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UNIFORM ASYMPTOTICS FOR ROBUST LOCATION ESTIMATES
WHEN THE SCALE IS UNKNOWN?
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Most asymptotic results for robust estimates rely on regularity conditions
that are difficult to verify in practice. Moreover, these results apply to fixed
distribution functions. In the robustness context the distribution of the data
remains largely unspecified and hence results that hold uniformly over a
set of possible distribution functions are of theoretical and practical interest.
Also, it is desirable to be able to determine the size of the set of distribution
functions where the uniform properties hold. In this paper we study the
problem of obtaining verifiable regularity conditions that suffice to yield
uniform consistency and uniform asymptotic hormality for location robust
estimates when the scale of the errors is unknown. We sidepcation
estimates calculated with @hscale and we obtain uniform asymptotic results
over contamination neighborhoods. Moreover, we show how to calculate the
maximum size of the contamination neighborhoods where these uniform
results hold. There is a trade-off between the size of these neighborhoods
and the breakdown point of the scale estimate.

1. Introduction. Many robust location point estimates have been proposed
in the last 35 years. Unfortunately, robust inference has not received the same
amount of attention in the literature. Since the finite sample distributions of
robust estimates are unknown, robust inference typically relies on the asymptotic
distributions of these estimates.

According to the robustness model one does not know the actual distribution
of the data. Therefore it is highly desirable to have asymptotic results that hold
uniformly over some set of plausible distributions. Hampel (1971) considered
this problem and broke new ground showing that under certain regularity
conditionsM -location estimates have uniform asymptotic properties on Prokhorov
neighborhoods. These are the first results in the robustness literature that deal
with uniform asymptotic properties of robust estimates. Moreover, Hampel's
results provide a valuable set of tools to evaluate and compare robust estimates
based on their asymptotic behavior. Unfortunately his results only guarantee the
existence of a neighborhood with unknown size where the uniform behavior holds.
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Determining the size of these neighborhoods seems to be a very difficult problem
[see also Davies (1998)].

Huber [(1967); (1981), page 51] shows that when the scale of the errors is
known, theM -location estimates are asymptotically normal and the approximation
is uniform on the set of symmetric distributions that have all their mass
concentrated on the points where the estimating equation is differentiable.
Simultaneous estimation of location and scale with Huber's Proposal 2 was
studied by Clarke (1980, 1986). In the first reference the author considers the
problem of uniform convergence for these estimates and in the second proves
that Huber’'s Proposal 2 estimates with nonsmooth estimating equations fall in
the framework of Hampel (1971). More recently, Davies (1998) construtted
location estimates with simultaneous scale estimates (Huber’s Proposal 2) that
are locally asymptotically normal. Davies’s results are “locally uniform”; that is,
for each distribution function there exists a neighborhood of distributions where
the convergence holds uniformly. Unfortunately, the size of these neighborhoods
is unknown. Finally, Clarke (2000) shows that certaiftlocation estimates
[including the simultaneous location and scale estimation proposed in Heathcote
and Silvapulle (1981)] are continuous over full Prokhorov neighborhoods of
the parametric model. It follows that these estimates have uniform asymptotic
behavior over Prokhorov neighborhoods. Unfortunately, as in Hampel (1971) and
Davies (1998), the size of these neighborhoods is unknown.

Our results apply to locatiom/ -estimates calculated using a@hscale [see
Rousseeuw and Yohai (1984)]. These estimates are scale-equivariant [Rousseeuw
and Leroy (1987), pages 158 and 159] and have simultaneous high breakdown
point and high efficiency at the central model. Moreover, under verifiable regularity
conditions we obtain uniform asymptotic results (consistency and asymptotic
distribution) that hold over a contamination neighborhookmivn size. The size
of these sets depends on the breakdown point oftkeale estimates (the higher
the breakdown point, the smaller the set of distribution functions where uniformity
holds; see Table 1, in Section 4). The regularity conditions we need in our results
depend on two separate aspects of the inference procedure: the assumed “true”
parametric model for the “good” data points, and the estimating equations used to
calculate the robust estimate.

The rest of the paper is organized as follows. Section 2 contains the definitions
of the estimates we consider. Section 3 shows that under mild regularity condi-
tions these estimates are uniformly consistent on contamination neighborhoods.
Section 4 gives additional assumptions under which the above estimates are uni-
formly asymptotically normal. Section 5 contains some concluding remarks and,
finally, the Appendix contains sketches of the proofs of our main results. Details
can be found in Salibian-Barrera and Zamar (2002).
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2. MM-location estimates. Consider the following location—scale model: let
x1, ..., X, ben observations on the real line satisfying

(1) xi=u+os, i=1...,n,

whereg;, i =1,...,n, are independent and identically distributed (i.i.d.) observa-
tions with variance equal to 1. The interest is in estimajingnd the scale is
considered a nuisance parameter.

We will consider scale-equivariani/-location estimategi,, defined as the
solution of an estimating equation of the form

12 R
) —2 V(i = ) /62) =0,
i=1
whereg, is anS-scale estimate of the residuals [Rousseeuw and Yohai (1984)] and

¥ :R — R is a nondecreasing, odd and continuously differentiable real function.
An example of such a function is given by

lu/c|, if lu] <0.8¢c,
©)) Ve(u) =sign(u)  pa(lul/c), if0.8c < |u| <c,
pa(l), if |u] > c,

wherec > 0 is a user-chosen tuning constant, aa:) = 38.4 — 175 + 300u? —
22542 4+ 62.54% [see Fraiman, Yohai and Zamar (2001) and also Bednarski and
Zontek (1996), for other choices of smooth functiaris Following Yohai (1987)
we will call theseM-location estimates obtained with ahscaleMM-location
estimates.

The S-scale estimaté,, we use in (2) is defined as follows. Let R — R, be
a bounded, continuous and even function satisfyi@ = 0. The S-scaleg,, is
defined by

(4) 0y = Inf s, (1),
teR
where, for each e R, s,,(¢) is the solution of
1 n
(5) =2 p(xi =0)/sn(0) =b,
i=1

andb = E[p(u)]. Naturally associated with this family are tBdocation estimates
i, given by

(6) i, = arg infs, (t).
teR
Beaton and Tukey (1974) proposed a family of functippgjiven by
3u/d)? = 3u/d)y* + w/d)®,  if lu] <d,
1, if lul >d,
where the tuning constaditis positive. The above family of functiong; satisfies

(7 pa(u) =
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all the regularity conditions we need to obtain uniform asymptotic properties, and
at the same time it yields scale estimatgsvith good robustness properties.

REMARK 1 (¢ # p’). Note that the estimating functiof in (2) need not be
equal top’ in (5). Moreover, we will recommend using = . in (3) andp = py
in (7).

REMARK 2 (High efficiency and high breakdown point). The robust location
estimategi, defined by (2) withs,, as in (4) are scale-equivariant and can have
simultaneously high breakdown and high efficiency at the central model. For
example, the choicé = 1.548 for p; in (7), b = 0.5 in (5) andc = 1.525 for .
in (3) yields a location estimat&, with 50% breakdown point and 95% efficiency
when the errors have a normal distribution.

The asymptotic properties (consistency and asymptotic normality) of
M -location estimates given by (2) are well known when the distribution of the er-
rors is symmetric [Huber (1964, 1967, 1981), Boos and Serfling (1980) and Clarke
(1983, 1984)]. The next two sections establish these properties uniformly over a
set of distributions.

3. Uniform consistency. The goal of this section is to determine verifiable
conditions under which thecale-equivariant M-location estimategi, given
by (2) are uniformly consistent on the contamination “neighborhood”

8)  H(Fo)={FeD:F)=(1—e)Fo((x — w/o) +eH®).

where D denotes the set of all distribution function&; is a fixed symmetric
distribution, g andog are the unknown location and scale parametess(0, 1/2)
and H is an arbitrary distribution function. Since in what follows the central
distribution Fy is fixed, we write#¢. to denote the set (8) above.

Under certain regularity conditions (see references above)MHecation
estimateg.,, and theS-estimates,, andi,, are consistent to the functionagigF),
o (F) and i(F) defined by the following equations. For each R, let o (F, t)
satisfy

©) Er[p((X —t)/o(F,1)]=b.
The asymptotic value df, is given by
(20) o(F)= in&a(F,t).

te

Similarly, for theS-location estimaté,, we have
(12) L(F)=arginfo (F,1).
teR

Finally, for the M-location estimatét,, the corresponding equation is
12) Ep[y((X —p(F))/o(F))]=0.
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DEFINITION 1 (Uniform consistency). We say that the sequence of esti-
matest, is uniformly consistent to the functionak F) over the contamination
neighborhood#, if, for all § > 0,

lim sup PF[ suplt, — t(F)| > 8] =0,
m— 00 Fedt, n>m

where t (F) is the a.s. limit ofz,, for an i.i.d. sequence of observations with

distribution functionF. We will denote this type of convergence By-> .

Our main result in this section states that if the scale estifabe (2) satisfies
o % o and if ¢ is odd, nondecreasing, bounded and continuously differentiable,
thenji, — u.

THEOREM 1 (Uniform consistency of thé/-location estimate with general
scale). Letxy,...,x, bei.i.d. observationsfollowing the location model (1). Let
Y satisfy the following:

(P.1) |[v(w)| <1foralueR,and y(—u) =—yu) for u > 0;
(P.2) ¢ isnondecreasing and lim,,_, o0 ¥ (1) > O;
(P.3) v iscontinuously differentiable.

Supposethat 4, in (2) has asymptotic breakdown point ¢*. Let 0 < ¢ < ¢* be such
that 6, — o. Then if /i, satisfies (2), we have /i, - .

A sketch of the proof of Theorem 1 is given in the Appendix. A detailed proof
can be found in Salibian-Barrera and Zamar (2002).

REMARK 3 (Uniform consistency ofS-scale estimates). Wheé, is an
S-scale estimate, Martin and Zamar (1993) showed thafgif (the central
distribution function in#,) has an even and unimodal density, and if the funcgtion
is even, bounded, continuous and nondecreasif@ o), thens, has asymptotic
breakdown point 12. They also showed that if in additidfy has a positive density
on the real line, then for all @ ¢ < 1/2 we have

(13) 6p— 0.

Theorem 1 and Remark 3 imply thaf-location estimategi,, given by (2)
with ¢ = . in the family (3) and scalé,, given by (4) withp = p; in Tukey’s
family (7) have high breakdown point and high efficiency and are uniformly
consistent ove, forall0 <& < 1/2.
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4. Uniform asymptotic distribution. In this section we show that under
certain regularity conditions th®IM-location estimateg., converge weakly to
a normal distribution uniformly over the contamination neighborhgtd These
results are constructive and allow us to determine the size of the neighbcthood
where uniform asymptotic normality holds. The required regularity conditions
will be mainly imposed on our estimating equations (2) and (4) and we will
show thatyr = v, in (3) andp = p, in (7) satisfy these conditions. Hence, our
results show that the scale-equivaritti¥l-location estimates have simultaneously
high breakdown point, high efficiency at the central model and are uniformly
asymptotically normal on a contamination neighborhood of known size (see
Remark 2).

Asymptotic results for asymmetric distributions are not easy to obtain. There are
some results in the robustness literature dealing with this problem [Carroll (1978,
1979), Carroll and Welsh (1988) and Rocke and Downs (1981)]. They show that
whenF is asymmetric the asymptotic distribution of the location estimate depends
on that of the scale and that the asymptotic variance calculated with the assumption
of symmetry is not correct. Salibian-Barrera (2000) showed that in general the
asymptotic distribution of locatioM -estimates for arbitrary distribution functions
when the scale is estimated with Sirscale depends on the behavior of thecale
and the corresponding-location estimate as well. Hence, to obtain uniform
asymptotics for thes®IM-location estimates we need uniform consistency of the
S-scale and S-location estimates.

S-scale estimates are uniformly consistent under relatively weak regularity
conditions [see Martin and Zamar (1993) and our Remark 3].

Uniform consistency of-location estimates requires more assumptions. For a
given 0< ¢ < 1/2 and an estimating functignin (5) lets* ands~ satisfy
(14) O<s™ < inf 6(F)< supo(F)<s" <oo.

Fe#t, Fedt,
Note that, from Lemma 1 in Martin and Zamar (1993), for at @ < min(b, 1—b)
we have O< infrey, 0 (F) < SUPrc g, 0 (F) < co. To simplify the notation we
will omit the dependence of" ands™ one. Assume that there exists € R such
that

X —t X e
15 inf E — |- F — —_— Yt >t*
(15) 5555s+[ FO/O< S ) F0,0<s)}>1_8 7] =
and
. X —t
(16) inf Epop”<—> > sudp” (x)]~,
—rr<t<t*s—<s<st K 1—¢ &«

wheres™ ands ™ are given in (14).
Condition (16) can be slightly relaxed &alibian-Barrerand Zamar (2002),
Lemma 7]. Assumptions (15) and (16) do not depend on the unknown distribution
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of the dataF (only on Fp, the central distribution of the neighborhodé) but
are tedious to verify and will typically require numerical computations. Note
that for a particularp these conditions impose an upper boune ¢(p, Fp)
on the size of the contamination neighborho#fl. More specifically, fix the
central distributionFy and note that the left-hand side of (15) is a nondecreasing
function of |7|. At the same time, the right-hand side is an increasing function
of ¢. Hence, the smallest valué = r*(¢) that satisfies (15) is a nondecreasing
function of ¢. Also, the left-hand side of (16) is a nonincreasing function*of
(and thus ofz), while its right-hand side is increasing in It follows that there
is a critical values(p) such that both (15) and (16) hold fer< ¢(p), but fail
to hold fore > ¢(p). Whenp = p; belongs to Tukey’s family (7) and the center
of the contamination neighborhood is the standard normal distribiégea © we
used numerical methods to findo,) for different choices of the tuning constaht
(i.e., for different breakdown points). We found that there is a trade-off between
the breakdown point of the scale estimate and the upper bound: the larger
the breakdown point, the smaller the upper bouf;). Table 1 lists the values
of e(py) for contamination neighborhoods of the standard normal distribution
and estimating equations that yield estimates with breakdown points between
0.25 and 0.50.

The following theorem states that under these conditihmcation estimates
are uniformly consistent. This result will be necessary to obtain uniform asymp-
totic distribution of theM -location estimate calculated with &rscale as in (2).

THEOREM 2 (Uniform consistency of thé-location estimate). Suppose that
the nonconstant function p satisfies the following assumptions:

(R.1) p(—u) = p(u), u > 0,and sup,cg p(u) = 1;
(R.2) p(u) isnondecreasinginu > 0;

TABLE 1
Maximum size ¢(d) of contamination
neighborhoods around the standard normal
distribution where uniform consistency of the
S-location estimate holds for different breakdown
points (BP); the column labeled d contains the
tuning constant that yields the respective BP

BP d e(d)

0.50 1.548 0.11
0.45 1.756 0.14
0.40 1.988 0.17
0.35 2.252 0.20
0.30 2.561 0.24

0.25 2.937 0.25
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(R.3) |p(u)| <K <o00,Vu eR;
(R.4) thereexists0 < ¢ < oo suchthat p(u) =1V |u| > c.

Let b € (0,1), fi, asin (6) and i (F) asin (11).Let s™ and s~ be asin (14) and
supposethat O < ¢ issuch that (15) and (16) hold. Then

(17) lim  sup PF( supljin — w(F)| > 3) =0.

Fed#t, nzm

A sketch of the proof of Theorem 2 is given in the Appendix. A detailed proof
can be found in Salibian-Barrera and Zamar (2002).

We can now state our main result: when telocation,S-scale ands-location
estimates are uniformly consistent, tidé-location estimate has a uniformly
asymptotically normal distribution.

THEOREM 3 (Uniform asymptotic distribution oMM-location estimates).
Let /1, satisfy (2) with a function ¢ that satisfies assumptions (P.1)and (P.2)in
Theorem 1 and the following:

(P.4) ¢ istwice continuoudly differentiable;
(P.5) thereexistsd > 0 such that |y (u)| = 1 for all |u| > d.

Assume that the S-scale estimate 6, in (2) is given by (4) with a function p that
satisfies (R.1)—(R.4)in Theorem 2 and the following:

(R.5) p istwice continuously differentiable.

Suppose that ¢ is such that (15) and (16) hold and that the center Fp of the
contamination neighborhood #. has a positive, even and unimodal density. Then

. (fip — 1) }
I _ — =
anwFsetﬁfggPp{\/ﬁ v <xt—®dx)|=0,
where
V=V(u,o, F)
— o (F)2H (F)2E {|: w
(18) o(F)*H(F)°EF 1//( o (F) )
X — i(F) 2
_J(F)<"< o(F) >_b>] }
1
H(F)= ,
B = B v (X — w(F o ()
and

_ Er (X = p(F) /o (F))(X — u(F)) /o (F)}
Er{p' (X — i(F))/o (F))(X — ji(F))/o (F)}

J(F)



1442 M. SALIBIAN-BARRERA AND R. ZAMAR

A sketch of the proof of Theorem 3 is given in the Appendix. A detailed proof can
be found in Salibian-Barrera and Zamar (2002).

REMARK 4 (Regularity conditions). The assumptionsi&n(the center of the
contamination neighborhood) are needed to show thaftbeale estimaté, is

uniformly consistentd, — o). By Theorem 1 we also have that th#M-location

estimates are uniformly consistent as well, (> ). The assumptions on the
estimating equatiop of the S-scales,, and conditions (15) and (16) are needed to

obtain uniform consistency of th&location estimate(f, 5 ). See Theorem 2.

Using Table 1 we find, for example, that scale-equivarilti{l-location
estimates calculated witlh = 1 505 in (3) and anS-scale withp = p154g in
(7) have simultaneously breakdown point2]l have 95% efficiency when the
errors are normally distributed, and are uniformly asymptotically normal on a
contamination neighborhood of size at least 0.11. If, on the other hand, we
usep = p2.937in (7) we obtain estimates that have the same efficiency, that have
lower breakdown point (25%) and that are uniformly asymptotically normal on a
contamination neighborhood of size= 0.25.

5. Conclusions. There are four important properties of robust location esti-
mates: translation and scale-equivariance [Rousseeuw and Leroy (1987), pages
158 and 159], high breakdown point, high efficiency and a reliable algorithm to
compute them. Moreover, it is desirable that their asymptotic theory satisfy two
important features: be valid under verifiable regularity assumptions, and hold uni-
formly over a relatively large set of distribution functions with known size.

With these desired properties in mind we propose to use scale-equivariant
M-location estimates calculated with a smooth functipgnin the family (3)
and with anS-scale estimate calculated with a functipnin Tukey’s class (7).
TheseMM-location estimates have simultaneously high breakdown point and
high efficiency at the central model. Moreover, we showed that under verifiable
conditions they areuniformly consistent and uniformly asymptotically normal
over a contamination neighborhoodlafown size. For each choice of breakdown
point and efficiency we showed how to compute the size of the contamination
neighborhood where these uniform results hold. When the center of these
neighborhoods is the standard normal distribution we found that these sizes range
from 11% (for estimates with 50% breakdown point) to 25% (for 25% breakdown-
point estimates). Hence, in most practical situations where the contamination is
below 10% [Hampel, Ronchetti, Rousseeuw and Stahel (1986{IMrocation
estimate with 50% breakdown point has uniform asymptotic properties that allow
for reliable statistical inference based on its asymptotic distribution.

It is of much interest to obtain this kind of uniform asymptotic properties for
robust regression estimates. In princiiyi-regression estimates are good candi-
dates to have satisfactory uniform asymptotic properties. Salibian-Barrera (2000)
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shows that under certain regularity conditions these estimates are asymptotically
normal for any distribution in the contamination neighborhood. The main technical
difficulty when using the approach presented in this paper to $fiMyregression
estimates seems to be to find sufficient regularity conditions on the loss fupction

to show the uniform consistency of tiseregression estimate. Once this is estab-
lished, Theorems 1 and 3 apply with appropriate modifications.

APPENDIX
A.1. Proofs.

PROOF OF THEOREM 1. For anytr € R and F € H#; let uy (¢, F) =
Ery (X — t)/o(F)), and fix an arbitrarye > 0. Leto = o (F), pu = w(F),
VX, t,s)=y((X —1)/s). Also letY;(t) = ¥ (X;,t,6,) andY (F, 1) = Epy (X,
t,0). Lety, (1) = % Y Yi(t)anduy (t, F) = Ep(Y (X, t,0)). Foreachn e N,
teR, F e ¥, andt > 0 let

n>m

then limy,— oo SUPrc g0, Pr(Am(F,t, 7)) =0. We have

{fin <=8y S{[V,(n — §/2) — py(— §/2, F)| > a(®)} = Ay (F, 8),
wherea(é) is given bya (&) = infre g, py (W(F) — /2, F). Similarly

{fin > p+ 8 S {[V,( — 8/2) — puy (m — §/2, F)| > b(E)} = By(F, &),

where b (&) equalsh(é) = infreg, —py (W(F) +£/2, F). It is easy to see that
a(8) =infreg, 1y ((F) — /2, F) > 0, and tha () = infrege, —py ((F) +
£/2, F) > 0. It follows that{| i, — u| > &} C A,(F,&) U B, (F,&). Then

Mon(F.) = supif, — | > 2
n>m
C An(F, 0 —8/2,a(8)U Ay (F, p+E/2,b(F)).
It follows that limy,— oo SUPrc g, PFIMm(F,€)]=0. [

PROOF OFTHEOREM 2. We need to introduce the following notation. Let
p(x,t,8) = p((x —1)/s). Denote the set of positive real numbeédsoco) by R .
For eachr e R ands € Ry let y(F,t,s) = EFp(X,t,s), and lety,(t,s) =
y(Fy,,t,s) = %Z?:lp(xi,t,s), where F,, denotes the empirical distribution
function of the sample. It is easy to see that

y(F,0,0(F)) <y(F,t,6(F)) Yt >t*.
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Also, because of (16), there existsndependent oF such that

inf y"(F,t,s)>n>0 VFedd,,

— ¥ <t<t* s~ <s<st

wherey” (F, t,s) = 3%y (F, t, s)/dt2. Hence the family of functiong (F, t, o (F))
with F € #, has a unique minimum in the fixed intervél-+*, t*). For each
F € J. denote this unique minimum Qy(F). Now fix an arbitrary neighborhood
Bs(u(F)) of ii(F). Letz(8, F) satisfy

19 inf F.t,0(F))>v(F, i(F),o(F g, F).
(19) z¢3§?ﬁ<F>)y( t,0(F))>y(F,i(F),0(F))+&@, F)

We have that = £(8) = infreg, (8, F) > 0. Choose an arbitrar&> 0 and let
I> C R andmg = mg(8) such that

(20) Prlfi, e bVn>m]>1-§ Vm > mo.

We can now build a finite coverage (independentrbk #,.) of the setl, N
Bs(i(F))¢ with balls B(#1), ..., B(t,) such that for every =1, ...,r we have

Eel inf p(X.t 0P|z y(F o)+
t'eB(t))

For each of these centegslet Y; (1) = infycp(,) p(Xi, 1, 6,) and

Y(F, i) = EF|: inf p(X,7, G(F))] # Ep[Y; ()]
t'eB(t;)
Consider the events

Am(F,tk)={Sup|7n(tk)—Y(F,tk)|§g‘}, m € N.

n>=m
There existsn1(5) independent of such that
Pr(An(F.5))>1—8  Ym=>mi(@), VF € He, Vir € I.

Now note that

1 . N -
Am<F,rk)§[ inf —Zp(x,-,r,on)zy(F,u(F>,a(F>)+2eVnzm}
l‘GB(tk)I’ll.:l

=Cn(F, 1).
Let

1 n
D, (F) = {; > p(xi. R(F), 6 (F)) < y (F, i(F), 6 (F)) +&V¥n > m}
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There existsny = m2(8) (independent of’) such that form > m> we have
Pp(Dn(F))>1-8  VYFeH,.
Takems = max(mg, m1, m2). We have
PrlCn(F)NDy(F)]>1-25  ¥Ym>m3z, VF € He.
We also have
Cn(F)N Dy (F) C [fim € Bs((F)) Ym > my).
That is, for eachs > 0 we have i), oo SUPrc g, PFISUR, [in — R(F)]

>458]=0. O

DEFINITION 2 (Uniform smallo in probability). Leta,,n > 1, be a sequence
of real numbers and IeX,,, n > 1, be a sequence of random variables. We say that
X, = Uop(ay,) over the set of distribution function®, if, V§ > 0,
. X
lim sup PF[ —

n—>00 pc 3¢,

>6]=0.

an

DeFINITION 3 (Uniformly asymptotically normal). We say that a sequekige
n € N, is uniformly asymptotically normal (UAN) over the set of distribution func-
tions J¢, if

(21) sup sup|Pr (X, <x) — ®(x)| =o(1).
Fed#, xeR

With the above definitions we can show that these “uniform litle‘uniform
big 0" and “uniform asymptotic distribution” behave similarly to their “nonuni-
form” counterparts. In particular, if, = Uop(1) andX, is UAN, thenX,, + a, is
UAN.

PROOF OF THEOREM 3. To simplify the notation, in what follows lgt =
w(F), i = [1(F)ando = o (F). The idea of the proof is to show thalz (&, — i)
can be represented as a linear term plus a uniformly small remainder. We use the
Berry—Esseen theorem to show that the linear part is UAN (see Definition 3) and
then argue that ifi, = Uop(1) (see Definition 2) an,, is UAN, thenX,, + a,
is UAN. First note that by Theorem 2 and Remark 4 we haye- o = Uop (),
in — i =Uop(1) andii, — u=Uop(l). The idea of the proof is to show that

U 1),
i \/V+ op(1)
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where
w = WG = /o) —d(p((xi —1)/0) = b))
v :
(23) g Ery (X =w/o)(X — /o)

—EF(p/(X — /o)X — @)/o}’

]

Note that|W;| are bounded and hence their moments are bounded uniformly for
F € Jt.. The variance of; is bounded away from zero uniformly af € #,.
The Berry—Esseen theorem yields

sup sudpp{ﬁw” <x} —d)|=o0().

Fedt, xeR \/V

Now, to complete the proof, use thatjf = Uop (1) andX, is UAN, thenX,, + a,
is UAN. O
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