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NONPARAMETRIC REGRESSION PENALIZING DEVIATIONS
FROM ADDITIVITY1

BY M. STUDER, B. SEIFERT AND T. GASSER

University of Zurich

Due to the curse of dimensionality, estimation in a multidimensional
nonparametric regression model is in general not feasible. Hence, additional
restrictions are introduced, and the additive model takes a prominent place.
The restrictions imposed can lead to serious bias. Here, a new estimator
is proposed which allows penalizing the nonadditive part of a regression
function. This offers a smooth choice between the full and the additive model.
As a byproduct, this penalty leads to a regularization in sparse regions. If the
additive model does not hold, a small penalty introduces an additional bias
compared to the full model which is compensated by the reduced bias due to
using smaller bandwidths.

For increasing penalties, this estimator converges to the additive smooth
backfitting estimator of Mammen, Linton and Nielsen [Ann. Statist. 27 (1999)
1443–1490].

The structure of the estimator is investigated and two algorithms are
provided. A proposal for selection of tuning parameters is made and the
respective properties are studied. Finally, a finite sample evaluation is
performed for simulated and ozone data.

1. Introduction. Let (X i , εi), i = 1, . . . , n, be independent identically dis-
tributed random vectors withX i ∈ [0,1]d . Define the response asYi = r true(X i )+
εi . The errorsεi have expectation zero and varianceσ 2 and are independent ofX i .
The goal is to estimater true(x ) given data(X i , Yi).

In thefull model, we assume only that the unknown regression function

r true(x ) = E(Y |X = x )

is smooth. Specifically, we assume thatr true is twice continuously differentiable as
we will use a local linear estimator. The rate of convergence of mean square error
is O(n−4/(4+d)) [Stone (1980, 1982)].

Estimating in the full model suffers from the “curse of dimensionality.” This
leads to consideration of less general models. In theadditive model it is assumed
that the regression function has the special form

r true(x ) = r true
add,0 + r true

add,1(x1) + · · · + r true
add,d(xd).(1)
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The rate of convergence isO(n−4/5) as ford = 1 [Stone (1985, 1986)].
Choosing the additive model may lead to serious bias due to neglecting the

nonadditive component of the regression function. Estimating the full model may,
however, lead also to a large bias since a large (optimal) bandwidth has to be used
to achieve the same rate for variance as for squared bias.

In this paper we introduce a parametric family of estimatorsr̂ R (R ≥ 0) which
includes asymptotically optimal estimators for the full (R = 0) and the additive
(R = ∞) model asspecial cases. The aim is to offer acontinuous model choice
via the tuning parameterR.

The philosophy behind additive modeling might be described as follows:
rather than assuming the strict validity of the additive assumption, one goes
for the additive part of the underlying regression function to avoid the curse of
dimensionality. The approach of this paper offers us more flexibility in case of
highly nonadditive functions: instead of switching to the full model (or tolerating
a large bias for the additive fit), one chooses a fit in between, which takes into
account part of the nonadditive structure.

Local linear estimation. For fixed x , let β̂ = (β̂0, . . . , β̂d) be the minimizer
of

SSR(β , x ) = 1

n

n∑
i=1

(
Yi − β0 −

d∑
k=1

βk

Xi,k − xk

hk

)2

Kh(X i , x ),(2)

whereKh(X i , x ) = K(diag(h1, . . . , hd)−1(X i − x ))/(h1 · · · · · hd) ≥ 0 is the
kernel weight of the observation(X i , Yi) for the output pointx . The bandwidths
h1, . . . , hd are scale parameters. We assume thath1, . . . , hd are of the same order
and seth = d

√
h1 · · · · · hd . The diagonal matrix with diagonal elementsh1, . . . , hd

is denoted by diag(h1, . . . , hd). The local linear estimator ofr true(x ) at output
point x is β̂0.

Under usual regularity conditions, variance is proportional to(nhd)−1 and
squared bias is proportional toh4. The optimal rate for the MSE isn−4/(4+d),
using a bandwidthh proportional to n−1/(4+d). The local linear estimator
achieves asymptotically the linear minimax risk when using spherically symmetric
Epanechnikov kernels. This optimality result was shown in Fan (1993) ford = 1
and in Fan, Gasser, Gijbels, Brockmann and Engel (1997) ford > 1. For finite
sample size, however, regularization is an issue [Seifert and Gasser (1996)], as
the variance is unbounded in sparse regions. As we will see later, our modeling
approach via the parameterR leads, as a byproduct, also to a regularization.

Mammen, Linton and Nielsen (1999) (referred to as MLN below) introduced a
backfitting estimator for the additive model which achieves the same asymptotics
as theoracle estimator, which is a univariate local linear estimator for data
(Xi,k, Yi − ∑

κ �=k r true
add,κ (Xi,κ)). Consequently, it inherits the above mentioned

optimality. They evaluated a local linear estimator on a continuum (e.g.,[0,1]d ),
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using a vector of parameter functionsr (x ) = (r0(x ), . . . , rd(x )). The first
function r0(x ) is theintercept (i.e., β0 for x ) and the other functions areslopes
(i.e.,β1, . . . , βd ). MLN decomposer (x ) into additive (r add) and orthogonal (r ⊥)
components, and set the orthogonal component to zero:

r̂ add= argmin
r add

∫
[0,1]d

SSR
(
r add(x ), x

)
dx.

The estimator r̂ add has an interpretation as a projectionP∗ r̂ ll of the local
linear r̂ ll to the additive subspace.

Instead of a projection we use apenalty R to shrink the orthogonal component
towards zero. Formally,

r̂ R = argmin
r

∫
[0,1]d

SSR
(
r (x ), x

)
dx + R‖ r ⊥‖2

2.

For R = 0 we get the usual local linear estimator, and forR = ∞ we obtain the
additive estimator of MLN. For generalR we get a family of estimators connecting
r̂ ll with r̂ add with common additive partP∗ r̂ R = r̂ add.

EXAMPLE. Let us now illustrate the benefit of a smooth choice between full
and additive models for some simulated data with known regression function and
random uniform design; see Figure 1.

Originally this realization of the data was used in Seifert and Gasser (2000) in
the context of locally ridging the local linear estimator. (Another 50 realizations
are summarized in Section 5.1.) Due to symmetry of the true regression function
[r true(x1, x2) = r true(x2, x1)], there is no need to consider separate bandwidths
for each coordinate. Note that the smoothing windows have the same size in the
interior and at the boundary by choosing a larger bandwidth at the boundary [see

FIG. 1. Simulated data using n = 200 random observations (a) (design n = 200) and regression
function (b) (true regression function) (range [9,54], residual variance σ2 = 25). Smoothing
windows are of constant size due to increased bandwidth at the boundary: (a) displays smoothing
windows for h = 0.117and h = 0.174at output points (0.55,0.55) and (0,0).
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Figure 1(a)]. We use a product Epanechnikov kernel. The output grid consists
of 50 × 50 points and the parameters are the minimizers of integrated squared
residuals (ISE); see Figure 3(a).

Even though the regression function is clearly nonadditive, penalizing the
nonadditive part leads to a remarkable improvement in optimal ISE from 8.3
[Figure 2(a)] to 6.0 [Figure 2(d)]. A small penaltyR stabilizes output points where
the local linear estimator is wiggly but has little effect in well-determined regions
[Figure 2(b) vs. 2(d)]. This illustrates another useful property of penalizing:
regularization of the local linear estimator.

Generalizing a method often improves goodness of fit, while parameter
selection becomes more difficult. Let us apply AICC for selecting parameters
R and h [Hurvich, Simonoff and Tsai (1998)]. This criterion tries to find a
compromise between good fit and small complexity of the model (i.e., low trace of
hat matrix). Figure 3 shows that parameter selection is successful in this example.

Contents. The paper is organized as follows: Section 2 defines the proposed
estimator both in a discrete and in a continuous version. A computationally
efficient direct and an iterative algorithm are developed in Section 3. Properties
of the estimator are studied in Section 4: the penalized estimator is shown
to be a pointwise compromise between an additive and the local linear fit.
A decomposition into an additive part and an orthogonal remainder term is derived,

FIG. 2. Comparison of different estimators. The local linear estimator is either heavily biased
(a) (h = 0.174,R = 0, ISE= 8.3) or wiggly (b) (h = 0.117,R = 0, ISE= 8.8). Additive estimation
(c) (h = 0.197,R = ∞, ISE= 17) is even worse. The penalized estimator (d) (h = 0.117,R = 0.163,
ISE= 6.0) is stabilized without oversmoothing: ISE is improved by more than a quarter.
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FIG. 3. Comparison of ISE (a) [integrated squared error (ISE)] and AICC (b) as a function of
bandwidth h (log-scale) and penalty R ( R

1+R
-scale). The global minimum of ISE is at (h = 0.117,

R = 0.163).A contour line bounds a region of parameters outperforming the ordinary local linear
estimator (minimum at h = 0.174).

where only the nonadditive part involves shrinking. In addition to model flexibility,
the approach offers a regularization in sparse regions of the design. We then
justify the interpretation of the local linear and the additive estimators as special
cases ofr̂ R for R → 0 or ∞. The convergence of̂r R to the MLN estimator
for R → ∞ is investigated. The data-adaptive simultaneous choice ofh andR is
analyzed to some extent. Section 5 is devoted to a simulation study. Furthermore,
the estimator is applied to the ozone dataset. A summary of the contents is
provided at the beginning of each section. Software is available on our homepage
www.biostat.unizh.ch.

2. Definition of the penalized estimator. A local linear estimator is evaluated
on a set of output points. For penalizing deviations from the additive model,
these output points should form a product space. In Section 2.1 we choose the
interval[0,1]d as a continuous set of output points and start with definitions similar
to MLN. This choice is suitable for deriving theoretical properties. In practice the
continuous set of output points is approximated by an equidistant grid,{

0,
1

m1 − 1
,

2

m1 − 1
, . . . ,1

}
× · · · ×

{
0,

1

md − 1
,

2

md − 1
, . . . ,1

}
as in Section 2.2.

2.1. Estimation on an interval. We will introduce a Hilbert space(F ,‖ · ‖∗)
such that the local linear estimator̂r ll corresponds to a projection of the
responseY to some subspaceFfull ⊂ F .

MLN consider a subspaceFadd⊂ Ffull of additive functions and obtain̂r addby
projectingY to Fadd.

We consider another norm‖ · ‖R being the sum of‖ · ‖∗ and some penalty with
parameterR on the squared distance fromFadd. The penalized estimator̂r R is the
projection with respect to‖ · ‖R of Y to Ffull .



1300 M. STUDER, B. SEIFERT AND T. GASSER

Define the vector space of(n + 1)(d + 1) functions

F = { r = (ri,�|i = 0, . . . , n; � = 0, . . . , d)|ri,� : [0,1]d → R}.
Let us define the projectionP0 on F , which replacesri,� by r0,�. In other words,
if r̆ = P0 r , then r̆ i,�(x ) = r0,�(x ). The image ofP0 is denoted byFfull . For
simplicity of notation, the indexi is omitted:

Ffull = { r = (r0, . . . , rd)|r� : [0,1]d → R, � = 0, . . . , d}.
The observationsYi , i = 1, . . . , n, are coded asr Y ∈ F by

r
i,�
Y (x ) =

{
Yi, for i > 0 and� = 0,

0, otherwise.

Define the design-dependent seminorm‖ · ‖∗ onF by

‖ r ‖2∗ =
∫ 1

n

n∑
i=1

[
ri,0(x ) +

d∑
k=1

ri,k(x )
Xi,k − xk

hk

]2

Kh(X i , x ) dx,

whereKh(X i , x ) is the kernel weight of the observation(X i , Yi) for the output
point x .

Hence, forr ∈ Ffull we have

‖ r Y − r ‖2∗ =
∫ 1

n

n∑
i=1

[
Yi − r0(x ) −

d∑
k=1

rk(x )
Xi,k − xk

hk

]2

Kh(X i , x ) dx(3)

and the integrand corresponds to the minimization problem for the local linear
estimator. Consequently, we denote the minimizer byr̂ ll .

The interpretation of̂r ll as projection ofr Y to Ffull was developed by Mam-
men, Marron, Turlach and Wand (2001) and is quite useful when incorporating
constraints, that is, minimizing (3) forr in a subset ofFfull .

Consider now an additive subspaceFadd⊂ Ffull :

Fadd= { r ∈ Ffull |r0(x ) is additive;
for k = 1, . . . , d, rk(x ) depends only onxk}.

Define the additive estimator̂r add as the minimizer forr ∈ Fadd of ‖ r Y − r ‖2∗.
Projecting a Nadaraya–Watson estimator to an additive subspace was first

considered by Nielsen and Linton (1998) ford = 2 and extended to higher
dimensions in MLN. The projected local linear estimatorr̂ add was introduced
by MLN and has attractive properties. Nielsen and Sperlich (2005) discuss
practical aspects of this estimator, which is called smooth backfitting there. These
include implementation, parameter selection by cross validation and finite sample
evaluation.
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Let us introduce further notation. Define theL2-norm onF by

‖ r ‖2
2 = 1

n + 1

n∑
i=0

d∑
�=0

∫
[ri,�(x )]2 d x .

Denote byPadd the‖ · ‖2-orthogonal projection fromFfull into Fadd.
More formally, we definer add= Paddr via r 0

add(x ) = ∑d
k=1

∫
r0(x ) dx−k −

(d − 1)
∫

r0(x ) dx and r k
add(x ) = ∫

rk(x ) dx−k , where
∫ · · ·d x −k denotes the

integral with respect to all components ofx exceptxk . Furthermore, letP∗ be
the‖ · ‖∗ projection fromF (or Ffull ) to Fadd; see Appendix A.2.6.

Next, a penalty on the nonadditive part ofr is added to‖ · ‖∗. Define the
seminorm‖ · ‖R onF :

‖ r ‖2
R = ‖ r ‖2∗ + R‖(I − Padd)P0 r ‖2

2,

whereI is the identity. The penalized estimatorr̂ R is defined as the minimizer of

‖ r Y − r ‖2
R =

∫ 1

n

n∑
i=1

[
Yi − r0(x ) −

d∑
k=1

rk(x )
Xi,k − xk

hk

]2

Kh(X i , x ) dx

(4) + R‖(I − Padd) r ‖2
2

for r ∈ Ffull . For the penalty term we use the fact thatP0 is the identity onFfull
and thatP0 r Y = 0. The latter was the reason for introducing the components with
i = 0 in F . Properties of̂r R will be analyzed in Section 4.

REMARK ON THE CHOICE OF THE PENALTY IN(4). For any choice of the
penalty, the MLN estimator̂r add would be the additive part of̂r R with respect to
the norm‖ · ‖∗, assuming invariance under addition of an elementFadd to r in (4);
see Proposition 4 in Section 4.2.

We used‖ · ‖2 for the penalty instead of‖ · ‖∗ because the latter is inferior in
sparse regions. Moreover,P∗ is not self-adjoint with respect to‖ · ‖2.

2.2. Estimation on a grid. Now an approximation of (4) on a grid is derived.
Let the output grid{

t1
1, . . . , t1

m1

}× {
t2
1, . . . , t2

m2

}× · · · × {
td1 , . . . , tdmd

}⊂ [0,1]d
consist ofmk values for thekth coordinate and enumerate itsm = m1 × · · · ×
md output points byt j = (tj,1, . . . , tj,d) for j = 1, . . . ,m. In order to get an
appropriate approximation of (4), the output grid has to be sufficiently dense and
has to increase withn. Denote byβ (j) ∈ R

d+1 the parameters of the local linear
estimator att j . The parameter space for the local linear estimator on the output
grid is

Ffull = {
β = colj

(
β( j))|β( j) ∈ R

d+1}= R
m(d+1),
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where colj (β( j)) denotes the column vector obtained by vertically stacking

β(1), . . . ,β(m). The accompanying norm is the Euclidean norm‖ · ‖. The additive
subspace is defined as

Fadd= {
colj

(
β( j))|∃ r add∈ Fadd:β(j)

� = r �
add( t j )

}
.

Let Padd be the orthogonal projection fromFfull to Fadd. The local linear estimator
β̂

( j)
ll at output pointt j is the minimizer of the sum of weighted squared residuals

SSR [see (2) in Section 1]. The simultaneous local linear estimator on the grid
minimizes the sum of SSR over all output pointst j . Finally, we add a penalty
proportional to the squared distance of the parameters to the additive submodel,

β̂
R

= argmin
β∈Ffull

m∑
j=1

SSR
(
β( j), t j

)+ R‖(I − Padd)β‖2.(5)

The penalized estimator̂rR is the intercept of̂β
( j)

R
, that is,̂rR( t j ) = [β̂( j)

R
]0.

An efficient algorithm will be presented in Section 3.2.

3. Dimension reduction and algorithms. In this section we derive algo-
rithms for calculating the local linear estimator with nonadditivity penalty on a
grid. In Section 3.2 we derive a formula for computingβ̂

R
which avoids storing

and inverting large matrices. An iterative algorithm using these concepts is pro-
vided in Section 3.3. Modifications for largeR are also discussed.

3.1. Notation and normal equations. Define fork, κ = 1, . . . , d:

S0,0(x ) = 1

n

n∑
i=1

Kh(X i , x ),

S0,k(x ) = Sk,0(x ) = 1

n

n∑
i=1

Kh(X i , x )
Xi,k − xk

hk

,

Sk,κ(x ) = 1

n

n∑
i=1

Kh(X i , x )
Xi,k − xk

hk

Xi,κ − xκ

hκ

,

and fork = 1, . . . , d:

L0(x ) = 1

n

n∑
i=1

Kh(X i , x )Yi,

Lk(x ) = 1

n

n∑
i=1

Kh(X i , x )
Xi,k − xk

hk

Yi.

Denote byS(x ) the(d + 1) × (d + 1) matrix with elementsS�,l(x ) and L (x ) =
col�=0,...,d (L�(x )).
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Let S( j) = S( t j ) and L( j) = L ( t j ). The normal equations β̂
( j)

ll
=

argminβ( j) SSR(β( j), t j ) for the local linear estimator att j are

S( j)β̂
( j)

ll
= L( j) .

Similarly, for simultaneous local linear estimation on the whole grid we have

β̂
ll

= colj ( β̂
( j)

ll
), S = diagj (S

( j)), L = colj (L( j) ) and

Sβ̂
ll

= L .

The normal equations for the penalized estimator (5) are(
S + R(I − Padd)

)
β̂

R
= L .(6)

3.2. Dimension reduction. Simultaneous estimation on a grid requires a large
number of parameters. Dimension reduction is necessary for computation.

The normal equations (6) for̂β
R

are ((S + RI) − RPadd)β̂ R
= L . Because

S + RI is a block-diagonal matrix andRPadd has low rank, solving the normal
equations may be simplified using matrix algebra [Rao and Kleffe (1988), page 5,
and Appendix A.2.1 here]. We decomposePadd into a productZ�Z. Using the
abbreviationAR = R(S + RI)−1, we obtain

β̂
R

= (I + ARZ�{I − ZARZ�}−Z)(S + RI)−1 L ,(7)

where{·}− denotes any generalized inverse.
The matrix Z has rank 2m∗ + 1 − d, where m∗ = m1 + · · · + md . In

Appendix A.1.2 an explicit choice forZ with dimension 2m∗ × m(d + 1) is
given. The multiplicationZβ consists mainly of 2m∗ sums of totally 2dm

terms. Similarly, calculation ofZARZ� from AR leads to(2d)2m summations.
Calculation ofAR from S is of orderd3m operations.

Formula (7) leads to a feasible algorithm because the dimension of the matrices
to be inverted is relatively small compared with (6).

An oblique projection. Let us define an oblique projection in order to simplify
formula (7):

PS,R = Z�{(I − ZZ�) + Z(I − AR)Z�}−Z(I − AR).

In Appendix A.2.1 we show thatPS,R is the orthogonal projection fromFfull
to Fadd with respect to the inner product〈β, (I − AR)β 〉. In particular, (I −
AR)PS,R is symmetric andP�

S,R(I − AR)(I − PS,R) = 0.

BecauseI − AR = (S + RI)−1S and Sβ̂
ll

= L , we substitute(S + RI)−1 L
in (7) by (I − AR)β̂

ll
and obtain

β̂
R

= ARPS,Rβ̂
ll

+ (I − AR)β̂
ll
.(8)

See Proposition 1 in Section 4.1 for interpretation.



1304 M. STUDER, B. SEIFERT AND T. GASSER

Modification for large R. For largeR, I − AR is of orderR−1 and PS,R is
hence numerically unstable. BecauseR(I − AR) = (I + R−1S)−1S is suitable for
largeR, we modifyPS,R by multiplying both termsI − AR by R.

Note thatAR = (I + R−1S)−1. Formula (8) for largeR then becomes

β̂
R

= (
R−1I + ARZ�{(I − ZZ�) + Z(ARS)Z�}−Z

)
AR L .

3.3. Iterative calculation of the penalized estimator. We provide in addition an
iterative algorithm for the penalized estimator. This avoids inversion of the matrix
I − ZARZ� and even its calculation.

We use the fact thatPadd̂β R
= PS,Rβ̂

ll
holds (Proposition 2, Section 4.1) to

calculatePS,Rβ̂
ll

iteratively via (8),

β̂
[a+1]
R = ARPadd̂β

[a]
R + (I − AR)β̂

ll
.

Only the additive partγ [a] of β̂
[a]
R is iterated:

γ [a+1] = ZARZ� γ [a] + Z(I − AR)β̂
ll
,(9)

whereγ [a] = Zβ̂
[a]
R

. Finally, set

β̂
R

= ARZ� γ [∞] + (I − AR)β̂
ll
.

Uniqueness of (5) implies thatI − ZARZ� is positive definite [proof in Studer
(2002), Appendix B.1]. Accordingly, we have exponential convergence due to
fixed point iteration and contraction; see Table 1. In case of nonuniqueness of
β̂

R
, the algorithm still converges (see Appendix A.2.2).

The squared difference between the intercepts ofβ̂
[a]
R and β̂

R
in Table 1

diminishes quickly and is negligible fora ≥ 3 compared with the ISE. The starting

value waŝβ[0]
R = 0 .

Modification for large R. Algorithm (9) converges becauseZARZ� is a
contraction. The eigenvalues ofAR are, however, increasing withR andAR has
the identityI as limit forR → ∞. Therefore convergence is slower for largeR and
does not work forR = ∞.

For largeR, we chooseα > 0 such thatαS < I and use

Zβ̂
R

= Z
(
I − αR(I − AR)

)
Z�Zβ̂

R
+ αZR(I − AR)β̂

ll
(10)

for iterations instead of (9).

TABLE 1
Convergence of iterations for the estimator r̂R in Figure 2(d)

a 0 1 2 3 4 5 ISE

‖[ β̂[a]
R − β̂

R
]intercept‖2 463 15.5 0.8 0.1 0.02 0.008 6.0
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Generalizations. The derivations for (7) assume only thatZ�Z is a projection.
Hence, ifFadd is replaced by another subspaceFsub, say, andZ is modified such
thatZ�Z is the orthogonal projection fromFfull to Fsub, then the above algorithms
remain valid. Generalization from local linear to local polynomial estimation is
achieved by corresponding modification ofS and L .

Implementation is simplified by the fact thatZ need not have full rank. For
the iterative algorithm (9), moreover, there is no need to calculate the matrixZ
explicitly. For example, ifFsub corresponds to using bivariate interaction terms
in the additive model or postulating the same regression function for subgroups,
multiplication byZ, Z� andZARZ� can be implemented efficiently.

4. Properties of the estimator. In this section, we evaluate the effect of
the nonadditivity penalty on the estimator. Both on a grid (Section 4.1) and on
an interval (Section 4.2), the penalized estimator turns out to be a pointwise
compromise between the local linear and some (R-dependent) additive estimator.
The compromise depends on how well the local linear estimator is determined
locally. This is an attractive property as it leads to automatic regularization in
sparse regions (provided that the additive estimator is well determined). The
additive part of̂r R is studied using two different norms (Propositions 3 and 4).

Later on, we focus on the smoothness of the model choice via the penalty
parameterR for fixed n. Continuity in R for R ∈ (0,∞) is obvious and the
casesR = 0 and∞ are investigated in Section 4.4. We investigate the rate of
convergence of̂r R to r̂ add, depending on whether or notr true is additive. In both
cases we find a rate forR such that‖ r̂ R − r̂ add‖2

2 is of smaller order thann−4/5.
In Section 4.5 we consider the data-adaptive choice ofR andh. In Section 4.6 we
see that in the case of fixed uniform design(d ≤ 4) r̂ R with data-adaptiveR is
equivalent tôr add for additive functions.

4.1. Properties of the estimator on a grid. We investigate the effect of the
penalty on estimation at one output point: the penalized estimator is a kind of
convex combination between a local linear and an additive estimator. Furthermore,
the local linear estimator may be decomposed into a sum of additive and residual
components. The penalized estimator is the sum of the additive part and shrunken
residuals, which are orthogonal to the additive part.

In Section 3.2 an oblique projectionPS,R was introduced, leading to

β̂
R

= ARPS,Rβ̂
ll

+ (I − AR)β̂
ll

in (8). Recall thatAR = diagj (R(S( j)+RI)−1) is block-diagonal with eigenvalues
between zero and 1. Let us see what (8) implies for one output point. Denote
by (PS,Rβ̂

ll
)( j) the components ofPS,Rβ̂

ll
corresponding to output pointt j ,

formally PS,Rβ̂
ll

= colj ((PS,Rβ̂
ll
)( j)).
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PROPOSITION 1. The penalized estimator β̂
( j)
R is a pointwise compromise

between some (R-dependent) additive fit (PS,Rβ̂
ll
)( j) and the local linear fit β̂

( j)
ll :

β̂
( j)
R = (

S( j) + RI
)−1{

R(PS,Rβ̂
ll
)( j) + S( j)β̂

( j)
ll

}
.

In sparse regions the local linear estimator is unstable [Seifert and Gasser
(1996)], becauseS( j) may be nearly singular. The above formula indicates that
penalizing solves this problem as a byproduct, because the additive part ofβ̂

( j)
R

is stable under weaker conditions. This regularization property is illustrated in
Figure 2(b) versus 2(d). When all eigenvalues ofS( j) are large, the effect of a
small penaltyR vanishes.

We derive now a decomposition of̂β
R

into an additive component and an
orthogonal remainder term. Formula (8) is equivalent to

β̂
R

= PS,Rβ̂
ll

+ (I − AR)(I − PS,R)β̂
ll
.(11)

Only the nonadditive part involves shrinking.

PROPOSITION2. The following relations hold:

Padd̂β R
= PS,Rβ̂

ll
and (I − Padd)β̂ R

= (I − AR)(I − PS,R)β̂
ll
.

The proof is in Appendix A.2.3.

4.2. Properties of the estimator on an interval. Now we will show that
Propositions 1 and 2 hold not only on a grid but also on an interval. Proposition 4
states that the additive part of̂r R with respect toP∗ is r̂ add, independent ofR.

Define the symmetric, continuous operatorS∗ :Ffull → Ffull , r �→ r̆ by r̆0(x )
...

r̆d(x )

=
 S0,0(x )r0(x ) + · · · + S0,d (x )rd(x )

...
...

Sd,0(x )r0(x ) + · · · + Sd,d(x )rd(x )


(see Section 3.1). We have by construction that‖ r ‖2∗ = 〈 r ,S∗ r 〉2. Let r L ∈ Ffull
with r�

L(x ) = L�(x ). The normal equations for r̂ ll , the minimizer of (3) in
Section 2.1, are

S∗ r̂ ll = r L.

Thenormal equations for r̂ R , the minimizer of (4), are(
S∗ + R(I − Padd)

)
r̂ R = r L ≡ S∗ r̂ ll .(12)

Let P∗,R denote the orthogonal projection fromFfull to Fadd with respect
to the norm‖ · ‖R . According to MLN, P∗,R is continuous with probability
tending to 1 forn → ∞, under regularity conditions for the design density and
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kernel [Conditions MLN:B1 and MLN:B2′ in Appendix A.1.1]. In particular, the
bandwidthh is of ordern−1/5 or larger [Condition C1+]. An explicit formula for
P∗,R is given in (26), Appendix A.2.4.

Then r̂ R may be decomposed similarly to (8) and Proposition 1:

r̂ R = {(S∗ + RI)−1RP∗,R + (S∗ + RI)−1S∗} r̂ ll .(13)

Note that(S∗ +RI)−1S∗ is apointwise (in x ) matrix multiplication. Furthermore,
(S∗ + RI)−1S∗ and(S∗ + RI)−1R sum toI and have eigenvalues between zero
and 1. Hence, (13) indicates thatr̂ R(x ) is some kind of convex combination of
r̂ ll andP∗,R r̂ ll .

Similarly to Proposition 2, the above formula may be rewritten as

r̂ R = {P∗,R + (S∗ + RI)−1S∗(I − P∗,R)} r̂ ll .(14)

PROPOSITION3. The following relations hold:

Padd̂r R = P∗,R r̂ ll and (I − Padd) r̂ R = (S∗ + RI)−1S∗(I − P∗,R) r̂ ll .

In Section 4.4 we will see thatPadd̂r R − r̂ add is O(R−1), for fixed n. The
R-dependence of the additive partPadd̂r R can be avoided when using the oblique
projectionP∗ instead:

PROPOSITION4. P∗ r̂ R = r̂ add holds.

This means that the MLN estimator̂r add is the additive part of̂r R with respect
to the norm‖ · ‖∗. Both proofs can be found in Appendix A.2.4.

4.3. Bounding S∗ and P∗,R . If S0,0(x ) is a uniformly consistent density
estimator, the operatorsS∗ andP∗,R are shown to be bounded. This property will
be used in Section 4.4.

Let ‖S∗‖2,sup denote the supremum norm ofS∗ based on the Euclidean norm
on Ffull . Here, we want to find upper bounds for‖S∗‖2,sup, that is, a uniform
bound for the maximum eigenvalue ofS(x ). Because the kernel is bounded with
compact support by Condition MLN:B1, the maximal eigenvalue ofS(x ) is of
orderS0,0(x ). Note thatS0,0(x ) is a kernel density estimator off . We are thus
interested in uniform boundedness from above off̂ (x ) = S0,0(x ).

Silverman (1978) derived uniform consistency of kernel density estimators for
d = 1. We will use a result of Gao (2003), which asserts uniform consistency for
density estimators forcontinuous densities on R

d and bandwidthsh satisfying

h → 0 and
nhd

log(h−1)
→ ∞ asn → ∞.(15)

By Condition C1+ these conditions are satisfied ford ≤ 4. For d ≥ 5, the
condition (15) is not satisfied for the optimal bandwidth∝ n−1/5 of the additive
model. We thus lose flexibility in the model choice when (15) is assumed.
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PROPOSITION5. Under Conditions MLN:B1, MLN:B2 ′ and (15), ‖S∗‖2,sup
is uniformly bounded with probability tending to 1 for n → ∞.

Note that for fixedn, this norm is always bounded because of Condi-
tion MLN:B1. TheR-dependent projectionP∗,R may be bounded uniformly inR
using Proposition 5 and Lemma 2 in Section 4.4:

LEMMA 1. Under Conditions MLN:B1, MLN:B2 ′ and C1 + ∩ (15),
‖P∗,R‖2,sup= OP (1), uniformly in R.

The proofs are in Appendix A.2.5.

4.4. The additive and full models as special cases. Here we justify the
interpretation of r̂ ll and r̂ add as special cases of̂r R for R = 0 and R =
∞, respectively. This is appreciated becauser̂ ll and r̂ add are known to be
asymptotically optimal for the respective situations. The rate of convergence of
r̂ R to r̂ add for R → ∞ depends on the supremum norm ofS∗ and whether or not
the regression function is additive.

We will start with the convergence of̂r R to r̂ ll for R ↓ 0. Consider the case
whereS(x )−1 is uniformly continuous inx . This is a sufficient condition for
bounded variance of r̂ ll and represents therefore thewell-behaved cases. In this
case,S∗ has a continuous inverse and the limit ofr̂ R for R ↓ 0 is r̂ ll . Let us
mention that uniform continuity is a stronger assumption than uniqueness ofr̂ ll .
Uniform continuity means that for anyr ∈ Ffull with ‖ r ‖2 = 1 the norm‖ r ‖∗ is
bounded away from zero, whereas uniqueness needs only anonzero norm. If r̂ ll is
not well determined, a small positive penalty provides the desired regularization.

Mammen, Linton and Nielsen (1999) showed that theadditive estimator

r̂ add= argmin
r ∈Fadd

‖ r Y − r ‖2∗

is asymptotically oracle optimal under Conditions MLN:B1–B4′ and C1 for
additive regression functions as in (1). Let us therefore examine the convergence
of r̂ R to r̂ add for R → ∞. Decompose via

‖ r̂ R − r̂ add‖2
2 = ‖(I − Padd) r̂ R‖2

2 + ‖Padd̂r R − r̂ add‖2
2.(16)

For bounds of the first term of the sum, see Lemma 4 below.
Recall thatPadd̂r R = P∗,R r̂ ll holds by Proposition 3. Similar to the modifica-

tions for largeR in Section 3.2, we introduce an alternative formula forP∗,R r̂ ll

[defined in (26), Appendix A.2.4],

Padd̂r R = (
Padd(I + R−1S∗)−1S∗Padd

)−1
|Fadd

Padd(I + R−1S∗)−1 r L,(17)

where (· · ·)|Fadd indicates that the expression is an operator onFadd. Define
Sadd= (PaddS∗Padd)|Fadd. Solving the normal equations for̂r add leads to

r̂ add= S−1
addPaddr L.
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The right-hand side is equal to the right-hand side ofPadd̂r R for R−1 = 0.
If R−1‖S∗‖2,sup tends to zero, we may use a Taylor approximation and obtain
‖Padd̂r R − r̂ add‖2 = OP (R−1‖S∗‖2,sup); see Lemmas 2 and 3.

LEMMA 2. Under Conditions MLN:B1, MLN:B2 ′ and C1+, Sadd converges
for n → ∞ to an operator with continuous inverse.

Hence, S−1
add is continuous with probability tending to 1 for n → ∞ and

‖S−1
add‖2,sup is uniformly bounded in n, ∀n ≥ ñ, with probability tending to 1 for

ñ → ∞.

The proof is given in Appendix A.2.6. Uniqueness ofr̂ add is equivalent to
‖ r add‖∗ > 0 for all r add∈ Fadd− {0}. Lemma 2 states that‖ r add‖∗/‖ r add‖2 is
bounded away from zero with probability tending to 1.

LEMMA 3. Under Conditions MLN:B1, MLN:B2 ′, MLN:B3′ and C1+ we
obtain for fixed n (i.e., conditional on the data)

sup
x

∣∣Padd
(
I − (I + R−1S∗)−1) r L(x )

∣∣= O(R−1)

and ‖Paddr L‖2 is finite.
For increasing n, we obtain

sup
x

∣∣Padd
(
I − (I + R−1S∗)−1) r L(x )

∣∣= OP (R−1‖S∗‖2,sup).

Furthermore,

‖Paddr L‖2 = OP (1).

A proof is given in Appendix A.2.6.

LEMMA 4. The following bound holds:

‖(I − Padd) r̂ R‖2
2 ≤ 2R−1‖S∗‖2,sup‖ r Y − r̂ add‖∗‖ r̂ R − r̂ add‖2.

Under Condition MLN:B3 ′ we have

‖ r Y − r̂ add‖2∗ ≤ 1

n

n∑
i=1

Y 2
i =

{
finite, for fixed n (and Y ),

OP (1), for increasing n.

See Appendix A.2.6 for a proof. Using (16) we obtain:

THEOREM 1. Assume Conditions MLN:B1, MLN:B2 ′, MLN:B3′ and C1+.
For fixed n,

‖ r̂ R − r̂ add‖2 = O(R−1)
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holds with probability tending to 1 for increasing n. Formally, this means
P [lim supR→∞ R‖ r̂ R − r̂ add‖2 < ∞] n→∞→ 1.

For n → ∞
‖ r̂ R − r̂ add‖2 = OP (R−1‖S∗‖2,sup).

Note that this holds also fornonadditive regression functions. For additive
regression functions we obtain a better bound; see Theorem 2.

Applying Proposition 5 to Theorem 1, forh ∝ n−1/5 (Condition C1),d ≤ 4 and
R−1 = o(n−2/5), we get‖ r̂ R − r̂ add‖2

2 = oP (n−4/5). For h ∝ n−1/5 andd ≥ 5,
‖S∗‖2,sup is not bounded by a constant andR needs to converge faster to∞ to
achieve equivalence. Alternatively, one might use a larger bandwidth. (Without
proof.)

THEOREM2. Assume Conditions MLN:B1–B4′, d ≤ 4,h ∝ [n−1/5, n−1/(4+d)]
and an additiveregression function (1). Then

‖ r̂ R − r̂ add‖2 = OP

(
1

R
√

nhd

)
.

For h ∝ n−1/5 and additive regression functions,R−1 = o(n−(d−1)/10) is
sufficient to obtain equivalence of̂r R and r̂ add. The proof is in Appendix A.2.6.

4.5. Data-adaptive parameter selection. We consider the simultaneous choice
of the tuning parametersR and h. In the case of an additive regression
function r true, the first-order bias of̂r R is independent ofR and parameter
selection is asymptotically equivalent to the classical variance/bias compromise.
Hence,̂h ∝ n−1/5 andR̂ → ∞. The rate ofR̂ is investigated in Section 4.6.

Asymptotically, we have only to consider the casesr true = additive or full
model, and the question is then whetherR̂ is able to identify these cases.

We consider parameter selection criteria that depend on fitted values at design
points. The vector of fitted valueŝY = coli=1,...,n(̂r

0
R(X i )) = MR Y depends

linearly on Y , whereMR is called “hat matrix.”
In practice, the estimator is computed on a grid and we need someinterpolation

to obtain estimates at the design points. Define

β̂
R
(X i ) = (

S(X i ) + RI
)−1{S(X i )β̂ ll

(X i ) + R(PS,Rβ̂
ll
)(X i )},

where (PS,Rβ̂
ll
)(X i ) denotes the interpolated value atX i of the additive

partPS,Rβ̂
ll
. Therefore,Ŷ = coli ([β̂ R

(X i )]0) is a linear combination ofY and
construction ofMR is obvious.
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We consider the following criteria:

AIC(R,h) = log(σ̂ 2) + 2tr(MR)/n,

GCV(R,h) = σ̂ 2

(1− tr(MR)/n)2 ,

AICC(R,h) = log(σ̂ 2) + 1+ tr(MR)/n

1− (tr(MR) + 2)/n
,

where σ̂ 2 = 1
n
‖Y − MR Y‖2 and tr(MR) denotes thetrace of MR , which is

interpreted asdegrees of freedom. AIC and GCV are classical model selection
criteria [see, e.g., Hastie and Tibshirani (1990)], and AICC was introduced by
Hurvich, Simonoff and Tsai (1998). These criteria are justified forr̂ ll only
when (15) is satisfied. As we want to analyze the ability ofR̂ to identify the
additive model with its optimal bandwidth (Condition C1), we will assumed ≤ 4
throughout this section. Moreover, we will assume thatE[ε4] < ∞.

Let us compare the criteria (τ = 1
n
tr(MR))

AIC = log(σ̂ 2) + 2τ,

log(GCV) = log(σ̂ 2) + 2
(
τ + τ2

2
+ τ3

3
+ · · ·

)
,

AICC − 1 = log(σ̂ 2) + 2

n − 2
+ 2

∑
k≥1

(n − 1)nkτ k

(n − 2)k+1

≈ log(σ̂ 2) + 2(τ + τ2 + τ3 + · · ·).
All are of the form log(σ̂ 2) plus some penalty against undersmoothing; see Härdle,
Hall and Marron (1988). As the penalty increases from AIC to log(GCV) and
further to AICC, minimizing these criteria leads to increasingly more smoothing
(decreasingτmin): According to Hurvich, Simonoff and Tsai, AICC avoids
the large variability and the tendency to undersmooth of GCV and classical
AIC observed when estimatingbandwidths for d = 1. Note that AIC has its
global minimum at interpolation(h = 0,R = 0), leading toσ̂ 2 = 0 andτ = 1.
Undersmoothing, however, contradicts the aim of this paper and is avoided by
assumingh ∝ [n−1/5, n−1/(4+d)] andR ≥ Rmin(h). The lower boundRmin(h) is
chosen to bound the variance ofr̂ R by the optimum raten−4/(4+d). This condition
does not rule out the asymptotically optimal additive estimator(R = ∞, h ∝
n−1/5). Then 1

n
tr(MR) → 0 asn → ∞ and σ̂2

σ2 − 1 isOP ( 1√
n
).

Hence, we may use the approximation log(σ̂ 2) = log(σ 2) + σ̂2

σ2 − 1 + OP (1
n
).

Define the Taylor approximation of AIC− log(σ 2),

AICT = σ̂ 2

σ 2 − 1+ 2

n
tr(MR).
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The expected value of̂r ll is for additive regression functions

E( r̂ ll) =
(
r

true,0
add (x ) + µ2(K)

2

d∑
k=1

h2
k

∂2

∂x2
k

r true
add,k(xk),

(18)

h1
∂

∂x1
r true
add,1(x1), . . . , hd

∂

∂xd

r true
add,d(xd)

)
+ op(h2).

The leading terms are inFadd and hence unchanged under multiplication byP∗,R ,
and theoP (h2) terms remain small enough because of Lemma 1. Accordingly,(I−
MR) r true

add= O(h2 1 ), and the first-order terms of the bias of̂Y are independent
of R.

Next, we need to ensure that̂r R is not degenerate. Using (14) in Section 4.2,
we choose some small constantRmin > 0, assume thatR ≥ Rmin, and consequently
(S∗+RI)−1S∗ r̂ ll is stable (ridge regression). With probability tending to 1,S−1

addis
continuous (Lemma 2), that is,̂r add is stable. If bothS∗ andS−1

add are bounded, we
do not have to worry about stability ofP∗,R r̂ ll (see also the proof of Lemma 1).
Therefore,‖M�

RMR‖sup= OP (1). Obviously, whenS−1∗ is continuous, we need
not assume thatR ≥ Rmin.

Therefore, 1
nσ2 〈(I − MR)ε , (I − MR) r true

add〉 = OP ( h2√
n
), which isoP (h4) for h

as in Condition C1+. Note thatσ 2 tr(MR) = E[〈ε ,MR ε 〉]. Hence

AICT −
(

1

nσ 2‖ε ‖2 − 1
)

= 1

nσ 2E[‖MR ε ‖2] + 1

nσ 2‖(I − MR) r true
add‖2

+ 1

nσ 2 (1− E)[‖MR ε ‖2 + 2〈ε ,MR ε 〉] + OP

(
h2
√

n

)
,

where(1− E)[〈ε ,Mε 〉] = 〈ε ,Mε 〉 − E[〈ε ,Mε 〉].

LEMMA 5. For E[ε4] < ∞, var(〈ε ,MR ε 〉) = O(E[‖MR ε ‖2]). Moreover, if
‖M�

RMR‖sup= OP (1), then var(‖MR ε ‖2) = OP (E[‖MR ε ‖2]).

BecauseE(‖MR ε ‖2) is of order h−d and h−1 for R = 0 and R = ∞,
respectively, the standard deviation of(1 − E)[· · ·] is of smaller order. The proof
is given in Appendix A.2.7.

The leading terms of AICT − ( 1
nσ2‖ε ‖2 − 1) are a variance/bias compromise

1

nσ 2E[‖MR ε ‖2] + 1

nσ 2‖(I − MR) r true
add‖2,

which is minimized forR = ∞ andh ∝ n−1/5. Consequently for AICT:
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PROPOSITION 6. Under the assumptions of Theorem 2 and E[ε4] < ∞,
ĥ achieves the rate n−1/5 and R̂ → ∞ (with probability tending to 1).

If the true regression function is nonadditive, anŷR �→ 0 induces a bias of
orderO(1), that is, an AICT − ( 1

nσ2‖ε ‖2 − 1) of O(1). On the other hand, in

well-behaved cases (continuousS−1∗ ), the optimal AICT − (· · ·) of the local linear
estimator is of orderO(n−4/(4+d)), leading toR̂ → 0 andĥ ∝ n−1/(4+d) in these
cases.

4.6. Investigating the rate of R̂ for AICT. Data-adaptive parameter selection
is studied for fixed uniform design and additive regression functions; in this case,
the penaltyR̂ is large enough such that̂r R − r̂ add becomes negligible.

As seen before, we can restrict ourselves to the caseh ∝ n−1/5 andR → ∞.
In order to simplify the structure of̂r 0

R(X i ), we assume afixed uniform design:
S(X i ) is diagonal and constant in the interior. Furthermore, we ignore boundary
effects andR-dependency ofP∗,R. This allows us to simplify (13) as

r̂ 0
R(X i ) = 1

1+ R
r̂ 0
ll (X i ) + R

1+ R
r̂ 0
add(X i ).(19)

By (19) we haveMR = λMll + (1 − λ)Madd with λ = 1
1+R

. Hence, AICT is a
polynomial of degree 2 inλ,

AICT = λ2
{

1

nσ 2‖Mll ε ‖2 + 1

nσ 2‖Maddε ‖2 − 2

nσ 2 〈Mll ε ,Maddε 〉
}

+ λ

{
2

nσ 2E[〈Mll ε ,Maddε 〉] − 2

nσ 2‖Maddε ‖2

+ 2

nσ 2 (1− E)[〈ε ,Mll ε 〉 + 〈Mll ε ,Maddε 〉 − 〈ε ,Maddε 〉]
}

+ 1
{

1

nσ 2‖(I − MR) r true
add‖2 + OP

(
h2/

√
n
)+ (

1

nσ 2‖ε ‖2 − 1
)

+ 1

nσ 2‖Maddε ‖2 + 2

nσ 2 (1− E)[〈ε ,Maddε 〉]
}
.

In Appendix A.2.8 we show that the dominating terms ofλ2 and λ are
1

nσ2 E[‖Mll ε ‖2] ∝ 1
nhd and(1− E)〈ε ,Mll ε 〉 = OP ( 1

nhd/2 ), respectively, leading

to λmin ≈ −(1− E)〈ε ,Mll ε 〉/E[2‖Mll ε ‖2] = OP (hd/2).

PROPOSITION7. Under the assumptions of Theorem 2, fixed uniform design
and E[ε4] < ∞, we obtain R̂−1 = OP (n−d/10) for AICT.

(See Appendix A.2.8 for a proof.) By Theorem 2,R̂ grows fast enough to ensure
‖ r̂ R − r̂ add‖2

2 = op(n−4/5).
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Note that the rate of the minimum is not affected by theMadd-dependent terms.
Accordingly, assumingP∗,R = P∗ is not critical.

Comparison of AICC and AICT. By (19), tr(MR) = λ tr(Mll) + (1 − λ) ×
tr(Madd) is monotone decreasing inR, because (asymptotically) 1> 1

n
tr(Mll) >

1
n

tr(Madd). If we add (1
n

tr(MR))2+� (� ≥ 0) to AICT, λmin becomes smaller.

Hence, AICC [with log(σ̂ 2) replaced by log(σ 2) + σ̂2

σ2 − 1] choosesR̂ at least
as large as AICT. However, this effect is asymptotically negligible as the leading
terms are unchanged.

5. Finite sample evaluation. For the example in Section 1, we compared
the penalized estimator with thelocal linear (R = 0) and theadditive (R = ∞)
estimator and obtained a lower integrated squared error (ISE) for the penalized
estimator. As seen in Figure 3, data-adaptive choice (specified in Section 4.5)
of the parametersR and h is successful: the theoretical improvement due to
generalization holds also in practice. In Section 5.1, we will see whether this holds
for other situations. Furthermore, we will investigate how the estimator performs
in the special case of an additive model; see Section 5.2. Finally (Section 5.3), we
apply our estimator to the ozone dataset already analyzed by Hastie and Tibshirani
(1990).

5.1. Nonadditive regression function. We will examine 50 realizations of the
same kind as in Section 1. Later on, we summarize the effect of a nonuniform
design density and a larger sample size.

In the example in Section 1, the optimal penalty parameter is larger than zero
and the penalized estimator outperforms the local linear estimator when using
optimal parameters. The optimal parameters are approximated sufficiently well
by AICC.

Here we generate 50 realizations of the data as follows: the design consists of
200 random observationsX i , uniform in[0,1]2. The responseYi is r true(X i )+εi ,
wherer true is shown in Figure 1(b) [1 = (1,1)�]:

r true(x ) = 15e−32‖x−(1/4)1‖2 + 35e−128‖x −(3/4)1‖2 + 25e−2‖x−(1/2)1‖2
(20)

andεi is normally distributed (σ = 5).
In order to find the optimal parameters for each realization of the design, we

calculated the ISE for different pairs(R,h) [see Figure 3(a)] and performed a
grid search. Actually,( R

1+R
, log10(h)) is equidistant with resolution(0.01,0.005).

Similarly, we find the minimizers of AICC and GCV.
The simulation is summarized by 50 realizations of ISE evaluated for the

penalized, the local linear and theadditive estimator usingoptimal and data-
adaptive parameters.
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Let us introduce some notation. The global minimum at(Ropt, hopt) is ISE(opt).
The minimum of the local linear estimator (R = 1

9999 instead of 0 for numerical
reasons) is ISE(opt,R = 0) and the minimum of the additive estimator (R =
9999 instead of∞) is ISE(opt,R = ∞). Data-adaptive parameters(RAIC, hAIC)

are obtained by finding the minimizer of AICC (Section 4.5) on a grid. The
corresponding ISE is denoted by ISE(AIC). Analogously, we write ISE(AIC,R =
0) for the local linear and ISE(AIC,R = ∞) for the additive estimator.

Table 2 and Figure 4 summarize the results of this evaluation. Given the optimal
parameter values forR andh, penalized estimation has clearly the potential for
improvement compared to fitting the full model with a median percentage gain of
17% [item (a) of Table 2 and Figure 4]. This relative gain is larger for realizations
with a small ISE. The additive estimator is not competitive and will hence not be
shown.

To be able to achieve these gains in practice, we need a good method for
parameter selection. The corrected Akaike criterion AICC is such a method, and
is moreover computationally attractive. When comparing (c) of Table 2 with (a),
we see that the performance based on estimatedR and h is almost as good as
that based on optimal parameters. Item (b) shows that data-adaptive parameter
selection via AICC is attractive: a median increase in relative ISE of only 10% has
to be tolerated.

Interestingly, application of the full model with optimal bandwidths is clearly
inferior to using the penalized estimator with data-driven parameter selection [see
item (d)].

Other situations. The above simulation was also carried out for twononuni-
form designs on [0,1]2,

f1(x1, x2) = 1
2 + 1

2(x1 + x2) and f2(x1, x2) = 3
2 − 1

2(x1 + x2).

TABLE 2
Quantiles for ideal relative gain due to penalizing (a), for loss due to AICC selection (b),

for relative gain (loss) due to penalizing for data-adaptive parameters (c),
for relative difference between data-adaptive penalized and optimal

full estimator (d) and for Ropt (e)

Model defined in (20) min 10% med 90% max

(a) ISE(opt,R=0)−ISE(opt)
ISE(opt) 1.8% 4.9% 17% 49% 65%

(b) ISE(AIC)−ISE(opt)
ISE(opt) 0.2% 1.1% 10% 24% 66%

(c) ISE(AIC,R=0)−ISE(AIC)
ISE(opt) −8.0% 1.3% 16% 47% 149%

(d) ISE(opt,R=0)−ISE(AIC)
ISE(opt) −50% −9.7% 11% 27% 51%

(e) Ropt 0.03 0.06 0.12 0.25 0.32
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FIG. 4. Comparison of ISE performance for the nonadditive regression function (20).Relative gain
due to penalizing depending on ISE(opt) (a) [y = ISE(opt,R = 0)/ISE(opt) vs. x = ISE(opt)], effect
of AICC selection (b) [y = ISE(AIC) vs. x = ISE(opt)], comparison of penalized vs. full modeling,
parameters data-driven (c) [y = ISE(AIC,R = 0) vs. x = ISE(AIC)], comparison of penalized mod-
eling ( parameters data-adaptive) with full modeling (optimal bandwidth) (d) [y = ISE(opt,R = 0)

vs. x = ISE(AIC)].

Both are linear in(x1 + x2) and have range(0.5,1.5). Densityf1 is preferred over
f2 because of the high peak inr true at (0.75,0.75). This is reflected by the optimal
penaltyRopt: compared with the uniform design,f1 needs a larger andf2 a smaller
penalty; see Table 3(e). Similarly, the ideal relative gain due to penalizing is larger
for f1 and smaller forf2, item (a). Again, the performance remains almost as
good when selecting parametersR andh via AICC [see item (c)]. The penalized
estimator with AICC-selected parameters is better than the local linear estimator
with optimal parameters; however, for densityf2 the difference becomes smaller.



PENALIZED NONPARAMETRIC REGRESSION 1317

TABLE 3
For different design densities we compare the medians of the same

quantities as in Table 2

Model defined in (20) f1 unif f2 400

(a) ISE(opt,R=0)−ISE(opt)
ISE(opt) 19% 17% 6% 12%

(b) ISE(AIC)−ISE(opt)
ISE(opt) 10% 10% 4.3% 4.5%

(c) ISE(AIC,R=0)−ISE(AIC)
ISE(opt) 20% 16% 11% 13%

(d) ISE(opt,R=0)−ISE(AIC)
ISE(opt) 11% 11% 1.5% 6.7%

(e) Ropt 0.15 0.12 0.10 0.09

The number of realizations is 50, the sample size isn = 200 and the
name of the column denotes the design density—except the last column
(n = 400, uniform).

When doublingn to 400, parameter selection is improved; see Table 3, column
“400,” item (b). Because of the smallerRopt, the gain due to penalizing is smaller
but still not negligible.

Parameter selection by GCV instead of AICC shows the same pattern (data not
shown).

5.2. Additive regression function. For additive regression functions, the ques-
tion arises whether we pay a price for the additional flexibility of penalizing local
linear estimation compared with additive estimation. Therefore, we choose an ad-
ditive regression function and examine 50 realizations.

We generated data using the regression function

r true(x ) =
2∑

k=1

(15
2 e−32(xk−1/4)2 + 35

2 e−128(xk−3/4)2 + 25
2 e−2(xk−1/2)2)

.

Uniform designX i and errorsεi (σ = 5) are the same as in Section 5.1. Estimating
the additive model can be considered easy, as the data are rich enough for
multivariate local linear estimation.

Since AICC has no problems with undersmoothing, we ignore in the simulations
the impracticable condition in Section 4.5—excluding undersmoothing—which
was imposed for classical AIC. For AICC the additive model is detected in 47 out
of 50 cases, asRAIC attains the maximal value. In the remaining three realizations
we obtained a relative loss in ISE of 0.6% and 5.2% in two cases; a gain of 3.5%
was achieved in one case. Hence,model choice by AICC was successful in this
example.

Model selection by GCV detected the additive model in 24/50 cases only,
whereas classical AIC failed completely(0/50).
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5.3. Application to ozone data. We apply our method to the ozone dataset
using three out of nine predictors. The penalized estimator detects relevant
deviations from an additive model. The local linear estimator produces artifacts,
which do not occur in the penalized estimator.

We used the ozone dataset from the R package gss; see Hastie and Tibshirani
[(1990), Section 10.3]. The variable “wind speed” (wdsp) contains one excessive
value (observation number 92) which was removed, leading ton = 329. The de-
pendent variableY was chosen as the logarithm of the “upland ozone concentra-
tion” (upo3). Using gam (package mgcv), we chose those three predictors which
maximize adjusted R-squared among additive models withbivariate interaction
terms with 16 degrees of freedom each: “humidity” (hmdt), “inversion base height”
(ibtp), and “calendar day” (day).

Note that this additive model withbivariate interaction terms has roughly the
same adjusted R-squared as the additive model with all nine predictors and four
degrees of freedom for each component; see Table 4. Hence, when using these
three predictors, we expect substantial information in the interaction terms.

The three variables in this model were scaled to[0,1]. Let univariate
bandwidthsh1, h2 andh3 correspond to four degrees of freedom each, as in Hastie
and Tibshirani (1990). These bandwidths lie close together (min= 95% max) with
meanh = 3

√
h1h2h3 at 0.237. ParametersR andc are selected by AICC, such that

the bandwidths arech1, ch2 andch3, respectively.
For the penalized estimator, AICC selectedR = 0.04 andch = 0.2065 and is

clearly nonadditive. For the local linear estimator, AICC selectedch = 0.240. The
lower half of Table 4 demonstrates that the penalized estimator is vastly better than
the additive one in terms of adjustedR-squared, and slightly better than the local
linear estimator.

TABLE 4
Adjusted R-squared for different models and estimators

Estimator # independent variables R-squared
(adj.)

Regression additive 9 82.5%
spline (gam) additive 3 73.9%
df = 4|16 additive+ bivariate interaction 3 81.3%

Penalized r̂ ll multivariate (R = 10−4) 3 81.7%
local linear r̂ R penalized (R = 0.04) 3 82.5%
AICC r̂ addadditive (R = ∞) 3 73.9%

Above, we use regression splines with a fixed number of knots. Below, we use local linear
estimators with AICC selected parameters. The two additive estimators with three predictors
are equivalent to each other but inferior to the rest.
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TABLE 5
Orthogonal decomposition of estimation on a grid into constant, additive,

interaction and remainder components

R h r0 r1 r2 r3 r12 r13 r23 r123

10−4 0.240 3.95 0.482 0.054 0.025 0.023 0.082 0.019 0.059
0.04 0.207 3.96 0.478 0.051 0.017 0.009 0.023 0.002 0.011

We compare the mean squares of each component for the penalized (R = 0.04)
and for the local linear (R = 10−4) estimator. Penalizing shrinks interaction and
remainder components. Univariate additive components are slightly reduced. The
indices are 1= ibtp, 2= day and 3= hmdt.

Next, we orthogonally decompose the local linear and the penalized estimator
into intercept, additive components, bivariate interactions and remainder. Penaliz-
ing shrinks the bivariate interactions and the remainder; see Table 5.

Figure 5 compares the local linear and penalized estimators, univariate com-
ponents on the top and the largest bivariate interaction (ibtp, hmdt) on the bottom.

FIG. 5. Comparison of penalized and local linear estimators. Above, the univariate additive
components are shown. Below, the bivariate components of ibtp and hmdt are compared. In between,
the design is shown including the smoothing windows at (0.73,0.31).
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The plots for univariate components demonstrate those regularization properties of
the penalized estimator. The plot in the center of the bottom row shows the design
and the smoothing windows for one output point. Keep in mind that the smoothing
windows are actually three-dimensional cubes and hence not all points inside the
rectangle actually contribute to the local linear estimator.

Let us mention that parameter selection criteria such as AICC and GCV evaluate
the estimator at design points and hence are not influenced by its behavior in
sparse regions. Comparing the local linear estimator with the penalized estimator,
we observe some strange structure for the former at hmdt= 0.3. This is clearly
an artifact, as for day≥ 0.75 and ibtp≥ 0.75, the local linear estimator is an
extrapolation.

We conclude that the penalized estimator outperforms the additive estimator
and is also superior to the full estimator regarding adjustedR-squared and
regularization properties.

Reproducing simulation results. An implementation of̂r R together with the
R code used in the simulations of this paper is provided at www.biostat.unizh.ch/
Software.

APPENDIX

A.1. Assumptions and details.

A.1.1. Conditions for optimality of the MLN estimator. MLN show that the
estimator̂r add is asymptotically equal to the oracle estimator if(Yi, X i) are i.i.d.,
the true regression functionr true(X i ) = E[Yi |X i] is additive (1) and the following
conditions hold:

CONDITION MLN:B1. The kernel K is bounded, has compact support
([−C1,C1]), is symmetric about zero and is Lipschitz continuous.

CONDITION MLN:B2 ′. The d-dimensional vectorX has compact support
[0,1]d and its densityf is bounded away from zero and infinity on[0,1]d .

The product kernelKh with bandwidthsh1, . . . , hd is constructed from the
univariate kernelK by Kh(X , x ) =∏d

k=1 K([X − x ]k/hk)/hk .
Furthermore, the kernel is rescaled at the boundary such that for allX i ∈

[0,1]d , ∫
[0,1]d

Kh(X i , x ) d x = 1.

This modification does not affect the local linear estimator, but it changes its
projection to the additive model. Hence, the estimation of the marginal design
density is equal to an integrated full-dimensional density estimation. Additionally
to MLN, we assumeK ≥ 0.



PENALIZED NONPARAMETRIC REGRESSION 1321

CONDITION MLN:B3 ′ . For someθ > 5/2, E[|Y |θ ] < ∞.

Additionally to MLN, we assumeE[ε4] < ∞ in Sections 4.5 and 4.6.

CONDITION MLN:B4 ′ . The true regression functionr true(x ) = E [Y |X =
x ] is twice continuously differentiable andf is once continuously differentiable.

CONDITION C1. Assume there exist constantsck with n1/5hk → ck , k =
1, . . . , d.

CONDITION C1+. The bandwidthsh1, . . . , hd are as in Condition C1 or
larger. As a matter of course we assume thathk → 0.

A.1.2. Definition of Z. In Section 2.2 the output gridt j , j = 1, . . . ,m, and

the parametersβ = colj (β( j)) = colj (col�(β
( j)
� )) were introduced. In Section 3.2

Paddwas decomposed into the productZ�Z. Instead of writing down the matrixZ,
we show whatZ does with a vectorβ ∈ Ffull . For the index ranges we use

j = 1, . . . ,m; � = 0, . . . , d; k = 1, . . . , d. Let β
�
= colj (β

( j)
� ). Define

Zβ = col(Z01β0
,Z2β0

, . . . ,Zdβ
0
,Z01β 1

,Z02β 2
, . . . ,Z0dβ

d
),

whereZ0kβ k
adds thoseβ(j)

k which have thekth coordinate oft j in common,

Z0kβ k
=
√

mk

m

∑
j

β
( j)
k


1tk1=tj,k

...

1tkmk
=tj,k

 .

For identifiability, all additive components of the intercept except the first one
should have mean zero. Therefore,Zkβ0

is defined asZ0kβ0
with subtracted mean.

We did not modifyZk to have full rank, as this makes implementation more
complicated, and it appears that the additional computing steps offset the gain due
to lower dimension.Z�Z is a projection and henceZZ� is too.

A.2. Proofs.

A.2.1. Algorithm, structure and proofs for Section 3.2.

Deriving (7). Rao and Kleffe (1988) provide ageneralized inverse for the
matrix B + CDC�,

B− − B−CD(I + C�B−CD)−C�B−.

This holds ifB andD are symmetric and if the image ofB contains the image ofC.
We apply this formula for(B,C,D) = (S + RI,Z�,−RI).
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Verify that PS,R is a projection from Ffull to Fadd. Define

�S,R := I − ZARZ� = (I − ZZ�) + Z(I − AR)Z�.(21)

BecauseI − AR ≥ 0, the image of�S,R contains the image ofZ(I − AR). We get

�S,R�−
S,RZ(I − AR) = Z(I − AR).(22)

Furthermore,

(I − ZZ�)Z = 0(23)

and the definition of�S,R implies

(I − ZZ�)�S,R = (I − ZZ�).(24)

Applying (22)–(24) leads to

(I − ZZ�)�−
S,RZ(I − AR) = 0.(25)

PS,R = Z��−
S,RZ(I − AR) is aprojection because

P2
S,R = Z��−

S,RZ(I − AR)Z��−
S,RZ(I − AR)

(21)= Z��−
S,R

(
�S,R − (I − ZZ�)

)
�−

S,RZ(I − AR)

(25)= Z��−
S,R�S,R�−

S,RZ(I − AR)

(22)= Z��−
S,RZ(I − AR) = PS,R

and(I − AR)PS,R is symmetric. If�S,R is nonsingular, the image ofPS,R is Fadd.
Let us verify thatPS,RPadd= Padd:

(I − PS,R)Z�Z = Z�(I − �−1
S,RZ(I − AR)Z�)Z

(21)= Z�(I − �−1
S,R

(
�S,R − (I − ZZ�)

))
Z

(23)= Z�(I − �−1
S,R�S,R)Z = 0.

Formula (8) is straightforward.

A.2.2. Iterative formula and proofs for Section 3.3.

Convergence of iterative algorithm in (9) in the case of nonuniqueness. We
denote by(ZARZ�)∞ the projection to the subspace of eigenvectors ofZARZ�
with eigenvalues 1. BecauseZ(I − AR)β̂

ll
is orthogonal to the above subspace,

(ZARZ�)∞γ [a] = (ZARZ�)∞γ [0] andI − (ZARZ�)∞γ [a] converges.
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Iteration formula for large R, deriving (10). Starting with (8), multiply byZ,
replacePS,Rβ̂

ll
by Z�Zβ̂

R
, subtractZβ̂

R
, multiply by αR, addZβ̂

R
, and apply

(I − ZZ�)Zβ̂
R

= 0 because of (23).

A.2.3. Properties on grid and proofs for Section 4.1. Proposition 1 is an
interpretation of (8) and requires no proof.

PROOF OF PROPOSITION 2. We need to prove thatPadd̂β R
= PS,Rβ̂

ll
,

respectively

Padd
(
(I − AR)(I − PS,R)

)= 0.

Transposing and applying the symmetry of the matrix, this is equivalent to

(I − AR)(I − PS,R)Padd= 0.

This holds becausePS,RPadd= Padd [if and only if (5) is unique]. �

A.2.4. Definition of P∗,R and proofs for Section 4.2. We use the abbreviation
Sadd= PaddS∗Paddrestricted toFadd. Hence,Sadd is a linear operator onFadd, and
it has a continuous inverse with probability tending to 1 forn → ∞; see Lemma 2
in Section 4.4.

Define the operator�∗,R :Fadd→ Fadd:

�∗,R = Padd(S∗ + RI)−1S∗Padd.

If S−1
add exists and is continuous,�−1

∗,R is continuous because

�∗,R ≥ 1

‖S∗‖2,sup+ R
Sadd.

Let us define the projectionP∗,R : Ffull → Fadd by

P∗,R = Padd�
−1
∗,RPadd(S∗ + RI)−1S∗.(26)

S∗ is continuous (‖S∗‖2,sup< ∞), because kernel weights are bounded and have
compact support (Condition MLN:B1).

Below we will verify that the choice for̂r R in (13) in Section 4.2 satisfies the
normal equation (12). We need the propertiesPaddP∗,R = P∗,R and

Padd
(
I − (S∗ + RI)−1R

)
P∗,R

(26)= �∗,R�−1
∗,RPadd(S∗ + RI)−1S∗

(27)
= Padd(S∗ + RI)−1S∗.
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We have to verify the normal equations(S∗ + R(I − Padd)) r̂ R = S∗ r̂ ll :(
S∗ + R(I − Padd)

)
r̂ R

= (
(S∗ + RI) − RPadd

)
(S∗ + RI)−1{S∗ + RP∗,R} r̂ ll

= S∗ r̂ ll + RPadd
{(

I − (S∗ + RI)−1R
)
P∗,R − (S∗ + RI)−1S∗

}
r̂ ll

(27)= S∗ r̂ ll + R{Padd(S∗ + RI)−1S∗ − Padd(S∗ + RI)−1S∗} r̂ ll = S∗ r̂ ll .

While r̂ ll may be ambiguous,S∗ r̂ ll and (if�−1
∗,R exists)P∗,R r̂ ll are unique.

PROOF OFPROPOSITION3. In (14),P∗,R r̂ ll ∈ Fadd. In order to show that
the other term is orthogonal toFadd, we prove that

Padd(S∗ + RI)−1S∗(I − P∗,R) = 0.

This holds because(S∗ + RI)−1S∗ = I − (S∗ + RI)−1R and (27). �

PROOF OFPROPOSITION4. The orthogonal projection fromF to Fadd is the
same for‖ · ‖∗ and for‖ · ‖R :

argmin
r add∈Fadd

‖ r − r add‖∗ = argmin
r add∈Fadd

‖ r − r add‖R ∀ r ∈ F ,

because the penaltyR‖(I − Padd)P0( r − r add)‖2
2 does not depend onr add.

Consequently, we may exchange the two norms when projecting toFadd, and we
may simplify nested projections:

P∗ r̂ R ≡ argmin
r add∈Fadd

∥∥∥∥ r add− argmin
r ∈Ffull

‖ r − r Y ‖R

∥∥∥∥∗
= argmin

r add∈Fadd

∥∥∥∥ r add− argmin
r ∈Ffull

‖ r − r Y ‖R

∥∥∥∥
R

= argmin
r add∈Fadd

‖ r add− r Y ‖R = argmin
r add∈Fadd

‖ r add− r Y ‖∗ ≡ r̂ add. �

A.2.5. Proofs for Section 4.3.

PROOF OFPROPOSITION5. The proof follows from Gao (2003). In particu-
lar, continuity onR

d of the design densityf does not hold. However, Condition
MLN:B2 ′ states thatf is bounded on[0,1]d . For anupper bound of S0,0(x ),
we choose some smooth densitỹf and a constantc with f (x ) ≤ cf̃ (x ) and add
�(c − 1)n� virtual observations with distribution(cf̃ − f )/(c − 1). The density
estimator based on all�cn� observations is bounded in probability andS0,0/c is
smaller. The boundary adjustments are handled analogously.�
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PROOF OFLEMMA 1. Because of Lemma 2 and Proposition 5,S∗ andS−1
add

are bounded. In Appendix A.2.4, the claim is already shown for smallR and (26).
Using (17) in Section 4.4, the proof is straightforward for largeR. �

A.2.6. Continuity in R = ∞ and proofs for Section 4.4. Continuity inR = 0
requires no proof.

PROOF OFLEMMA 2.

Overview. MLN showed in Theorem 1′ that the estimator̂r add is unique with
probability tending to 1 forn → ∞. Uniqueness is equivalent to‖ r ‖∗ > 0 for all
r ∈ Fadd with ‖ r ‖2 = 1. Using their technique of proof, we may even show that
the above norm isbounded away from zero with probability tending to 1. In this
caseSadd has a continuous inverse with respect to‖ · ‖2.

Sketch of proof for Theorem MLN:1 ′. The normal equations for̂r add are

Sadd̂r add= Paddr L.

Define the matrixM̂k(x ) which depends only on the one-dimensional data
(Yi,Xi,k), i = 1, . . . , n:

M̂k(x ) = 1

n

n∑
i=1

∫
Kh(X i , x ) d x −kYi

 1
Xi,k − xk

hk

Xi,k − xk

hk

(
Xi,k − xk

hk

)2

 .

With probability tending to 1,̂M−1
k (x ) is continuous, and in this case someτ̂ is

obtained by a continuous mapping ofPaddr L:

r̂ add= T̂ r̂ add+ τ̂ ,

where T̂ is somecontraction. Therefore the solution is unique andPaddr L �→
r̂ add is continuous. BothT̂ and τ̂ depend onM̂−1

k and the two-dimensional
empirical marginal distribution ofX i .

BecausePaddr L, even when choosing arbitrary values forY , does not occupy
Fadd, we cannot (yet) conclude thatS−1

add exists and is continuous.

Definition of P∗. Let us now examine the orthogonal (with respect to‖ · ‖∗)
projectionP∗ from Ffull to Fadd,

P∗ r̆ = argmin
r̆ add∈Fadd

‖ r̆ − r̆ add‖2∗.

The normal equations are

Saddr̆ add= PaddS∗ r̆ .

By choosinĝτ appropriately, one can prove thatPaddS∗ r̆ �→ r̆ add is continuous.
Because of the uniqueness ofP∗, the image ofFfull under the mappingPaddS∗ is
equal toFadd and thereforeS−1

add exists and is continuous.
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Convergence of Sadd. The operatorSadd depends onbivariate terms only.
Under Conditions MLN:B1, MLN:B2′ and C1, these terms converge to their
theoretical counterparts, which depend on the design densityf . Furthermore,
MLN argued thatT̂ is a contraction (with probability tending to 1) because it
converges toT , which is a contraction [MLN:(69)].

Bandwidths larger than n−1/5. The above calculation assumes thath is
proportional ton−1/5. In the proof of MLN, one piece was the convergence of
T̂ to T , which depends only on the theoretical design densityf . In case of
oversmoothing, variability is reduced and the expected part is not critical, as
Condition MLN:B2′ holds also for smoothedf . Hence, Condition C1 may be
replaced by Condition C1+. �

PROOF OF LEMMA 3. ‖Paddr L‖2 is essentially univariate and therefore
OP (1).

Define Padd+ :Ffull → Fadd via (Padd+ r )0(x ) = ∑d
k=1

∫
r0(x ) d x −k and

(Padd+ r )k(x ) = ∫
rk(x ) d x −k . By construction,Padd+ is monotone: if r�(x ) ≥

r̆�(x ) (∀�, x ), then (Padd+ r )�(x ) ≥ (Padd+ r̆ )�(x ). Note that Padd is not
monotone. Denote byDR the contractionI− (I+R−1S∗)−1 which is apointwise
linear transformation with‖DR‖2,sup≤ R−1‖S∗‖2,sup.

We want to prove thatPadd+DR r L is arbitrarily small whenR−1S∗ is small
enough. Let us sketch the proof in a simplified case. IfDR were diagonal, we
would use themonotonicity of Padd+ to obtain an upper bound by replacingr�

L(x )

by its absolute value (∀�, x ) and enlargingDR to ‖DR‖2,supI:

‖(Padd+DR r L)(x )‖2 ≤ ‖DR‖2,sup‖(Padd+ r |L|)(x )‖2,(28)

where r |L| denotesr L with absolute values. Thepointwise upper bound for
‖(Padd+ r L)(x )‖2 remains valid ifYi and Xi,k − xk are replaced by|Yi | and
|Xi,k − xk|, respectively.

In practice, positivity of all components is generally not preserved under
multiplication byDR . By Condition MLN:B1, the kernelK has compact support
[−C1,C1] and therefore the slope terms ofr L are bounded by the intercept,
rk
L(x ) ≤ C1r

0
L(x ). The norm‖(DR r L)(x )‖2 is bounded pointwise inx by√

1+ C2
1d‖DR‖2,sup

1
n

∑n
i=1 Kh(X i , x )|Yi |.

Let r |L|(x ) =
√

1+ C2
1d 1

n

∑n
i=1 Kh(X i , x )|Yi |(1, . . . ,1) and (28) holds.

Again,Padd+ r |L|(x ) depends on univariate terms only, which is essential in high

dimensions, where1
n

∑n
i=1 Kh(X i , x ) is not of constant order.

We conclude that supx ‖(Padd+DR r L)(x )‖2 = OP (R−1‖S∗‖2,sup). �

PROOF OFLEMMA 4. Let a = r Y − r̂ R , b = r̂ R − r̂ add andc = a + b =
r Y − r̂ add. Becausêr R minimizes‖ r − r Y ‖2

R and‖ r̂ add− r Y ‖R is independent
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of R,

‖a‖R ≤ ‖c‖R = ‖c‖∗.(29)

Obtain a bound for‖(I − Padd) r̂ R‖2
2 using (4):

R‖(I − Padd) r̂ R‖2
2

(4)= ‖a‖2
R − ‖a‖2∗

(29)≤ ‖c‖2∗ − ‖a‖2∗ = 〈c − a, c + a〉∗
= 〈b,2c − b〉∗ ≤ 2〈b, c〉∗ ≤ 2‖b‖∗‖c‖∗.

Then

‖(I − Padd) r̂ R‖2
2 ≤ 2R−1(√‖S∗‖2,sup‖ r̂ R − r̂ add‖2

)‖ r Y − r̂ add‖∗.

BecauseS0,0(x ) is a density estimate,‖S∗‖2,sup≥ 1 and we omit the square root.
Because r̂ add is a minimizer, ‖ r Y − r̂ add‖2∗ ≤ ‖ r Y ‖2∗ = 1

n

∑n
i=1 Y 2

i . For
increasingn, this isOP (1) because of Condition MLN:B3′. �

PROOF OFTHEOREM2. As the expected part is additive [up tooP (h2) terms],
the nonadditive part consists only of the variance terms:‖(I − P∗,R) r̂ ll‖2

2 =
OP ( 1

nhd ). By Proposition 4, r̂ add − Padd̂r R = P∗(I − Padd) r̂ R , whereP∗ is
continuous (with probability→ 1). By Proposition 3,(I − Padd) r̂ R = (S∗ +
RI)−1S∗(I − P∗,R) r̂ ll and the claim follows from‖(S∗ + RI)−1S∗‖2,sup ≤
R−1‖S∗‖2,sup and uniform continuity ofP∗,R (Lemma 1). �

A.2.7. Model selection by AIC (Section 4.5).

PROOF OFLEMMA 5. We use a formula from Rao and Kleffe [(1988), pages
31ff ],

cov(ε�Bε ,ε�Cε ) = 2σ 4 tr(BC) + κσ 4 tr(B diag(C)),(30)

whereB, C aresymmetric matrices of dimensionn andE[ε4
i ] = (3+ κ)σ 4. Using

B = C = 1
2(M�

R + MR) we obtain

var(〈ε ,MR ε 〉) = σ 4( tr(MRMR) + tr(M�
RMR) + κ tr

(
diag(MR)2)).

Note that ‖MR‖2
HS = tr(M�

RMR) is known as a Hilbert–Schmidt norm and
tr(MRMR) = 〈M�

R,MR〉HS is bounded by‖MR‖HS‖M�
R‖HS . Hence var(〈ε ,

MR ε 〉) ≤ (2+ |κ|)σ 4 tr(M�
RMR) andE[‖MR ε ‖2] = σ 2 tr(M�

RMR).
Analogously, using tr((M�

RMR)2) ≤ ‖M�
RMR‖suptr(M�

RMR), the variance of
‖MR ε ‖2 is smaller than(2+ |κ|)σ 2‖M�

RMR‖supE[‖MR ε ‖2]. �
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A.2.8. Proofs for Section 4.6.

PROOF OF PROPOSITION 7. It is well known thatE[‖Mll ε ‖2] ∝ 1
nhd and

E[‖Maddε ‖2] ∝ d
nh

. Let us start with theλ2 terms: Because1
nσ2‖Maddε ‖2 is of

smaller order than1
nσ2‖Mll ε ‖2, the mixed term 2

nσ2 〈Mll ε ,Maddε 〉 is bounded by

the Cauchy–Schwarz inequality. Furthermore,(1− E)[ 1
nσ2‖Mll ε ‖2] is negligible

compared toE[ 1
nσ2‖Mll ε ‖2] (see Lemma 5), indicating that theinverse of theλ2

terms isOP (nhd).
For theλ-linear terms, it is obvious that2

nσ2 (1 − E)[〈ε ,Mll ε 〉] is the largest

stochastic term. It remains to show that2
nσ2 E[〈Mll ε ,Maddε 〉] is nonnegative, as

a nonnegative coefficient ofλ indicates that the minimum is atλmin ≤ 0 (R = ∞).
As we are using a fixed uniform design, the local linear and the Nadaraya–
Watson estimator coincide (ignoring the boundary). Hence, we are interested
in the covariance of a multivariate and a univariate Nadaraya–Watson estimator
with nonnegative kernel weights, whose hat matrices have therefore nonnegative
elements. �
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