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CHARACTERIZATION OF BAYES PROCEDURES FOR MULTIPLE
ENDPOINT PROBLEMS AND INADMISSIBILITY

OF THE STEP-UP PROCEDURE1

BY ARTHUR COHEN AND HAROLD B. SACKROWITZ

Rutgers University

The problem of multiple endpoint testing fork endpoints is treated as a
2k finite action problem. The loss function chosen is a vector loss function
consisting of two components. The two components lead to a vector risk.
One component of the vector risk is the false rejection rate (FRR), that
is, the expected number of false rejections. The other component is the
false acceptance rate (FAR), that is, the expected number of acceptances
for which the corresponding null hypothesis is false. This loss function is
more stringent than the positive linear combination loss function of Lehmann
[Ann. Math. Statist. 28 (1957) 1–25] and Cohen and Sackrowitz [Ann.
Statist. (2005) 33 126–144] in the sense that the class of admissible rules
is larger for this vector risk formulation than for the linear combination
risk function. In other words, fewer procedures are inadmissible for the
vector risk formulation. The statistical model assumed is that the vector of
variablesZ is multivariate normal with mean vectorµ and known intraclass
covariance matrix�. The endpoint hypotheses areHi :µi = 0 vsKi :µi > 0,
i = 1, . . . , k. A characterization of all symmetric Bayes procedures and their
limits is obtained. The characterization leads to a complete class theorem.
The complete class theorem is used to provide a useful necessary condition
for admissibility of a procedure. The main result is that the step-up multiple
endpoint procedure is shown to be inadmissible.

1. Introduction. Let Z be ak×1 random vector which is multivariate normal
with mean vectorµ = (µ1, . . . ,µk)

′ and known covariance matrix�. Assume� is
intraclass, that is, all variances are equal toσ 2 and all correlations are equal toρ.
Consider thek hypothesis testing problemsHi :µi = 0 vsKi :µi > 0, i = 1, . . . , k.
This represents the problem of multiple endpoint testing. We view this problem
as a 2k finite action problem where we can decide whether to reject or accept
eachHi individually. The loss function chosen is a vector loss consisting of two
components. The first component is the number of false rejections and the second
component is the number of false acceptances. The corresponding vector risk has
one component related to the average power of the procedure while the other
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component is related to the average size of the procedure. This will be made precise
in Section 2.

The vector loss function is more stringent than the linear combination loss
function used in Lehmann (1957) and Cohen and Sackrowitz (CS) (2005) in the
sense that the class of admissible procedures for the vector loss function contains
the class of admissible procedures for the linear combination loss function. In other
words, any procedure shown to be inadmissible for the vector loss is inadmissible
for the linear combination loss.

In this paper we offer a characterization of the class of symmetric (permutation
invariant) Bayes procedures. For the normal model, intraclass is the most general
case of permutation invariance. The characterization leads to a useful complete
class theorem. The complete class theorem yields a useful necessary condition for
admissibility of a procedure. Our most important result is that the popular step-up
multiple endpoint testing procedure is inadmissible.

Step-up procedures are studied in many places including Hochberg and
Tamhane (1987), Hochberg (1988) and Shaffer (1995). Step-up procedures have
been studied in connection with procedures that control the false discovery rate
(FDR). See Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001)
and Sarkar (2002). Six of the eighteen multiple endpoints procedures studied by
Dudoit, Shaffer and Boldrick (2003) are step-up procedures.

The inadmissibility result for step-up is of practical importance. Furthermore,
the result is somewhat akin to the Stein-type inadmissibility phenomenon in
the following sense: The step-up procedure leads to admissible tests for each
component individually whenρ > 0. See CS (2005). Yet in the finite action
problem if the loss function is the vector loss function of this paper or the sum
of losses for the component problems, the step-up procedure is inadmissible for
k ≥ 2.

We note that the characterization of Bayes procedures for finite action problems
has only been achieved in the past for the case where the action space is a subset
of the real line. See, for example, Karlin and Rubin (1956), Brown, Cohen and
Strawderman (1976) and Van Houwelingen and Verbeek (1985). Finite action
formulations are realistic, practical and important.

Preliminaries and notation will be given in Section 2. The characterization of
symmetric Bayes procedures will be given in Section 3. Section 4 contains a
description of a complete class, a necessary condition for admissibility, and the
result that the step-up procedure is inadmissible. In Section 5, for the casek = 2
a procedure that is better than step-up is constructed.

2. Preliminaries. This 2k finite action problem has actionsa = (a1,

a2, . . . , ak)
′ where ai equals 0 or 1 fori = 1, . . . , k. An action whereai = 1

means thatHi is rejected, where ifai = 0, Hi is accepted. Thus, for example,
a = (1, . . . ,1)′ means allHi are rejected. It will be convenient to define

� = {u : u = (u1, . . . , uk)
′, ui = 0 or 1, all i}.
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Note that� can be used to represent the totality of all actions. However,� will
serve other purposes as well.

Decision rulesδ(·|z) are probability mass functions on� with the interpretation
thatδ(a|z) is the conditional probability of actiona givenz is observed. For eachz,
a nonrandomized decision rule chooses a single element of� with probability 1
and assigns all other actions probability 0.

Let ψi(z) be the probability of rejectingHi . A decision procedureδ(a|z)
determines a set ofψ(δ)

i (z), i = 1, . . . , k, as follows:

ψδ
i (z) = ∑

a∈Ai

δ(a|z),(2.1)

where Ai = {a ∈ � : a has a 1 in theith position}. Whereasδ(a|z) determines
ψ(z), the reverse is not true. Ifψ(z) = (ψ1, . . . ,ψk)

′ is nonrandomized, it uniquely
determines someδ(a|z). Theδ(a|z) determined is also nonrandomized.

The parameter space is� = {µ :µi ≥ 0, i = 1, . . . , k}. Partition the parameter
space� into 2k sets�v, v ∈ �, where�v = {µ :µ = (µ1,µ2, . . . ,µk)

′, µi > 0 if
vi = 1 andµi = 0 if vi = 0, i = 1, . . . , k}. Also let�(i) = {µ :µ ∈ �,µi = 0} and
let �(i)c be the complement of�(i) relative to�.

A loss function is a function of the action taken and the true state of nature.
We will study several different loss functions and their relationships. For each
individual hypothesisHi the loss function is zero for a correct decision, 1 for
rejectingHi when it is true and 1 for acceptingHi when it is false. (Note that the
ensuing development would also work if 1 is replaced byb, b > 0, when a false
acceptance is made.) Such a loss function determines a risk

R(i)(ψi,µ) = (1− vi)Eµψi(z) + vi

(
1− Eµψi(z)

)
.(2.2)

For the finite action problem a sum of the loss functions of the individual
problems is

L(a,µ) =
k∑

i=1

ai(1− vi) +
k∑

i=1

(1− ai)vi, µ ∈ �v.(2.3)

The corresponding risk function is
∑k

i=1 R(i), which can be expressed as

Eµ
(
ψ ′(1− v) + (1− ψ)′v

)
.(2.4)

The risk function (2.4) is used by Lehmann (1957) and CS (2005). CS (2005) also
study a vector loss function consisting of the vector of losses for the individual
component problems. The corresponding vector risk called VRI is(

R(1)(ψ1,µ), . . . ,R(k)(ψk,µ)
)
.(2.5)

Another vector loss consisting of two components(L0,L1) is where

L0(a,µ) =
k∑

i=1

ai(1− vi), L1(a,µ) =
k∑

i=1

(1− ai)vi, µ ∈ �v.(2.6)
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The corresponding risk function can be expressed as(R0(ψ,µ),R1(ψ,µ)), where

R0(ψ,µ) =
k∑

i=1

(1− vi)Eµψi(z), R1(ψ,µ) =
k∑

i=1

viEµ
(
1− ψi(z)

)
.(2.7)

Supposem is the number of positiveµi . Then according to the definition of
average power given by Benjamini and Hochberg (1995), and noted by Shaffer
(1995) and Dudoit, Shaffer and Boldrick (2003),R1/m is 1 minus the average
power. R0/(k − m) is the average size. Also one may justifiably callR0 or
R0/(k − m) the false detection rate or the false rejection rate (FRR) and callR1
or R1/m the false acceptance rate (FAR). We call the vector risk(R0,R1) in (2.7)
VRSP since it is related to average size and average power. We note that the class
of admissible procedures is largest for the VRI risk function in (2.5) and smallest
for the risk function in (2.4). Yet the class of admissible procedures is certainly
larger for VRSP than for the risk function in (2.4). Thus any procedure which is
inadmissible for (2.7) is also inadmissible for (2.4).

In this paper we focus on VRSP. To deal with VRSP we use a device utilized
by Cohen and Sackrowitz (1984). That is, we introduce an artificial but useful
problem. Letθ be a nuisance parameter which takes on the value 0 or 1. Next
define the one-dimensional loss function

L∗(
a, (µ, θ)

) = Lθ(a,µ).(2.8)

It now follows from Cohen and Sackrowitz (1984) that the class of admissible
procedures for the problem using (2.6) as a loss function is the same as the
problem using (2.8) as a loss function but treatingθ as a parameter which can
either be 0 or 1. Hence we study the problem using (2.8) as the loss function. The
corresponding risk function will be denoted asR∗(ψ, (µ, θ)).

Now a decision procedureψ∗ is Bayes with respect to (w.r.t.) a prior distribution
ξ(µ, θ) if

EξR
∗(

ψ∗, (µ, θ)
) = inf

ψ
EξR

∗(
ψ, (µ, θ)

)
.(2.9)

The prior distribution is written as

ξ(µ, θ) =
{

ξ0(µ)β, if θ = 0,

ξ1(µ)(1− β), if θ = 1,

whereβ is the probability thatθ = 0 andξ0(µ) is the conditional distribution
of µ given θ = 0 and where(1 − β) is the probability thatθ = 1 andξ1(µ) is
the conditional distribution ofµ given θ = 1. We write the density ofz given
(µ, θ), noting that this density is the same regardless ofθ . That is,f (z|µ,0) =
f (z|µ,1) = f (z|µ) where

f (z|µ) = (
1/(2π)|�|1/2)

e−(1/2)z′�−1zez′�−1µe−(1/2)µ′�−1µ.(2.10)
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Note the marginal distribution ofz is

f (z) =
∫
�

f (z|µ)[β dξ0(µ) + (1− β)dξ1(µ)].(2.11)

The following theorem describes a Bayes procedure.

THEOREM 2.1. Consider the risk function R∗(ψ, (µ, θ)). The Bayes proce-
dure w.r.t. ξ(µ, θ) is ψ∗ = (ψ∗

1 , . . . ,ψ∗
i )′ where

ψ∗
i =

1, if

∫
�(i) f (z|µ)[β dξ0(µ) + (1− β)dξ1(µ)]∫

� f (z|µ) dξ1(µ)
< (1− β),

0, otherwise.

(2.12)

PROOF. The risk functionR∗(ψ, (µ, θ)) can be written as

R∗(
ψ, (µ, θ)

) = (1− θ)

k∑
i=1

(1− vi)Eµ[ψi(z)] + θ

k∑
i=1

viEµ[1− ψi(z)]
(2.13)

=
k∑

i=1

{(θvi) + (1− θ − vi)Eµψi(z)}, µ ∈ �v.

To find the Bayes procedure we must minimize the expected risk. Using (2.13) we
see that this amounts to settingψi(z) = 1 if the posterior expected value

E{1− � − Vi |z} < 0,(2.14)

where now� andVi are regarded as random variables with joint prior distribution
determined byξ(µ, θ). The left-hand side of (2.14) reduces to

P {Vi = 0|z} − P {� = 1|z}.(2.15)

Now (2.15) is {∫
�(i)

f (z|µ)[β d ξ0(µ) + (1− β)dξ1(µ)]
(2.16)

− (1− β)

∫
�

f (z|µ)dξ1(µ)

}/
f (z).

We see that (2.14) and (2.16) lead to (2.12).�

The step-up procedure we study is as follows:

PROCEDURE2.1. LetZ(1) ≤ Z(2) ≤ · · · ≤ Z(k) be the order statistics for the
set(Z1, . . . ,Zk) and letCj be a strictly increasing set of critical values:

(i) If Z(1) ≤ C1, acceptH(1) whereH(1) is the hypothesis corresponding to
Z(1). Otherwise reject allHi .
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(ii) If H(1) is accepted, acceptH(2) if Z(2) ≤ C2. Otherwise reject
H(2), . . . ,H(k).

(iii) In general, at stagej , if Z(j) ≤ Cj , accept H(j). Otherwise reject
H(j), . . . ,H(k).

Call the step-up procedureψSU(z). The procedure fork = 2 is shown in
Figure 1.

3. Characterization of symmetric Bayes procedures. In order to charac-
terize symmetric Bayes procedures we first recognize that the problem with loss
function (2.8) is invariant under the following groups of transformations:

(i) G = {g :gz is a permutation of the coordinates ofz; i.e., g is a k × k

permutation matrix}.
(ii) �G = {ḡ : ḡ(µ, θ) is a permutation of the coordinates ofµ while leavingθ

as is; i.e.,ḡ = (g 0
0 1

)}.
(iii) G̃ = {g̃ : g̃(a) is a permutation of the coordinates ofa, i.e., g̃ = g}.
Since the problem is invariant under the finite groupG, it follows from Ferguson

[(1967), Theorem 3, page 162] that any symmetric Bayes procedure is Bayes w.r.t.
an invariant prior distribution. Any invariant prior distribution (underḡ) depends
only on the maximal invariant parameter(µ(1), . . . ,µ(k), θ). This restriction then
implies that for Bayes procedures, all prior distributions are symmetric inµ for
each fixedθ . In particular, the conditional distributionsξ0(µ) andξ1(µ) will be
permutation invariant.

In order to characterize symmetric Bayes procedures we will be using (2.12).
We first wish to express the integrand in a simplified fashion. Toward this end
recall the expression (2.10) forf (z|µ). Since � is intraclass, that is,� =
σ 2(1 − ρ)I + ρ11′, 1 = (1, . . . ,1)′, �−1 = (σ 2(1 − ρ))−1(I − G11′) where
G = ρ/(1+ (k − 1)ρ), we can express the numerator of (2.12) as

e−(1/2)z′�−1z
∫
�(i)

exp
(
z′�−1µ − (1/2)µ′�−1µ

)
(3.1)

× [β dξ0(µ) + (1− β)dξ1(µ)].
Noting thatz′�−1µ = (σ 2(1− ρ))−1(z′µ − G1′z1′µ), letting for fixedz,

dξ∗
θ (µ) = exp

{−(
σ 2(1− ρ)

)−1
G1′z1′µ + (1/2)µ′�−1µ

}
dξθ (µ),(3.2)

and without loss of generality takingσ 2(1− ρ) = 1, we can rewrite (2.12) as

ψ∗
i =



1, if Q
(
�(i)|z) =

{∫
�(i)

ez′µ[β dξ∗
0 (µ) + (1− β)dξ∗

1 (µ)]

×
(∫

�
ez′µ dξ∗

1 (µ)

)−1}
< 1− β,

0, otherwise.

(3.3)
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Note that in (3.2) we absorb an expression involvingz into the prior. This is okay
sincez is fixed and in the development to follow even whenz changes1′z will
remain constant.

To characterize symmetric Bayes rules it suffices to consider only sample points
such thatz1 ≤ · · · ≤ zk . Now we give:

LEMMA 3.1. Fix z and assume z1 ≤ · · · ≤ zk . Then

Q
(
�(i)|z) ≥ Q

(
�(i+1)|z)

, i = 1, . . . , k − 1.(3.4)

The inequality is strict unless zi = zi+1.

PROOF. We need only consider the integral in the numerator of (3.3). Writing
[β dξ∗

0 (µ) + (1− β)dξ∗
1 (µ)] asdξ∗(µ), we note∫

�(i)
ez′µ dξ∗(µ) =

∫
�(i)

exp

( ∑
j �=i,i+1

zjµj + zi+1µi+1

)
dξ∗(µ).(3.5)

Make the change of variablesµi = µi+1, µi+1 = µi in (3.5) to find (3.5) is equal to∫
�(i+1)

exp

( ∑
j �=i,i+1

zjµj + zi+1µi

)
dξ∗(µ)

(3.6)

≥
∫
�(i+1)

exp

( ∑
j �=i,i+1

zjµj + ziµi

)
dξ∗(µ).

Thus from (3.5) and (3.6) we have (3.4). Note that the inequality in the proof is
strict unlesszi = zi+1. This completes the proof of the lemma.�

THEOREM 3.2. Let z be such that z1 < · · · < zk . Let r ∈ {0,1, . . . , k} be the
element of the set for which Q(�(r)|z) > (1 − β) > Q(�(r+1)|z), where r = 0
means Q(�(i)|z) < (1 − β) for all i = 1, . . . , k and r = k means Q(�(i)|z) >

(1 − β) for all i = 1, . . . , k. Then the Bayes procedure is ψi(z) = 0, i = 1, . . . , r ,
ψi(z) = 1, i = r + 1, . . . , k.

PROOF. Use Theorem 2.1 and Lemma 3.1.�

4. Complete class and inadmissibility of step-up. Symmetric Bayes pro-
cedures and weak * limits of sequences of symmetric Bayes procedures against
symmetric prior distributions form a complete class of symmetric procedures for
this problem. See Weiss [(1961), page 81], where he defines a weak * limit as
follows: Letψn be a sequence of procedures. Thenψn converges toψ if

lim
n→∞R(ψn,µ) = R(ψ,µ).
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Another complete class of procedures for this problem is the set of almost
everywhere (a.e.) nonrandomized procedures. This follows from a result in
Matthes and Truax (1967) where it is demonstrated that each admissibleψi(z)
must be nonrandomized a.e. It follows that the nonrandomized symmetric Bayes
procedures and their a.e. limits are a complete class of symmetric procedures for
this problem.

We proceed to give a necessary condition for admissibility based on a complete
class. Toward this end lettj be the following partial sums of(z1, . . . , zk). That is,
let tj = ∑k

i=j zi , j = 1, . . . , k. Let tk+1 = 0 andt0 = −∞.

LEMMA 4.1. Let S = {t : tk > tk−1 − tk > · · · > t1 − t2}. Then for j =
2, . . . , k, t ∈ S, Q(�(j)|t) as a function of tj is strictly decreasing while
t1, . . . , tj−1, tj+1, . . . , tk are held fixed.

PROOF. Note we may write

Q
(
�(j)|t) =

∫
�(j) exp(

∑k
i=1,i �=j (ti − ti+1)µi) dξ∗(µ)∫

� exp(
∑k

i=1(ti − ti+1)µi) dξ∗
1 (µ)

.(4.1)

For fixed t1, t2, . . . , tj−1, tj+1, . . . , tk the numerator is a strictly decreasing
function of tj (recall µj−1 ≥ 0) while the denominator, being a Schur convex
function of z (it is convex and permutation invariant), is an increasing function
of tj , tj ∈ S, while all other partial sums are fixed. See Marshall and Olkin
(1979) for discussion of Schur convex functions. It follows thatQ(�(j)|t) then
is a decreasing function oftj . This completes the proof of the lemma.�

LEMMA 4.2. Let j = 2, . . . , k. Let ψ(t) be a symmetric Bayes procedure.
Then for t ∈ S, ψj(t) is a nondecreasing function of tj while (t1, . . . , tj−1,

tj+1, . . . , tk) are fixed.

PROOF. Note sinceψ(t) is a symmetric Bayes procedure it follows from the
proof of Lemma 4.1 thatψj(t) is nonrandomized forj = 2, . . . , k. Use Lemma 4.1
again to conclude that fort ∈ S, ψj(t) is a nondecreasing function oftj while
(t1, . . . , tj−1, tj+1, . . . , tk) are fixed. �

THEOREM 4.3. Let j = 1, . . . , k −1. Let ψ(t) be a symmetric procedure such
that there exists a sample point t∗ ∈ S for which ψj(t∗) = 0. Then a necessary
condition for ψ(t) to be admissible is that ψj(t) = 0 for all t ∈ S such that tj < t∗j .

PROOF. Recall that symmetric Bayes and a.e. limits of sequences of sym-
metric Bayes procedures are a complete class of symmetric procedures. Now
Lemma 4.2 implies that every Bayes procedure has the required property. The
required property must also hold for any a.e. limit of a sequence of symmetric
Bayes procedures. To see this letψn(t) = (ψ1n(t), . . . ,ψkn(t))

′ be a sequence of
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symmetric Bayes procedures withψ(t) its a.e. limit. Sinceψjn(t) is a nondecreas-
ing function it follows that its a.e. limit is also a nondecreasing function. This
establishes the theorem.�

COROLLARY 4.4. Let ψ(z) be a procedure such that there exists a sample
point z∗ = (z∗

1, . . . , z
∗
k)

′ with z∗
k > z∗

k−1 > · · · > z∗
1 for which ψk(z∗) = 0. Then a

necessary condition for ψ(z) to be admissible is that ψk(z) = 0 for all z in the set
{z : (z∗

k + z∗
k−1)/2≤ zk ≤ z∗

k, zk−2 = z∗
k−2, . . . , z1 = z∗

1, zk + zk−1 = z∗
k + z∗

k−1}.
PROOF. This follows from Theorem 4.3 sincetk = zk , and fixing tk−1,

zk−2, . . . , z1 is equivalent to fixingtk−1, . . . , t1. �

THEOREM4.5. The step-up procedure given in Procedure 2.1is inadmissible.

PROOF. We show that Procedure 2.1 does not satisfy the necessary condi-
tion for admissibility given in Corollary 4.4. Consider the sample pointz∗ =
(z∗

1, z
∗
2, . . . , z

∗
k)

′ wherez∗
j = Cj − ε, j = 1, . . . , k, for someε > 0 to be chosen.

Note sinceC1 < · · · < Ck , z∗
1 < z∗

2 < · · · < z∗
k and also note thatψSU(z∗) = 0.

In particular, the last coordinate ofψSU(z∗) is zero. Now consider the sample
point z̄ = (z∗

1, z
∗
2, . . . , z

∗
k−2, z̄k−1, z̄k) where z̄k = z̄k−1 = [(Ck + Ck−1)/2] − ε.

Notice that for sufficiently smallε, z̄k−1 > Ck−1, which means thatψSU(z̄) =
(0,0, . . . ,0,1,1)′. In fact there is an open interval ofz points on the linezk +
zk−1 = z∗

k + z∗
k−1 = t∗k−1, z

∗
k−2, . . . , z

∗
1 beginning atzk = t∗k−1/2 and ending before

zk = z∗
k such thatψSU(z) = (0,0, . . . ,0,1,1)′. In particular, the last coordinate of

ψSU(z) = 1. This represents a violation of the necessary condition for admissibil-
ity given in Corollary 4.4.

The result of Theorem 4.5 is, in a sense, akin to the famous inadmissibility
result of Stein (1956). Stein considered the modelZ ∼ N(µ, I ) and proved that
if the loss function is the sum of squared errors, thenZ is an inadmissible
estimator ofµ when k ≥ 3. This in spite of the fact that eachZi is admissible
for µi if the loss function is squared error. In our multiple endpoints testing
problemψSU = (ψSU1,ψSU2, . . . ,ψSUk)

′ is such thatψSUi is an admissible test
of Hi :µi = 0 vs Ki :µi > 0 when the loss function is(0,1) andρ ≥ 0. See CS
(2005). YetψSU is inadmissible as a finite action procedure when the loss is the
sum of losses of the component problems [or for the vector loss (2.6)]. Here the
result is true fork ≥ 2. �

5. A procedure which beats step-up. In the case ofk = 2, the step-up
procedure is shown in Figure 1(a). It is easily seen that the necessary condition
of Theorem 4.3 is violated when 2C1 < Z1 + Z2 < C1 + C2. This is the shaded
strip in Figure 1(b). By making changes in this strip we show how to construct
a procedure,ψ∗, that has a vector risk which is less than or equal to the risk of
step-up for allµ.
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FIG. 1. (a)and (b) show the step-up procedure φSU, (c) shows φ.

We begin with any fixedt ∈ (2C1,C1 + C2) and considerZ such that
Z1 + Z2 = t . Without loss of generality letσ 2 = 1. We note that the conditional
distribution of Z1 given Z1 + Z2 = t is N( t

2 + 1
2(µ1 − µ2),

1
2(1 − ρ)). Also

(see Figure 2), for the step-up procedureψSU(z), whenz1 + z2 = t , we have

ψSU(z) =



(0,1), if z1 < t − C2,

(0,0), if t − C2 < z1 < C1,

(1,1), if C1 < z1 < t − C1,

(0,0), if t − C1 < z1 < C2,

(1,0), if C2 < z1.
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FIG. 2. The step-up procedure with the line z1 + z2 = t .

The procedureψ∗ is constructed as follows. ConsiderPµ1=µ2(t − C1 < Z1 <

C2|Z1 + Z2 = t) − Pµ1=µ2(
t
2 < Z1 < t − C1|Z1 + Z2 = t). If we let D(t) be

this difference in conditional probabilities, then

D(t) = �

(
2C2 − t√
2(1− ρ)

)
− 2�

(
t − 2C1√
2(1− ρ)

)
+ 1

2
.(5.1)

Next defineC∗ = C∗(t) by setting

P

(
t

2
< Z1 < C∗|Z1 + Z2 = t

)
= �

(
2C∗ − t√
2(1− ρ)

)
− 1

2
= |D(t)|.(5.2)

That is,C∗ is the solution to

�

(
2C∗ − t√
2(1− ρ)

)
− 1

2
=

∣∣∣∣12 + �

(
2C2 − t√
2(1− ρ)

)
− 2�

(
t − 2C1√
2(1− ρ)

)∣∣∣∣.(5.3)

Then forz1 + z2 = t andD(t) > 0, let

ψ∗(z1, z2) =


(0,1), if z1 < t − C∗,
(0,0), if t − C∗ < z1 < C∗,
(1,0), if C∗ < z1.
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On the other hand, ifD(t) < 0, let

ψ∗(z1, z2) =


(0,1), if z1 < t − C∗,
(1,1), if t − C∗ < z1 < C∗,
(1,0), if C∗ < z1.

The resulting procedure is sketched in Figure 1(c).

THEOREM5.1. The procedure ψ∗ is better than ψSU for the vector risk VRSP.

PROOF. If we let ψSU(z) denote the step-up procedure, then it will be shown
that the procedureψ∗(z) above is such that

R0(ψ
∗,µ) + bR1(ψ

∗,µ) ≤ R0(ψSU,µ) + bR1(ψSU,µ),(5.4)

with strict inequality for someµ, for everyb > 0. Note that the procedureψ∗ does
not depend onb. This implies thatψ∗ beatsψSU for VRSP.

Using (2.7) we show (5.4) by showing

Eµ
{(

ψSU(z) − ψ∗(z)
)′(1 − (b + 1)v

)|Z1 + Z2 = t
}
> 0(5.5)

for all µ ∈ �v, v ∈ �, and t ∈ (2C1,C1 + C2). We will only study the case of
D(t) > 0 and 1

2t < C∗ < t − C1 as the other cases are similar. Table 1 outlines
the possible values thatψSU, ψ∗ and (ψSU − ψ∗)(1 + (b + 1)v) can take on
for the possible values ofz1, z2 = t − z1 andv. Also Figure 2 is helpful. We let
W(z;v) = (ψSU(z) − ψ∗(z))′(1 − (b + 1)v) and studyEµ{W(Z;v)|Z1 + Z2 = t}
as a function ofµ for eachv ∈ �. Note thatµ is in the parameter space only when
µ ∈ �v.

Using the values from Table 1, it is easy to check that the definition
of C∗ implies Eµ1=µ2{W(Z;v)|Z1 + Z2 = t} = 0, all v ∈ �. For example, say
v = (0,1)′. Then, asZ1|Z1 + Z2 = t ∼ N( t

2,
(1−ρ)

2 ) whenµ1 = µ2,

Eµ1=µ2{W(Z;v)|Z1 + Z2 = t}
= b

[
�

(
2C1 − t√
2(1− ρ)

)
− �

(
t − 2C2√
2(1− ρ)

)]

+
[
�

(
t − 2C∗

√
2(1− ρ)

)
− �

(
2C1 − t√
2(1− ρ)

)]

+ (1− b)

[
�

(
2C∗ − t√
2(1− ρ)

)
− �

(
t − 2C∗

√
2(1− ρ)

)]

−
[
�

(
t − 2C1√
2(1− ρ)

)
− �

(
2C∗ − t√
2(1− ρ)

)]

−
[
�

(
2C2 − t√
2(1− ρ)

)
− �

(
t − 2C1√
2(1− ρ)

)]
= 0
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TABLE 1
Evaluation of φSU(z), φ∗(z) and W(z;v) when z1 + z2 = t

v

(0, 0) (1, 0) (0, 1) (1, 1)

l − (b + 1)v

(1, 1) (−b, l) (1, −b) (−b, −b)

W(z;v)

φSU(z)′ φ∗(z)′ (φSU(z)′ − φ∗(z))′ (φSU(z) − φ∗(z))′(1 − (b + 1)v)

−∞ ≤ z1 ≤ t − C2 (0, 1) (0, 1) (0,0) 0 0 0 0
t − C2 ≤ z1 ≤ C1 (0, 0) (0,1) (0,−1) −1 −1 b b

C1 ≤ z1 ≤ t − C∗ (1, 1) (0,1) (1,0) 1 −b 1 −b

t − C∗ ≤ z1 ≤ C∗ (1, 1) (0, 0) (1,1) 2 1−b 1−b −2b

C∗ ≤ z1 ≤ t − C1 (1, 1) (1, 0) (0,1) 1 1 −b −b

t − C1 ≤ z1 ≤ C2 (0, 0) (1, 0) ( − 1,0) −1 b −1 b

C2 ≤ z1 ≤ ∞ (1, 0) (1, 0) (0,0) 0 0 0 0

asC∗ is defined by (5.3).
When µ1 �= µ2 the conditional distribution ofZ1|Z1 + Z2 = t is N( t

2 + η,
(1−ρ)

2 ), whereη = µ1 − µ2.
We further note thatη < 0 whenµ ∈ �(0,1) andη > 0 whenµ ∈ �(1,0). The

proof can be completed by studying the pattern of sign changes (see Table 1) of
W((z1, t − z1);v) as a function ofz1. It follows from the variation diminishing
property [Brown, Johnstone and MacGibbon (1981)] of the normal distribution
that Eµ{W(Z;v)|Z1 + Z2 = t} ≥ 0 for all µ ∈ �v, v ∈ �. This completes the
proof. �
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