow Poisson distributions, that is, for yearq, CSD i

and weekj ,

Y
q
ij

ind.∼ P (θ
q
ij ), j = 1,2, . . . ,17; i = 1,2, . . . ,733;q = 1,2, . . . ,6.

The raw estimates ofθq
ij , namelyY

q
ij , are highly unreliable since the effective

sample size in this case is 1. Moreover, each CSD may contain only a small
group of people who suffer respiratory diseases. These considerations point to the
need to “borrow strength,” a standard tool of disease mapping techniques. That is,
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FIG. 1. Daily hospital admissions for CSD 380in the summer of 1983.

the information in neighboring CSDs can be combined to produce more reliable
estimates while introducing only a small amount of bias.

For any given CSD, the “neighboring” CSDs are defined to be CSDs in close
proximity to CSD 380. To estimate the rate of weekly hospital admissions in a
particular CSD, we would expect that neighboring subdivisions contain relevant
information which might help us to derive a better estimate than the traditional
sample average. Thus, the Euclidean distances between the target CSD and other
CSDs in the data set are calculated by using the longitudes and latitudes. We apply
a somewhat arbitrary threshold, 0.2, to the Euclidean distances in order to define
neighbors. For CSD 380, neighboring CSDs turn out to be CSDs 362, 366 and 367.

The time series plots of weekly hospital admissions for those selected CSDs in
1983 are shown in Figure 2. Hospital admissions of these CSDs indeed seem to be
related since the major peaks in the time series plot occurred at roughly the same
time points. However, as noted earlier, the data from other CSDs may introduce
bias. Thus the WLE’s weights are needed to control the degree of bias.

To find cross-validatory choices for these weights, we consider purely as a
working assumption thatθq

ij = θ
q
i for j = 1,2, . . . ,17. In fact, that assumption

does not seem tenable since every year week 8 has markedly larger numbers of
hospital admissions for CSD 380 than the remaining weeks. For example, in 1983,
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FIG. 2. Hospital admissions for CSDs 380, 362, 366and 367 in 1983.

there are 21 admissions in week 8 while the second largest weekly count is only 7
in week 15. Thus, we are forced to drop week 8 from our working assumption and
instead assumeθq

ij = θ
q
i for j = 1,2, . . . ,7,9, . . . ,17. In fact, the sample means

and variances of the weekly hospital admissions for those 16 weeks of CSD 380 are
quite close to each other, in support of our assumption. One alternative to assuming
the constancy of weights over the whole summer would be the use of a moving
window just a few weeks in width. We leave that option for future work.

For Poisson distributions the MLE ofθq
1 is the sample average of the weekly

admissions of CSD 380, while the WLE is a linear combination of the sample
averages for each CSD. Thus, theweighted likelihood estimate of the population
mean of weekly hospital admissions for a CSD is

WLEq =
4∑

i=1

λ
q
i Y

q

i·, q = 1,2, . . . ,6,

whereY
q

i· is the overall sample average of CSDi for yearq.
In our analysis the weights are selected by the cross-validation procedure

proposed in Section 2. Recall that the cross-validated weights for equal sample



SELECTING LIKELIHOOD WEIGHTS BY CROSS-VALIDATION 481

sizes are

λq = A−1
q

(
bq + 1− 1tA−1

q b

1tA−1
q 1

A−1
q 1

)
,

wherebq(y) = ∑17
j=1 Y

q
1jY

q(−j)

i· andAq(y)ik = ∑17
j=1 Y

q(−j)

i· Y
q(−j)

k· , i = 1,2,3,4;
k = 1,2,3,4.

5.2. Results of the analysis. We assess the performance of the MLE and the
WLE by comparing their MSEs. The MSEs of the MLE and the WLE are defined
by, for q = 1,2, . . . ,6,

MSEq
M(θ

q
1 ) = Eθ

q
1
(Y

q

1· − θ
q
1 )2,

MSEq
W (θ

q
1 ) = Eθ

q
1

( 4∑
i=1

λ
q
i Y

q

i· − θ
q
1

)2

.

In fact, the θ
q
1 ’s are unknown. We then estimate the MSEM and MSEW by

replacingθ
q
1 by the MLE. Under the assumption of Poisson distributions, the

estimated MSE for the MLE is given by

MSEq
M = ̂var(Y11)/16, q = 1,2, . . . ,6.

The estimated MSE for the WLE is given as follows:

MSEq
W = E

(
m∑

i=1

λ
q
i Y

q

i· − θ
q
1

)2

= Var

(
m∑

i=1

λ
q
i Y

q

i·

)
+

(
E

m∑
i=1

λ
q
i Y

q

i· − θ
q
1

)2

≈
4∑

i=1

4∑
k=1

λ
q
i λ

q
j ĉov(Y

q

i·, Y
q

j ·) +
(

m∑
i=1

λ
q
i Y

q

i· − Y
q

1·

)2

.

The estimated MSEs for the MLE and the WLE are given in Table 5. It can be
seen that the MSE for the WLE is much smaller than that of the MLE. In fact, the
average reduction of the MSE by using WLE is about 25%.

Combining information across these CSDs might also help us in predictions
since the patterns exhibited in one neighboring location in a particular year
might manifest themselves at the location of interest the next year. To assess the
performance of the WLE, we also use the WLE derived from one particular year
to predict the overall weekly average of the next year. The overall prediction error
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TABLE 5
Estimated MSEs for the MLE and the WLE. All entries have been

multiplied by 100.The MSEs have also been multiplied
by 16 since there are 16 weeks

Year MLE WLE 16 ∗ M̂SE
q
M 16 ∗ M̂SE

q
W M̂SE

q
W /M̂SE

q
M

1 19 17 10 8.4 80
2 33 28 24 13 87
3 23 26 29 14 54
4 15 22 16 8.4 96
5 30 32 30 13 80
6 38 41 41 24 54

is defined as the average of those prediction errors. To be more specific, the overall
prediction errors for the WLE and the MLE are defined as follows:

PREDM =
√√√√√1

5

5∑
q=1

(Y
q

1· − Y
q+1
1· )2,

PREDW =
√√√√√1

5

5∑
q=1

(WLEq −Y
q+1
1· )2.

The average prediction error for the MLE, PredM , is 0.065, while PredW , the
average prediction error for the WLE, is 0.047, which is about 72% of that of
the MLE.

From Table 6, we see that there is strong linear association between CSD
380 and CSD 366. However, the weight assigned to CSD 366 is the smallest
one. It shows that CSDs with higher correlations contain less information for
the prediction since they might have patterns too similar to the target CSD for
a given year to be helpful in the prediction for the next year. Thus CSD 366, which
has the smallest weight, should not be included in the analysis. Therefore, the
“neighborhood” of CSD 380 in the analysis should only include CSD 362 and
CSD 367.

TABLE 6
Correlation matrix ∗ 100and the weights ∗ 100 for 1984

CSD 380 CSD 362 CSD 366 CSD 367 Weights

CSD 380 100 42 91 57 46
CSD 362 42 100 40 63 20
CSD 366 91 40 100 55 12
CSD 367 57 63 55 100 22
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TABLE 7
Predictive confidence intervals of

the MLE and the WLE for
CSD 380

Year CIM CIW

1983 [0, 3] [0, 3]
1984 [0, 5] [0, 4]
1985 [0, 4] [0, 4]
1986 [0, 3] [0, 4]
1987 [0, 4] [0, 5]
1988 [0, 5] [0, 6]

In general, we might examine those CSDs that are in close proximity to the
target CSD. We can calculate the weight for each selected CSD by using
the cross-validation procedure. CSDs with small weights should be dropped
from the analysis since they are not deemed to be helpful.

The predictive distributions for the weekly totals will be Poisson as well. We
can then derive the 95% predictive intervals for the weekly average hospital
admissions. This might be criticized as failing to take into account the uncertainty
of the unknown parameter. Smith (1999) argues that the traditional plug-in method
has a small MSE compared to the posterior mean under certain circumstances. In
particular, it has a smaller MSE when the true value of the parameter is not large.
Let CIW and CIM be the 95% predictive intervals of the weekly averages calculated
from the WLE and the MLE, respectively. The results are shown in Table 7.

The weighted likelihood framework discussed in this article requires the
observations obtained from each population to follow the same distribution.
However, including the week 8 data would violate that assumption. Including
them in the analysis would have negative impact on the analysis by invalidating
the homogeneity assumption of our model. Nevertheless, we re-did the analysis
to see that impact. The adaptive weights and the correlation matrix for 1986 are
shown in Table 8. We observe that the weight for the population of interest is
almost 0. This is not acceptable since the inference will ignore the data from the

TABLE 8
Correlation matrix ∗ 100and the weights ∗ 100 for 1986when week 8 is

included in the analysis

CSD 380 CSD 362 CSD 366 CSD 367 Weights

CSD 380 100 88 74 22 0.1
CSD 362 88 100 76 32 28
CSD 366 74 76 100 44 30
CSD 367 22 32 44 100 42
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TABLE 9
Correlation matrix ∗ 100and the weights ∗ 100 for 1986when week 8 is

excluded in the analysis

CSD 380 CSD 362 CSD 366 CSD 367 Weights

CSD 380 100 23 19 7.6 48
CSD 362 23 100 38 29 18
CSD 366 19 38 100 44 31
CSD 367 7.6 29 44 100 2.6

first population. In this case, week 8 for CSD 380 has an observation that is almost
20 times larger than the rest of them. Since the cross-validation procedure is based
on the predictive mechanism, thus it is difficult for the procedure to rely on the
data points from the first population for accurate predictions. As a result, it will
assign large weights to the other CSDs, especially those less correlated with the
target one or having a smaller variance. Consequently, the weights will not be able
to control the bias as they are designed to. Instead, they will introduce large bias
into the inference.

Table 9 presents the results obtained when the data from week 8 are dropped
for 1986. As in Table 6, a large weight, about 50%, is put back onto CSD 380,
the population of interest. Therefore, data from week 8 must be dropped from
the analysis in order to control the bias. We discuss some alternative methods
for detecting unusual weeks in the discussion section. In principle, we could fit
a separate model for that week. But here it would not be feasible because of the
rather small sample size. We note that the MLE and WLE are both unstable for
small sample sizes although the WLE will have better performance as shown in
the simulation study.

6. Discussion and future work. The asymptotic results established in this
article are based on the assumption that the sample size of the population of interest
goes to infinity. They do not apply to the situation when the sample size for the
population of interest remains small or moderate while the sample sizes of other
populations go to infinity. If the sample size of the population of interest is very
small, say either 1 or 0, and the number of populations goes to infinity, then the
asymptotic paradigm proposed by Hu (1997) would be appropriate.

There are other choices of weights function proposed in the literature. In the
context of local likelihood discussed by Copas (1995), Tibshirani and Hastie
(1987) and Eguchi and Copas (1998), the weight function there is essentially a
kernel function with centert and bandwidthh. Hunsberger (1994) proposes a
weight function that assigns zero weight to an observation if it is outside a certain
neighborhood. Since a kernel-type weight function uses Euclidean distance, it
might not reflect the underlying spatial structure well as we have seen in the
disease mapping example. Hu and Rosenberger (2000) propose weight functions
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in analyzing adaptive designs when time trends are present. They investigate two
classes of weight functions, namely the exponential and polynomial types. But the
weight function proposed in this article does not assume any specific functional
form or rely on the choice of distance function. The adaptive weights chosen
by cross-validation are data dependent and determined solely by minimizing the
proposed predictive discrepancy measure.

The analysis presented in Section 5 is merely a demonstration of the weighted
likelihood method. Through exploratory analysis, we find that data from week 8
are quite different from the rest of the weeks. Therefore they were dropped from
the analysis. Given the high dimensionality and actual sizes of current data sets
in disease mapping, it is not always practical to detect those unusual weeks by
manual exploratory analysis. One automatic approach to detect patterns for the
weekly data is to partition those weeks into homogeneous subgroups by using
some clustering algorithms. Unlike the standard clustering in disease mapping that
is normally done on the spatial grid, the grouping in our case should be done on
the temporal scale. We applied a standardK-means algorithm with two clusters
to the data set. TheK-means clustering algorithm successfully identified week 8 as
the only member of one cluster and the rest of the weeks were assigned to another
cluster. When the number of clusters is unknown, it then must be estimated. The
estimation of number of clusters is a very difficult problem in cluster analysis. It is
beyond the scope of this article. Fraley and Raftery (1998) discuss the problem of
determining the structure of clustered data without prior knowledge of the number
of clusters. Cheeseman and Stutz (1996) propose an algorithm, the so-called
AutoClass, that can estimate the number of clusters and then perform the partition.
Once the partition is achieved, the weighted likelihood method can then be applied
to those clusters separately. One of our future works is how to combine the results
from different clusters in a sensible way. Furthermore, the spatial structure is
incorporated into the weighted likelihood through the adaptive weights. However,
the current model cannot handle temporal structures. One natural extension of the
proposed weighted likelihood framework is to extend it to handle both spatial and
temporal structures.

Bayes methods including empirical and hierarchical Bayes methods are widely
used in analyzing disease mapping data. Manton et al. (1989) discuss the
empirical Bayes procedures for stabilizing maps of cancer mortality rates. Ghosh,
Natarajan, Waller and Kim (1999) propose a very general hierarchical Bayes
spatial generalized model that is considered broad enough to cover a large number
of situations where spatial structures need to be incorporated. In particular, they
propose the following:

θi = qi = xt
i b + ui + vi, i = 1,2, . . . ,m,

where theqi are known constants,xi are covariates,ui and vi are mutually

independent withvi
i.i.d.∼ N(0, σ 2

v ) and the ui have joint probability density
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function

f (u) ∝ (
(σu)

2)−1/2m exp

(
−

m∑
i=1

∑
j �=i

(ui − uj )
2wij/(2σ 2

u )

)
,

wherewij ≥ 0 for all 1≤ i �= j ≤ m. The above distribution is designed to take
into account the spatial structure. In that paper, they propose to usewij = 1 if
locationsi andj are considered neighbors. They also mention the possibility of
using the inverse of the correlation matrix as the weights function. We argue that
the weights chosen by the cross-validation procedure can discover the underlying
spatial structure without any parametric assumption. Thus those weights might
be helpful in selecting an appropriate distribution that models the underlying
spatial structure. Further analysis is needed if one wants to fully compare the
performances of the WLE, the MLE and the Bayesian estimator in the context
of disease mapping.

APPENDIX

PROOF OFLEMMA 2.1. Observe that

X
(−j)

i· = enXi· − 1

n − 1
Xij ,

whereen = n
n−1.

Let Se
1 = 1

n

∑n
j=1(X

(−j)

1· − X
(−j)

2· )2. It then follows that

Se
1 = 1

n

n∑
j=1

((
enX1· − 1

n − 1
X1j

)
−

(
enX2· − 1

n − 1
X2j

))2

= 1

n

(
ne2

n(X1· − X2·)2 − 2
en

n − 1
(X1· − X2·)

n∑
j=1

(X1j − X2j )

+
(

1

n − 1

)2 n∑
j=1

(X1j − X2j )
2

)

= n(n − 2)

(n − 1)2 (X1· − X2·)2 + 1

n(n − 1)2

n∑
j=1

(X1j − X2j )
2.

Let Se
2 = 1

n

∑n
j=1(X

(−j)

1· − X
(−j)
2· )(X

(−j)

1· − X1j ). It follows that

Se
2 = 1

n

n∑
j=1

(
en(X1· − X2·) − 1

n − 1
(X1j − X2j )

)((
enX1· − 1

n − 1
X1j

)
− X1j

)

= 1

n

n∑
j=1

(
en(X1· − X2·) − 1

n − 1
(X1j − X2j )

)
(enX1· − enX1j )
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= e2
n

n
(X1· − X2·)

n∑
j=1

(X1· − X1j ) − en

n(n − 1)

n∑
j=1

(X1j − X2j )(X1· − X1j )

= − en

n(n − 1)

n∑
j=1

(X1j − X2j )(X1· − X1j )

[
since

n∑
j=1

(X1· − X1j ) = 0

]

= − en

n(n − 1)

(
X1·

n∑
j=1

(X1j − X2j ) −
n∑

j=1

X2
1j +

n∑
j=1

X1jX2j

)

= − en

n − 1

(
X1·(X1· − X2·) − 1

n

n∑
j=1

X2
1j + 1

n

n∑
j=1

X1jX2j

)

= n

(n − 1)2 (σ̂ 2
1 − ĉov).

This completes the proof.�

PROOF OFPROPOSITION2.1. By the weak law of large numbers, it follows
that

σ̂ 2
1 − ĉov−→ σ 2

1 − ρσ1σ2.

Thus conditionρ < σ1/σ2 implies thatσ̂ 2
1 > ĉov for sufficiently largen. Thus,

λ
opt
2 eventually will be positive. �

PROOF OF PROPOSITION2.2. From Lemma 2.1, it follows that the second
term of S1 goes to zero in probability asn goes to infinity, while the first term
converges to(θ0

1 − θ0
2)2 in probability. Therefore we have

Se
1

P
θ0−→ (θ0

1 − θ0
2)2 asn → ∞,

where(θ0
1 − θ0

2)2 �= 0 by assumption.
Moreover, we see thatSe

2 = OP (1
n
). By definition ofλopt

2 , it follows that

|λ∗
2| =

∣∣∣∣Se
2

Se
1

∣∣∣∣ P
θ0−→ 0 asn → ∞.

This completes the proof.�

PROOF OF PROPOSITION 2.3. By differentiatingD
(m)
e − ν(1tλ − 1) and

setting the result to zero, it follows that

∂D
(m)
e − ν(1tλ − 1)

∂λ
= −2be + 2Aeλ

opt
e − ν1 = 0.
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It then follows that

λopt
e = A−1

e

(
be + ν

2
1
)
.

We then have

1= 1tλopt
e = 1tA−1

e

(
be + ν1

2

)
.

Thus

ν = 2

1tA−1
e 1

(1− 1tA−1
e be).

Therefore

λopt
e = A−1

e

(
be + 1− 1tA−1

e be

1tA−1
e 1

1
)
.

SinceD
(m)
e is a quadratic function ofλ andA ≥ 0, the minimum is achieved at the

pointλopt
e . Furthermore, by (5) and (7) we have

A−1
e be = A−1

e (A1 − e2
n
̂1) = (1,0,0, . . . ,0)t − e2

nA
−1
e 
̂1.

Denote the optimum weight vector byλopt. It follows that

λopt
e = (1,0,0, . . . ,0)t − e2

n

(
A−1

e 
̂1 − 1tA−1
e 
̂1

1tA−1
e 1

A−1
e 1

)
.

This completes the proof.�

PROOF OFPROPOSITION2.4. From (8), it follows that

λ
opt
1 = 1− (n1/(n1 − 1))2σ̂ 2

1

n1(X1· − X2·)2 + (1/(n1 − 1))σ̂ 2
1

.

By the weak law of large numbers, we have

σ̂ 2
1

P
θ0−→ σ 2

1 ,

(X1· − X2·)2 P
θ0−→ (θ0

1 − θ0
2)2 �= 0.

It then follows that

(n1/(n1 − 1))2σ̂ 2
1

n1(X1· − X2·)2 + (1/(n1 − 1))σ̂ 2
1

P
θ0−→ 0.

We then have

λ
opt
1

P
θ0−→ 1.
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The last assertion of the theorem follows by the fact thatλ1 + λ2 = 1. �

PROOF OFTHEOREM 3.1. Consider

1

n1
Dn1(λ) = 1

n1

n1∑
j=1

(
X1j − φ

(
θ̃

(−j)
1

))2

= 1

n1

n1∑
j=1

((
X1j − φ

(
θ̂

(−j)
1

)) + (
φ

(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

)))2

= 1

n1

n1∑
j=1

(
X1j − φ

(
θ̂

(−j)
1

))2 + 1

n1

n1∑
j=1

(
φ

(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

))2

+ 2

n1

n1∑
j=1

(
X1j − φ

(
θ̂

(−j)
1

))(
φ

(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

))
.

Note that

1

n1

n1∑
j=1

(
X1j − φ

(
θ̂

(−j)
1

))(
φ

(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

))

= 1

n1

n1∑
j=1

(
X1j − φ(θ0

1)
)(

φ
(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

))

+ 1

n1

n1∑
j=1

(
φ(θ0

1) − φ
(
θ̂

(−j)
1

))(
φ

(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

))
= S1 + S2,

where

S1 = 1

n1

n1∑
j=1

(
X1j − φ(θ0

1)
)(

φ
(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

))
,

S2 = 1

n1

n1∑
j=1

(
φ(θ0

1) − φ
(
θ̂

(−j)
1

))(
φ(θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

))
.

We first show thatS1
P

θ0−→ 0.
Consider

Pθ0(|S1| > ε)

= Pθ0
(
ε < |S1| and

∣∣φ(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

)∣∣ < M for all j
)

+ Pθ0
(
ε < |S1| and

∣∣φ(
θ̂

(−l)
1

) − φ
(
θ̃

(−l)
1

)∣∣ ≥ M for somel
)
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≤ Pθ0

(
ε < |S1| < M

n1

n1∑
j=1

|X1j − φ(θ0
1)|

)

+
n1∑
l=1

Pθ0
(∣∣φ(

θ̂
(−l)
1

) − φ
(
θ̃

(−l)
1

)∣∣ ≥ M
)

≤ Pθ0

(
ε

M
<

∣∣∣∣∣ 1

n1

n1∑
j=1

(
X1j − φ(θ0

1)
)∣∣∣∣∣

)
+ n1Pθ0

(∣∣φ(
θ̂

(−1)
1

) − φ
(
θ̃

(−1)
1

)∣∣ ≥ M
)

= Pθ0

(∣∣∣∣∣ 1

n1

n1∑
j=1

(
X1j − φ(θ0

1)
)∣∣∣∣∣ >

1

M
ε

)

+ n1Pθ0
(∣∣φ(

θ̂
(n1−1)
1

) − φ
(
θ̃

(n1−1)
1

)∣∣ ≥ M
)
.

The first term goes to zero by the weak law of large numbers. The second term
also goes to zero by assumption (iv). We then have

Pθ0(|S1| > ε) −→ 0 asn1 → ∞.(18)

We next show thatS2
P

θ0−→ 0 asn1 → ∞.
Consider

Pθ0(|S2| > ε)

= Pθ0
(
ε < |S2| and

∣∣φ(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

)∣∣ < M for all j
)

+ Pθ0
(
ε < |S2| and

∣∣φ(
θ̂

(−l)
1

) − φ
(
θ̃

(−l)
1

)∣∣ ≥ M for somel
)

≤ Pθ0

(
ε < |S2| < M

n1

∣∣∣∣∣
n1∑

j=1

(
φ

(
θ̂

(−j)
1

) − φ(θ0
1)

)∣∣∣∣∣
)

+
n1∑
l=1

Pθ0
(∣∣φ(

θ̂
(−l)
1

) − φ
(
θ̃

(−l)
1

)∣∣ ≥ M
)

≤ Pθ0

(
1

M
ε <

∣∣∣∣∣ 1

n1

n1∑
j=1

(
φ

(
θ̂

(−j)
1

) − φ(θ0
1)

)∣∣∣∣∣
)

+ n1Pθ0
(∣∣φ(

θ̂
(−1)
1

) − φ
(
θ̃

(−1)
1

)∣∣ ≥ M
)

= Pθ0

(∣∣∣∣∣ 1

n1

n1∑
j=1

(
φ

(
θ̂

(−j)
1

) − φ(θ0
1)

)∣∣∣∣∣ >
1

M
ε

)

+ n1Pθ0
(∣∣φ(

θ̂
(n1−1)
1

) − φ
(
θ̃

(n1−1)
1

)∣∣ ≥ M
)
.
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The first term goes to zero by assumption (ii). The second term also goes to zero
by assumption (iv). We then have

Pθ0(|S2| > ε) −→ 0 asn1 → ∞.(19)

It then follows that

1

n1
Dn1(λ) = 1

n1

n1∑
j=1

(
X1j − φ

(
θ̂

(−j)
1

))2

+ 1

n1

n1∑
j=1

(
φ

(
θ̂

(−j)
1

) − φ
(
θ̃

(−j)
1

))2 + Rn,

(20)

whereRn

P
θ0−→ 0. Observe that the first term is independent ofλ. Therefore the

second term must be minimized with respect toλ to obtain the minimum of
1
n1

Dn1(λ). We see that the second term is always nonnegative. It then follows that,
with probability tending to 1,

1

n1
Dn1(λ) ≥ 1

n1

n1∑
j=1

(
X1j − φ

(
θ̂

(−j)
1

))2 = 1

n1
Dn1(w),

sinceφ(θ̂
(−j)
1 ) = φ(θ̃

(−j)
1 ) for λ(cv) = w0 = (1,0,0, . . . ,0)t for fixedn1.

Finally, we will show that

λ(cv)
P

θ0−→ w0 asn1 → ∞.

Suppose to the contrary thatλ(cv)
P

θ0−→ w0 + d whered is a nonzero vector. Then
there existsn0 such that forn1 > n0,

1

n1
Dn1

(
λ(cv)) ≥ 1

n1
Dn1(w).

This is a contradiction becauseλ(cv) is the vector which minimizes1
n1

Dn1 for any

fixedn1 and the minimum of1
n1

Dn1(λ) is unique by assumption.�

PROOF OF LEMMA 3.1. Recall that the average discrepancy of cross-
validation for the log-normal case is given by

1

n
Dn(λ1, λ2)

= 1

n

n∑
j=1

(
X1j − e(λ1/(n−1))

∑
k �=j log(x1k)+(λ2/(n−1))

∑
k �=j log(x2k)+1/2)2

.

(21)
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(i) Since we require thatλ1 + λ2 = 1, we can rewrite the average discrepancy
as

1

n
Dn(1− λ2, λ2) = 1

n

n∑
j=1

(
X1j − eY

(−j)
1· +λ2(Y

(−j)
2· −Y

(−j)
1· )+1/2)2

,(22)

whereYij = log(Xij ), i = 1,2; j = 1,2, . . . , n.

Note thatα(x) = (x − a)2 andβ(x) = eb∗x+c are both convex functions for
any given constantsa, b andc. It then follows thatγ (x) = (eb∗x+c − a)2 is also
a convex function. Thus,1

n
Dn(1− λ2, λ2) is a strict convex function with respect

to λ2 for fixedn.
(ii) The first-order derivative of1

n
Dn is given by

1

n

∂Dn(1− λ2, λ2)

∂λ2

= −2

n

n∑
j=1

(
X1j − eY

(−j)
1· +λ2(Y

(−j)
2· −Y

(−j)
1· )+1/2)

∗ eY
(−j)
1· +λ2(Y

(−j)
2· −Y

(−j)
1· )+1/2 ∗ (

Y
(−j)

2· − Y
(−j)

1·
)
.

(23)

Observe that

Y
(−j)

2· − Y
(−j)

1· = (Y 2· − Y 1·) + 1

n − 1
([Y 2· − Y 1·] − [Y2j − Y1j ]).

It then follows that
1

n

∂Dn(1− λ2, λ2)

∂λ2

= −2

n

n∑
j=1

(
X1j − e

Y 1·+λ2(Y 2·−Y 1·)+T n
j +1/2)

∗ e
Y 1·+λ2(Y 2·−Y 1·)+T n

j +1/2 ∗ (
(Y 2· − Y 1·) + Rn

j

)
,

(24)

where

Rn
j = 1

n − 1
([Y 2· − Y 1·] − [Y2j − Y1j ]) = OP (n−1),

T n
j (λ2) = λ2R

n
j + 1

n − 1
(Y 1· − Y1j ).

(25)

Thus
1

n

∂Dn(1− λ2, λ2)

∂λ2
= −2Fn(λ2) ∗ En(λ2),(26)

where

Fn(λ2) = eY 1·+λ2(Y 2·−Y 1·)+1/2 ∗ (Y 2· − Y 1·)(27)
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and

En(λ2) = 1

n

n∑
j=1

(
X1j − e

Y 1·+λ2(Y 2·−Y 1·)+T n
j +1/2)

∗ (
1+ Rn

j /(Y 2· − Y 1·)
) ∗ e

T n
j .

(28)

For any|λ2| ≤ 1, we haveT n
j (λ2) = OP (n−1) ande

T n
j = 1+T n

j +OP (n−2). Thus

En(λ2) = 1

n

n∑
j=1

(
X1j − e

Y 1·+λ2(Y 2·−Y 1·)+T n
j +1/2)

∗ (
1+ Rn

j /(Y 1· − Y 2·)
)

∗ (
1+ T n

j + OP (n−2)
)
, |λ2| ≤ 1.

(29)

Furthermore, for any|λ2| ≤ 1 we have

En(λ2) = 1

n

n∑
j=1

(
X1j − e

Y 1·+λ2(Y 2·−Y 1·)+T n
j +1/2)

+ Un(λ2)/(Y 2· − Y 1·) + Vn(λ2) + Wn(λ2)/(Y 2· − Y 1·),

(30)

where

Un(λ2) = 1

n

n∑
j=1

(
X1j − eY

(−j)
1· +λ2(Y

(−j)
2· −Y

(−j)
1· )+1/2) ∗ Rn

j ,

Vn(λ2) = 1

n

n∑
j=1

(
X1j − eY

(−j)
1· +λ2(Y

(−j)
2· −Y

(−j)
1· )+1/2) ∗ (

T n
j + OP (n−2)

)
,

Wn(λ2) = 1

n

n∑
j=1

(
X1j − eY

(−j)
1· +λ2(Y

(−j)
2· −Y

(−j)
1· )+1/2) ∗ (

T n
j + OP (n−2)

) ∗ Rn
j .

If |λ2| < 1, then∣∣Y (−j)

1· + λ2
(
Y

(−j)

2· − Y
(−j)

1·
)∣∣ ≤ ∣∣Y (−j)

1·
∣∣ + ∣∣Y (−j)

2· − Y
(−j)

1·
∣∣.(31)

We also consider

Bn(λ2) = 1

n

n∑
j=1

T n
j (λ2)

= 1

n

n∑
j=1

(
1

n − 1

[
λ2

(
(Y 1· − Y 2·) − (Y1j − Y2j )

) − 1

n − 1
(Y 1· − Y1j )

])
.
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Note that, for any sequence of random variablesZj , j = 1,2, . . . , n, E|(ZiZk)| <
∞, i, k = 1,2, . . . , n,

P

(∣∣∣∣∣ 1

n(n − 1)

n∑
j=1

Zn

∣∣∣∣∣ > ε

)
≤ 1

n4E

(∑
i

∑
k

ZiZk

)
= O(n−2).(32)

By combining (25), (31) and (32), we can show that, for|λ2| ≤ 1,

Un(λ2) = OP (n−2), Vn(λ2) = OP (n−2),

Wn(λ2) = OP (n−2), Bn(λ2) = OP (n−2).
(33)

We also observe that

1

n

n∑
j=1

(
X1j − e

Y 1·+λ2(Y 2·−Y 1·
)+T n

j +1/2)

= 1

n

n∑
j=1

(
X1j − eY 1·+λ2(Y 2·−Y 1·)+1/2(1+ T n

j (λ2) + OP (n−2)
))

.

It then follows that

En(λ2) = 1

n

n∑
j=1

(
X1j − eY 1·+λ2(Y 2·−Y 1·)+1/2) + Cn(λ2),(34)

whereCn = Bn(λ2) + Un(λ2)/(Y 2· − Y 1·) + Vn(λ2) + Wn(λ2)/(Y 2· − Y 1·).
It is clear thatY 2· − Y 1·

a.s.−→ µ0
1 − µ0

2. Thus

En(λ2) = 1

n

n∑
j=1

X1j − eY 1·+λ2(Y 2·−Y 1·)+1/2 + OP (n−2).(35)

Without essential loss of generality, we assume thatµ0
1 > µ0

2. It then follows that

En(1)
a.s.−→ eµ0

1+1/2(1− eµ0
2−µ0

1
)
< 0(36)

and

En(−1)
a.s.−→ eµ0

1+1/2(1− eµ0
1−µ0

2
)
> 0.(37)

By (26), (27), (36) and (37), it follows that for sufficiently largen,

4

n2 ∗ ∂Dn(1− λ2, λ2)

∂λ2

∣∣∣∣
λ2=1

∗ ∂Dn(1− λ2, λ2)

∂λ2

∣∣∣∣
λ2=−1

= Fn(1) ∗ Fn(−1) ∗ En(1) ∗ E(−1) < 0.

(38)

SinceDn is strictly convex, then its second-order derivative is positive. Therefore,
the first-order derivative ofDn is monotone. By (38), we then have that the
optimal weightλ∗

2 ∈ (−1,1) for sufficiently largen with probability tending to 1.
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Furthermore, it converges to a unique limit. Suppose that this is not true and
there are two limitsλ

I
2 andλ

II
2 . Then 0.5λ

I
2 + 0.5λ

II
2 achieves a small value for

1
n
Dn(1− λ2, λ2) since it is strictly convex. This is a contradiction.�

PROOF OF COROLLARY 3.2. It suffices to show the assumptions of Theo-
rem 3.1 are satisfied for the log-normal case.

(i) By Lemma 3.1,1
n
Dn(1 − λ2, λ2) is a strict convex function with respect

to λ2. Therefore assumption (i) of Theorem 3.1 is satisfied.
(ii) We then check assumption (ii) of Theorem 3.1. Let1

n
SI

n = 1
n

×∑n
j=1(φ(µ

(−j)
1 ) − φ(µ0

1)). Thus

1

n
SI

n = 1

n

n∑
j=1

(
e(1/(n−1))

∑
k �=j log(X1k)+1/2 − eµ0

1+1/2).
Let An

j = e(1/(n−1))
∑

k �=j log(X1k)+1/2 − eµ0
1+1/2. It then follows that

1

n
SI

n = 1

n

n∑
j=1

An
j .

Observe thatYij = log(Xij ) ∼ N(µ0
i ,1), j = 1,2, . . . , n. Thus we have

Eµ0
1

(
elog(Xij )∗t ) = E(eYij∗t ) = eµ0

i t+t2/2,(39)

for i = 1,2; j = 1,2, . . . , n. We then have

Eµ0
1
e(1/(n−1))

∑n
k=2 log(X1k) = (

e1/(n−1)µ0
1+1/(2(n−1)2))n−1

= eµ0
1+1/(2(n−1)).

(40)

We also have

Eµ0
1
e(1/(n−1))

∑n
k=2 log(X1k) ∗ e(1/(n−1))

∑n−1
l=1 log(X1l )

= Eµ0
1

(
e(1/(n−1)) log(X11)+(1/(n−1)) log(X1n)) ∗ E

(
e(2/(n−2))

∑n−1
k=2 log(X1k)

)
= e2∗(1/(n−1))µ0

1+1/(2(n−1)2) ∗ e(n−2)∗(2/(n−1))µ0
1+2/(n−1)2)

= e2µ0
1+((2n−4)/(n−1)2).

(41)

By (39) and (40), it then follows that

Eµ0
1
(An

1)
2 = e ∗ Eµ0

1

[
e(1/(n−1))

∑n
k=2 log(X1k) − eµ0

1
]2

= e ∗ [
Eµ0

1

(
e(1/(n−1))

∑n
k=2 log(X1k)

)2
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− 2eµ0
1 ∗ Eµ0

1

(
e(1/(n−1))

∑n
k=2 log(X1k)

) + e2µ0
1
]

= e ∗ [
Eµ0

1

(
e(2/n−1))

∑n
k=2 log(X1k)

) − 2eµ0
1 ∗ eµ0

1+1/(2(n−1)) + e2µ0
1
]

= e ∗ [
(Eµ0

1
e(2/(n−1)) log(X11)

)n−1 − 2eµ0
1 ∗ eµ0

1+1/(2(n−1)) + e2µ0
1
]

= e ∗ [
e2µ0

1+2/(n−1) − 2eµ0
1 ∗ eµ0

1+1/(2(n−1)) + e2µ0
1
] [by (15)]

= e2µ0
1+1O

(
1

n

)
.

By (40) and (41), we also have

Eµ0
1
(An

1 ∗ An
n) = Eµ0

1

(
e(1/(n−1))

∑n
k=2 log(X1k)+1/2 − eµ0

1+1/2)
∗ (

e(1/(n−1))
∑n−1

l=1 log(X1k)+1/2 − eµ0
1+1/2)

= e
(
Eµ0

1
e(1/(n−1))

∑n
k=2 log(X1k) ∗ e(1/(n−1))

∑n−1
l=1 log(X1l )

− 2eµ0
1 ∗ Eµ0

1
e(1/(n−1))

∑n
k=2 log(X1k) + e2µ0

1
)

= e ∗ (
e2µ0

1+((2n−4)/(n−1)2) − 2∗ eµ0
1 ∗ eµ0

1+1/(2(n−1)) + e2µ0
1
)

= e2µ0
1+1(e((2n−4)/(n−1)2) − 2∗ e1/(2(n−1)) + 1

)
= e2µ0

1+1O

(
1

n

)
.

For any fixedj andk, we then have

Eµ0
1
(An

j ∗ An
k) = O

(
1

n

)
.(42)

Therefore,

Pµ0
1

(∣∣∣∣1

n
SI

n

∣∣∣∣ > ε

)
≤ 1

n2ε2E(SI
n)2

= 1

n2ε2E

(
n∑

j=1

(An
j )

2

)
+ 1

n2ε2

(
n∑

j=1

∑
k �=j

Eµ0
1
(An

j ∗ An
k)

)

= 1

nε2E(An
1)

2 + n(n − 1)

n2ε2 Eµ0
1
(An

1A
n
n)

= O

(
1

n

)
−→ 0 asn → ∞.

This implies that assumption (ii) is satisfied for the log-normal case.
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(iii) Let

1

n
SII

n = 1

n

n∑
j=1

(
X1j − φ

(
µ̂

(−j)
1

)2)
.

Observe that

1

n
SII

n = 1

n

n∑
j=1

X2
1j − 1

n

n∑
j=1

X1jφ
(
µ̂

(−j)
1

) + 1

n

n∑
j=1

φ2(µ̂(−j)
1

)
= In

1 + In
2 + In

3 ,

whereIn
1 = 1

n

∑n
j=1 X2

1j , In
2 = 1

n

∑n
j=1 X1jφ(µ̂

(−j)
1 ) andIn

3 = 1
n

∑n
j=1 φ2(µ̂

(−j)
1 ).

By the weak law of large numbers, it follows that

In
1 = 1

n

n∑
j=1

X2
1j

P
µ0

1−→ E(X11)
2 = e2µ0

1+2.(43)

Consider

In
2 = 1

n

n∑
j=1

X1jφ
(
µ̂

(−j)
1

) = 1

n

n∑
j=1

eY1j+(1/(n−1))
∑

k �=j Y1k+1/2,(44)

whereY1j = log(X1j ) ∼ N(µ0
1,1), j = 1,2, . . . , n.

Note that for anyj

Y1j + 1

n − 1

∑
k �=j

Y1k = n − 2

n − 1
Y1j + n

n − 1
Y 1·,

whereY 1· = 1
n

∑n
k=1 Y1k .

It then follows that

In
2 = e1/2 ∗ e(n/(n−1))Y 1· ∗

(
1

n

n∑
k=1

e((n−2)/(n(n−1)))∗Y1k

)
.(45)

Note that

1

n

n∑
k=1

e((n−2)/(n(n−1)))∗Y1k

= 1

n

n∑
k=1

(
1+ n − 2

n(n − 1)
∗ Y1k + OP (n−2)

) P
µ0

1−→ 1.

(46)

It then follows that

In
2

P
µ0

1−→ eµ0
1+1/2 asn → ∞.(47)
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We also have

In
3 = e ∗ e(2n/(n−1))Y 1· 1

n

n∑
j=1

e−(2/(n−2))Yj

P
µ0

1−→ e2µ0
1+1.

It then follows that

1

n
SII

2

P
µ0

1−→ e2µ0
1+2 − 2∗ eµ0

1+1/2 + e2µ0
1+1.(48)

This implies that assumption (iii) is satisfied.
(iv) We are now in a position to verify Assumption (iv) of Theorem 3.1. Note

that the optimum weightλ∗
2 is chosen such that

∂Dn(1− λ2, λ2)

∂λ2

∣∣∣∣
λ2=λ∗

2

= 0.

By (27), we see that eitherFn > 0 or Fn < 0 for sufficiently largen if µ1 �= µ2.
By (26), (35) and Lemma 3.1, it follows that the optimum weightλ∗

2(n) satisfies

0= En(λ
∗
2) = 1

n

n∑
j=1

(
X1j − eY 1·+λ∗

2(Y 2·−Y 1·)+1/2) + OP (n−2).(49)

We then have

φ(µ̃n
1) = eY 1·+λ∗

2(Y 2·−Y 1·)+1/2 = 1

n

n∑
j=1

X1j + OP (n−2).(50)

For sufficiently largen and any constantM > 0, say 1, and a certainC(M),
which depends onM and whose value is of no relevance to the argument, we have

Pµ0
1

(|φ(µ̂n
1) − φ(µ̃n

1)| > M
)

= Pµ0
1

(∣∣∣∣∣e1/n
∑n

j=1 log(X1j )+1/2 − 1

n

n∑
j=1

X1j + OP (n−2)

∣∣∣∣∣ > M

)

≤ Pµ0
1

(∣∣e1/n
∑n

j=1 log(X1j )+1/2 − eµ0
1+1/2∣∣ > M/2

)
+ Pµ0

1

(∣∣∣∣∣1

n

n∑
j=1

X1j − eµ0
1+1/2

∣∣∣∣∣ > M/2

)
+ O(n−2)

≤ Pµ0
1

(∣∣∣∣∣1

n

n∑
j=1

log(X1j ) − µ0
1

∣∣∣∣∣ > C(M)

)

+ Pµ0
1

(∣∣∣∣∣1

n

n∑
j=1

X1j − eµ0
1+1/2

∣∣∣∣∣ > M/2

)
+ O(n−2)

= O(n−2).
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The last inequality follows since the fourth moments ofX1j and log(X1j ) both
exist for any fixedj . Therefore, the last assumption of Theorem 3.1 is satisfied for
the log-normal case. This completes the proof.�

The proofs of Theorems 3.2–3.4 resemble the proofs for fixed weights as
given by Wang, van Eeden and Zidek (2004). These theorems can be proved by
using Theorem 3.1 and replacing fixed weights with adaptive weights in weighted
likelihood estimation. Details can be found in Wang (2001).
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