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SADDLEPOINT APPROXIMATION FOR MOMENT GENERATING
FUNCTIONS OF TRUNCATED RANDOM VARIABLES1

BY RONALD W. BUTLER AND ANDREW T. A. WOOD

Colorado State University and University of Nottingham

We consider the problem of approximating the moment generating
function (MGF) of a truncated random variable in terms of the MGF of the
underlying (i.e., untruncated) random variable. The purpose of approximating
the MGF is to enable the application of saddlepoint approximations to certain
distributions determined by truncated random variables. Two important
statistical applications are the following: the approximation of certain
multivariate cumulative distribution functions; and the approximation of
passage time distributions in ion channel models which incorporate time
interval omission. We derive two types of representation for the MGF
of a truncated random variable. One of these representations is obtained
by exponentialtilting. The second type of representation, which has two
versions, is referred to as an exponential convolution representation. Each
representation motivates a different approximation. It turns out that each of
the three approximations is extremely accurate in those cases “to which it
is suited.” Moreover, there is a simple rule of thumb for deciding which
approximation to use in a given case, and if this rule is followed, then our
numerical and theoretical results indicate that the resulting approximation
will be extremely accurate.

1. Introduction.

1.1. Saddlepoint methods. Saddlepoint methods provide approximations to
densities and probabilities whichare very accuratein a wide variety of settings.
This accuracy is seen not only in numerical work, but also in theoretical
calculations. In particular, it is often the case that relative errors of these
approximations stay bounded in the extreme tails, a desirable property which is
not shared by most other types of approximation used in statistics.

For development and discussion of saddlepoint methodology and related
methods, see Daniels (1954) for details of the density approximation; Barndorff-
Nielsen and Cox (1989, 1994) for applications to inference; Lugannani and
Rice (1980), Temme (1982) and Daniels (1987) for discussion of a tail area
approximation which has uniform relative error, and Skovgaard (1987) for a
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conditional version of this approximation; and Reid (1988) for a review of
saddlepoint techniques.

Saddlepoint approximations are constructed by performing various operations
on the moment generating function (MGF) or, equivalently, the cumulant gener-
ating function (CGF), of a random variable. LetX be an absolutely continuous
random variable with densityf (x) with respect to the Lebesgue measure, moment
generating functionM(t) and CGFK(t) = logM(t). Then the first-order saddle-
point density approximation tof (x) is given by

f̂ (x) = {2πK ′′(t̂ )}−1/2 exp{K(t̂ ) − t̂x},
where t = t̂ is the (unique) solution to the saddlepoint equationK ′(t) = x,
and primes denote derivatives. The Lugannani and Rice (1980) saddlepoint
approximation to the cumulative distribution function (CDF)F(y) = P (X ≤ y)

is obtained by takingθ = 0, F = F0 andK = K0 in (19).
More recent developments include saddlepoint approximations for nonlinear

statistics. See Daniels and Young (1991), DiCiccio and Martin (1991) and Jing and
Robinson (1994) for further details, and see Jensen (1995) for a rigorous account
of the underlying mathematical theory of saddlepoint methods. An extensive
discussion of saddlepoint methods and their application will appear in Butler
(2004).

Unlike much of this previous work, the current paper uses saddlepoint
methods to approximate MGFs of truncated distributions with the view that these
approximate MGFs may be used for further saddlepoint inversion. The work is
therefore similar in spirit to Fraser, Reid and Wong (1991) and Butler and Wood
(2002a).

1.2. Truncation. Suppose thatXi denotes a random variable with known
MGF Mi(θ) for i = 1, . . . , n, and that for eachi we observeYi = Xi |Xi ∈ (ai, bi),
that is,Yi is Xi conditioned to lie in the interval(ai, bi). In this paper we are
concerned with the following question:is there a convenient and accurate way
to approximate the CGF of Yi using only Ki(θ), the CGF of the untruncated
variable Xi?

If we are just interested in a single random variable,Y1 say, then the question is
probably not of much interest because the density and CDF ofY1 can be expressed
simply in terms of the density and CDF ofX1, with the latter approximated using
the saddlepoint approximations indicated above. However, there are situations in
which approximations to the CGFs of the{Yi} are potentially very useful. We
mention two such examples.

1.2.1. Computation of Dirichlet probabilities. We may wish to construct a
saddlepoint approximation for the distribution of the sum

∑n
i=1 Yi . One such

application is to the approximation of certain multivariate CDFs arising in
sampling theory and extreme value theory as discussed in Butler and Sutton
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(1998). For these applications, the multivariate CDF is expressed in terms of
the density of

∑n
i=1 Yi , where the underlying MGFs of theXi are known.

Consider, for example, the probability that an arbitrary Dirichlet vectorD =
(D1, . . . ,Dn) ∼ Dirichlet{γ = (γ1, . . . , γn)} lies in a general rectangular region
(a,b) = ∏n

i=1(ai, bi) ⊂ (0,1)n. If the components ofX = (X1, . . . ,Xn) are
independent withXi ∼ Gamma(γi,1), then the Dirichlet is represented in terms
of independent Gammas asD = X/S, whereS = ∑n

i=1 Xi. By independence of
S andX/S, the distribution ofD is also the conditional distribution ofX given that
S = 1. These facts and Bayes’ theorem lead to

Pr{D ∈ (a,b)} = fS{1|X ∈ (a,b)}
∏n

i=1 Pr{Xi ∈ (ai, bi)}
fS(1)

.(1)

Here fS{1|X ∈ (a,b)} is the density ofZ = ∑n
i=1 Yi at 1, whereYi = Xi |Xi ∈

(ai, bi), which we approximate using the saddlepoint density. The other terms are
standard computations: Pr{Xi ∈ (ai, bi)} is a gamma probability andfS(1) is the
Gamma(

∑
i γi,1) density ofS at 1.

1.2.2. Ion channel models with time-interval omission. First, we consider
an ion channel model which is represented as a two-state homogeneous semi-
Markov process with state space{o, c}, where stateo (state c) corresponds
to the ion channel being open (closed). Suppose that we observe the process
To,0, Tc,1, To,1, Tc,2, . . . , whereTo,j is the length of thej th sojourn in the open
state, andTc,k is the length of thekth sojourn in the closed state. We have
assumed that the process has started in stateo; one could equally start in statec.
Homogeneity and the semi-Markov assumption imply that{To,j : j ≥ 1} and
{Tc,k :k ≥ 1} are both independent and identically distributed (IID) sequences.
Suppose that the MGFs ofTo,1 andTc,1 are, respectively,�oc(θ) and�co(θ) and
that both are convergent in open neighborhoods of zero.

In ion channel modeling, a phenomenon known astime interval omission is
commonly built into the model. In effect, this means that only state residences
which last for longer than a given time threshold are observed (or detected),
and those residences lasting for less than this threshold are not observed (or are
undetected); that is, we only observe those sojourns in stateo (statec) which
last at leastτo (τc); otherwise, it appears to the observer that a jump has not
occurred. Time interval omission occurs because of limitations in the sensitivity
of the measuring device. Denote the observed sequence byT̃o,0, T̃c,1, T̃o,1, . . . . As
a concrete example, suppose thatTc,1 > τc, To,1 ≤ τo andTo,2 > τo; then T̃o,0 =
To,0, T̃c,1 = Tc,1 + To,1 + Tc,2. The sequences{T̃o,j : j ≥ 1} and{T̃c,k :k ≥ 1} are
both IID. Let �̃oc(θ) and�̃co(θ) denote the MGF of a typical member of each
sequence. For inferential purposes it is important to express�̃oc and�̃co in terms
of �oc and�co.
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Define

�D
oc(θ) = E[exp(θTo,1)I (To,1 > τo)],(2)

�U
oc(θ) = E[exp(θTo,1)I (To,1 ≤ τo)](3)

and

πo = P [To,1 > τo] = �D
oc(0),

with corresponding definitions for�D
co, �U

co andπc. Elementary arguments show
that�̃oc(θ) can be expressed in terms of a geometric series:

�̃oc(θ) = π−1
o �D

oc

∞∑
n=0

{�U
co(θ)�oc(θ)}nπc

= π−1
o �D

oc{1− �U
co(θ)�oc(θ)}−1πc.

A similar argument shows that

�̃co(θ) = π−1
c �D

co{1− �U
oc(θ)�co(θ)}−1πo.

The above discussion shows that time interval omission leads directly to consider-
ation of MGFs of truncated random variables.

More interesting ion channel models have several open states and several closed
states, some of which communicate; see Ball, Milne and Yeo (1991). This leads
to a more complicated structure, due to aggregation, in which�oc(θ) and�co(θ)

now represent matrices, each component of which is essentially an MGF which can
be expressed as a rational function of the MGFs of the underlying distributions of
transition times between individual states. These rational functions are difficult
to write down explicitly, but they are straightforward to compute numerically
using matrix algebra; see Ball, Milne and Yeo [(1991), Section 3] and also Butler
(2000) for analogous calculations in a reliability context. The key point is that, in
multistate ion channel models,̃�oc and�̃co are matrices rather than real numbers,
but have similar form to that given above, and are expressed in terms of the MGFs
of truncated random variables, as in (2) and (3); see Ball, Milne and Yeo [(1991),
Section 4]. Accurate approximation of these distributions can be performed using
the methods developed in this paper, but seems to be very difficult otherwise
(except in the Markov case).

The present paper was motivated by the ion channel application described
above. Further details of this application will be presented in Ball, Butler and Wood
(2004).

1.3. Outline of the paper. In Section 2 we consider two types of representation
for the MGF of a truncated random variable expressed in terms of the MGF
of the underlying random variable. One of these representations is obtained by
exponential tilting. A secondtype of representation, which has two versions, is
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referred to as an exponential convolution representation. In Section 3 we consider
saddlepoint approximations to the MGF of the truncated random variable which
are motivated by these representations, and indicate their performance in a number
of examples. In Section 4, results concerning the tail behavior of the various
approximations are given. Proofs of the theorems are given in the Appendix. The
research report Butler and Wood (2002b) presents extensions to the lattice and
multivariate cases, as well as additional numerical examples.

It turns out that each of the three approximations is extremely accurate in
those cases “to which it is suited.” Moreover, there is a simple rule of thumb
(see Section 3.4) for deciding which approximation to use in a given case. If this
rule is followed, numerical and theoretical results indicate that the resulting hybrid
approximation will be extremely accurate.

2. Representations of truncated MGFs.

2.1. Preliminaries. Let M0(θ) denote the MGF andK0(θ) = logM0(θ) the
CGF of a random variableX on R with densityf0 with respect to the Lebesgue
measure, and CDFF0(x) = P (X ≤ x). Assume thatM0(θ) has a convergence strip
given byθ ∈ (−α,β), where 0< α,β ≤ ∞. Let a < b denote real numbers such
thatF0(b) − F0(a) > 0.

Let

M(a,b)(θ) = 1

F0(b) − F0(a)

∫ b

a
eθx dF0(x)(4)

denote the MGF ofX truncated ata andb, and conditioned to lie in(a, b). We
shall refer toM(a,b)(θ) as a truncated MGF which is an abbreviation for the MGF
of a truncated random variable, and similar terminology is used for other quantities
such as the CGF.

In this paper we discuss how to approximate the truncated CGFK(a,b)(θ) =
logM(a,b)(θ) and its derivatives in terms of the original CGFK0(θ) = logM0(θ)

and its derivatives.

2.2. Tilted representation. Let Fθ(x) denote the CDF of theθ -tilted distri-
bution of X, that is, dFθ(x) = fθ(x) dx = eθx dF0(x)/M0(θ), wherefθ (x) =
eθxf0(x)/M0(θ) is the density corresponding to the CDFFθ . Then, for θ ∈
(−α,β), elementary manipulations show that

M(a,b)(θ) = M0(θ)[{Fθ(b) − Fθ(a)}/{F0(b) − F0(a)}].(5)

We shall refer to (5) as the tilted representation ofM(a,b)(θ).
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2.3. Exponential convolution representations. We now provide alternative
representations of (4) which are collectively valid for allθ in the convergence
interval ofM(a,b). Define

�1(θ, y) = 1

2πi

∫ c1+i∞
c1−i∞

M0(s)
e(θ−s)y

θ − s
ds, −α < c1 < min(β, θ)(6)

and

�2(θ, y) = 1

2πi

∫ c2+i∞
c2−i∞

M0(s)
e(θ−s)y

s − θ
ds, max(−α, θ) < c2 < β.(7)

THEOREM 2.1 (Properties of�1 and �2). Suppose that F0 is absolutely
continuous with density f0, and assume that for some c ∈ (−α,β), there exists
a ν(c) ∈ (0,∞) such that∫

t∈R
|M0(c + it)|1+ν(c) dt < ∞.(8)

Then the following results hold:

(i) We have

�1(θ, y) =
∫ y

−∞
eθxf0(x) dx, θ ∈ (−α,∞)(9)

and

�2(θ, y) =
∫ ∞
y

eθxf0(x) dx, θ ∈ (−∞, β).(10)

Hence,

�1(θ, y) + �2(θ, y) = M0(θ), θ ∈ (−α,β).(11)

(ii) Let X denote a random variable with MGF M0(θ) and let E denote an
exponential random variable with rate parameter |θ | which is independent of X.
When θ > 0,

�1(θ, y) = θ−1eθyfX+E(y);(12)

and when θ < 0,

�1(θ, y) = M0(θ) − |θ |−1eθyfX−E(y).(13)

In the statement of this theorem fZ denotes the density of a random variable Z.

(iii) When θ > 0,

�2(θ, y) = M0(θ) − θ−1eθyfX+E(y);(14)

and when θ < 0,

�2(θ, y) = |θ |−1eθyfX−E(y).(15)
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(iv) In the respective domains of definition for �1 and �2,

M(−∞,y)(θ) = �1(θ, y)/F0(y) and
(16)

M(y,∞)(θ) = �2(θ, y)/{1− F0(y)}.
(v) For a general interval (a, b), M(a,b)(θ) has the alternative representations

M(a,b)(θ) = {�1(θ, b) − �1(θ, a)}/{F0(b) − F0(a)}, θ ∈ (−α,∞),(17)

and

M(a,b)(θ) = {�2(θ, a) − �2(θ, b)}/{F0(b) − F0(a)}, θ ∈ (−∞, β).(18)

We refer to (16)–(18) as exponential convolution representations of the
corresponding truncated MGFs.

REMARK 2.1. Condition (8) is a mild smoothness requirement on the
underlying densityf0. Note that if, for somec, (8) holds withν(c) ∈ (0,1], then
absolute continuity ofF0 follows; see Theorem 11.6.1 in Kawata (1972). However,
if we must takeν(c) > 1 for all c, thenF0 need not be absolutely continuous; see
Theorem 13.4.2 in Kawata (1972) for a counterexample.

REMARK 2.2. Although (11) follows immediately from the addition of
(9) and (10), it is also interesting to note that (11) is a consequence of Cauchy’s
theorem; see Butler and Wood [(2002b), Section 2].

3. Approximations. We now present approximations to the truncated CGF
K(a,b)(θ) = logM(a,b)(θ) and its derivatives, distinguishing between the one-
sided casesa = −∞ and b = y < ∞, anda = y > −∞ and b = ∞, and the
two-sided casea > −∞ andb < ∞.

3.1. Lugannani and Rice approximation. Using the tilted representation of the
truncated MGF, we obtain

K(−∞,y)(θ) = K0(θ) + log{Fθ(y)/F0(y)}.
We may approximate theθ -tilted CDFFθ(y) by applying the Lugannani and Rice
approximation with the CGFKθ(s) = K0(θ + s) − K0(θ).

If the convergence strip ofK0(θ) is θ ∈ (−α,β) with finite β, thenK(−∞,y)(θ)

is defined on the larger set(−α,∞), but it is not clear how to extend this
approximation toθ ∈ [β,∞). A simple extension is discussed in Butler and Wood
[(2002b), Section 5.2], though it turns out that this extension is unsatisfactory.

The Lugannani and Rice approximation toFθ(y) is given by

F̂θ (y) = �(wθ) + φ(wθ)(w
−1
θ − u−1

θ ),(19)
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where� andφ are, respectively, the standard normal CDF and density;

wθ = sgn(ty − θ)[2{(ty − θ)y − K0(ty) + K0(θ)}]1/2(20)

anduθ = (ty − θ){K ′′
0 (ty)}1/2, where sgn(x) = −1,0,1 depending on whetherx is

negative, zero or positive; andt = ty is the unique solution to the saddlepoint
equationK ′

0(t) = y.
The approximation̂Fθ(y) is quite simple to use since it is an explicit function

of θ oncety, the saddlepoint forθ = 0, has been determined; thus, the function
K̂(−∞,y)(θ) is available in explicit form once the single saddlepoint solutionty
has been obtained. To see this, note that the saddlepoint for the tilted distribution
ŝθ solves

K ′
θ (ŝθ ) = K ′

0(ŝθ + θ) = y = K ′
0(ty).

By uniqueness of the saddlepointŝθ + θ = ty , so that only the computation ofty is
required in order to determine{ŝθ : θ ∈ (−α,β)}. Thus, the CGF approximation

K̂(−∞,y)(θ) = K0(θ) + log{F̂θ (y)/F̂0(y)}, θ ∈ (−α,β),(21)

is explicit in θ.

The first two derivatives of the approximation are given by

K̂ ′
(−∞,y)(θ) = K ′

0(θ) + {F̂θ (y)}−1∂F̂θ (y)/∂θ

and

K̂ ′′
(−∞,y)(θ) = K ′′

0 (θ) + {F̂θ (y)}−1 ∂2F̂θ (y)/∂θ2 − [{F̂θ (y)}−1 ∂F̂θ (y)/∂θ]2,
where

∂F̂θ (y)/∂θ = φ(wθ)[{y − K ′
0(θ)}(w−3

θ − u−1
θ ) − (ty − θ)−2{K ′′

0 (ty)}−1/2],
and the second partial derivative∂2F̂θ (y)/∂θ2 is most easily obtained by
numerical differentiation.

In the case ofK(y,∞)(θ), for θ ∈ (−α,β), we have the approximations

K̂(y,∞) = K0(θ) + log[{1− F̂θ (y)}/{1− F̂0(y)}],(22)

K̂ ′
(y,∞)(θ) = K ′

0(θ) − {1− F̂θ (y)}−1∂F̂θ (y)/∂θ

andK̂ ′′
(y,∞)(θ) = K ′′

0 (θ) − T (θ, y), where

T (θ, y) = {1− F̂θ (y)}−1 ∂2F̂θ (y)/∂θ2 + [{1− F̂θ (y)}−1∂F̂θ (y)/∂θ]2,
with the partial derivatives of̂Fθ(y) the same as before.

For generala < b, we may approximateK(a,b)(θ) = logM(a,b)(θ) by

K̂(a,b)(θ) = K0(θ) + log[{F̂θ (b) − F̂θ (a)}/{F̂0(b) − F̂0(a)}],
(23)

θ ∈ (−α,β).

This is an explicit expression inθ once two saddlepoints have been determined by
solvingK ′

0(ta) = a andK ′
0(tb) = b.

The Lugannani and Rice approximation is exact when applied to the CDF of an
arbitrary normal distribution. Therefore, (23) is exact in this case.
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3.2. The exponential convolution approximations. These approximations are
obtained by applying saddlepoint approximations to the integrals defining�1(θ, y)

and�2(θ, y). Denote these saddlepoint approximations by�̂1(θ, y) and�̂2(θ, y).
Then in this approach the CGFsK(−∞,y)(θ) andK(y,∞)(θ) are approximated by

K̃(−∞,y)(θ) = log{�̂1(θ, y)/�̂1(0, y)}, θ > −α,(24)

and

K̃(y,∞)(θ) = log{�̂2(θ, y)/�̂2(0, y)}, θ < β.(25)

To reduce the number of formulae in this section, we shall use the subscripts
1 and 2 to indicate the intervals(−∞, y) and(y,∞), respectively.

The saddlepoint approximations to�j(θ, y) (j = 1,2) are given by

�̂j (θ, y) = [2π{1+ (θ − sj,θ )
2K ′′

0(sj,θ )}]−1/2 exp{K0(sj,θ ) − (sj,θ − θ)y},(26)

wheresj,θ is the unique solution to

K ′
0(s) + {θ − s}−1 = y(27)

in (−α,β) which satisfiess1,θ < θ (j = 1) ands2,θ > θ (j = 2).
After some simplifications, we obtain

K̃j (θ) = θy + Dj(θ) − Dj(0) + K0(sj,θ ) − K0(sj,0) − (sj,θ − sj,0)y,(28)

where, using implicit differentiation, we have

Dj(θ) ≡ 1
2 log(∂sj,θ/∂θ) = −1

2 log{1+ (θ − sj,θ )
2K ′′

0(sj,θ )}.
Note that the approximations are calibrated so thatK̃j (0) = Kj (0) = 0, j = 1,2.

The first derivative of̃Kj (θ) (j = 1,2) is given by

K̃ ′
j (θ) = y + D′

j (θ) − {y − K ′
0(sj,θ )} ∂sj,θ/∂θ,

where

D′
j (θ) = 1

2(∂2sj,θ/∂θ2)/(∂sj,θ/∂θ), ∂sj,θ/∂θ = {1+ (θ − sj,θ )
2K ′′

0(sj,θ )}−1

and

∂2sj,θ

∂θ2
= −(θ − sj,θ )

2[K ′′′
0 (sj,θ) + 2(θ − sj,θ ){K ′′

0(sj,θ )}2]
{1+ (θ − sj,θ )2K ′′

0 (sj,θ )}3
.

The second partial derivative∂2K̃j (θ)/∂θ2 can be determined using numerical
differentiation.

In some examples we considered the second-order saddlepoint approximation
to �j given by�̆j (θ, y) = �̂j (θ, y)R(θ, y), whereR(θ, y) is the usual second-
order term given in this case by

R(θ, y) = 1+ 1

8

K ′′′′
0 (sj,θ) + 6(θ − sj,θ )

−4

{K ′′
0(sj,θ ) + (θ − sj,θ )−2}2

− 5

24

{K ′′′
0 (sj,θ) + 2(θ − sj,θ )

−3}2

{K ′′
0(sj,θ ) + (θ − sj,θ )−2}3

.

The resulting approximations toK(a,b)(θ) based on (17) and (18) are

K̃1,(a,b)(θ) = log[{�̆1(θ, b) − �̆1(θ, a)}/{�̆1(0, b) − �̆1(0, a)}](29)
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for θ ∈ (−α,∞), and forθ ∈ (−∞, β),

K̃2,(a,b)(θ) = log[{�̆2(θ, a) − �̆2(θ, b)}/{�̆2(0, a) − �̆2(0, b)}].(30)

3.3. Summary of numerical results. We now discuss several examples which
have been chosen to illustrate some general points. A more extensive set of
examples is given in Butler and Wood (2002b). As before, the truncation occurs at
−∞ ≤ a < b ≤ ∞ and the convergence strip of the underlying CGFK0 is (−α,β),
where 0< α,β ≤ ∞.

1. In cases where truncation leads to an extension of the convergence strip of
the MGF (i.e., if eithera > −∞ andα < ∞, or b < ∞ andβ < ∞, or both)
the most obvious way to extend the LR-based approximation of Section 3.1 is
described in Butler and Wood [(2002b), Section 5.2]. However, this extended
approximation is poor, as can be seen in Figure 1. The discussion in Butler and
Wood [(2002b), Section 5.2] indicates that this is a general problem and not
specific to this example.

2. Theoretical results (see Theorem 4.2 and Section 5.3) indicate that when
an exponential convolution approximation is used it is appropriate to use (24)
or (29) in the right tail and (25) or (30) in the left tail. These findings are strongly
supported by our numerical examples; see Figure 2 for a typical case.

3. In our numerical examples, we have found that the first-order saddlepoint
approximation to�j works better in the case of one-sided truncation (i.e., if either
a = −∞ or b = ∞), while the second-order approximation works better in the
case of two-sided truncation (i.e., ifa > −∞ andb < ∞).

FIG. 1. Right truncation of an Exponential(1) distribution. Plot of K(0,2)(θ) (solid ) and its
approximation K̂(0,2)(θ) (dashed ) for θ ≤ 1 and its continuation (dotted ) for θ ≥ 1.
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FIG. 2. Two-sided truncation of Normal(0,1). Plot of K̃1,(−1,2)(θ) (dotted ), K̃2,(−1,2)(θ)

(dashed ), and K(−1,2)(θ) (solid ) for θ ∈ (−5,6).

4. In those cases where the convergence strip does not need to be extended, the
LR-based approximation has generally proved more accurate than the appropriate
exponential convolution approximation, though the latter performs respectably.
Figures 3 and 4 present a typical example of this finding.

FIG. 3. Two-sided truncation of the Gumbel distribution. Plot of K(−1,2)(θ) (solid ) and the “rule
of thumb” approximation (centers of circles) that uses the Lugannani and Rice approximation (23)
for θ ≤ 0 and the exponentially convoluted approximation (29) for θ > 0.
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FIG. 4. Plot of 100× absolute error for the “rule of thumb” approximation (solid ) in Figure 3. If
the exponentially convoluted approximation (30) replaces (23) for θ ≤ 0, then the error is shown as
the dashed line.

5. Finally, we return to Example 1.1. The question of interest here is how accu-
rately we can approximate rectangular Dirichlet probabilities using the truncated
MGF approximations described above, thereby avoiding the exact computation of
the truncated CGF, which is difficult. Table 1 presents results for particular exam-
ples. The exponential convolution approximations show consistent accuracy when
the saddlepoint is positive; and the Lugannani and Rice approximations are con-
sistently accurate when the saddlepoints are negative. Inaccuracy only arises when
either approximation is used in the inappropriate tail.

3.4. Rule of thumb. The results of Section 3.3 suggest the following rule of
thumb for choosing the approximations, which has worked very well in all the
examples we have looked at. In the rule, left and right tail refer toθ < 0 andθ ≥ 0,
respectively.

Approximation for right truncation (−∞, y). Use the Lugannani and Rice
approximation (21) in both tails with one exception. Ifβ < ∞, so the convergence
strip is extended in the right tail, then use (24) in the right tail.

Approximation for left truncation ( y,∞). Use the Lugannani and Rice
approximation (22) in both tails if there is no extension in the left tail. With
extension due toα > −∞, use (25) in the left tail instead.

Approximation for two-sided truncation (a,b). Use the Lugannani and Rice
approximation (23) in those tails in which there are no extensions. Where
extensions occur in the left and/or right tails, use (30) and/or (29), respectively.



2724 R. W. BUTLER AND A. T. A. WOOD

TABLE 1
Dirichlet probability computations; see Example 1.1.For the various values of n,γ and (a,b), the

“Exact” probability as listed was computed using symbolic computation in Maple V. The mean of Z

is listed in the cell “Mean” and its value relative to value 1 determines whether the listed
saddlepoints for methods K̃Z and K̂Z are negative or positive. Category “SA, K̃Z using �̌1”

approximates the CGF of each Yi by using the appropriate (one-sided or two-sided ) second-order
exponential convolution approximation based on �̌1 given in (24) and (29), respectively. Upon

determination of K̃Z, the results of its first-order saddlepoint density inversions are listed. The final
column “SA, K̂Z using L&R” shows comparable computations using the LR-based approximation

K̂Z given by (21) or (23),as appropriate

n γ a Exact SA, K̃Z using �̌1 SA, K̂Z using L&R
Mean b Saddlept. Saddlept.

3 (10,8,8) (0)3 0.9527 0.8877 0.9756
1.454 11

19, 10
19, 11

19 −23.6 −23.5
3 (10,8,8) (0)3 0.02400 0.02479 0.00141

0.9435 0.45, (0.3)2 36.3 0.9667
3 (1)3 (0.2)3 0.04000 0.03869 0.0117

0.9080 (0.4)3 11.50 10.26
3 (1)3 (0)3 0.04000 0.04059 0.02831

0.5707 (0.4)3 15.59 0.9203
5 (1)5 (0)5 0.3680 0.3540 0.2535

0.9268 (0.4)5 1.00 0.1335
5 (1,2, . . . ,5) (0)5 0.5526 0.5469 0.5439

1.389 (0.4)5 −10.14 −9.93
5 (1,2, . . . ,5) (0)5 0.062288 0.062336 0.075733

0.7221 0.5,0.4, (0.1)3 12.65 0.9140
5 (1,2, . . . ,5) (0.1)5 0.03220 0.03217 0.03183

1.125 (0.3)5 −10.02 −9.15
10 (1)10 (1/15)5 0.045080 0.043175 0.044969

1.776 (0.3)5 −29.56 −28.56

Since all the approximations to the truncated CGF are calibrated to be zero
at θ = 0, it follows that the approximation obtained by following the rule of
thumb will be continuous but, in general, not continuously differentiable atθ = 0.
However, we have not found the lack of smoothness atθ = 0 to be an issue in
practice.

4. Theoretical accuracy in the tails. We now investigate the behavior of the
approximations toM(a,b)(θ) andK(r)

(a,b)(θ), r = 1,2, as|θ | → ∞. We make the
following assumptions throughout this section:

(A1) The exponential family{Fθ : θ ∈ (−α,β)} is steep, that is,|K ′
0(θ)| → ∞ as

θ ↓ −α and asθ ↑ β.
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(A2) The densityf0 has one-sided limits at the truncation pointsa andb, that is,
the limits limε↓0f0(a + ε) = f0(a+) and limε↓0 f0(b − ε) = f0(b−) both
exist.

Note that under (A1) and (A2) and regardless of the value ofa ≥ −∞ we have,
asθ → ∞,

M(a,b)(θ) ∼
{

θ−1eθbf0(b−)/[F0(b) − F0(a)], if b < ∞,
M0(θ)/[1− F0(a)], if b = ∞,

and regardless of the value ofb ≤ ∞ we have, asθ → −∞,

M(a,b)(θ) ∼
{

θ−1eθaf0(a+)/[F0(b) − F0(a)], if a > −∞,

M0(θ)/F0(b), if a = −∞.

4.1. Accuracy of the Lugannani and Rice approximation. We first consider the
accuracy in the tails of the Lugannani and Rice (LR) approximationM̂(a,b) and its
logarithmic derivativeŝK ′

(a,b) andK̂ ′′
(a,b). Theorem 4.1 below is proved in the

Appendix.

REMARK 4.1. Comparison of the results in Theorem 4.1 with the limiting
results forM(a,b)(θ) above shows that the relative error stays bounded in all cases.
With K̂ ′

(a,b)(θ) andK̂ ′′
(a,b)(θ), the errors actually go to zero as|θ | → ∞.

THEOREM 4.1. Consider the LR approximation M̂(a,b)(θ) specified in Sec-
tion 3.1.Assume that (A1) and (A2) both hold. Suppose also that (i) α = ∞ in all
statements concerning the left tail and β = ∞ in all results concerning the right
tail; and (ii) as |θ | → ∞, uθ/w

3
θ → 0, where wθ and uθ are given in (20) and

below (20),respectively, with y = a or b as appropriate.

(i) As θ → ∞,

M̂(a,b)(θ) ∼
{

θ−1eθbf̂0(b−)/[F̂0(b) − F̂0(a)], if b < ∞,
M0(θ)/[1 − F̂0(a)], if b = ∞,

and as θ → −∞,

M̂(a,b)(θ) ∼
{

θ−1eθaf̂0(a+)/[F̂0(b) − F̂0(a)], if a > −∞,
M0(θ)/F̂0(b), if a = −∞,

where f̂0 is the saddlepoint density approximation to f0 and F̂0 is the Lugannani
and Rice approximation to the CDF F0.

(ii) As θ → ∞,

K̂ ′
(a,b)(θ) =

{
b − θ−1 + o(θ−1), if b < ∞,
K ′

0(θ)
(
1+ o(1)

)
, if b = ∞,
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and as θ → −∞,

K̂ ′
(a,b)(θ) =

{
a − θ−1 + o(θ−1), if a > −∞,
K ′

0(θ)
(
1+ o(1)

)
, if a = −∞.

(iii) As θ → ∞,

K̂ ′′
(a,b)(θ) ∼

{
θ−2, if b < ∞,
K ′′

0(θ), if b = ∞,

and as θ → −∞,

K̂ ′′
(a,b)(θ) ∼

{
θ−2, if a > −∞,
K ′′

0(θ), if a = −∞.

4.2. Accuracy of the exponential convolution approximation. For j = 1,2,
let �̂j (θ, y) andK̃(r)

j (θ), r = 0,1,2, be as in Section 3.2 and definẽMj (θ) =
�̂j (θ, y)/�̂j (0, y). Also, for −∞ < a < b < ∞, define

M̃1,(a,b)(θ) = {�̂1(θ, b) − �̂1(θ, a)}/{�̂1(0, b) − �̂1(0, a)},
K̃1,(a,b)(θ) = logM̃1,(a,b)(θ), with corresponding definitions for̃M2,(a,b)(θ) and
K̃2,(a,b)(θ).

REMARK 4.2. Comparison of the results in Theorem 4.2 with the limiting
results forM(a,b)(θ) shows that the relative error stays bounded in all cases. With
K̃ ′

j (θ) andK̃ ′′
j (θ), the errors actually go to zero asθ → ±∞ in the cases covered

by the theorem.

THEOREM 4.2. Assume that (A1) and (A2) both hold.

(i) As θ → ∞,

M̃1(θ) ∼ θ−1eθyf̂0(y−)/�̂1(0, y), K̃ ′
1(θ) = y − θ−1 + o(θ−1)

and K̃ ′
1(θ) ∼ θ−2.

(ii) The limiting behavior of M̃2, K̃ ′
2 and K̃ ′′

2 in the lower tail is the same as
that of M̃1(θ), K̃ ′

1(θ) and K̃ ′′
1 (θ) in the upper tail, as given in part (i).

(iii) If −∞ < a < b < ∞, then as θ → ∞,

M̃1,(a,b)(θ) ∼ θ−1eθbf̂0(b−)/{�̂1(0, b) − �̂1(0, a)},
K̃ ′

1,(a,b)(θ) = b − θ−1 + o(θ−1) and K̃ ′′
1,(a,b)(θ) ∼ θ−2.

(iv) If θ → −∞, then M̃2,(a,b)(θ) and the derivatives of K̃2,(a,b) obey results
corresponding to those in part (iii), but with a replacing b.

PROOF. In part (i), the key point to note is thats1,θ → ty asθ → ∞, and then
the proof follows easily. The proof is essentially the same in the other cases.�
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4.3. Behavior in the other tail. In Theorem 4.2 we described the limiting
behavior ofM̃1(θ) and its logarithmic derivatives asθ → ∞, and the behavior
of M̃2(θ) and its logarithmic derivatives asθ → −∞. In this section we indicate,
without proof, what happens tõM1(θ) and its derivatives whenθ → −∞. The
results forM̃2(θ) are similar and are therefore omitted.

If lim s↓−α K ′′
0 (s)/[K ′

0(s)]2 → 0, then

M̃1(θ) ∼ M0(θ)
(
e/

√
2π

)
/�̂1(0, y) asθ → −∞.(31)

Under the stronger conditions

lim
s↓−α

K ′′
0 (s)/K ′

0(s) → 0 and lim
s↓−α

K
(4)
0 (s)/[K ′

0(s)]3 → 0,

we have

K̃ ′
1(θ) ∼ K ′

0(θ);(32)

and still stronger conditions are needed to ensure that

K̃ ′′
1 (θ) ∼ K ′′

0 (θ).(33)

A sufficient condition for (31)–(33) to hold is the following:

for eachj ≥ 2 lim
s↓−α

K
(j)
0 (s) stays bounded.(34)

Note that condition (34) holds for the normal distribution, gamma distribution
(in the left tail) and any other distribution which has bounded support on the
left. However, in the case of−X, whereX has a gamma or inverse Gaussian
distribution, or ifX has a logistic distribution, theñK ′

1(θ) andK̃ ′′
1 (θ) do not stay

bounded asθ ↓ −α, and (31)–(33) fail to hold.

APPENDIX

PROOF OFTHEOREM 2.1. Using the convolution formula for densities [see,
e.g., Theorem 6.1.2 in Chung (1974), for a precise statement], we have, forθ > 0,∫ y

−∞
eθxf0(x) dx = eθy

θ

∫ ∞
−∞

θe−θ(y−u)I (u ≤ y)f0(u) du = eθy

θ
fX+E(y),

where E is an exponential random variable with rate parameterθ , which is
independent ofX. Define

Hc,θ (t) = [M0(c + it)/{1− (c + it)/θ}]/[M0(c)/{1− c/θ}],
so thatH0,θ (t) is the characteristic function (CF) offX+E(y), and Hc,θ (t) is
the CF of thec-tilted densityfX+E(y)ecy/{M0(c)/(1 − c/θ)}. Note that if (8)
holds for somec ∈ (−α,β), then (8) holds for allc ∈ (−α,β). For a proof of this
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result, which involves two applications of the Hausdorff–Young inequality, see
Lemma 2.3.4 of Jensen (1995). Using Hölder’s inequality,∫ ∞

−∞
|Hc,θ (t)|dt ≤ 1− c/θ

M0(c)

(∫ ∞
−∞

|M0(c + it)|1+ν(c) dt

)1/(1+ν(c))

×
(∫ ∞

−∞
1

|1− (c + it)/θ |(1+ν(c))/ν(c)
dt

)ν(c)/(1+ν(c))

< ∞

for each c ∈ (−α,min(β, θ)). Therefore we may apply the Fourier inversion
theorem [see, e.g., Chung (1974), page 155, for a precise statement] toHc,θ (t)

to obtain

1

2π

∫ ∞
−∞

Hc,θ (t)e
−ity dt = fX+E(y)ecy/{M0(c)/(1− c/θ)}.(35)

After some rearrangement, we find that (35) gives (9) for allθ > 0 and
c ∈ (−α,min(β, θ)). This shows also that�1(θ, y) does not depend on the choice
of c1 in (6). An analytic continuation argument extends (9) toθ ∈ (−α,0], thus
(9) is established for allθ > −α.

Identical reasoning gives (10) and (15), and (11) follows immediately after
adding (9) and (10). The statements (16), (17) and (18) follow directly from the
definitions. �

PROOF OFTHEOREM 4.1. The LR approximation toM(a,b)(θ) is given by

M̂(a,b)(θ) = M0(θ)[{F̂θ (b) − F̂θ (a)}/{F̂0(b) − F̂0(a)}].
(i) Case θ → ∞, b = ∞. Note thatF̂θ (b) = 1 for all θ and F̂θ (a) → 0 as

θ → ∞, soM̂(a,b)(θ) ∼ M0(θ)/[1− F̂0(a)] as required.
Case θ → ∞, b < ∞. HereF̂θ (a)/F̂θ (b) → 0, so

M̂(a,b)(θ) ∼ M0(θ)F̂θ (b)/[F̂0(b) − F̂0(a)].
By assumptionuθ/w

3
θ → 0 asθ → ∞. Moreover, elementary calculations show

that aswθ → −∞, �(wθ) ∼ −φ(wθ)[w−1
θ + w−3

θ ], and it then follows easily that

F̂θ (b) ∼ −φ(wθ)/uθ ∼ θ−1ebθ f̂0(b−)/M0(θ) asθ → ∞,

wheref̂0(b) = (2π)−1/2|K ′′
0 (tb)|−1/2 exp{K0(tb)− tbb} is the saddlepoint approx-

imation tof0(b). The proofs forθ → −∞ with a ≥ −∞ are similar.

(ii) We have

K̂ ′
(a,b)(θ) = K ′

0(θ) + {F̂θ (b) − F̂θ (a)}−1[∂F̂θ (b)/∂θ − ∂F̂θ (a)/∂θ].
Case θ → ∞, b = ∞. Since F̂θ (b) − F̂θ (a) → 1, ∂F̂θ (b)/∂θ = 0,

∂F̂θ (a)/∂θ → 0 andK ′
0(θ) → ∞, the result follows.
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Case θ → ∞, b < ∞. Here

F̂θ (a)/F̂θ (b) → 0 and
(
∂F̂θ (a)/∂θ

)/(
∂F̂θ (b)/∂θ

) → 0.

Therefore,

K̂ ′
(a,b)(θ) = K ′

0(θ) + {F̂θ (b)}−1 ∂F̂θ (b)/∂θ + o(θ−1)

= K ′
0(θ) + b − K ′

0(θ) + θ−1 + o(θ−1)

= b + θ−1 + o(θ−1),

as required. The casesθ → −∞ with a = −∞ anda > −∞ are proved in similar
fashion.

(iii) The results here follow from similar but more extensive calculations.�
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