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SELECTING LIKELIHOOD WEIGHTS BY CROSS-VALIDATION?
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The (relevance) weighted likelihood was introduced to formally embrace
a variety of statistical procedures that trade bias for precision. Unlike
its classical counterpart, the weighted likelihood combines all relevant
information while inheriting many of its desirable features including good
asymptotic properties. However, in order to be effective, the weights involved
in its construction need to be judiciously chosen. Choosing those weights is
the subject of this article in which we demonstrate the use of cross-validation.
We prove the resulting weighted likelihood estimator (WLE) to be weakly
consistent and asymptotically normal. An application to disease mapping data
is demonstrated.

1. Introduction. The weighted likelihood (WL for short) has been developed
for a variety of purposes. Moreover, it shares its underlying purpose with other
methods such as weighted least squares and kernel smoothers which can reduce
an estimator’s variance while increasing its bias to reduce mean-squared error
(MSE), that is, increase its precision. However, the achievement of these gains
depends on choosing the weights well, which is the subject of this article. More
specifically, we show that they may be data dependent (i.e., “adaptive”) and chosen
by cross-validation. The idea of data-dependent weights goes back at least to the
celebrated James—Stein estimator, a WL estimator with adaptive weights that does
successfully trade bias for variance [Hu and Zidek (2002)].

To describe the WL, we assume independent random response vectors
X1, ..., X, with probability density functionsfi(-; 61), ..., fu(;6m), Where
Xi = (Xi1, ..., Xin;)". Further suppose that only population 1, in particulgr
an unknown vector of parameters, is of inferential interest. GivenXata, the
classical likelihood would be

ny
Ly(x1,61) = [ ] f(xa)s 60).
j=1
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When the remaining parameteks .. ., 6,, are thought to resembig, the WL
is defined as
WL 61) = [ [ [ fatxij: 60",

i=1j=1

where A = (A1, ..., Am), the “weights vector,” must be specified. Notice that
the parameters from the remaining populatiais, .., 6,,, unlike the data they
generate, do not appear in the WL, since inferential interest focusés.dh
follows that

m n;

logWL(x; 61) =) > A;log fi(xij: 61).

i=1j=1
The WL extends the local likelihood method of Tibshirani and Hastie (1987) for
nonparametric regression, although the idea predates them [see Hu and Zidek
(2002) for a review]. Following Hu (1997), Hu and Zidek (1995, 2001, 2002)
extend the local likelihood to a more general setting. However, the aim is the same.
Their method also combines all relevant information in samples from populations
thought to resemble the one of inferential interest.

The maximum WL estimator (WLE) fot, sayéy, is defined by

61 = arg SupWL(x; 61).
01€0©

In many cases the WLE may be obtained by solvingestienating equation:
(9/061) logWL(x; 1) =0.

Note that uniqueness of the WLE is not assumed.

Like the MLE, the WLE has a number of desirable properties [Hu and Zidek
(2002)], in particular consistency and asymptotic normality under reasonable
general conditions [Hu (1997) and Wang, van Eeden and Zidek (2004)]. However,
these asymptotic properties have only been shown with fixed weights and hence
need to be extended in this article to cover the estimators we obtain using cross-
validation.

In its most primitive but nevertheless useful form, the cross-validation procedure
consists of controlled and uncontrolled division of the data sample into two
subsamples. For example, a subsample can be generated by deleting one or more
observations or it can be a random sample from the data set. Stone (1974) began the
systematic study of cross-validatory choice and assessment in statistical prediction.
Both Stone (1974) and Geisser (1975) discuss its application tdibeup
problem and use a linear combination of the sample means from different groups
to estimate a common mean. Breiman and Friedman (1997) also demonstrate the
benefit of using cross-validation to obtain linear combinations of predictors that
perform well in multivariate regression.
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The article is organized as follows. The adaptive weights are derived in
Section 2. The asymptotic properties of the resulting WLE are presented
in Section 3. Results of simulation studies are discussed in Section 4. In Section 5
an application to disease mapping data demonstrates the benefits of using the
proposed method in conjunction with the WLE when compared with traditional
estimators.

2. Choosing adaptive weights. For cross-validation there are many ways of
dividing the entire sample into subsets, such as a random selection technique.
However, we use the simpleltave-one-out approach in this article since the
analytic forms of the optimum weights are then completely tractable for the
linear WLE. Denote the vector of parameters and the weight vectof by
(61,02, ..., O, p) ANAL = (A1, A2, - .., Am), respectively. LerP andrSP denote
the optimum weight vectors to be defined in the sequel for samples with equal
and unequal sizes, respectively. We require thét, A; = 1 in this section and
throughout this article.

Suppose that we have populations which might be related to each other. The
probability density functions or probability mass functions are of the férm; 6;)
with 6; as the parameter vector for populatioAssume that

i.i.d.

X11, X12, X1z, ..., Xuy ~ fi(x;61),
i.i.d.

X21, Xo22, X2z, ..., Xop, ™~ folx;62),
' iid.

Xm1, Xm2,2 Xm3, ..., Xpn, ™~ Sm (X3 0m),

where, for fixedi, the {X;;} are observations obtained from populatioand so

on. Assume that observations obtained within each population are independent and
identically distributed. Also observations from one population are independent of
those from other populations except that C&¥t, X;;) = p, for any fixed; and

i # k. That is, observations having the same second subscripts are not necessarily
independent even though they are from different populations. This would allow a
spatial correlation structure but not a temporal one. We also assumé(tkigh =

¢6;) =¢;,say, forj=1,2,...,n;,i =1,2,...,m. The population parameter of

the first populationds, is of inferential interest.

Our cross-validatory approach of estimating the weights for the WLE flows
from taking prediction as our inferential objective. In other words, we seek an
estimatord; of #; that enables us to predict accurately, in some sense, a randomly
drawn elemenk’; from the first population. But how should the precisiorobe
assessed?

One answer is the expected log score. Denoting BY the expectation
with respect to the conditional distribution of; given 6;, that score is
E[log f1(X1|61)], an index ofd,’s performance.
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However, the complexity of that index makes its use impractical in applications
such as that in Section 5. We therefore adopt an approximation as a compromise.
To obtain the approximation, we assume a one-to-one mappifgiofo (¢1, t1)
where the range op;1 covers that ofX;. In fact, with an abuse of notion we
represents by 61 = (¢1, 71) andéy in a similar way. We further assume that

dlogELAX1OT|  _
8(131 61=61
and
92log E[ f1(X1/61)]
- <0,
92¢1 b1=01

for all 6 with all higher-order derivatives being assumed to exist. These assump-
tions are satisfied for the normal distribution, for example, and more importantly
for our application in Section 5, the Poisson distribution.

Under these assumptions, the first-order term in a three-term Taylor expansion
of the expected log score vanishes. Therefore, ignoring irrelevant terms and
factors, we obtain(¢1 — ¢1)? as an approximation to the negative expected log
score as a measure @f’s precision. Finally, for its empirical assessment, we
estimate the unknowgy in this measure by1. Moreover, we adopt that empirical
measure to obtain adaptive weights by cross-validation. To that end, we-yge
to indicate that thg'th item has been dropped from the sample.

Taking the usual path, we predixt ; by¢(9~£_’)), the WLE of its mean without

using theXy;. Note that¢(é{_j)) is a function of the weight vectax by the
construction of the WLE. Based on the log score approximation above, a natural
measure for the discrepancy of the WLE becomes

ny

@ DO =) (X1; - (01 ))".

j=1

The optimum weights are derived such that the minimun¢) is achieved for
fixed sample sizess, no, ..., n, andd_/" 1 A; = 1.

If the inferential interest is on the means of some commonly used distributions
from the exponential family, such as normal, binomial, exponential and Poisson
distributions, it then follows tha# () is simply a linear combination of those
MLEs for each population. In this section we will investigate the behavior of the
optimum weights by cross-validation for the linear case since we can derive the
analytical forms of the optimum weights from (1).

2.1. Linear WLEs for equal sample sizes. Stone (1974) and Geisser (1975)
discuss the application of the cross-validation approach to the so-¢&aiedup
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problem. Suppose that the data Setonsists ofn observations in each af
groups. The mean predictor for thé group is

ni=(1- O()Yl'. + O(Y..,

whereX;. = 1 "1 XijandX..= 2", X;.. If our interest focuses on group 1,
the relevant predictor is

A—( K- )X 3 Y%
fia= kg

whereq is a parameter. Stone (1974) uses cross-validation to derive an optimal
value for «. We remark that the above formula is just a particular linear
combination of the sample means.

We consider more general linear combinations and throughout this section
assumei| =ny=---=n,, =n. Let é{e) denote the WLE obtained through cross-
validation. If¢ (9) = 6, the linear WLE ford; is then defined as

(e) Z)\‘ X;.,

whered"" 1 4; = 1.

In this section we will use cross-validation by simultaneously deleting
X1j, X2j,..., X, for each fixedj. That is, we delete one data point from each
sample at each step. This might be appropriate if these data points are obtained at
the same time point and strong associations exist among them. By simultaneously
deletingX1;, X2;, ..., X, for each fixed;j, we might achieve numerical stabil-
ity of the cross-validation procedure. An alternative approach is to delete a data
point from only the first sample at each step. That approach will be studied in this
section as WeII

LetX ) pethe sample mean of thih sample withjth element in that sample
excluded. A natural measure for the discrepand§;ohight be

D™ = Z(le =Y X’ )

j=1 i=1
=c(X) = 2'be(X) + L A (XA,

where c(X) = Yy X3, (be(X))i = Yoy X1; X, " and (Ae(X)ix =
Z”_lx( J)X,E D i=1,2 ... nk=12 ... m.For expository simplicity, let
b.=b.(X)andA, = A.(X) in this article.

An optimum weight vector by the cross-validation procedure is defined to be a
vector that minimizes the objective functi@™ and satisfie"7. 1 A; = 1.
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2.1.1. Two-population case. For simplicity, first consider the simple case of
just two populations,

i.i.d.
X1, X12, X13, ..., Xu ™~ fi(x;61, o?),
i.i.d.
Xo1, X2z, X3, ..., Xon ™ fa(x; 62, 02),
with E(X1;) = 61, E(X2;) = 62, Var(X1j) = o2 and VaKX,;) = o2. Further-
more, assume that= cor(X1;, X2,), j = 1,2, ..., n. Denoted® = (62, 69) where
02 ande? are the true values fah andé,, respectively.
We seek the optimum weights; and A> with A1 + A> = 1 such that they
minimize the following objective function:

n
D@ =3 (X1 — Xy " = 12X 5 "V =y i+ A2 — D).
j=1

Differentiating Déz) with respect to.1 andip, we have

2
oD - XD (X0 — XD — 3% _o
—Z 1j — rXq. 2X5. ) —y =0,
A1
2
aD?

n
:_ZY( J)(le_)L X( D) — o X( J)) y =0.
dAo o]

It follows that
opt(x) . 1(X( J) X( J))(X( J) le)
(3) (X( h2) X( J))
AP (X)=1— A(l)pt(X).

’

LEMMA 2.1. Thefollowing identity holds:
AP =129 and ASP'=s5/55,

where
., hn—2) o024+
Si= 2 1)2<X1 — X2)°+ 1)2 Z(Xl, X2;)°,
e _ n <A

where 6;° = 1 ';:l(xlj —X1)?and COv=; ¥"_1 (X1j — X1.)(X2j — X2.).

t
The value o™ can be seen as some sort of measure of relevance between the
two samples. If this “measure” is almost zero, the formulem‘;ﬂI will assume a
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very small value. This implies that there is no need to combine the two populations
if the difference between the two sample means is relatively large or the second
sample has little relevance to the first one. The weights chosen by the cross-
validation procedure will then guard against the undesirable scenario in which
too much bias might be introduced into the estimation procedure. On the other
hand, if the second sample does contain valuable information about the parameter
of interest, then the cross-validation procedure will recognize that by assigning a
nonzero value tagpt. Note that knowledge of the variances and correlation is not
assumed.

PROPOSITION2.1. Ifp < Z—; then
P
P> 0) -5 1.

We remark that the conditiop < o1/02 is satisfied ifop < o1 or p < 0. If
the conditionp < o1/07 is not satisfied, themg'ot will have a negative sign for

.. t . .
sufficiently largen. However, the value otgp will converge to zero as shown in
the next proposition.

PROPOSITION2.2. 1f 69 # 69, then, for any given & > 0,

PP —1<e)— 1 and Pp(rsf|<e) — 1

The asymptotic limit of the weights will not exist Jsff equals@é’. The cross-
validation procedure will not be able to detect the difference of the two populations

if there is none. This problem can be solved by defirﬁﬁ%‘: sgs% wheres, is
a small positive constant.

2.1.2. Alternative matrix representation of the optimum weights. In order to
handle more than two populations, it is necessary to derive an alternative matrix
representation of°"’. Definee, = -"+. It can be verified that

xi(. ‘/)ng. D _ <enXi- . 1Xij><€nxk- — o 1ij>

o _ én _ e _ +< 1 )2
=e Xi Xk — ——XjjXjp. — ——XkiX;. — ) Xxiixgi.
n n—1" n—1""" n—1) Y

Thus, we have

n
—(=D==) 2 € A A €n
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where

0; =x;., i=12,...,m,

=l

[

COVyx =

Z(ij Xi)(Xkj — Xk.)-

Z
Recall that, for =i <m and 15 k <m,
. N
j=1
It follows that

en A nt
5) Ac=—o% ( (n— 1)00

whereX;; = covy, andd = (x1., ..., xXm.).
We also have

n
e _
(6) beiy (%) = Az = —— - 1 > (x1j — X1)xij.
Jj=1

It then follows that
(7 be(X) = A1 — €231,

where A; is the first column of4, and £ is the first column of the sample
covariance matrixx. We are now in a position to derive the optimum weights
in matrix form when the sample sizes are equal.

PROPOSITION2.3. The optimum weight vector which minimizes Dé’") takes
the form

- 1AE
opt _ r 2 -1 . e -1
AP'=(1,0,0,...,0) —¢? (Ae ¥ A A 1).
We remark thatd, is invertible sinceS is invertible. Note that the expression
of the weight vector in the two-population case can also be derived by using the
matrix representation given as above.

2.2. Linear WLE for unequal sample sizes. In the previous section we
discussed choosing the optimum weights when the samples sizes are equal. In this
section we propose to use the cross-validation procedure for choosing adaptive
weights for unequal sample sizes. If the sample sizes are not equal, it is not clear
whether thedel ete-one-column approach is reasonable. For example, suppose that
there are 10 observations in the first sample and there are 5 observations in the
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second. Then there is no observation to delete for the second sample for the
second half of the cross-validation steps. Furthermore, we might lose accuracy
in prediction by deleting one entire column when sample sizes are small. Thus,
we propose an alternative method that deletes only one data point from the first
sample and keeps all the data points from the rest of the samples when the sample
sizes are not equal.

2.2.1. Two- populatlon case. Let us again consider the two populations. The
optimum weightsi,, P! are obtained by minimizing the objective function
ni
DO =3 (X1j — mXy. = 22X2)%,
j=1

v (=) _
where 37 A =1 and Xy, © = =

difference betweerlD(z) andD(z) is that only thejth data point of the first sample
is left out for thejth term inDP.
Under the condition that; + A2 =1, we can rewritel)f,z) as a function of1:

>kk; X1 We remark that the major

DP =3 " (X1j — Xy’ — 1= r)X2)?
j=1

ni .
= 3 (X1 — X2) + M(X2 — X3 7))2
j=1

By dlfferentlatlngD(z)

©® P n1(X1. — X2.)2 — (n1/(n1 — 1))62
1 - N = 2 2 A ’
ni(X1. — X2.) + (n1/(n1 — D9)of

The adaptive optimum weights still converge(fip 0) when the sample sizes are
not equal.

with respect to.1, we then have

Opt Opt

opt Fe0

PROPOSITION2.4. 1f 60 # 6, then AOpt—> Land 15" % 0.

2.2.2. Optimum weights by cross-validation. We now derive the matrix
representation for the optimum weights by cross-validation when the sample sizes
are not all equal. The objective function is defined as follows:

ni ( ) m 2
j _
Di"m =% (Xl, —Xy =) j/\,-Xi.>
i=2

j=1

=c(X)—2b(X)Ay + AL A(X)Ay,
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where
b fjx (Y PR, S )> X2 - M 52
= : . . j =n - o1,
1 2 y( Xt 1 WXy =
b =nX1.X;., i=2,...,m,
and
no/ 1 . 2 — ni
= X1+ ——(X1.— X > =Xy + ———506%,
aiy 12221( 1 nl—l( 1 1)) mXy )20

aij=n17i.yj., i#lorj=#1
It then follows that
A=n1(01,0s,...,0,)' (01,02, ...,0m) + D,

where
I’l]_ A2
dig = ————62,
1 - 127
dij =0, i#lorj#1

By the elementary rank inequality, it follows that
rank(A) < rank@'6) + rank(D) = 2.
It implies that
rank(A) < m if m> 2.

SinceA is not invertible form > 2, the Lagrange method will not work in this
case. The-inverse of the matridd could be used instead.

3. Asymptotic properties of the weights. In this section we present the
asymptotic properties of the cross-validated weights for the general ca%’.’ﬂet
be the MLE based on the first sample of sizeLetd,  and6, /’ be the MLE
and WLE, respectively, based @an samples without thgth data point from the
first sample. This generalizes the two cases where either onlytthdata point
is deleted from the first sample or thi¢h data point from each sample is deleted.
Note thaté{_’) is a function of the weights functiok. Let n—lanl be the average
discrepancy in the cross-validation given by

1 13 S
— D)= (X1 - (0 )"
ni n1i3
Let A(“?) be the optimum weights chosen by cross-validation. We require that

"ok =1 Let8% =62, 6,,...,6,), whered? is the true value ob;. We then
have the following theorem.
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THEOREM3.1. Assumethat:
(i) Dy, hasa unique minimum for any fixed ny;
. A= Pyo
(i) 23100 ") - ¢09) -5 0asny — oo;

i P
(iii) 00( Z’;lzl(le — ¢>(0{_J)))2 < K) 2% 1 for some constant
0< K < o0, A 3
(V) Pypo(p@1h)—p@1h] > M) = O(n_ll) for someconstant 0 < M < co. Then

P
(9) A€ 2% wo=(1,0,0,...,0).

The assumptions of the above theorem are satisfied by the linear-WLE case
presented in Section 2. We state that fact in the following corollary whose proof is
straightforward and omitted for brevity.

COROLLARY 3.1. Suppose X1, X2, ..., X;, are independent with density
function f(x, 6;),i =1, 2. If the WLE haslinear formand 11 # 2, then

P
(10) A€ %S wo=(1,0)".

Furthermore, Theorem 3.1 also applies to cases in which the WLE does not
have the linear form. One such important case mvolves the log-normal distribution,

which is widely used in practice. Supposg; ne. LN(u;,1),j=1,...,n,i =
1,2, whereu; and 1 denote, respectively, the mean and standard deviation of the
log X;; for all i and;. It can be verified that, for=1, 2,

Eo(Xi) =pud) =2 j=12 . .n
It also follows that the MLE and the WLE are given by

1 n
(11) MLE (1) = i =~ 3 log(x1,),
j=1
(12) WLE (1) = fi1 = Z logrn,) + 22 Z log(x2;),
j=1

whererq + A2 = 1.
Therefore,

(13) $(ay ”)—exp{ Zlog<X1k>+1/2}
n= k#]

Z log(Xw) + ——= Z log(X20) +1/21,
k;é] k#]
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forj=1,2,...,n
Therefore the average discrepancy of cross-validation for the log-normal case is
given by

1 12
;Dn(kl, A2) = . > (le - exp{ P Z log(x 1)

j=1 Liz

(v ).

Since we require that; + A> = 1, we can rewrite the average discrepancy as

(15)

1 12 (”+A(y( D_y Dy i1/
(16) —Dn(l—kz,kz)Z—Z(le /) ,
n njzl
where
v = Zm and Y; =log(X;;), i=12j=12...n
kséj

We then have the following lemma and corollary.

LEMmMA 3.1. Assume that X;1, X;2,..., X;, are independent random vari-
ables and follow the log-normal distribution with parameters (u;,1), i =1, 2.
Let 15(n) be the optimum weight that minimizes 1D (1 — X2, A) for any fixed n.
If 1 # pa, then (i) 1D, (1 — 12, 22) is strictly convex; (i) im o0 A3 (n) exists

and | lim,,_, oo A5(n)| < 1 with probability 1.
COROLLARY 3.2. Under the assumptions of Lemma 3.1, if w1 # w2, then
N P[LO
(17) AV 5w = (1,0).
Wang, van Eeden and Zidek (2004) establish the asymptotic normality of the
WLE for fixed weights. Under certain regularity conditions and by Theorem 3.1,

we then have the following asymptotic results for using adaptive weights.

THEOREM3.2. For each 69, the true value of 61, and each 6; # 62,

n1|@ P"O<H l_[ S (Xij; el)A "> TTTT rexas 91)%(”)0()) =1,

i=1j=1 i=1j=1

forany 62,03,...,0,,60,€®,i=2,3,....,m
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THEOREM 3.3. For any sequence of maximum weighted likelihood esti-
mates 6" of 6; constructed with adaptive weights ™ (X), and for all & > 0,

JimPyo(|6 — 0] > &) =0,
forany 6,,03,...,6,,0,€@®,i=23,...,m.

We assume that the parameter space is an open subRét dhe asymptotic
normality of the WLE constructed by cross-validated weights follows.

THEOREM 3.4 (Multidimensional). Suppose:

(i) for almost all x the first and second partial derivatives of f1(x;6) with
respect to 6 exist, are continuousin 6 € ®, and may be passed through the integral
signin [ fi(x;0)dv(x) = 1;

(ii) there exist three functions G1(x), G2(x) and G3(x) such that for all
02, ..., 0m, EgolGi(Xij))I? < K; <o00,l =1,2,3, i =1,....,m, and in some
neighborhood of 65 each component of v (x) = - fi(x; 0) [resp. ¥ (x)] are
bounded in absolute value by G1(x) [resp. G2(x)] uniformly in 61 € ©. Further,

33log fi(x; 61)
aelkl 891k2 891k3’

ki,ko,k3=1,..., p, arebounded by G3(x) uniformly in 61 € ©;
(iii) 1(6) is positive definite.
Then there exists a sequence of roots of the weighted likelihood function based

on adaptive weights é{"l) that is weakly consistent and

Ja(@ —09) 25 N(0,1(69)  asny— oo.

4. Simulation studies. To demonstrate and verify the benefits of using cross-
validation procedures described in previous sections, we perform simulations
according to the following algorithm that deletes tHa point from each sample,
that is, adelete-one-column approach. Lep:? andu9 denote the true values of the
parameters. Lef = u9 — 113, which is the difference between the two population
means.

Step1. Draw random samples of sizefrom f1(x; 19) and f2(x; u9).
STeP2. Calculate the cross-validated optimum weights by using (3).

STEP3. CalculateMLE — u9)? and(WLE — u9)2.
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TABLE 1
MSE * 100 of the MLE and the WLE and their standard deviations « 100for samples of equal sizes
generated from N (0, 1) and N (0.3, 1). A correction termis employed in the cal culations of the
optimum weights to handle numerical instability

n  MSE(MLE) SDof MLE-09)2 MSE(WLE) SDof (WLE —69)2 %
10 10 15 8 12 80
20 4 6 4 5 85
30 3 4 3 4 87
40 3 4 2 3 91
50 2 3 2 2 92
60 2 2 2 2 94

Repeat Steps 1-3, 1000 times. Calculate the averages and standard deviations
of the squared estimation error differences for both the MLE and WLE. Calculate
the averages and standard deviations of the optimum weights.

We generate random samples frawi(u?, o2) and N (19, 02) where we set
o1 = o2 = 1 for simplicity. For the purpose of the demonstration, We/é}si: 0
andug = 0.3, which is 30% of the variance. Table 1 shows some results for the
caseu§ = 0 andud = 0.3. Settingu? = 0, we tried other values faf. In general,
the larger the value af, the less improvement in the MSE. For example, if we set
o) =0 =1andC = u§ — 12 = 1, the ratio of the MSE for MLE and WLE will
be almost 1. This implies that the cross-validation procedure will not make much
use of the second sample in this situation.

It is obvious from Table 1 that the MSE of the WLE is much smaller than
that of the MLE for small and moderate sample sizes. The standard deviations
of the squared differences for the WLE are less than or equal to those of the MLE.
This suggests that not only the WLE achieves smaller MSE but also its MSE has
less variation than that of the MLE. Intuitively, as the sample size increases, the
importance of the second sample diminishes. As indicated by Table 2, the cross-

TABLE 2
Average optimum weights x 100and their standard
deviationsx 100for samples of equal sizes
generated from N (0, 1) and N (0.3, 1). A correction
termis employed in the calculations of the optimum
weights to handle numerical instability

n AVE.ofAy AVE.ofA» SDofiqandAir

10 79 21 6
20 85 15 4
30 88 11 3
40 90 10 3
50 91 9 2
60 92 8 2
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TABLE 3
MSE * 100 of the MLE and the WLE and their standard deviations« 100for samples of equal sizes
generated from £ (3) and £ (3.6). A correction termis employed in the cal culations of the optimum
weights to handle numerical instability

n  MSEMLE) SDof (MLE—69)2 MSE(WLE) SDof (WLE —69)2 %
10 31 45 27 40 86
20 15 22 14 19 90
30 10 14 9 13 94
40 8 11 8 10 96
50 6 8 5 8 97
60 5 8 5 7 97

validation procedure realizes this and then assigns a larger valyea®the first
sample size increases. The optimum weights do increase towards the asymptotic
weights(1, 0) for the normal case, albeit quite slowly.

We repeat the procedure for Poisson distributions Witl3) and#(3.6). Some
of the results are shown in Tables 3 and 4. The results for the Poisson distributions
differ from the normal case. The most striking difference is in the ratio of the
WLE's average MSE versus that of the MLE. The WLE achieves a smaller average
MSE when the sample sizes are less than 30. These results contrast with the normal
case, where the critical sample size is 45.

We remark that the reduction in MSE will disappear if weGet 13— u§ =15
in the above case. Thus, the cross-validation procedure will not combine the two
samples if the second sample does not help to predict the behavior of the first. We
should emphasize that the valden both cases is not used in the cross-validation
procedure itself.

We remark that simulations using tbelete-one-point approach have also been
done. They give quite similar results.

TABLE 4
Average optimum weightsx 100and their standard
deviationsx 100for samples of equal sizes
generated from & (3) and & (3.6). A correction term
is employed in the calculations of the optimum
weights to handle numerical instability

n AVE.ofAq AVE.ofA», SDofijandAis

10 80 20 7
20 86 14 5
30 88 12 4
40 90 10 3
50 92 8 3
60 92 8 2
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5. Application to disease mapping. In this section we address the problem
of analyzing disease mapping data. In particular, we demonstrate a weighted
likelihood alternative to the hierarchical Bayes approach that has been used in
references cited in the discussion section. Our approach allows the data themselves
to select the weights through cross-validation. We thereby avoid the (need of a
prior for modeling) in order to guess the latent patterns of environmental hazards
that may lead to the adverse health effects being mapped. Such hazards include
air pollution that has been associated with respiratory morbidity [see, e.g., Burnett
and Krewski (1994) and Zidek, White and Le (1998)].

Our demonstration involves parallel time series of weekly hospital admissions
for respiratory disease in residents of 733 census subdivisions (CSD) in southern
Ontario. The data are collected from the May-to-August periods from 1983 to
1988. In this demonstration we confine attention to certain densely populated
areas.

Let us consider the problem of estimating the rate of weekly hospital admissions
of CSD 380, the one with the largest total annual hospital admissions among
all CSDs from 1983 to 1988. This proves to be a challenging task due to the
sparseness of the data set. The original data set contains many 0's, representing no
hospital admissions. For example, although CSD 380 has the largest total number
of hospital admissions among all the CSDs, no patient was admitted during 112
out of the 123 days in the summer of 1983. On some days, however, quite a number
of people sought treatment for acute respiratory disease possibly due to high levels
of air pollution in their regions. Again referring to CSD 380, 17 patients were
admitted on day 51 alone in 1983.

A more graphical description of these irregularities in admission counts for this
CSD is seen in Figure 1. There daily counts are shown and the problems of data
sparseness and high level of variations are extreme. In fact, in this demonstration
we have chosen to avoid the complexities of modeling these daily data series and
we turn instead to weekly counts. While those problems remain, they are not nearly
so acute. In total, each of the summers in the years covered by our study has 17
weeks. For simplicity, the data obtained in the last few days of each summer are
dropped from the analysis since they do not constitute a whole week.

5.1. Weighted likelihood estimation. We assume the weekly hospital admis-
sions for any given CSD follow Poisson distributions, that is, for yga€SD i
and weekj,

vi" pel), j=12...17%i=12..,733¢=12....6.

The raw estimates cﬁi"j, namerYl.qj, are highly unreliable since the effective
sample size in this case is 1. Moreover, each CSD may contain only a small
group of people who suffer respiratory diseases. These considerations point to the
need to “borrow strength,” a standard tool of disease mapping techniques. That is,
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FiGc. 1. Daily hospital admissions for CSD 380in the summer of 1983.

the information in neighboring CSDs can be combined to produce more reliable
estimates while introducing only a small amount of bias.

For any given CSD, the “neighboring” CSDs are defined to be CSDs in close
proximity to CSD 380. To estimate the rate of weekly hospital admissions in a
particular CSD, we would expect that neighboring subdivisions contain relevant
information which might help us to derive a better estimate than the traditional
sample average. Thus, the Euclidean distances between the target CSD and other
CSDs in the data set are calculated by using the longitudes and latitudes. We apply
a somewhat arbitrary threshold, 0.2, to the Euclidean distances in order to define
neighbors. For CSD 380, neighboring CSDs turn out to be CSDs 362, 366 and 367.

The time series plots of weekly hospital admissions for those selected CSDs in
1983 are shown in Figure 2. Hospital admissions of these CSDs indeed seem to be
related since the major peaks in the time series plot occurred at roughly the same
time points. However, as noted earlier, the data from other CSDs may introduce
bias. Thus the WLE’s weights are needed to control the degree of bias.

To find cross-validatory choices for these weights, we consider purely as a
working assumption thafj =0 for j =1,2,...,17. In fact, that assumption
does not seem tenable since every year week 8 has markedly larger numbers of
hospital admissions for CSD 380 than the remaining weeks. For example, in 1983,
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Weekly Admissions
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FIG. 2. Hospital admissions for CSDs 380, 362, 366nd 367in 1983.

there are 21 admissions in week 8 while the second largest weekly count is only 7
in week 15. Thus, we are forced to drop week 8 from our working assumption and
instead assum@‘ﬁ. =6l for j=1,2,...,7,9,...,17. In fact, the sample means
and variances of the weekly hospital admissions for those 16 weeks of CSD 380 are
quite close to each other, in support of our assumption. One alternative to assuming
the constancy of weights over the whole summer would be the use of a moving
window just a few weeks in width. We leave that option for future work.

For Poisson distributions the MLE @ﬁ’ is the sample average of the weekly
admissions of CSD 380, while the WLE is a linear combination of the sample
averages for each CSD. Thus, theighted likelihood estimate of the population
mean of weekly hospital admissions for a CSD is

4
WLE(I:Z)L??;{, q=12,...,6,
i=1

WhereYiq_ is the overall sample average of CSbr yearg.
In our analysis the weights are selected by the cross-validation procedure
proposed in Section 2. Recall that the cross-validated weights for equal sample
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sizes are
1-1A-1
g _ -1 T T 41
A _Aq <bq+ 1lA;11 Aq 1>,

whereb, (y) = ¥17, ¥{.¥ q( D andA OTE D 1Yq( J)YQ( D =123 4

k=12734.

J

5.2. Results of the analysis. We assess the performance of the MLE and the
WLE by comparing their MSEs. The MSEs of the MLE and the WLE are defined
by, for¢g =1,2,...,6,

MSE}, (6) = Egg (Y. - 6])?,

4 2
MSE}, (67) = Egq (ZA???, — ef> :

i=1

In fact, the6;’s are unknown. We then estimate the MpEand MSEy by
replacingef by the MLE. Under the assumption of Poisson distributions, the
estimated MSE for the MLE is given by

MSE!, =var(Y11)/16, ¢=1.2,....6.

The estimated MSE for the WLE is given as follows:

m 2
MSE}, = E(ZA?Y?, —93)

i=1

2
m m
= Var(ZA??f_) + <E >oadyi - 9;1)

i=1 i=1

m 2
~ Z Z )ﬂchov(Yq Yi)+ (ZA???_ — 7‘{,) .
i=1k=1 i=1

The estimated MSEs for the MLE and the WLE are given in Table 5. It can be
seen that the MSE for the WLE is much smaller than that of the MLE. In fact, the
average reduction of the MSE by using WLE is about 25%.

Combining information across these CSDs might also help us in predictions
since the patterns exhibited in one neighboring location in a particular year
might manifest themselves at the location of interest the next year. To assess the
performance of the WLE, we also use the WLE derived from one particular year
to predict the overall weekly average of the next year. The overall prediction error
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TABLE 5
Estimated MSEs for the MLE and the WLE. All entries have been
multiplied by 100. The MSEs have also been multiplied
by 16 since there are 16 weeks

Year MLE WLE 16%MSEs 16%MSEy MSEw/MSEsy

1 19 17 10 8.4 80
2 33 28 24 13 87
3 23 26 29 14 54
4 15 22 16 8.4 96
5 30 32 30 13 80
6 38 41 41 24 54

is defined as the average of those prediction errors. To be more specific, the overall
prediction errors for the WLE and the MLE are defined as follows:

5
PRED, = |13 (V1 -7{2,
q=1
5 —=qg+1
PREDy = |13 (WLE?-Y{ 2
q=1

The average prediction error for the MLE, Pygdis 0.065, while Preg, the
average prediction error for the WLE, is 0.047, which is about 72% of that of
the MLE.

From Table 6, we see that there is strong linear association between CSD
380 and CSD 366. However, the weight assigned to CSD 366 is the smallest
one. It shows that CSDs with higher correlations contain less information for
the prediction since they might have patterns too similar to the target CSD for
a given year to be helpful in the prediction for the next year. Thus CSD 366, which
has the smallest weight, should not be included in the analysis. Therefore, the
“neighborhood” of CSD 380 in the analysis should only include CSD 362 and
CSD 367.

TABLE 6
Correlation matrix x 100and the weights« 100for 1984

CSD380 CSD362 CSD366 CSD367 Weights

CSD 380 100 42 91 57 46
CSD 362 42 100 40 63 20
CSD 366 91 40 100 55 12

CSD 367 57 63 55 100 22
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TABLE 7
Predictive confidence intervals of
the MLE and the WLE for
C3SD 380
Year Cl M Cl w
1983 [0, 3] [0, 3]
1984 [0, 5] [0, 4]
1985 [0, 4] [0, 4]
1986 [0, 3] [0, 4]
1987 [0, 4] [0, 5]
1988 [0, 5] [0, 6]

In general, we might examine those CSDs that are in close proximity to the
target CSD. We can calculate the weight for each selected CSD by using
the cross-validation procedure. CSDs with small weights should be dropped
from the analysis since they are not deemed to be helpful.

The predictive distributions for the weekly totals will be Poisson as well. We
can then derive the 95% predictive intervals for the weekly average hospital
admissions. This might be criticized as failing to take into account the uncertainty
of the unknown parameter. Smith (1999) argues that the traditional plug-in method
has a small MSE compared to the posterior mean under certain circumstances. In
particular, it has a smaller MSE when the true value of the parameter is not large.
Let Cly and Cl; be the 95% predictive intervals of the weekly averages calculated
from the WLE and the MLE, respectively. The results are shown in Table 7.

The weighted likelihood framework discussed in this article requires the
observations obtained from each population to follow the same distribution.
However, including the week 8 data would violate that assumption. Including
them in the analysis would have negative impact on the analysis by invalidating
the homogeneity assumption of our model. Nevertheless, we re-did the analysis
to see that impact. The adaptive weights and the correlation matrix for 1986 are
shown in Table 8. We observe that the weight for the population of interest is
almost 0. This is not acceptable since the inference will ignore the data from the

TABLE 8
Correlation matrix x 100and the weights 100for 1986when week 8 is
included in the analysis

CSD380 CSD362 CSD366 CSD367 Weights

CSD 380 100 88 74 22 0.1
CSD 362 88 100 76 32 28
CSD 366 74 76 100 44 30

CSD 367 22 32 44 100 42
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TABLE 9
Correlation matrix x 100and the weightsx 100for 1986when week 8 is
excluded in the analysis

CSD380 CSD362 CSD366 CSD367 Weights

CSD 380 100 23 19 7.6 48
CSD 362 23 100 38 29 18
CSD 366 19 38 100 44 31
CSD 367 7.6 29 44 100 2.6

first population. In this case, week 8 for CSD 380 has an observation that is almost
20 times larger than the rest of them. Since the cross-validation procedure is based
on the predictive mechanism, thus it is difficult for the procedure to rely on the
data points from the first population for accurate predictions. As a result, it will
assign large weights to the other CSDs, especially those less correlated with the
target one or having a smaller variance. Consequently, the weights will not be able
to control the bias as they are designed to. Instead, they will introduce large bias
into the inference.

Table 9 presents the results obtained when the data from week 8 are dropped
for 1986. As in Table 6, a large weight, about 50%, is put back onto CSD 380,
the population of interest. Therefore, data from week 8 must be dropped from
the analysis in order to control the bias. We discuss some alternative methods
for detecting unusual weeks in the discussion section. In principle, we could fit
a separate model for that week. But here it would not be feasible because of the
rather small sample size. We note that the MLE and WLE are both unstable for
small sample sizes although the WLE will have better performance as shown in
the simulation study.

6. Discussion and future work. The asymptotic results established in this
article are based on the assumption that the sample size of the population of interest
goes to infinity. They do not apply to the situation when the sample size for the
population of interest remains small or moderate while the sample sizes of other
populations go to infinity. If the sample size of the population of interest is very
small, say either 1 or 0, and the number of populations goes to infinity, then the
asymptotic paradigm proposed by Hu (1997) would be appropriate.

There are other choices of weights function proposed in the literature. In the
context of local likelihood discussed by Copas (1995), Tibshirani and Hastie
(1987) and Eguchi and Copas (1998), the weight function there is essentially a
kernel function with center and bandwidth:. Hunsberger (1994) proposes a
weight function that assigns zero weight to an observation if it is outside a certain
neighborhood. Since a kernel-type weight function uses Euclidean distance, it
might not reflect the underlying spatial structure well as we have seen in the
disease mapping example. Hu and Rosenberger (2000) propose weight functions
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in analyzing adaptive designs when time trends are present. They investigate two
classes of weight functions, namely the exponential and polynomial types. But the
weight function proposed in this article does not assume any specific functional

form or rely on the choice of distance function. The adaptive weights chosen

by cross-validation are data dependent and determined solely by minimizing the
proposed predictive discrepancy measure.

The analysis presented in Section 5 is merely a demonstration of the weighted
likelihood method. Through exploratory analysis, we find that data from week 8
are quite different from the rest of the weeks. Therefore they were dropped from
the analysis. Given the high dimensionality and actual sizes of current data sets
in disease mapping, it is not always practical to detect those unusual weeks by
manual exploratory analysis. One automatic approach to detect patterns for the
weekly data is to partition those weeks into homogeneous subgroups by using
some clustering algorithms. Unlike the standard clustering in disease mapping that
is normally done on the spatial grid, the grouping in our case should be done on
the temporal scale. We applied a standérdheans algorithm with two clusters
to the data set. Thi€-means clustering algorithm successfully identified week 8 as
the only member of one cluster and the rest of the weeks were assigned to another
cluster. When the number of clusters is unknown, it then must be estimated. The
estimation of number of clusters is a very difficult problem in cluster analysis. It is
beyond the scope of this article. Fraley and Raftery (1998) discuss the problem of
determining the structure of clustered data without prior knowledge of the number
of clusters. Cheeseman and Stutz (1996) propose an algorithm, the so-called
AutoClass, that can estimate the number of clusters and then perform the partition.
Once the partition is achieved, the weighted likelihood method can then be applied
to those clusters separately. One of our future works is how to combine the results
from different clusters in a sensible way. Furthermore, the spatial structure is
incorporated into the weighted likelihood through the adaptive weights. However,
the current model cannot handle temporal structures. One natural extension of the
proposed weighted likelihood framework is to extend it to handle both spatial and
temporal structures.

Bayes methods including empirical and hierarchical Bayes methods are widely
used in analyzing disease mapping data. Manton et al. (1989) discuss the
empirical Bayes procedures for stabilizing maps of cancer mortality rates. Ghosh,
Natarajan, Waller and Kim (1999) propose a very general hierarchical Bayes
spatial generalized model that is considered broad enough to cover a large number
of situations where spatial structures need to be incorporated. In particular, they
propose the following:

6; = qi =x/b+u; + v, i=12....m,

where theg; are kn_o_wn constantsg; are covariatesy; and v; are mutually
independent withv; g N(0,02) and theu; have joint probability density
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function

F @) oc (007" exp( S s — )iy 257 ))
i=1j#i

wherew;; > 0 for all 1 <i # j < m. The above distribution is designed to take
into account the spatial structure. In that paper, they propose tayse 1 if
locationsi and j are considered neighbors. They also mention the possibility of
using the inverse of the correlation matrix as the weights function. We argue that
the weights chosen by the cross-validation procedure can discover the underlying
spatial structure without any parametric assumption. Thus those weights might
be helpful in selecting an appropriate distribution that models the underlying
spatial structure. Further analysis is needed if one wants to fully compare the
performances of the WLE, the MLE and the Bayesian estimator in the context
of disease mapping.

APPENDIX

PROOF OFLEMMA 2.1. Observe that
i — 1
X\ =eXi - —Xij,
wheree, = 5.
Let S =25 _ (X7 = %5772 1t then follows that

12 _ 1 _ 1 2
e __ - - . _ - .
8¢ = - ;((enxl. — 1X1,> (ean. — 1ng)>

=1

1
(ne (X1. — Xz)Z(le X2j)
j=1
( ) Z(le X2j )
nn—2) —
(n—1)2(X1_X2-)2 zDle Xa))?

LetSs=21y"_ Xy " — X)Xy ”—le).ltfollowsthat

12 — 1
S5 =~ Z(en(xl —X2) — —(le Xz;))(<enxl. - n—_lxlj) - le)
j=1
= - Z(en(xl —X2.) — —(Xl/ — X2])>(enxl enX1;)

j=1
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2
—(Xl —Xz)Z(Xl - X1j) — Z(Xl, X2)(X1. — X1/)
j=1

:—e—n_l) D (X1j — X2))(X1. — X1/) [SinceZ(Yl__le)zo]
j=1

n(n =1

=— 1 (Xl Z(le X2j) — ZX%j +ZleX2j)
( ) =1 =1

j=1

e 1 n
=- 1<X1(X1—X2)——ZX1,+ ZX1]X2J>

n= j=1 j=1
_L(AZ_C’CW)

(n
This completes the proof.[]

PROOF OFPROPOSITION2.1. By the weak law of large numbers, it follows

that
A2 ey 2
01 — COV—> 0] — p0102.

Thus conditionp < o1/02 implies that&l2 > cov for sufficiently largen. Thus,
25 eventually will be positive. [

PROOF OFPROPOSITION2.2. From Lemma 2.1, it follows that the second
term of S1 goes to zero in probability as goes to infinity, while the first term
converges t@6? — 69)2 in probability. Therefore we have

e P00 1002
Sl — (91 — 02) asn — o0,

Where(9l 98)2 #0 by assumption

Moreover, we see thais = Op (1). By definition of.5", it follows that
S5
A5 = =2 asn — oo.
51

This completes the proof.[]

PROOF OF PROPOSITION 2.3. By differentiatingD,Sm) —v(IA — 1) and
setting the result to zero, it follows that

aDI™ — (1A — 1)
I

= —2b, +2A AP —v1=0.
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It then follows that
APt — A;1<be + 5”1)
We then have
1=12P'= 1’Agl<be + %1)
Thus

V= 1—-1A.p,).
1AM ‘

Therefore

e

1-1"A71p
AOPt— A_l(be + 7661)

1AM
SinceDém) is a quadratic function df andA > 0, the minimum is achieved at the
point A", Furthermore, by (5) and (7) we have

A7 b, = AJY (AL —€221) =(1,0,0,...,0) —e2A1S;.
Denote the optimum weight vector kP, It follows that

A= (1,0,0,...,0) — e,f(Aglil - %A;ll)
This completes the proof.(J

PROOF OFPROPOSITION2.4. From (8), it follows that
B (n1/(n1 —1)%67

n1(X1. — X2)2 + (1/(n1 — 1))67
By the weak law of large numbers, we have

opt

Pyo
~2 Yo
6t = of,

_ _ P,o
(X1. — X2)% -5 69 —69)? 0.
It then follows that

(n1/(n1 — 1))%62 Py0
n1(X1. — X2)2 4 (1/(n1 — 1))62

We then have

P
t 0
a5 1
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The last assertion of the theorem follows by the fact that Ao =1. [

PROOF OFTHEOREM3.1. Consider
L 1 ¢ 5(-)y)2
D) = - > (X1 —0(0,7")

j=1

= o 2y =0 ) + 005 0B

1 ni o 1 n o o
== (X = 9@ )+ = 66 ) -0 )’
ni j=1 ni iz
R o o
Y (X = 9@ N6 60,
Jj=1

Note that

e 200 =0 - 001
o Z (X1 — ¢ @) (01 ") —9(61")

+= Zwl) #0760 - 0(07))

j =1
=81+ 82,
where
1 n1 e -
Si=- 2 (X - $6D) (905 ") — 9(6;")).
j=1
1M af i —
Sp=-- 3 (40D - SO (pO57) — p(67)).
j=1

P
We first show thas; — 0.
Consider

= Pyo(e < |S1] and|¢(67) — ¢(67)| < M for all j)
+ Pyo(e < |81 and|¢(67") — (657")| = M for somel)



490 X. WANG AND J. V. ZIDEK

M
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0 ni
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32005 - 009) ) + Al ) - 001 = w0
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> —¢
Jj=1 M

+n1Pyo(|9 (01" 7) — 961" V)| = M).

The first term goes to zero by the weak law of large numbers. The second term
also goes to zero by assumption (iv). We then have

(18) Pyo(|S1] > &) — 0 asni — oo.

P
We next show thas, 0 asn, — oo.
Consider
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The first term goes to zero by assumption (ii). The second term also goes to zero
by assumption (iv). We then have

(29) Pyo(|S2| >¢) — 0 asni — o0.
It then follows that

) (k):_1 }nlt(xl- — p(B))?
ny ni nlj:1 J
(20)

+ = Z 0577) — d(67)% + Ra,

P

where R, ~%% 0. Observe that the first term is independentofTherefore the
second term must be minimized with respectitdo obtain the minimum of
iDnl(X). We see that the second term is always nonnegative. It then follows that,
with probability tending to 1,

1$ s—iy2_ 1

Dpy (M) = — ) (X1 — (6 ")) = —Dn,(W),

n1i3 ni

sinceg (6. ) = ¢ (657 for A =wp = (1,0,0, ..., 0) for fixedny.
Finally, we will show that

Pyo
A 5 o asni — o0.

P
Suppose to the contrary thet™® —%> wo + d whered is a nonzero vector. Then
there existsig such that forn1 > ng,
1

. 1
n—anl(x“v)) > n_lD’”(W)‘

This is a contradiction becaua&™ is the vector which minimize#1 D,, for any
fixed n1 and the minimum ofnl—anl(X) is unique by assumption.]

PrRoOOF OoF LEMMA 3.1. Recall that the average discrepancy of cross-
validation for the log-normal case is given by

1
=Dy (A1, A2)
n

(22) n
— = Z(le — oW/ (1=1) Y jl0g(x1x)+ 2/ (n=1)) Xy |09(X2k)+1/2)2‘
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() Since we require that; + A2 = 1, we can rewrite the average discrepancy
as
n . .
(22) EDn(l — Ao Ap) = 1 3 (X1, — nen ”+/\2(72(.‘-’)—7{.‘”)+1/2)2’
n n j:l
whereY;; =log(X;;),i =1, 2 ji=12,.

Note thata(x) = (x — a)? and B(x) = e”*”‘ are both convex functions for
any given constants, b andc. It then follows thaty (x) = (¢?**t¢ — ¢)? is also
a convex function. Thus}; D, (1 — A2, A2) is a strict convex function with respect
to Ao for fixed n.

(i) The first-order derivative o& D, is given by

190D,(1—A2,22)

n By
(23) __2 i(Xl' L R )
n - J
V4005 =¥ )12 v 7D
: * (Yo, =Y. 7).
Observe that
7ED v _ oy, 7 1 5 - _ .
2. 1. (Yo.— 1-)+m([Y2-—Y1-]—[Y2]—Y1J])-

It then follows that
19D,(1— Ao, A2)
n oAo

20 e
(24) = 3 (Xy; — P rR T2 T T 4172

% e?1.+l2(72.—?1.)+Tj”+1/2 % ((YZ _ ?l) + R;z)

where
1
R} = (V2. = V1] = [Y2; = YD) = Opn ™),
(25) 1
TJ'H(AZ) = )»ZR? + m(Yl- —T1j).

Thus

10D,(1— o, A
(26) 29D Q2202 _ _op, (i) % Ea(ia),

n iAo
where

(27) Fn ()\’2) — e?1.+)\2(?2.—71.)+1/2 % (72 . Yl)
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and

n

1 Y Yo.—Y n
E,(l2) = — Z(le _ Y 1th(V Y1)+ T +1/2)
(28) ni

#(L+ R/ (V2. — Y1) %'/

For any|iz| < 1, we havel 7' (.2) = O p(n~ Yy ande’’ =1+ T'+0 p(n=2). Thus

1 TN I
EnG2) =1 (X, — o et T4 T2
=1
(29) _
*(1+ Rj/(Y1. = Y2)

*(1+T'+0p(n™?),  |h2l=<Ll

Furthermore, for anyio| < 1 we have

n

1 v VoV n
En ()“2) _ - Z(le _ eY1.+}»2(Y2. Yl.)+T] +1/2)
(30) ni

+Un(A2)/(Y2. = Y1.) + Va(A2) + W, (A2) /(Y 2. — Y 1),

where

12 ol ) _yiy
U, (ko) = - Z(le +r2(Yy -7, +1/2) " Rn
j=1
1 n ( j)—i—)»z(Y( J) Y( 7))+1/2 n _2
VaGho) == (X1, — L )% (T + 0p(n™2),
j=1
n

1 (=0 5 D (=D _
Wi (h2) = — > (Xyj — el 202 T MR (T8 - 0p(n72)) % R

j=1
If [12] <1, then
(31) ’Y( j)+)\. (Y( J) Y( j>)‘<’Y( j)’—i-}y( J) Y](-—J)‘

We also consider

1 n
By(r2) =~ Y TP (h2)
j=1

1
[)»2 (Y1.—Y2) — (Y1j — Y2))) — m(yl- — Ylj)])-

—Z(
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Note that, for any sequence of random variatiesj = 1,2, ...,n, E|(Z; Z})| <
oo,i,k=12,...,n,

1

n(n —

(32) P <

n l 5
5 Z: Zn| > e) < FE<ZZZ"Z"> =0(n"°).
J—l 1 k
By combining (25), (31) and (32), we can show that,|fof] <1,
Un(h2) = 0p(n™%),  Va(h2)=O0p(n~?),

Wa(h2) = 0p(n™%),  B.(A2)=O0p(n2).
We also observe that

(33)
13 ViAho(Ta—T1)+T0+1/2
2 (X eI,
j=1

10 T
_ E Z(le _ eY1.+)»2(Y2.7Y1.)+l/2(1+ TJn()\Z) +0p (nfz)))
j=1

It then follows that

1y Fitan o T
j=1

whereC, = B, (A2) + Uy ()\2)/(?2- - 7l) + Vi) + W, ()\2)/(?2- - Yl)
Itis clear thafY . — V1. => 19 — u9. Thus

1y T
(35) En()VZ) — ; Z le - eY1.+)»2(Y2.—Y1.)+1/2 + OP (n—Z).
j=1

Without essential loss of generality, we assume tifat 113. It then follows that

(36) En(1) 2% oH+Y2(1 _ oh2=49) < 0
and
(37) Ep(—1) 2% ont1/2(1 _ ohi—i2) - 0,

By (26), (27), (36) and (37), it follows that for sufficiently large
4 0D, (1— A2, X2) . 0D, (1— X2, A2)

(38) n2 dx2 Ao=1 922 Ao=—1
=F,(1) % F,(-1) %« E,(1) « E(—1) <O.
Since D, is strictly convex, then its second-order derivative is positive. Therefore,

the first-order derivative ofD,, is monotone. By (38), we then have that the
optimal weightA5 e (-1, 1) for sufficiently largen with probability tending to 1.
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Furthermore, it converges to a unique limit. Suppose that this is not true and

there are two limitsi, andX'zl. Then 054, + O.SX'ZI achieves a small value for
%Dn(l — A2, A2) since it is strictly convex. This is a contradiction]

PROOF OF COROLLARY 3.2. It suffices to show the assumptions of Theo-
rem 3.1 are satisfied for the log-normal case.

(i) By Lemma 3.1,%Dn(1 — A2, A2) IS a strict convex function with respect
to A». Therefore assumption (i) of Theorem 3.1 is satisfied.
(i) We then check assumption (i) of Theorem 3.1. Lés! = 1 x

() (M(l_j)) — ¢ (n9). Thus

}S]

n n

n
1 L 97 (@00 T loaXu) 172 _ pr72)
j=1

Let A" = ¢W/(1=1) Y 100X10)+1/2 _ ,uf+1/2 |t then follows that

_S[ Z An
Observe that;; = log(X;;) ~ N(u?, 1,j=12,...,n. Thus we have
log(X;;)*t Ry ult+t2/2
(39) Eﬂg(e DY = E(elii*) = e ,
fori=1,2,j=12,...,n. We then have
E oM =D Xip100(Xw) — (1 (n-Duf+1/@n—1?)n—1
(40) "
— oMit1/@0n-1))
We also have
Eﬂgea/(n—l)) YI2109(X 1) o ,(1/(1—1) Y72 log(Xw)

(41) u
— o2/ (=1)pd+1/20n=1?) | ,(n=2)%(2/(1=1)ui+2/(n=1)?)

—E ( (1/(n—1)log(X11)+(1/(n— 1))|09(X1n) ( (2/(n=2) 3% Z |09(X1k))

2ud+((20—4)/(n=1?)
By (39) and (40), it then follows that
E,o( A2 = ¢ E,o [/ (=) X log(Xu) _ pu9)2

—e % [E,Ug (e(l/("_l)) ZZ:ZIOQ(Xlk))Z
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_ 28 % E_o(e M/ -0 TialogXw)) 4 208
31
= ¢ % [E, 9 (/™) D2 lo0X1) _ it oY/ 201t 2]
—e % [(Euge(Z/(n_l)) Iog(Xll))n—l . 2611(1) * eug+1/(2(n—1)) + 62“(1)]

— % [62M9+2/(n—1) _ 2eh] g o+ @0n=1) | ezu(}] [by (15)]

_ 62M2+10(}>‘
n

By (40) and (41), we also have
E,o(Al % A%) = Eu(}(e(l/(n_l)) Yhoplog(X1)+1/2 _ eu?+l/2)
& (e (=D T 100Xu)+1/2 _ pui+1/2)
= o(E, g/ Yh_2100(X10) 4 o(1/(n=1) Y71 log(Xw)
— 2011 & Eucl)e(l/(”_l)) Ti-2100X10) 4 ,213)
— o x (82M9+((2n—4)/(n—1)2) _2x el g HIHY/@-D) ezu‘i)

= L ((@=H/ =) _ 5 L= 4 q)

_ 28+ <}>
n

For any fixedj andk, we then have

1
(42) EugAg*A¢)=<9<;).
Therefore,

—S,{

(|2
u«‘{(n

1 2
> g) < WE(S,{)

1 ‘ n 1 & n n
= WE(X;(AJ.)Z) + @(Z > Eo(A” % Ak)>
j:

=1k

1

nn—1
= EAMN2 4+ —
ne? (AD"+

1262 E,0(A14;)

1
=O<—>—>0 asn — oo.
n

This implies that assumption (ii) is satisfied for the log-normal case.
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(iii) Let
1 12 (=2
== 23" (x1 - oy ).
S
Observe that
12 ;
S” X X ( J) 2/~ (=))
Z Z 1j® "‘n;‘f’ (g ")

wherel} = 537y X3, 15 = 1 X X182y 7 andiy = 157 ¢2Gay).
By the weak law of large numbers it follows that

Consider
44) I lej 277) ZeYl/+(1/(” D) ks Yutl/2
_/ =1

whereYy; =log(X1;) ~ N, 1), j=12,...,n

Note that for anyj
1 n—2 n o —
Yii+——) Yy = Y1 Y1.,
1j+n I;lk 1 1j+n_11
whereY1. = 237 vy,
It then follows that
(45) I3 = Y2 4 o/ (=D)Y1 ( Z o(1=2)/(n(n— 1>>>*Y1k>_
k=1
Note that
1 n
= Z ((1=2)/(n(n=1)))*Y1x
46
( ) 1 1 n— 2 2 PM?
= —Z(l—i— — Y1+ Op(n~— )) — 1
ni; nn—1)

It then follows that

P o
2 0
(47) 13— eMtY2 asp — oo
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We also have

1 = e 5 e@r/-DT1. 1 i ~Cr-2r; Y 2
n =1
It then follows that
1, P 0 0 0
(48) e A

This implies that assumption (iii) is satisfied.
(iv) We are now in a position to verify Assumption (iv) of Theorem 3.1. Note
that the optimum weight} is chosen such that
0Dy (1 — A2, A2)
a2

By (27), we see that eithdr,, > 0 or F,, < O for sufficiently largen if w1 # uo.
By (26), (35) and Lemma 3.1, it follows that the optimum weightn) satisfies

=0.

)»2:)»3

10 T
(49) 0= En()\;) — ; Z(le _ eY1.+)\2(Y2.—Y1.)+1/2) + OP(I’L_Z).
j=1
We then have

V1 (T T 13
(50) ¢(ﬁr]1-) — eY1.+)»2(Y2.—Y1.)+1/2 = Z le + OP(H_z).
n -
j=1
For sufficiently largen and any constan¥ > 0, say 1, and a certai@ (M),
which depends oM and whose value is of no relevance to the argument, we have

Po(lp(A1) — ¢ ()| > M)
> M)

o

n . 172
e/ X1 100(X1)+1/2 _ - Z X1j+ Op (n_z)
j=1

< Pﬂcl)ﬂel/nZﬁzllog(xlj)ﬂ/z_eu2+1/2‘ > M)2)
1¢ nd+1/2 -2
+Po ;lej—el >M/2)+0n "9
j=1
1 n
< Pug( = log(X1)) — pg > C<M>)
j=1
1¢ u9+1/2 )
+ P ;lej—el >M/2)+0n "9
j=1

=0mn 2.
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The last inequality follows since the fourth momentsXof; and logX;;) both
exist for any fixed;j. Therefore, the last assumption of Theorem 3.1 is satisfied for
the log-normal case. This completes the prodfl

The proofs of Theorems 3.2-3.4 resemble the proofs for fixed weights as
given by Wang, van Eeden and Zidek (2004). These theorems can be proved by
using Theorem 3.1 and replacing fixed weights with adaptive weights in weighted
likelihood estimation. Details can be found in Wang (2001).
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