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FUNCTIONALS OF DIRICHLET PROCESSES, THE
CIFARELLI–REGAZZINI IDENTITY AND

BETA-GAMMA PROCESSES1

BY LANCELOT F. JAMES

Hong Kong University of Science and Technology

Suppose thatPθ (g) is a linear functional of a Dirichlet process with
shapeθH , where θ > 0 is the total mass andH is a fixed probability
measure. This paper describes how one can use the well-known Bayesian
prior to posterior analysis of the Dirichlet process, and a posterior calculus
for Gamma processes to ascertain properties of linear functionals of Dirichlet
processes. In particular, in conjunction with a Gamma identity, we show
easily that a generalized Cauchy–Stieltjes transform of a linear functional of
a Dirichlet process is equivalent to the Laplace functional of a class of, what
we define as, Beta-Gamma processes. This represents a generalization of an
identity due to Cifarelli and Regazzini, which is also known as the Markov–
Krein identity for mean functionals of Dirichlet processes. These results also
provide new explanations and interpretations of results in the literature. The
identities are analogues to quite useful identities for Beta and Gamma random
variables. We give a result which can be used to ascertain specifications on
H such that the Dirichlet functional is Beta distributed. This avoids the need
for an inversion formula for these cases and points to the special nature of the
Dirichlet process, and indeed the functional Beta-Gamma calculus developed
in this paper.

1. Introduction. Let P denote a Dirichlet random probability measure on
a Polish spaceY, with law denoted asD(dP |θH), whereθ is a nonnegative
scalar andH is a (fixed) probability measure onY. In addition, letM denote
the space of boundedly finite measures onY. This space contains the space
of probability measures onY. The Dirichlet process was first made popular
in Bayesian nonparametrics by Ferguson (1973) [see also Freedman (1963) for
an early treatment], and has subsequently been used in numerous statistical
applications. Additionally, the Dirichlet process arises in a variety of interesting
contexts outside of statistics. Formally,P is said to be a Dirichlet process if
and only if for each finite collection of disjoint measurable setsA1, . . . ,Ak , the
random vectorP(A1), . . . ,P (Ak) has a Dirichlet distribution with parameters
θH(A1), . . . , θH(Ak). In particular,P(A) is a Beta random variable for any
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measurable setA. An important representation of the Dirichlet, which is analogous
to Lukacs characterization of the Gamma distribution, isP(·) = µ(·)/T where
µ is a Gamma process with finite shape parameterθH and T = ∫

Y µ(dy) is a
Gamma random variable with shapeθ and scale 1. The law of the Gamma process
is denoted asG(dµ|θH) and is characterized by its Laplace functional∫

M
e−µ(g)G(dµ|θH) = e

−∫
Y log[1+g(y)]θH(dy)

for each positive bounded measurable functiong on Y. For our purposes we
shall consider the more general class of real-valued functionsg which satisfy the
constraint ∫

Y
log[1+ |g(y)|]θH(dy) < ∞.(1)

This condition, (1), as shown by Doss and Sellke (1982) and Feigin and Tweedie
(1989), is necessary and sufficient for the existence of the linear functionals

P(g) =
∫
Y

g(y)P (dy).

An important fact is thatT andP are independent, which as we shall see, has a
variety of implications.

An interesting problem initiated in a series of papers by Cifarelli and Regazzini
(1990) is the study of the exact distribution of linear functionalsP(g) of the
Dirichlet process. One of their contributions is the important identity∫

M

1

(1+ zP (g))θ
D(dP |θH) = e

−∫
Y log[1+zg(y)]θH(dy)

,(2)

where typicallyz is in the complex planeC . We call (2) theCifarelli–Regazzini
identity. The result in (2) is sometimes called theMarkov–Krein identity for
means of Dirichlet processes. Diaconis and Kemperman (1996) discuss some
consequences of this result, which has implications relative to the Markov moment
problem, continued fractions theory, exponential representations of analytic
functions, and so on [see Kerov (1998) and Vershik, Yor and Tsilevich (2001)].
Vershik, Yor and Tsilevich (2001) expand upon this, emphasizing that the right-
hand side of (2) is the Laplace functional of a Gamma process with shapeθH .
That is, ∫

M

1

(1+ zP (g))θ
D(dP |θH) =

∫
M

e−zµ(g)G(dµ|θH).(3)

Their interpretation, which is in the sense of a Markov–Krein transform, is that the
generalized Cauchy–Stieltjes transform of orderθ of P(g), whereP is a Dirichlet
process with shapeθH , is the Laplace transform ofµ(g) whenµ is the Gamma
process with shapeθH . The authors then exploit this fact to rederive (3) via an
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elementary proof using the independence property ofP and T . An interesting
question is, what can one say about∫

M

1

(1+ zP (g))q
D(dP |θH)(4)

when θ and q are arbitrary positive numbers? That is, can one establish a
relationship of (4) to the Laplace functional of some random measure, sayµ∗,
which is similar toµ, for all q andθ? Lijoi and Regazzini (2004) establish analytic
results for (4), relating them to the Lauricella theory of multiple hypergeometric
functions. Theorem 5.2 of their work gives analogues of (2), stating what they call
a Lauricella identity, but does not specifically state a relationship such as (3). We
should say for the caseθ > q that it would not be terribly difficult to deduce an
analogue of (4) from their result. However, this is not the case whenθ < q, which
is expressed in terms of contour integrals. Their representations, for allθ andq,
as clearly demonstrated by the authors, however have practical utility in regards
to formulae for the density ofP(g). In this case, one wants to have an expression
for (4), whenq = 1 and for allθ . Some related works include the papers of Kerov
and Tsilevich (1998), Regazzini, Guglielmi and Di Nunno (2002), Regazzini, Lijoi
and Prünster (2003) and the manuscript of James (2002).

1.1. Preliminaries and outline. In this paper we develop results that are
complementary to the work of Lijoi and Regazzini (2004) and Vershik, Yor and
Tsilevich (2001). In particular, we show that (3), as interpreted in Vershik, Yor and
Tsilevich (2001), extends to a relationship between (4) and the Laplace functional
of a class of what we call Beta-Gamma processes defined by scaling the Gamma
process law byT −d , for all numbersd such thatθ − d > 0, that is, processes with
laws equal to

BG(dµ|θH,d) = �(θ)

�(θ − d)
T −dG(dµ|θH).(5)

In particular, our main result concerns the choice ofd = θ −q for arbitrary positive
numbers which are not necessarily equal. The approach relies in part on, in this
case, mostly familiar Bayesian prior posterior calculus for Dirichlet and Gamma
processes in conjunction with the usage of the following well-knownGamma
identity for q > 0:

T −q = 1

�(q)

∫ ∞
0

vq−1e−vT dv.(6)

That is to say, purely analytic arguments are replaced by Bayesian arguments using
the familiar results in Ferguson (1973), Lo (1984) and Antoniak (1974), thus giving
the derivations a much more interpretable Bayesian flavor. More specifically, albeit
less well known, we use the results in Lo and Weng (1989) as demonstrated for
more general processes in James (2002). This bypasses the need, for instance,
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to verify certain integrability conditions and the usage of limiting arguments.
Moreover, somewhat conversely to Lijoi and Regazzini (2004), we show how
properties of the Dirichlet and Beta-Gamma processes yield easily interesting
identities related to Lauricella and Liouville integrals [see Lijoi and Regazzini
(2004) and Gupta and Richards (2001)]. Although we exploit the independence
property ofT and P to prove our results, our approach is quite different from
the methods used by Vershik, Yor and Tsilevich (2001) to prove (3). While their
proof is certainly elegant, it does not seem possible to extend to other processes.
Our methods, however, are influenced by their proof of an analogous result for
the two-parameter extension of the Dirichlet process [see Pitman (1996)] which
relies on (6) and the fact that such processes are based on scaled laws. That is
to say, we present an approach which is extendable to other models [see James
(2002), Section 6]. However, for the Beta-Gamma processes defined in (5), the
independence property betweenT andP translates into the property∫

M
h(P )D(dP |θH) =

∫
M

h(P )G(dµ|θH) =
∫
M

h(P )BG(dµ|θH,d)(7)

for all integrableh. The property (7) seems to suggest that the Beta-Gamma
process may not have much utility relative to calculations involvingP ; however,
it is precisely this property that we shall exploit. In the next section we shall first
develop, rather quickly, two supporting results concerning the calculus of Dirichlet
and Beta-Gamma processes. We will then show how these results are used to easily
derive our main results in Theorems 2.1 and 2.2 based on Bayesian arguments. We
close the paper by showing how our methodology, a Beta-Gamma calculus for
Dirichlet processes, leads to a functional analogue of the classical Beta-Gamma
calculus for random variables. That is, we provide conditions onH such thatPθ(g)

is Beta distributed.

2. Functionals of Dirichlet processes, the Cifarelli–Regazzini identity and
Beta-Gamma processes. We start by recalling some properties of the Dirichlet
process. LetY1, . . . , Yn denote random elements in the spaceY, which conditional
on P are i.i.d. with law P . P is a Dirichlet process with shapeθH . These
specifications define a joint law of(Y,P ), where, from Ferguson (1973), it follows
that the posterior distribution ofP |Y is also Dirichlet with shape

(θ + n)Hn = θH +
n∑

i=1

δYi
.

Additionally, the marginal distribution ofY is the Blackwell and MacQueen (1973)
distribution described as

P(dY|θH) = �(θ)

�(θ + n)
θH(dY1)

n∏
i=2

(
θH +

i−1∑
j=1

δYj

)
(dYi).
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The Blackwell–MacQueen distribution admits ties. Hence one can representY =
(Y∗,p), whereY∗ = {Y ∗

1 , . . . , Y ∗
n(p)} denotes then(p) ≤ n unique values ofY. The

expressionp = {C1, . . . ,Cn(p)} denotes a partition of the integers{1, . . . , n} with
n(p) elements. TheCj = {i :Yi = Y ∗

j } for j = 1, . . . , n(p) denote the collection
of values equal to each uniqueY ∗

j , for j = 1, . . . , n(p). The cardinality of each
cell Cj is denoted asej,n. WhenH is nonatomic, then one can write

P(dY |θH) = π(p|θ)

n(p)∏
j=1

H(dY ∗
j ),

where

π(p|θ) = θn(p)�(θ)

�(θ + n)

n(p)∏
j=1

(ej,n − 1)!

is a variant of Ewens’ (1972) sampling formula, which was independently derived
by Antoniak (1974). It is also called the Chinese Restaurant process [see Pitman
(1996)] and plays a fundamental role in Lo (1984). IfH is discrete with probability
mass functionρ, then

P(dY|θH) = �(θ)

�(θ + n)

n(p)∏
j=1

�(θρ(Y ∗
j ) + ej,n)

�(θρ(Y ∗
j ))

.

In any case, note that appealing to standard Bayesian arguments, the results
of Ferguson (1973) imply that one has∫

M
h(P )D(dP |θH) =

∫
Yn

[∫
M

h(P )D
(
dP |(θ + n)Hn

)]
P(dY|θH).(8)

This simple consequence is fundamental to our presentation. It is evident that (8)
along with the various forms ofP(dY|θH) yield nontrivial expressions which
might otherwise require an appeal to, for instance, the theory of special functions
or combinatorics. In the same spirit, we now derive the posterior distribution of
the Beta-Gamma processes. From Lo and Weng (1989), one has the following
disintegration of measures:

n∏
i=1

µ(dYi)G(dµ|θH) = �(θ + n)

�(θ)
G

(
dµ|θH +

n∑
i=1

δYi

)
P(dY|θH),(9)

where G(dµ|θH + ∑n
i=1 δYi

) denotes a Gamma process with shapeθH +∑n
i=1 δYi

. Using (7), it is easy to see that
∫
M

∏n
i=1 P(dYi)BG(dµ|θH,d) =

P(dY|θH). Combining this fact with (9) easily yields the following description
of the posterior distribution of a Beta-Gamma process.
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PROPOSITION 2.1. Let µ have law BG(dµ|θH,d) defined for all d, such
that θ − d > 0. Then from (7), the law of P = µ/T is D(dP |θH). Suppose that
Y1, . . . , Yn|P are i.i.d. P ; then the posterior distribution of µ|Y is a Beta-Gamma
process with parameters (θ + n)Hn and n + d, defined as

BG
(
dµ|(θ + n)Hn,n + d

) = �(θ + n)

�(θ − d)
T −(n+d)G

(
dµ|(θ + n)Hn

)
.

Hence, similar to (8), one has∫
M

f (µ)BG(dµ|θH,d)

(10)
=

∫
Yn

[∫
M

f (µ)BG
(
dµ|(θ + n)Hn,n + d

)]
P(dY|θH)

for all integrable f . Note that setting d = 0 shows that if µ is G(dµ|θH), then its
posterior distribution is BG(dµ|(θ + n)Hn,n), which is not a Gamma process.

REMARK 2.1. Note that the use of (7), (8) and (10) sets up a myriad of
interesting equivalences which will prove useful in our derivations. However, we
do point out that while (10) implies (8), the converse is not true.

Another important property of the Gamma process that we shall exploit is the
algebraic identity∫

M
e−(vT +wµ(g))G(dµ|θH) = (1+ v)−θ e

−∫
Y log[1+(w/(1+v))g(y)]θH(dy)

.(11)

Let

B(du|a, b) = �(a + b)

�(a)�(b)
ua−1(1− u)b−1 du for 0< u < 1

denote the density of a Beta random variable with parameters(a, b). We now
establish our final preliminary result before our main theorem.

PROPOSITION2.2. Let θ and q be arbitrary nonnegative numbers. Then for
any integer n ≥ 0 that satisfies the constraint θ +n− q > 0, the following formula
holds:

�(θ + n)

�(θ + n − q)

∫
M

1

(T + zµ(g))q
G

(
dµ|(θ + n)Hn

)
(12)

=
∫
M

e−zµ(g)BG
(
dµ|(θ + n)Hn, θ + n − q

)
.
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PROOF. Apply the Gamma identity to(T + µ(g))−q and then (11) withv = w

andθH replaced by(θ + n)Hn, to show that the left-hand side of (12) is equal to

�(θ + n)

�(θ + n − q)�(q)

∫ ∞
0

vq−1e
−∫

Y log[1+(v/(1+v))zg(y)]θH(dy)

×
n(p)∏
j=1

(
1+ v

(1+ v)
zg(Y ∗

j )

)−ej,n

(1+ v)−(θ+n) dv.

Similarly, the following expression is obtained for the right-hand side of (12) by
applying the Gamma identity toT −(θ+n−q), (11) withw = 1 and a further change
of variable:∫ 1

0
e
− ∫

Y log[1+uzg(y)]θH(dy)
n(p)∏
j=1

(
1+ uzg(Y ∗

j )
)−ej,nB(du|q, θ + n − q).(13)

The result is obtained by applying the transformationu = v/(1+ v). �

We now present a new result which relates the generalized Cauchy–Stieltjes
transform of Dirichlet process linear functionals to the Laplace functional of
Beta-Gamma processes. This presents a generalization of the Cifarelli–Regazzini
identity, complementary to the Lauricella identities deduced in Lijoi and Regazzini
[(2004), Theorem 5.2]. We also present some interesting additional identities.

THEOREM 2.1. Let D(dP |θH) denote a Dirichlet process with shape θH .
Let g denote a function satisfying (1). Then the following relationships are
established:

(i) For any positive q and θ ,∫
M

(
1+ zP (g)

)−qD(dP |θH) =
∫
M

e−zµ(g)BG(dµ|θH, θ − q).(14)

Note that the law BG(dµ|θH, θ − q) exists for all positive θ and q, and arbitrary
H , since θ − (θ − q) = q > 0.

(ii) For any positive q and θ , and any integer n ≥ 0 which satisfies θ +n−q >

0, the quantities in (14)are equivalent to
∫
Yn[∫M e−µ(g)BG(dµ|(θ +n)Hn, θ +n−

q)]P(dY|θH). An explicit expression can be deduced from the equivalence of the
inner term to (13).In particular, when H is nonatomic, the expression is equivalent
to ∑

p
π(p|θ)

∫ 1

0
e
−∫

Y log[1+uzg(y)]θH(dy)

×
[ n(p)∏

j=1

∫
Y

(
1+ uzg(y)

)−ej,nH(dy)

]
B(du|q, θ + n − q).
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For the Gamma process with law G(dµ|θH), its Laplace functional may be
represented as above for all n ≥ 1 and q = θ .

(iii) When θ − q > 0, statements (i) and (ii) with n = 0 imply that∫
M

(
1+ zP (g)

)−qD(dP |θH)

(15)
=

∫ 1

0
e
−∫

Y log[1+uzg(y)]θH(dy)B(du|q, θ − q),

which coincides with the result in Lijoi and Regazzini [(2004), Theorem 5,
equation (5.2)].

PROOF. A general strategy is formed by first writing(1+ zP (g))−q =
T q(T + zµ(g))−q = h(P ). For the proof of statement (i), we first assume without
loss of generality thatq = n+d, whered is a positive number such thatθ −d > 0,
andn ≥ 0 is an integer chosen such thatθ +n−q > 0. This means thatT q = T n+d .
Now using (8) and then (7) withBG(dµ|(θ + n)Hn, q) yields∫

M

(
1+ zP (g)

)−q
D(dP |θH)

= �(θ + n)

�(θ − d)

∫
Yn

[∫
M

1

(T + zµ(g))q
G

(
dµ|(θ + n)Hn

)]
P(dY|θH).

Apply Proposition 2.2 to the inner term, recalling thatθ + n − q = θ − d. This
yields the desired expression,∫

Yn

[∫
M

e−zµ(g)BG
(
dµ|(θ + n)Hn, θ + n − q

)]
P(dY|θH)

(16)
=

∫
M

e−zµ(g)BG(dµ|θH, θ − q).

Note how again an appeal to a Bayesian argument, that is, using (10) in
Proposition 2.1 withf (µ) = e−zµ(g), is used to deduce easily the equivalence of
the right- and left-hand sides of (16).�

REMARK 2.2. SinceH is an arbitrary distribution, the result applies to a
Dirichlet process posterior distribution based on, say, a sample of sizem having
no particular relationship ton. For concreteness, supposeP is a Dirichlet process
with shapeαP0 + ∑m

i=1 δXi
, whereP0 is an arbitrary probability measure,α is a

positive scalar andX1, . . . ,Xm are fixed points. Then the results in Theorem 2.1
hold for thisP by settingθ = α + m andθH = αP0 + ∑m

i=1 δXi
.

REMARK 2.3. As in Kerov and Tsilevich (1998) and Vershik, Yor and
Tsilevich (2001), Theorem 2.1 applies to the joint distribution of linear functionals,
say (P (g1), . . . ,P (gm)), where g1, . . . , gm are functions satisfying (1). The
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generalized Cauchy–Stieltjes transform for joint distributions is defined by
replacingzP (g) by

∑m
i=1 ziP (gi). Since

∑m
i=1 ziP (gi) = P(

∑m
i=1 zigi), the result

is seen by replacingzg with
∑m

i=1 zigi in Theorem 2.1.

We now discuss some interesting results obtained from Theorem 2.1. Note
the relative ease by which Bayesian arguments can be used to derive otherwise
complex expressions such as that appearing in Theorem 2.1(ii). The caseq = 1
is of particular interest in terms of giving an expression for the Cauchy–Stieltjes
transformP(g), which can be inverted to obtain an expression for the distribution
of P(g). Settingq = 1 in Theorem 2.1(ii) gives a variety of equivalent expressions
which hold for all θ and n ≥ 1. Here, as a corollary, we present the simplest
expression that holds for allθ with n = 1.

COROLLARY 2.1. Let D(dP |θH) denote a Dirichlet process with shape θH ,
where H is an arbitrary probability measure. Let g denote a function satisfying (1);
then for all θ > 0,∫

M

D(dP |θH)

(1+ zP (g))
(17)

=
∫ 1

0
e
−∫

Y log[1+uzg(y)]θH(dy)
∫
Y

θH(dy)

1+ uzg(y)
(1− u)θ−1 du.

When θ > 1, this expression equates to the expression in Theorem 2.1(iii). When
θ = 1, Theorem 2.1(ii) shows that the right-hand side of (17) is the Laplace
functional of a Gamma process with shape H , which corresponds to (2).

The expression (17) can be seen as complementary to the expressions obtained
in Lijoi and Regazzini (2004). However, our results are quite different in the case
where 0< θ < 1, where those authors obtained an expression in terms of contour
integrals.

LetL(Z) denote the law of a random elementZ. For the remainder of this work,
let µθ,θ−q be a Beta-Gamma process with parameters(θH, θ − q), and letUa,b

denote a Beta(a, b) random variable. LetTα denote a Gamma random variable
with shapeα and scale 1, and letY1 be a random element with distributionH .
Let µθ denote a Gamma process with shapeθH and assume that the variables
µθ , Ua,b, Tα,Y1 are independent. Additionally, letPθ denote a Dirichlet process
with shapeθ . When convenient we will simply writeX = T to denote that the
distribution of X is equivalent to that ofT . That is, X = Ua,b means thatX
has a Beta distribution with parameters(a, b). The next result involves a series
of distributional identities. These are based on Bayesian mixture representations
deduced from the form of the posterior distribution mixed over the marginal
distribution, P(dY|θH). Some important consequences will be demonstrated
thereafter.
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THEOREM 2.2. Let µθ,θ−q be a Beta-Gamma process with parameters
(θH, θ − q) and let µθ denote a Gamma process with shape θH . Then for all
positive θ and q and an integer n chosen such that θ + n − q > 0, the following
distributional equalities hold:

(i) For all θ > 0 and q, and an integer n chosen such that θ + n − q > 0,

L(µθ,θ−q) = L

(
Uq,θ+n−qµθ + Uq,θ+n−q

n(p)∑
j=1

Gj,nδY ∗
j

)
,(18)

where conditional on p the distinct variables on the right-hand side are mutually
independent such that Uq,θ+n−q is Beta with parameters (q, θ + n − q), µθ is a
Gamma process with shape θH , {Gj,n} are independent Gamma random variables
with shape ej,n and scale 1. The distribution of Y = (Y∗,p) is P(dY|θH). In
particular, if H is nonatomic, the Y ∗

j for j = 1, . . . , n(p) are i.i.d. H , and the
distribution of p is π(p|θ). Statement (i) implies the following results.

(ii) For all θ and q = 1,

L(µθ,θ−1) = L
(
U1,θµθ + U1,θT1δY1

)
.(19)

If µθ denotes a Gamma process with arbitrary shape parameter θH , then

L(µθ ) = L
(
Uθ,1µθ + Uθ,1T1δY1

)
.(20)

(iii) For all positive θ and q,

L(µθ,θ−q) = L(TqPθ ),(21)

where Tq is a Gamma random variable with shape q and scale 1 independent
of Pθ , which is a Dirichlet process with shape θH . Hence for all positive θ

and q, L(Tθµθ,θ−q) = L(Tqµθ), where Tθ is Gamma with shape θ and scale 1,
independent of µθ,θ−q . Similarly, Tq and µθ are independent.

PROOF. The distributional identity in (i) is a direct consequence of the mixture
representation of the law ofµθ,θ−q , in the form of the posterior distribution of
µθ,θ−q |Y andP(dY|θH), deduced from the expression for the Laplace functional
in Theorem 2.1(ii). Note that all quantities on the right-hand side of (18),
includingp, are random. We now show statement (iii) follows from statement (i).
Notice Tθ+n := µθ(Y) + ∑n(p)

j=1 Gj,n is a Gamma random variable with shape
θ + n independent ofUq,θ+n−q . Moreover, using the mixture representation of
the Dirichlet process derived from its posterior distribution andP(dY|θH), it
follows that (µθ + ∑n(p)

j=1 Gj,nδY ∗
j
)/Tθ+n is a Dirichlet process with shapeθH ,

independent ofTθ+n and Uq,θ+n−q . Hence the right-hand side of (18) can be
written asUq,θ+n−qTθ+nPθ . The result is completed by noting thatUq,θ+n−qTθ+n

is equal in distribution toTq . �
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REMARK 2.4. The distributional identities in (19) and (20), which are new,
are analogous to similar identities for Dirichlet processes which have a variety
of applications, as can be seen in Diaconis and Kemperman (1996), Sethuraman
(1994) and Hjort (2003). In addition, distributional results between Beta and
Gamma random variables have quite striking consequences, as can be seen from,
for instance, Dufresne (1998). We view our results as functional extensions of
some of those ideas, and it seems worthwhile to pursue more analogous results.
Note importantly that our results do not require thatµθ(g) is Gamma distributed.

REMARK 2.5. The expression in Corollary 2.1 is obtained by evaluating the
Laplace transform of the right-hand side of (19), in the order of integration of
µθ , T1, Y1 and finallyU1,θ . It is evident that other equivalent expressions can be
formed by changing the order of integration. It is no coincidence thatU1,θ has the
same distribution asT1/(T1 + T ) whereT = ∫

Y µ(dy) = Tθ . Additionally, further
representations can be obtained by using the distributional identity

U1,θ = (T1)
p

(T1)
p + Tθτp

,

whereT1, Tθ andτp are all independent andτp is a stable random variable with
index 0< p < 1.

2.1. Distributional characterizations via the Beta-Gamma calculus. The ex-
pression (21) tells us precisely that, for allθ andq, a Beta-Gamma process with
parametersθH andθ − q is equivalent in distribution to a Dirichlet process with
shapeθH , scaled by an independent Gamma random variable with shapeq. Hence,
using this interpretation the first result in Theorem 2.1 is an immediate conse-
quence of

E
[
e−zµθ,θ−q(g)] = 1

�(q)

∫ ∞
0

tq−1
[∫

M
e−ztP (g)D(dP |θH)

]
e−t dt

=
∫
M

(
1+ zP (g)

)−q
D(dP |θH).

Although this viewpoint at first may seem to have limited usage, it has interesting
consequences when combined with our other results, within the context of the
Beta-Gamma calculus. Note that sinceµθ,θ−q(g) = TqPθ (g), one may apply the
special features of the classical Beta-Gamma calculus combined with our results
to deduce the following characterization of whenPθ(g) is Beta distributed, in the
case whereg(Y ) is not an indicator variable.

PROPOSITION 2.3. Let θ , q and α denote positive real numbers. Suppose
that for some q > 0, µθ,θ−q(g) = Tα , that is, it is Gamma distributed with shape
parameter α and scale 1; then for the case 0 < α < q, Pθ(g) = Uα,q−α and
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µθ(g) = TθUα,q−α . From the distributional identity (18),this is true if one chooses
the distribution of g(Y ) such that, for a fixed n ≥ 1,

TθUα,q−α +
n(p)∑
j=1

Gjg(Y ∗
j ) = Tθ+nUα,q−α,(22)

where TθUα,q−α and
∑n(p)

j=1 Gjg(Y ∗
j ) are independent. For clarity, when n = 1,

(22) specializes to TθUα,q−α + T1g(Y1) = Tθ+1Uα,q−α .

Proposition 2.3 provides a characterization for the reverse question as to which
choice ofH produces a Beta distribution forPθ(g). This is of course seen to
be equivalent to specifyingH to induce a particular distribution on the quantity∑n(p)

j=1 Gjg(Y ∗
j ), for some fixed value ofn, which satisfies the constraint (22). It

is clear by using (18), that this particular feature, of inducing a distribution on∑n(p)
j=1 Gjg(Y ∗

j ) satisfying appropriate constraints, can be applied to any choice of
distribution forPθ(g). However, because of the available independence properties
between Beta and Gamma random variables, the occurrence of a Beta distribution
for Pθ(g) can be checked several ways, not available to other distributions. In
particular, note thatPθ(g) = Uα,q−α if and only if µθ,θ−q = Tα . Hence one can
chooseg(Y ) (or check this), such that the Laplace transform

E
[
e−zµθ,θ−q(g)] = (1+ z)−α,

or perhaps more easily using the Gamma process to check whetherµθ(g) satisfies

e
−∫

Y log[1+zg(y)]θH(dy) = E[e−zTθUα,q−α ].
We show in the next proposition the limitations, within the context of Proposi-
tion 2.3, of choosing

∑n(p)
j=1 Gjg(Y ∗

j ) to be a Gamma random variable.

PROPOSITION2.4. Suppose that H is chosen such that for some fixed n ≥ 1,∑n(p)
j=1 Gjg(Y ∗

j ) has a Gamma distribution with shape parameter cn, depending
on n, and scale 1.Then the only value of cn such that Pθ(g) has a Beta distribution
is cn = n/2. Moreover, the distribution of Pθ(g) is a symmetric Beta distribution
with parameters (θ + n/2, θ + n/2), for all n ≥ 1 and all θ > 0. Equivalently
µθ,−(θ+n)(g) = Tθ+n/2 and µθ(g) = TθUθ+n/2,θ+n/2, and hence is never Gamma
distributed. These specifications correspond to the choice of α = θ + n/2 and
q = 2θ + n in Proposition 2.3.

PROOF. The proof is obtained by applying Theorem 2 of Dufresne (1998),
combined with the constraints deduced from (22) in Proposition 2.3. It follows
that the only solution is given by

TθUθ+n/2,θ+n/2 + Tn/2 = Tθ+nUθ+n/2,θ+n/2. �
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It is already known [see Cifarelli and Melilli (2000)] that ifg(Y ) = U1/2,1/2,
the arcsine law, thenPθ(g) = Uθ+1/2,θ+1/2. That is the case ofn = 1 in
Proposition 2.4. The case forn = 2 corresponds to

TθUθ+1,θ+1 + [pT ′
1 + T1]g(Y1) + (1− p)T ′

1g(Y2) = Tθ+2Uθ+1,θ+1,

whereT ′
1, T1 are independent exponential (1) random variables.Y1 andY2 both

have distributionH , but may be tied.p is a Bernoulli random variable with
success probability 1/(θ + 1), corresponding to the case whereY1 = Y2, from the
Blackwell–MacQueen urn scheme. It is not immediately clear how to chooseH

such that[pT ′
1 + T1]g(Y1) + (1− p)T ′

1g(Y2) = T1.
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