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UNIFORM ASYMPTOTICS FOR ROBUST LOCATION ESTIMATES
WHEN THE SCALE IS UNKNOWN1

BY MATIAS SALIBIAN -BARRERA AND RUBEN H. ZAMAR

Carleton University and University of British Columbia

Most asymptotic results for robust estimates rely on regularity conditions
that are difficult to verify in practice. Moreover, these results apply to fixed
distribution functions. In the robustness context the distribution of the data
remains largely unspecified and hence results that hold uniformly over a
set of possible distribution functions are of theoretical and practical interest.
Also, it is desirable to be able to determine the size of the set of distribution
functions where the uniform properties hold. In this paper we study the
problem of obtaining verifiable regularity conditions that suffice to yield
uniform consistency and uniform asymptotic normality for location robust
estimates when the scale of the errors is unknown. We studyM-location
estimates calculated with anS-scale and we obtain uniform asymptotic results
over contamination neighborhoods. Moreover, we show how to calculate the
maximum size of the contamination neighborhoods where these uniform
results hold. There is a trade-off between the size of these neighborhoods
and the breakdown point of the scale estimate.

1. Introduction. Many robust location point estimates have been proposed
in the last 35 years. Unfortunately, robust inference has not received the same
amount of attention in the literature. Since the finite sample distributions of
robust estimates are unknown, robust inference typically relies on the asymptotic
distributions of these estimates.

According to the robustness model one does not know the actual distribution
of the data. Therefore it is highly desirable to have asymptotic results that hold
uniformly over some set of plausible distributions. Hampel (1971) considered
this problem and broke new ground showing that under certain regularity
conditionsM-location estimates have uniform asymptotic properties on Prokhorov
neighborhoods. These are the first results in the robustness literature that deal
with uniform asymptotic properties of robust estimates. Moreover, Hampel’s
results provide a valuable set of tools to evaluate and compare robust estimates
based on their asymptotic behavior. Unfortunately his results only guarantee the
existence of a neighborhood with unknown size where the uniform behavior holds.
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Determining the size of these neighborhoods seems to be a very difficult problem
[see also Davies (1998)].

Huber [(1967); (1981), page 51] shows that when the scale of the errors is
known, theM-location estimates are asymptotically normal and the approximation
is uniform on the set of symmetric distributions that have all their mass
concentrated on the points where the estimating equation is differentiable.
Simultaneous estimation of location and scale with Huber’s Proposal 2 was
studied by Clarke (1980, 1986). In the first reference the author considers the
problem of uniform convergence for these estimates and in the second proves
that Huber’s Proposal 2 estimates with nonsmooth estimating equations fall in
the framework of Hampel (1971). More recently, Davies (1998) constructedM-
location estimates with simultaneous scale estimates (Huber’s Proposal 2) that
are locally asymptotically normal. Davies’s results are “locally uniform”; that is,
for each distribution function there exists a neighborhood of distributions where
the convergence holds uniformly. Unfortunately, the size of these neighborhoods
is unknown. Finally, Clarke (2000) shows that certainM-location estimates
[including the simultaneous location and scale estimation proposed in Heathcote
and Silvapulle (1981)] are continuous over full Prokhorov neighborhoods of
the parametric model. It follows that these estimates have uniform asymptotic
behavior over Prokhorov neighborhoods. Unfortunately, as in Hampel (1971) and
Davies (1998), the size of these neighborhoods is unknown.

Our results apply to locationM-estimates calculated using anS-scale [see
Rousseeuw and Yohai (1984)]. These estimates are scale-equivariant [Rousseeuw
and Leroy (1987), pages 158 and 159] and have simultaneous high breakdown
point and high efficiency at the central model. Moreover, under verifiable regularity
conditions we obtain uniform asymptotic results (consistency and asymptotic
distribution) that hold over a contamination neighborhood ofknown size. The size
of these sets depends on the breakdown point of theS-scale estimates (the higher
the breakdown point, the smaller the set of distribution functions where uniformity
holds; see Table 1, in Section 4). The regularity conditions we need in our results
depend on two separate aspects of the inference procedure: the assumed “true”
parametric model for the “good” data points, and the estimating equations used to
calculate the robust estimate.

The rest of the paper is organized as follows. Section 2 contains the definitions
of the estimates we consider. Section 3 shows that under mild regularity condi-
tions these estimates are uniformly consistent on contamination neighborhoods.
Section 4 gives additional assumptions under which the above estimates are uni-
formly asymptotically normal. Section 5 contains some concluding remarks and,
finally, the Appendix contains sketches of the proofs of our main results. Details
can be found in Salibian-Barrera and Zamar (2002).
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2. MM-location estimates. Consider the following location–scale model: let
x1, . . . , xn ben observations on the real line satisfying

xi = µ + σεi, i = 1, . . . , n,(1)

whereεi , i = 1, . . . , n, are independent and identically distributed (i.i.d.) observa-
tions with variance equal to 1. The interest is in estimatingµ, and the scaleσ is
considered a nuisance parameter.

We will consider scale-equivariantM-location estimateŝµn defined as the
solution of an estimating equation of the form

1

n

n∑
i=1

ψ
(
(xi − µ̂n)/σ̂n

) = 0,(2)

whereσ̂n is anS-scale estimate of the residuals [Rousseeuw and Yohai (1984)] and
ψ :R → R is a nondecreasing, odd and continuously differentiable real function.
An example of such a function is given by

ψc(u) = sign(u)




|u/c|, if |u| ≤ 0.8c,

p4(|u|/c), if 0.8c < |u| ≤ c,

p4(1), if |u| > c,

(3)

wherec > 0 is a user-chosen tuning constant, andp4(u) = 38.4−175u+300u2−
225u3 + 62.5u4 [see Fraiman, Yohai and Zamar (2001) and also Bednarski and
Zontek (1996), for other choices of smooth functionsψ ]. Following Yohai (1987)
we will call theseM-location estimates obtained with anS-scaleMM-location
estimates.

TheS-scale estimatêσn we use in (2) is defined as follows. Letρ :R → R+ be
a bounded, continuous and even function satisfyingρ(0) = 0. TheS-scaleσ̂n is
defined by

σ̂n = inf
t∈R

sn(t),(4)

where, for eacht ∈ R, sn(t) is the solution of

1

n

n∑
i=1

ρ
(
(xi − t)/sn(t)

) = b,(5)

andb = E[ρ(u)]. Naturally associated with this family are theS-location estimates
µ̃n given by

µ̃n = arg inf
t∈R

sn(t).(6)

Beaton and Tukey (1974) proposed a family of functionsρd given by

ρd(u) =
{

3(u/d)2 − 3(u/d)4 + (u/d)6, if |u| ≤ d,

1, if |u| > d,
(7)

where the tuning constantd is positive. The above family of functionsρd satisfies
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all the regularity conditions we need to obtain uniform asymptotic properties, and
at the same time it yields scale estimatesσ̂n with good robustness properties.

REMARK 1 (ψ �= ρ′). Note that the estimating functionψ in (2) need not be
equal toρ′ in (5). Moreover, we will recommend usingψ = ψc in (3) andρ = ρd

in (7).

REMARK 2 (High efficiency and high breakdown point). The robust location
estimatesµ̂n defined by (2) withσ̂n as in (4) are scale-equivariant and can have
simultaneously high breakdown and high efficiency at the central model. For
example, the choiced = 1.548 forρd in (7), b = 0.5 in (5) andc = 1.525 forψc

in (3) yields a location estimatêµn with 50% breakdown point and 95% efficiency
when the errors have a normal distribution.

The asymptotic properties (consistency and asymptotic normality) of
M-location estimates given by (2) are well known when the distribution of the er-
rors is symmetric [Huber (1964, 1967, 1981), Boos and Serfling (1980) and Clarke
(1983, 1984)]. The next two sections establish these properties uniformly over a
set of distributions.

3. Uniform consistency. The goal of this section is to determine verifiable
conditions under which thescale-equivariant M-location estimateŝµn given
by (2) are uniformly consistent on the contamination “neighborhood”

Hε(F0) = {
F ∈ D :F(x) = (1− ε)F0

(
(x − µ)/σ

) + εH(x)
}
,(8)

whereD denotes the set of all distribution functions,F0 is a fixed symmetric
distribution,µ0 andσ0 are the unknown location and scale parameters,ε ∈ (0,1/2)

and H is an arbitrary distribution function. Since in what follows the central
distributionF0 is fixed, we writeHε to denote the set (8) above.

Under certain regularity conditions (see references above) theM-location
estimateŝµn and theS-estimateŝσn andµ̃n are consistent to the functionalsµ(F ),
σ (F ) and µ̃(F ) defined by the following equations. For eacht ∈ R, let σ(F, t)

satisfy

EF

[
ρ

(
(X − t)/σ (F, t)

)] = b.(9)

The asymptotic value of̂σn is given by

σ (F ) = inf
t∈R

σ(F, t).(10)

Similarly, for theS-location estimatẽµn we have

µ̃(F ) = arg inf
t∈R

σ(F, t).(11)

Finally, for theM-location estimatêµn the corresponding equation is

EF

[
ψ

((
X − µ(F )

)/
σ (F )

)] = 0.(12)
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DEFINITION 1 (Uniform consistency). We say that the sequence of esti-
matesτ̂n is uniformly consistent to the functionalτ (F ) over the contamination
neighborhoodHε if, for all δ > 0,

lim
m→∞ sup

F∈Hε

PF

[
sup
n≥m

|τ̂n − τ (F )| > δ

]
= 0,

where τ (F ) is the a.s. limit ofτ̂n for an i.i.d. sequence of observations with
distribution functionF . We will denote this type of convergence byτ̂n

ε→ τ .

Our main result in this section states that if the scale estimateσ̂n in (2) satisfies
σ̂n

ε→σ and if ψ is odd, nondecreasing, bounded and continuously differentiable,
thenµ̂n

ε→µ.

THEOREM 1 (Uniform consistency of theM-location estimate with general
scale). Let x1, . . . , xn be i.i.d. observations following the location model (1). Let
ψ satisfy the following:

(P.1) |ψ(u)| ≤ 1 for all u ∈ R, and ψ(−u) = −ψ(u) for u ≥ 0;
(P.2) ψ is nondecreasing and limu→∞ ψ(u) > 0;
(P.3) ψ is continuously differentiable.

Suppose that σ̂n in (2) has asymptotic breakdown point ε∗. Let 0≤ ε < ε∗ be such
that σ̂n

ε→σ . Then if µ̂n satisfies (2), we have µ̂n
ε→µ.

A sketch of the proof of Theorem 1 is given in the Appendix. A detailed proof
can be found in Salibian-Barrera and Zamar (2002).

REMARK 3 (Uniform consistency ofS-scale estimates). When̂σn is an
S-scale estimate, Martin and Zamar (1993) showed that ifF0 (the central
distribution function inHε) has an even and unimodal density, and if the functionρ

is even, bounded, continuous and nondecreasing in[0,∞), thenσ̂n has asymptotic
breakdown point 1/2. They also showed that if in additionF0 has a positive density
on the real line, then for all 0< ε < 1/2 we have

σ̂n
ε→σ.(13)

Theorem 1 and Remark 3 imply thatM-location estimateŝµn given by (2)
with ψ = ψc in the family (3) and scalêσn given by (4) withρ = ρd in Tukey’s
family (7) have high breakdown point and high efficiency and are uniformly
consistent overHε for all 0 < ε < 1/2.
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4. Uniform asymptotic distribution. In this section we show that under
certain regularity conditions theMM-location estimateŝµn converge weakly to
a normal distribution uniformly over the contamination neighborhoodHε . These
results are constructive and allow us to determine the size of the neighborhoodHε

where uniform asymptotic normality holds. The required regularity conditions
will be mainly imposed on our estimating equations (2) and (4) and we will
show thatψ = ψc in (3) andρ = ρd in (7) satisfy these conditions. Hence, our
results show that the scale-equivariantMM-location estimates have simultaneously
high breakdown point, high efficiency at the central model and are uniformly
asymptotically normal on a contamination neighborhood of known size (see
Remark 2).

Asymptotic results for asymmetric distributions are not easy to obtain. There are
some results in the robustness literature dealing with this problem [Carroll (1978,
1979), Carroll and Welsh (1988) and Rocke and Downs (1981)]. They show that
whenF is asymmetric the asymptotic distribution of the location estimate depends
on that of the scale and that the asymptotic variance calculated with the assumption
of symmetry is not correct. Salibian-Barrera (2000) showed that in general the
asymptotic distribution of locationM-estimates for arbitrary distribution functions
when the scale is estimated with anS-scale depends on the behavior of theS-scale
and the correspondingS-location estimate as well. Hence, to obtain uniform
asymptotics for theseMM-location estimates we need uniform consistency of the
S-scale andS-location estimates.

S-scale estimates are uniformly consistent under relatively weak regularity
conditions [see Martin and Zamar (1993) and our Remark 3].

Uniform consistency ofS-location estimates requires more assumptions. For a
given 0≤ ε < 1/2 and an estimating functionρ in (5) let s+ ands− satisfy

0< s− ≤ inf
F∈Hε

σ (F ) < sup
F∈Hε

σ (F ) ≤ s+ < ∞.(14)

Note that, from Lemma 1 in Martin and Zamar (1993), for all 0≤ ε < min(b,1−b)

we have 0< infF∈Hε σ (F ) ≤ supF∈Hε
σ (F ) < ∞. To simplify the notation we

will omit the dependence ofs+ ands− on ε. Assume that there existst∗ ∈ R such
that

inf
s−≤s≤s+

[
EF0ρ

(
X − t

s

)
− EF0ρ

(
X

s

)]
>

ε

1− ε
∀ |t| ≥ t∗(15)

and

inf
−t∗≤t≤t∗,s−≤s≤s+ EF0ρ

′′
(

X − t

s

)
>

ε

1− ε
sup
x

[ρ′′(x)]−,(16)

wheres+ ands− are given in (14).
Condition (16) can be slightly relaxed [see Salibian-Barreraand Zamar (2002),

Lemma 7]. Assumptions (15) and (16) do not depend on the unknown distribution
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of the dataF (only on F0, the central distribution of the neighborhoodHε) but
are tedious to verify and will typically require numerical computations. Note
that for a particularρ these conditions impose an upper boundε = ε(ρ,F0)

on the size of the contamination neighborhoodHε . More specifically, fix the
central distributionF0 and note that the left-hand side of (15) is a nondecreasing
function of |t|. At the same time, the right-hand side is an increasing function
of ε. Hence, the smallest valuet∗ = t∗(ε) that satisfies (15) is a nondecreasing
function of ε. Also, the left-hand side of (16) is a nonincreasing function oft∗
(and thus ofε), while its right-hand side is increasing inε. It follows that there
is a critical valueε(ρ) such that both (15) and (16) hold forε ≤ ε(ρ), but fail
to hold for ε > ε(ρ). Whenρ = ρd belongs to Tukey’s family (7) and the center
of the contamination neighborhood is the standard normal distributionF0 = � we
used numerical methods to findε(ρd) for different choices of the tuning constantd

(i.e., for different breakdown points). We found that there is a trade-off between
the breakdown point of the scale estimate and the upper boundε(ρd): the larger
the breakdown point, the smaller the upper boundε(ρd). Table 1 lists the values
of ε(ρd) for contamination neighborhoods of the standard normal distribution
and estimating equations that yield estimates with breakdown points between
0.25 and 0.50.

The following theorem states that under these conditionsS-location estimates
are uniformly consistent. This result will be necessary to obtain uniform asymp-
totic distribution of theM-location estimate calculated with anS-scale as in (2).

THEOREM 2 (Uniform consistency of theS-location estimate). Suppose that
the nonconstant function ρ satisfies the following assumptions:

(R.1) ρ(−u) = ρ(u), u ≥ 0, and supu∈R ρ(u) = 1;
(R.2) ρ(u) is nondecreasing in u ≥ 0;

TABLE 1
Maximum size ε(d) of contamination

neighborhoods around the standard normal
distribution where uniform consistency of the

S-location estimate holds for different breakdown
points (BP); the column labeled d contains the
tuning constant that yields the respective BP

BP d ε(d)

0.50 1.548 0.11
0.45 1.756 0.14
0.40 1.988 0.17
0.35 2.252 0.20
0.30 2.561 0.24
0.25 2.937 0.25
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(R.3) |ρ′(u)| ≤ K < ∞, ∀u ∈ R;
(R.4) there exists 0< c < ∞ such that ρ(u) = 1 ∀ |u| ≥ c.

Let b ∈ (0,1), µ̃n as in (6) and µ̃(F ) as in (11). Let s+ and s− be as in (14) and
suppose that 0 < ε is such that (15) and (16) hold. Then

lim
m→∞ sup

F∈Hε

PF

(
sup
n≥m

|µ̃n − µ(F )| > δ

)
= 0.(17)

A sketch of the proof of Theorem 2 is given in the Appendix. A detailed proof
can be found in Salibian-Barrera and Zamar (2002).

We can now state our main result: when theM-location,S-scale andS-location
estimates are uniformly consistent, theM-location estimate has a uniformly
asymptotically normal distribution.

THEOREM 3 (Uniform asymptotic distribution ofMM-location estimates).
Let µ̂n satisfy (2) with a function ψ that satisfies assumptions (P.1)and (P.2) in
Theorem 1 and the following:

(P.4) ψ is twice continuously differentiable;
(P.5) there exists d > 0 such that |ψ(u)| = 1 for all |u| ≥ d .

Assume that the S-scale estimate σ̂n in (2) is given by (4) with a function ρ that
satisfies (R.1)–(R.4)in Theorem 2 and the following:

(R.5) ρ is twice continuously differentiable.

Suppose that ε is such that (15) and (16) hold and that the center F0 of the
contamination neighborhood Hε has a positive, even and unimodal density. Then

lim
n→∞ sup

F∈Hε

sup
x∈R

∣∣∣∣PF

{√
n
(µ̂n − µ)√

V
< x

}
− �(x)

∣∣∣∣ = 0,

where

V = V (µ,σ,F )

= σ(F )2H(F)2EF

{[
ψ

(
X − µ(F )

σ (F )

)
(18)

− J (F )

(
ρ

(
X − µ̃(F )

σ (F )

)
− b

)]2}
,

H(F ) = 1

EF {ψ ′(t (X − µ(F ))/σ (F ))},
and

J (F ) = EF {ψ ′((X − µ(F ))/σ (F ))(X − µ(F ))/σ (F )}
EF {ρ′((X − µ̃(F ))/σ (F ))(X − µ̃(F ))/σ (F )} .
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A sketch of the proof of Theorem 3 is given in the Appendix. A detailed proof can
be found in Salibian-Barrera and Zamar (2002).

REMARK 4 (Regularity conditions). The assumptions onF0 (the center of the
contamination neighborhood) are needed to show that theS-scale estimatêσn is
uniformly consistent (̂σn

ε→σ ). By Theorem 1 we also have that theMM-location
estimates are uniformly consistent as well (µ̂n

ε→µ). The assumptions on the
estimating equationρ of theS-scaleσ̂n and conditions (15) and (16) are needed to
obtain uniform consistency of theS-location estimate (̃µn

ε→ µ̃). See Theorem 2.

Using Table 1 we find, for example, that scale-equivariantMM-location
estimates calculated withψ = ψ1.525 in (3) and anS-scale withρ = ρ1.548 in
(7) have simultaneously breakdown point 1/2, have 95% efficiency when the
errors are normally distributed, and are uniformly asymptotically normal on a
contamination neighborhood of size at leastε = 0.11. If, on the other hand, we
useρ = ρ2.937 in (7) we obtain estimates that have the same efficiency, that have
lower breakdown point (25%) and that are uniformly asymptotically normal on a
contamination neighborhood of sizeε = 0.25.

5. Conclusions. There are four important properties of robust location esti-
mates: translation and scale-equivariance [Rousseeuw and Leroy (1987), pages
158 and 159], high breakdown point, high efficiency and a reliable algorithm to
compute them. Moreover, it is desirable that their asymptotic theory satisfy two
important features: be valid under verifiable regularity assumptions, and hold uni-
formly over a relatively large set of distribution functions with known size.

With these desired properties in mind we propose to use scale-equivariant
M-location estimates calculated with a smooth functionψ in the family (3)
and with anS-scale estimate calculated with a functionρ in Tukey’s class (7).
TheseMM-location estimates have simultaneously high breakdown point and
high efficiency at the central model. Moreover, we showed that under verifiable
conditions they areuniformly consistent and uniformly asymptotically normal
over a contamination neighborhood ofknown size. For each choice of breakdown
point and efficiency we showed how to compute the size of the contamination
neighborhood where these uniform results hold. When the center of these
neighborhoods is the standard normal distribution we found that these sizes range
from 11% (for estimates with 50% breakdown point) to 25% (for 25% breakdown-
point estimates). Hence, in most practical situations where the contamination is
below 10% [Hampel, Ronchetti, Rousseeuw and Stahel (1986)], anMM-location
estimate with 50% breakdown point has uniform asymptotic properties that allow
for reliable statistical inference based on its asymptotic distribution.

It is of much interest to obtain this kind of uniform asymptotic properties for
robust regression estimates. In principle,MM-regression estimates are good candi-
dates to have satisfactory uniform asymptotic properties. Salibian-Barrera (2000)



UNIFORM ASYMPTOTICS FOR ROBUST LOCATION 1443

shows that under certain regularity conditions these estimates are asymptotically
normal for any distribution in the contamination neighborhood. The main technical
difficulty when using the approach presented in this paper to studyMM-regression
estimates seems to be to find sufficient regularity conditions on the loss functionρ

to show the uniform consistency of theS-regression estimate. Once this is estab-
lished, Theorems 1 and 3 apply with appropriate modifications.

APPENDIX

A.1. Proofs.

PROOF OF THEOREM 1. For any t ∈ R and F ∈ Hε let µψ(t,F ) =
EFψ((X − t)/σ (F )), and fix an arbitraryε̃ > 0. Let σ = σ (F ), µ = µ(F ),
ψ(X, t, s) = ψ((X − t)/s). Also letYi(t) = ψ(Xi, t, σ̂n) andY (F, t) = EFψ(X,

t,σ ). Letψn(t) = 1
n

∑n
i=1 Yi(t) andµψ(t,F ) = EF (ψ(X, t,σ )). For eachm ∈ N,

t ∈ R, F ∈ Hε andτ > 0 let

Am(F, t, τ ) =
{

sup
n≥m

|ψn(t) − µψ(t,F )| > τ

}
;

then limm→∞ supF∈Hε
PF (Am(F, t, τ )) = 0. We have

{µ̂n < µ − ε̃} ⊆ {|ψn(µ − ε̃/2) − µψ(µ − ε̃/2,F )| > a(ε̃)
} = An(F, ε̃),

wherea(ε̃) is given bya(ε̃) = infF∈Hε µψ(µ(F ) − ε̃/2,F ). Similarly

{µ̂n > µ + ε̃} ⊆ {|ψn(µ − ε̃/2) − µψ(µ − ε̃/2,F )| > b(ε̃)
} = Bn(F, ε̃),

whereb(ε̃) equalsb(ε̃) = infF∈Hε −µψ(µ(F ) + ε̃/2,F ). It is easy to see that
a(ε̃) = infF∈Hε µψ(µ(F ) − ε̃/2,F ) > 0, and thatb(ε̃) = infF∈Hε −µψ(µ(F ) +
ε̃/2,F ) > 0. It follows that{|µ̂n − µ| > ε̃} ⊆ An(F, ε̃) ∪ Bn(F, ε̃). Then

Mm(F, ε̃) =
{

sup
n≥m

|µ̂n − µ| > ε̃

}

⊆ Am

(
F,µ − ε̃/2, a(ε̃)

) ∪ Am

(
F,µ + ε̃/2, b(ε̃)

)
.

It follows that limm→∞ supF∈Hε
PF [Mm(F, ε̃)] = 0. �

PROOF OF THEOREM 2. We need to introduce the following notation. Let
ρ(x, t, s) = ρ((x − t)/s). Denote the set of positive real numbers(0,∞) by R+.
For eacht ∈ R and s ∈ R+ let γ (F, t, s) = EFρ(X, t, s), and let γn(t, s) =
γ (Fn, t, s) = 1

n

∑n
i=1 ρ(xi, t, s), where Fn denotes the empirical distribution

function of the sample. It is easy to see that

γ
(
F,0,σ (F )

)
< γ

(
F, t,σ (F )

) ∀ |t| ≥ t∗.
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Also, because of (16), there existsη independent ofF such that

inf
−t∗≤t≤t∗,s−≤s≤s+ γ ′′(F, t, s) ≥ η > 0 ∀F ∈ Hε,

whereγ ′′(F, t, s) = ∂2γ (F, t, s)/∂t2. Hence the family of functionsγ (F, t,σ (F ))

with F ∈ Hε has a unique minimum in the fixed interval(−t∗, t∗). For each
F ∈ Hε denote this unique minimum bỹµ(F ). Now fix an arbitrary neighborhood
Bδ(µ̃(F )) of µ̃(F ). Let ε̃(δ,F ) satisfy

inf
t /∈Bδ(µ̃(F ))

γ
(
F, t,σ (F )

) ≥ γ
(
F, µ̃(F ),σ (F )

) + ε̃(δ,F ).(19)

We have that̃ε = ε̃(δ) = infF∈Hε ε̃(δ,F ) > 0. Choose an arbitrarỹδ > 0 and let
I2 ⊂ R andm0 = m0(δ̃) such that

PF [µ̃n ∈ I2 ∀n ≥ m] > 1− δ̃ ∀m ≥ m0.(20)

We can now build a finite coverage (independent ofF ∈ Hε) of the setI2 ∩
Bδ(µ̃(F ))c with ballsB(t1), . . . ,B(tr ) such that for everyj = 1, . . . , r we have

EF

[
inf

t ′∈B(tj )
ρ

(
X, t ′,σ (F )

)] ≥ γ
(
F, µ̃,σ (F )

) + ε̃.

For each of these centerstk let Yi(tk) = inft ′∈B(tk) ρ(Xi, t
′, σ̂n) and

Y (F, tk) = EF

[
inf

t ′∈B(tk)
ρ

(
X, t ′,σ (F )

)] �= EF [Yi(tk)].

Consider the events

Am(F, tk) =
{

sup
n≥m

|Yn(tk) − Y (F, tk)| ≤ ε̃

}
, m ∈ N.

There existsm1(δ̃) independent ofF such that

PF

(
Am(F, tk)

)
> 1− δ̃ ∀m ≥ m1(δ̃), ∀F ∈ Hε, ∀ tk ∈ I2.

Now note that

Am(F, tk) ⊆
{

inf
t∈B(tk)

1

n

n∑
i=1

ρ(xi, t, σ̂n) ≥ γ
(
F, µ̃(F ),σ (F )

) + 2ε̃ ∀n ≥ m

}

= Cm(F, tk).

Let

Dm(F ) =
{

1

n

n∑
i=1

ρ
(
xi, µ̃(F ),σ (F )

) ≤ γ
(
F, µ̃(F ),σ (F )

) + ε̃ ∀n ≥ m

}
.
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There existsm2 = m2(δ̃) (independent ofF ) such that form ≥ m2 we have

PF

(
Dm(F )

)
> 1− δ̃ ∀F ∈ Hε.

Takem3 = max(m0,m1,m2). We have

PF [Cm(F ) ∩ Dm(F )] ≥ 1− 2δ̃ ∀m ≥ m3, ∀F ∈ Hε.

We also have

Cm(F ) ∩ Dm(F ) ⊆ [
µ̃m ∈ Bδ

(
µ̃(F )

) ∀m ≥ m2
]
.

That is, for eachδ > 0 we have limm→∞ supF∈Hε
PF [supn≥m |µ̃n − µ̃(F )|

> δ] = 0. �

DEFINITION 2 (Uniform smallo in probability). Letan, n ≥ 1, be a sequence
of real numbers and letXn, n ≥ 1, be a sequence of random variables. We say that
Xn = UoP (an) over the set of distribution functionsHε if, ∀ δ > 0,

lim
n→∞ sup

F∈Hε

PF

[∣∣∣∣Xn

an

∣∣∣∣ > δ

]
= 0.

DEFINITION 3 (Uniformly asymptotically normal). We say that a sequenceXn,
n ∈ N, is uniformly asymptotically normal (UAN) over the set of distribution func-
tionsHε if

sup
F∈Hε

sup
x∈R

|PF (Xn ≤ x) − �(x)| = o(1).(21)

With the above definitions we can show that these “uniform littleo,” “uniform
big O” and “uniform asymptotic distribution” behave similarly to their “nonuni-
form” counterparts. In particular, ifan = UoP (1) andXn is UAN, thenXn + an is
UAN.

PROOF OF THEOREM 3. To simplify the notation, in what follows letµ =
µ(F ), µ̃ = µ̃(F ) andσ = σ(F ). The idea of the proof is to show that

√
n(µ̂n −µ)

can be represented as a linear term plus a uniformly small remainder. We use the
Berry–Esseen theorem to show that the linear part is UAN (see Definition 3) and
then argue that ifan = UoP (1) (see Definition 2) andXn is UAN, thenXn + an

is UAN. First note that by Theorem 2 and Remark 4 we haveσ̂n − σ = UoP (1),
µ̃n − µ̃ = UoP (1) andµ̂n − µ = UoP (1). The idea of the proof is to show that

√
n
(µ̂n − µ)√

V
= √

n
Wn√

V
+ UoP (1),(22)
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where

Wi = (ψ((xi − µ)/σ ) − d(ρ((xi − µ̃)/σ ) − b))

e
,

d = EF {ψ ′((X − µ)/σ )(X − µ)/σ }
EF {ρ′((X − µ̃)/σ )(X − µ̃)/σ } ,(23)

e = EF

{
ψ ′

(
(X − µ)

σ

)}
.

Note that|Wi | are bounded and hence their moments are bounded uniformly for
F ∈ Hε . The variance ofWi is bounded away from zero uniformly onF ∈ Hε .
The Berry–Esseen theorem yields

sup
F∈Hε

sup
x∈R

∣∣∣∣PF

{√
nWn√

V
< x

}
− �(x)

∣∣∣∣ = o(1).

Now, to complete the proof, use that ifan = UoP (1) andXn is UAN, thenXn +an

is UAN. �
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