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SIMULTANEOUS PREDICTION OF INDEPENDENT
POISSON OBSERVABLES

By FuMIYASU KOMAKI
University of Tokyo

Simultaneous predictive distributions for independent Poisson observ-
ables are investigated. A class of improper prior distributions for Poisson
means is introduced. The Bayesian predictive distributions based on priors
from the introduced class are shown to be admissible under the Kullback—
Leibler loss. A Bayesian predictive distribution based on a prior in this class
dominates the Bayesian predictive distribution based on the Jeffreys prior.

1. Introduction. Suppose that we have independent observatiofl,
x(2),...,x(n), wherex(l) = (x1(1), x2(1),...,xq()) 1 €{1,2,...,n}) is a set
of d independent Poisson random variables with unknown mean parameters
A1 A2 .. hg. We write x™ = (x(1), x(2),...,x(n)) andi = (A1, A2, ..., Ag).
An unobserved sel,) = (x(n + 1), x(n + 2), ..., x(n + m)) from the same dis-
tribution is predicted by using a predictive distributiptx,,); x™). We adopt the
Kullback—Leibler divergence from the true distribution to a predictive distribution,

- N P(X(m)|A)

L) D(plmld), pleems; x™)) X(Xmgp(x(m)l)») 08 ey )’
which has a natural information theoretic meaning, as a loss function.

By sufficiency reduction, it suffices to consider the problem of predicting
y=(1,Y2,...,¥yq) usingx = (x1, x2, ..., xq7), where

x=> x(i)= (le(i), > xa(i), .., Zxd(i)>,
i=1 i=1 i=1 i=1
y=) x(n+j)= (le(n +), ) xa(n+ )., Zxd<n+j)),

j=1 j=1 j=1 j=1
under the loss

p(yl)
p(y; x)

) D(p(y|»), p(y; x)) =Y _ p(yIn)log
y
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In the following, we assume that= (x1, x2,...,xg) andy = (y1, y2, ..., y4)
are distributed according to

d
p&xv) =[] pxiln)

i=1
(arp)™ (arp)*  (ara)™

x1! xo! x4!

=exp{—(ar1+arz+ -+ akrg)}

and

d
PO =]]pGiln)
i=1
(br1)’t (br2)2  (bra)?
T T
respectively, and that andb are positive real numbers.

There exist many studies that recommend using Bayesian predictive densities
of the form

=exp{—(bA1+bra+ -+ bry)}

’

™) = I PGeamy)0) p(x™10)7 (0) do
B [ p(x®™0)7(6)db

Pr (x(m)|x ,
rather than plug-in densities of the for;m(x(m)|é), where{p(x]0)|6 € B} is

a parametric model; (9) is a prior and) is an estimate of; see Aitchison and
Dunsmore (1975) and Geisser (1993).

When we use a Bayesian procedure, the choice of a prior distribution is an
important problem. Noninformative prior distributions or vague prior distributions
are often used to construct Bayesian predictive distributions. The Jeffreys
prior naturally arises from various discussions based on the Kullback—Leibler
divergence [see Hartigan (1965), Akaike (1978), Bernardo (1979) and Clarke
and Barron (1994)]. However, Bayesian methods based on the Jeffreys prior do
not always perform satisfactorily, especially in problems with multidimensional
parameters [see, e.g., Jeffreys (1961), page 182, and Berger and Bernardo (1989)].

Here, we investigate the use of shrinkage priors, which give more weight to
parameter values close to the origin than the Jeffreys prior does, for constructing
predictive distributions dominating the predictive distribution based on the Jeffreys
prior. If we adopt a plug-in distribution(y|i(x)) as a predictive distribution,
the loss (1) for the plug-in distribution can be regarded as a loss for the estimator
Thus, predictive distribution theory is a natural generalization of estimation theory
under the Kullback-Leibler loss.

Since Stein (1956) showed that the maximum likelihood estimator for the mean
vector of thed-dimensional Normal modeV,; (i, I) is not admissible whed > 3
and James and Stein (1961) introduced an estimator dominating the maximum
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likelihood estimator, numerous studies have been done on shrinkage methods for
parameter estimation.

For the means ofl independent Poisson distributions, Clevenson and Zidek
(1975) proposed a class of estimators dominating the maximum likelihood
estimator when/ > 2 under the normalized square I085(A; — A;)%/A;. Many
studies on simultaneous estimation of Poisson means have been done under
the loss functiory"; (A; — 1;)2/A;", wherem is a nonnegative integer.

Ghosh and Yang (1988) characterlzed linear admissible estimators of the
form X; = ¢;x; + b; under the Kullback—Leibler losB(p(y|A), p(y|k(x))) There
are relatively few studies of estimation under the Kullback—Leibler loss compared
with the number of studies based on other loss functions such as squared-error.
What is called Stein’s loss is the Kullback—Leibler divergence with the direction
opposite to our setting (1).

In contrast to the large number of studies on parameter estimation, little
attention has been given to decision theory of predictive distributions except
for some studies on group models [Murray (1977) and Ng (1980)] and some
recent work from an asymptotic viewpoint [Vidoni (1995), Komaki (1996)
and Haussler and Opper (1997)]. In particular, it seems that no studies have
been done on the admissibility of predi&i distributions. Recently, however,
Komaki (2001) considered th&-dimensional Normal modeN,;(u, ), d > 3,
and showed that the Bayesian predictive distribution based on Stein’s harmonic
prior s(u) o ||| ~@=2 [Stein (1974)] incorporates the advantage of shrinkage
methods and dominates the Bayesian predictive distribution based on the Lebesgue
prior m(u) o 1, which is the best predictive distribution invariant under the
translation group. Since a lot of statistical problems are naturally formulated as
prediction problems [Aitchison and Dunsmore (1975) and Geisser (1993)], this
kind of approach seems to be useful for many problems, and further decision
theoretic studies especially on admissibility are required.

In Section 2 we introduce a class of improper prior densities for Poisson
means and show that the predictive distributions based on the proposed priors are
admissible under the Kullback—Leibler loss. In Section 3 we show that a Bayesian
predictive distribution based on a priog(1) in the introduced class dominates the
Bayesian predictive distribution based on the Jeffreys prior, and that the plug-in
distribution with the generalized Bayes estimator based4{i) is inadmissible
under the Kullback-Leibler loss. In Section 4 we discuss the relation between the
main results here and several previous studies on Bayesian theory from asymptotic
viewpoints.

2. A class of admissible predictive distributions. We introduce a class of
improper prior densities,
)\’,31_1)\’,32_1 . )\ﬁd_l

3 A drrdiro--- dA 1 =2 d___ gridro--- dxr
B)  map)dridr; do<()»1+)»2+---+)xd)“ 1dX2 d

withO< —a+3) ;8 <landg; >0,i=1,2,...,d
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THEOREM 1. The Bayesian predictive distribution based on the prior

)\‘ﬂl_l)\‘ﬂZ_l . )\‘ﬂd_l
7y (M) drrdrg -+ dhg ox —2——2 d___ drrdro--- dig
“ (A1t+r2 4+ 2

with—a+ > ;8 >0andg; >0,i=1,2,...,d,isgiven by

Py (V]X)

( a )Zixi—a+ziﬁi< b )Ziyz‘
-~ \a+b a+b

8 COQoixi+) i yi—oa+ 2 BOTCQ xi + 2 Bi)
COQoixi —a+ 2 BT xi + 2 yi + 22 Bi)
y Fx1+y1+BOT(x2+y2+B2) - T'(xg + ya + Ba)
[(x1+ BT (x2+ B2) -+ T'(xg + Ba)y1!y2!- -~ ya!

PROOF By using Lemma 1 below, we have

Pty (V1)
J o, g ) TI g {eXp(—ari) (@hi)* /x;1) TT9_y {€Xp(—bA ;) (bA ) [y 1} d
B [ 7t (o) TI{_g {eXP(—aki) (@h) ™ /xi} dA
_ S 7ap ) [T [expl—(a + b)di}(a + b)r} ] dA
J 7. O TI{ 1 {€XP(—ahs) (@i )} d

d iy
a*ibYi
X 1_[ ( +b)Xj+y’j N
joila ;!
ai Xi—oaX Bipdi vi
T (a4 b)ZitEvi—e b
y CO_ixi+2yi —a+2 )
COQoixi+2 i+ Bi)
x(xa+y1+ OG22+ y2+ B2) - T'(xqg + ya + Ba)
« [F(Zixi —a+);Bi)
CQoixi+28)

-1
x T(x1+ BT (2 + B2) -+ T(xg +ﬂd>y1!yz!---yd!} .

Thus we obtain the desired result]
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LEMMA 1. When—a+ ) ;8 >0andg; >0,i=1,2,...,d, wehavethat

}\’,fl_l)\gZ_l .. )\’gd_l d

(1t hz+- -+ A ; H {exp(—ari)(ari)}drrdrz--- dg

_ a_ziﬁiF(Z,-xz o+ Bi)
= (S + 2 B ll'[1F< i+

The proof of Lemma 1 is given in the Appendix.
Let & be the class of predictive distributions that have finite risk for all values
of 1. For example, the plug-in distribution

bx; \ (bx; /)
p(yIA@) = Hep( ")7( "yf!“)

with the maximum likelihood estimatdr(x) = x/a is notincluded in, because

the loss (2) becomes infinite wh&n> 0 andj; (x) = 0. If a predictive distribution

is admissible in?, then it is admissible in the class of all predictive distributions.
Before proving the admissibility of the proposed class of Bayesian predictive

distributions, we establish the following theorem.

THEOREM 2. If p(y; x) € P, then therisk function

rp(2) = E[D(p(yIM), p(y; x))I13]

is a continuous function of .

PrRooF The risk function is given by

Zp(mep(ym log 2 ((y 'x))
(4) =>_p(yIn)logp(yln)
5

+> pGI0 Y p(yIM{—log p(y; x)}.
X y

The first term on the right-hand side of (4) is
> p(yInlog p(ylr)
5

d 00
Z[Z exp(— bk) { bri + yi Iog(b)»)—logy,'}}

yi=0
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This is finite for all values of and is a continuous function af The second term
on the right-hand side of (4) is

> pxln) me{— log p(y; x)}

Y S [Texn- ak)(ak)
x oy i=1
Yj
( ) —log p(y; x)}
j=1

(5)
= exp[—(a +b) in}

aXXip2yj

[ZZ ' {—log p(y; x)}

xqlxol- - xglyilya!- - ya!

X1+Yy14 X2+y2 Xd+Yd
X }‘1 )‘2 e )‘d :|

If p(v; x) € P, the power series iny, A2, ..., Aq,

2XipYj
2 Z -

xqlxo! - xglyilya! -+ ya!
converges absolutely for all € R?. Thus, (5) is a continuous function of.
Therefore, the risk function is continuous for all values.af p(y; x) e 2. O

x1+Yy14 X2+y Xqa+Yy
{=log p(y; X)}Ag A2 2 Ay

THEOREM 3. For everyd > 1, the Bayesian predictive distributions based on
the priorsin the class {my s(A):0 < —a + Y% 18 <1, >0,i =1,2,...,d}
defined by (3) are admissible under the Kullback—Leibler 1oss.

The proof of Theorem 3 is given in the Appendix.

3. A shrinkage prior dominating the Jeffreys prior. In this section,
we show that the Bayesian predictive distribution based on the Jeffreys prior
is inadmissible and give an explicit form of a shrinkage predictive distribution
dominating the Bayesian predictive distribution based on the Jeffreys prior.

First, we show that the Bayesian predictive distributien) , (y|x) is inadmis-
sible when—a + 3%, i > 1.

THEOREM4. When—a+) ;6 >1landp; >0,i=1,2,...,d,theBayesian
predictive distribution py,, 5 (¥1x) based on 7, g(4) is dominated by the Bayesian
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predictive distribution P, B(y|x) based on n&’g(k), wherea ;=) ; i — 1 and
B=(B1 B2 ... Ba):=(B1. B2 ..., Ba)-

PrRoor From Theorem 1, we have

E[D(p(YIM), Pro s V1)) 1] = E[D(p(¥|2), P, 5 (v1%)) (2]
P ;(¥1%) ‘x]
Pras (V1)

_E [Iog[ (Cl%)_m

8 FQoxi+2yi—a+ X BT xi —a+2 i) H)\}
FQoxi —a+ 2 BIFC X+ yi—a+3 )

:E[IogF(Xi:xi —oe+2i:ﬂ,-> - IogF(Xi:xi —a +Xijﬁ,->

|

= E[Iog

— (@ —a)loga

(6) —E[IogF(in+Zyi—a+Zﬂi)
_ IogF(Zx,- +Zy,- —&+Zﬂi)
— (@ — ) log(a +b)H
:E[IogF(Zx,- +1+a —a) — IogF(Zx,- +1)

| ]

— (@ —a)loga

—E|:|OQF<in+Zyi +l+o7—a)
—IogF(Zx,- +Zy,- +1) —(d—a) Iog(a+b)‘)»]
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Whenp :=3%"; 1, =0,
E[D(p(y|2), Pro s (310))|2] = E[D(p(YIM), pa, 5 (y11))[2]

b
=(6¢—oz)logi > 0.
a

Whenu > 0, by using Lemma 2 below, we have
E[D(p(yIV); pro s 310))[2] = E[D(p(12), Pr, 5 (7)) [2] > O,

since) ; x; + > ; yi and ), x; are Poisson random variables with parameters
(a+ b)Y ; A anda )_; A;, respectively. [

(7)

LEMMA 2. Let X bea Poisson randomvariable with mean . Then
EllogT'(X +14c¢)—logI'(X +1) — clogu|u],
where ¢ isa positive constant, is a strictly decreasing function of i > 0.

The proof of Lemma 2 is given in the Appendix.
In the following, we setrs(A) = moy—d/2-1,=(1/2,...1/2)(1).

COROLLARY 1. When d > 3, the Bayesian predictive distribution p,¢(y|x)
based on the prior ws(A) dominates the Bayesian predictive distribution p,(y|x)
based on the Jeffreys prior

wIA)dridro--- dhg X dldiy--- dry.

(Mhz- - Aa)/2

PrROOF  The Jeffreys prior is equal t0,—0 s—(1/2,...1/2). The desired results
follow from Theorem 4 becausex + ), i =d/2>1. O

Figure 1 shows the difference between the riskpf(y|x) and that ofp,¢(y|x).

Since py(ylx), based on the priorrs(1), dominatesp,,(y|x), based on
the Jeffreys priorry(), it seems to be reasonable to adagi(r) as a default
prior instead ofr;(A). .

When we adopt a prior distribution (1), the plug-in distributionp(y[A(x)),
where A(x) is the generalized Bayes estimator basedn@n), is often used
for prediction.

THEOREM 5. The plug-in distribution p(y|A(x)) with the generalized Bayes
estimator A(x) based on (1) isinadmissible under the Kullback—Leibler loss.

The proof of Theorem 5 is given in the Appendix.

It can be shown that the plug-in distributigriy|1) with the generalized Bayes
estimatori based onrs(A) is admissible in the class of all plug-in distributions.
However, it is inadmissible in the class of all predictive distributions. Therefore,
it is not reasonable to restrict the class of predictive distributions to plug-in
distributions.
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3.5 T T T T

RISK DIFFERENCE

Fic. 1. The difference between the expected divergences, E[D(p(y|A), pr;(¥1x))IA] —
E[D(p(yIA), prg(y1x))IA], which depends on A only through u = A1 + A2 + .-+ + Ag,
ford =3,5,8,12.

4. Some asymptotic properties and discussion. In this section, we dis-
cuss the relation between the results in the previous sections and several pre-
vious studies on Bayesian theory from asymptotic viewpoints. Suppose that
x(D),x2),...,x(m),x(n + 1),...,x(n + m) are independent random variables
from a true densityp(x|0) that belongs to a statistical modigl(x|6) | 6 € ©}.

The dimension of the parameter spagés d. Let x™ = (x(1), x(2), ..., x(n))
andxg,) = (x(n+1),x(n+2),...,x(n+m)). The objective is to construct a good
Bayesian predictive distributiop,, (x,|x™) based on a prios .

When x(1),x(2),...,x(n),x(n + 1),...,x(n + m) are independent sets
of d independent Poisson random variables with mean parameters., A4,
we consider a slight generalization of the problem introduced in Section 1. The
objective is to predicty that is a set ofd independent Poisson random vari-
ables with mean parametédis1, bio, ..., bAg, b > 0, by using an observation
that is a set ofd independent Poisson random variables with mean parame-
tersaii, akry, ...,arq,a > 0. Herea andb correspond ta andm, respectively.

4.1. Some asymptotics. First, we consider the asymptotics wherandd are
fixed andb goes to infinity. In this subsectiah> 3 is assumed. The asymptotics
are closely related to the setup where- 0 andm — oo, which has been studied
in reference analysis, coding theory and prequential analysis as we will see in the
next subsection.

Whenp :=3"; A; =0, we have

E[D(p(yIL), pz;y(y1x))|A] = E[D(p(Y|1), prs(¥1X))|2]
d a+b
= (E — 1) log >0

a
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from (7). Thus, the risk difference between the Bayesian predictive distribution
based on the Jeffreys priaf;(A) and that based on the shrinkage prigy(2) is
of order logp.

Whenu # 0, the risk difference converges to a positive constant whandd
are fixed andb goes to infinity. By evaluating (6) using Stirling’s formula
logI'(x) = log(27)Y2 4+ (x — 1/2) logx — x + o(1), it can be easily verified that

(E[D(p(yI2), pry(y10))[A] = E[D(p(¥|A), Prg(¥12))|2])
d d—2
= E[IogF(Xi:xi + E) — IogF(Xi:xi + 1) - logau /\}
> 0.

Second, we consider the asymptotics wherand 4 are fixed anda goes
to infinity. There are many statistical applications where the objective is to
construct a good predictive distribution for a future observatigy by using
the observed data”™ andn is relatively large. An important example is one-
step predictionh = m = 1. Improper prior distributions are widely used to
construct Bayesian predictive distributions. Asymptotic properties of predictive
distributions for one-step prediction have been studied [Vidoni (1995), Komaki
(1996), Hartigan (1998) and Komaki (2002b)]. When we consider the Poisson

model, by a discussion similar to the previous studies, it can be shown that the loss
function for a Bayesian predictive distribution can be expanded as

D(p(y10), px (ylx))

lim
b— o0

d
=1 i (0)@. — 6")? + terms independent of + O, (a~?),
i=1

whered! = 1,13, 01 = ((3)i}Y3,

N __x,-—{—l/Z Xi (L)
(Gadi =27+ <a2>{axi Iog<m(k)>}

andag;; (6) = b’ is the Fisher information. The risk difference between the
Bayesian predictive distribution based on the Jeffreys prigk) and that based
on the shrinkage priots(1) is of ordera—2 whena goes to infinity [see Komaki
(2002b) for details on the asymptotics of shrinkage predictive distributions].
Equation (8) gives an intuitive meaning for the Kullback—Leibler loss.

Third, we consider the asymptotics wheareand b are fixed andd goes to
infinity. The data dimensiod becomes large in many fields of applied statistics
such as spatial statistics, contingency table analysis and population data analysis.

+o,(a Y

ri=xi/a
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Itis easy to show the following result by evaluating (6) using Stirling’s formula.
If limsup,_, o (ta/d) < 0o, whereuy := ¥ ; &;, then

N
0 <liminf ={E[D(p(y12), pry(y1))[2] = E[D(P(I1); Prs(y10)) (2]}

_ 1
<lim SUDE{E[D(P(yI/\), pry (V1) |A] = E[D(p(y|2), prs(y1))[A]}

d— 00

< Q.

For example, when;, i =1,2,3,..., are generated independently from a dis-
tribution that has mean, then lim;_ ~(uqs/d) = A almost surely and the risk
difference is of orded asd goes to infinity.

4.2. Relation to previous work. In coding theory, the ideal code-word length
of a Bayes code for a data string,) = (x(1), ..., x(m)) based on a proper prior
densityr (0) is given by

—log pr (xgm)) = — Iog/ p(x(),...,x(m)|0)7(0)do
9)

m—1
=3 Iog/pn (x( + Dlxay)m (01xay) d,
1=0

wheren = 0. The average of the expected redundancy with respeeia® is
given by
Ly (6 X(m))
=/n(9)/p(X(m)|9)|:— IOg{/p(x(m)W/)n(H’)dG’}
(10)
+ IOQP(x(m)|9):| dxgm)do

P(xX(m)|0)7r (0)
J &m0 (0) d6’ 7 (6)

=/7‘[(9)/p(X(m)|9)|Og dX(m) d@,
which is the mutual information betweérandx ).

Bernardo (1979) introduced the notion of reference prior distributions and
showed that the Jeffreys prior asymptotically maximizes the mutual information
betweery andx(,) = (x(1),x(2),...,x(m)) whenm — oo by using a heuristic
discussion, although the mutual information cannot be properly define®if
is improper. Prequential analysis [Dawid (1984) and Skouras and Dawid (1999)]



PREDICTION OF POISSON OBSERVABLES 1755

is also based on the logarithmic scoring rule used to give code lengths.

In the discussions above, there exist serious technical difficulties associated
with infinite integrals when we consider improper prior distributionsrz (9) is
improper (9) cannot be regarded as an ideal code-word length of a Bayes code.
A compact subset or a sequence of compact subsets of the original parameter
space® has been considered to handle the difficulties in many previous studies.
The heuristics are artificial but useful for treating the problems rigorously.

Whenn = 0 andm goes to infinity, under suitable regularity conditions, the
mutual information between,,) andé is expanded as

d
L (0 %) = 5 Iog% +/Kn(9) log|g(©)[Y2 d6
(11)
—f 7(6)log7 (8) d6 + o(1),
K

wherekK is a compact subset of the original parameter spaaad|g(6)| is the de-
terminant of the Fisher information matrix [Ibragimov and Hasminskii (1973) and
Clarke and Barron (1994)]. Thus (11) is maximized whe#) o |g(0)|%/2, which

is the Jeffreys prior. The difference Ip (0; x(,)) due to the choice of a prior(6)

is of order 1 whemn goes to infinity.

Here we consider the Poisson model and introduce an alternative method
to deal with the difficulties associated with improper priors. Suppose that
a transmitterA and a receiverB commonly observe a data sequenc® =
x(D),x(2),...,x(m)). Only the transmitterA can observe the subsequent data
sequencex,) = (x(n +1),...,x(n+m)). The transmitterA sendsx,, to
the receiverB by using a Bayes code based on a pridk). Then the ideal code-
word length of the Bayes code fay,,,) can properly be defined by

~log / P (e 12)7 (Ax ™) d

if the posterior densityr (6|x™) is a proper density. The Bayes risk

m) | A
/Tr(k) Zp(x(”)M) Zp(x(m)lk) |09Md)\.

X(") X(m) pT[ (x(m)lx(n))

coincides with the mutual information (10) whenr= 0.

Now we consider the slightly generalized Poisson model. Whisrclose to O,
the observationr provides only a small amount of information and the situation
is close to the setup that has been studied in reference analysis and Bayes
coding theory, where the Jeffreys priors are recommended. However, Corollary 1
in Section 3 shows that the Bayesian predictive distribution based on the shrinkage
prior (1) has better performance than that based on the Jeffreysmqtioreven
in such a situation, since the risk function of the shrinkage prior is smaller than that
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of the Jeffreys prior for alk > 0 andb > 0 [see also Komaki (2002a) for related
discussion for group models].

Note that our discussion is based on the original parameter space. It seems
difficult to analyze the shrinkage phenomenon under the assumption that the real
parameter value is in a compact subset of the original parameter space.

Finally, we note that predictive distributions based on the Jeffreys prior seem to
become inadmissible under many loss functions other than the Kullback-Leibler
loss. The admissibility of the predictive distribution based on the Jeffreys prior and
shrinkage predictive distributions under other loss functions requires further study,
although the Kullback—Leibler divergence is a natural loss function in several
important streams in Bayesian theory.

APPENDIX
Proofs of lemmas and Theorems 3 and 5.

PROOF OF LEMMA 1. Letu =21+ A2+ --- + Ay and w; = A;/u,
i=1,...,d —1. Since the relation

1 d-1
dwl---dwd_ldu:(—) dl1---dig
n

holds, we have

d - d
/(Z )‘i) bbb [ THexp—ari (@i ) digdhg -~ dig
i=1 i=1

_ /‘” pe AT L ey g )
0

Bi+x1—1  Potxo—1 Ba—1+txg-1—-1
X wy wyp o Wyog

d-1 Ba+xa—1
X (1—Zwi> dwidwz--- dwg_1du
i=1

g T X —a+ Y Bi) 1
— 40— B i i T (x; ). 0
“ i+ py LLTG+A)

PROOF OFLEMMA 2. The derivative oE[logI' (X +1+¢) —logT' (X +1) —
clogu|u] satisfies the following inequality:

aiE[IogF(X +1+¢)—logl'(X +1) — clogu|u]
m

00 k
=— Y exp(—u) = logI' (k + 1+ ¢)
= k!
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k—l

+Ze - M)(k i

logT'(k +1+c¢)

+ Zexp( M)— logI'"(k + 1)

-1 C
_Z Xp(— “)(k 1)'Iogl“(IH—l)—;

_Zexp( ,u)—{log(k—i—l—i-c) |og(k+1)}—£
k=0

C

<Ze|0( “)k'k+1 p

00 k+1

C
= P k; (k + 1)!

— expu

— —Sexp—p) < 0.
"
We have thus proved the desired resulil

PrROOF OFTHEOREM 3. The admissibility is proved by using Blyth’s method
[Blyth (1951)]. For convenience, we put
L) Aphgt o of

Tag(AW)drrdro- - dhg = 4 dradro--- dig
“ M1 T(B) Ao+ hg+ -+ hg)®

in this proof. We use a sequence of pru{m% \) = ﬂa’ﬁ()\)%]’llz(/_l/)}, where{h;}
is a sequence of functions defined by

1, ifo<p=<1,
lo .
hy () = 1—%, if1<p<l,
0, if | <pu.

Function sequences of this kind are introduced by Brown and Hwang (1982) and
have been used to prove the admissibility of various generalized Bayes estimators.
First, we see that the Bayesian predictive distribution

J p(ylf\)p(xlf\)n[” (1) dx
[ pGemll oy an

based on the priorr, o s (1) minimizes the Bayes risk underaﬁ(k) by using
Aitchison’s dlscussmn [Aitchison (1975), page 549].

Pl (ylx) =
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The Bayes risk of a predictive distributigh(y; x) is given by

JES mZp(mep(ym log pfy'x)) dx

(12) - / ") > perin Zp(ym l0g p(y|3) d

—/na,ﬁa)Zp(xM)Zp(yM) log p(y: x) d.
x y

The first term on the right-hand side of (12) is finite and does not depend
on p(y; x). The second term on the right-hand side of (12) is

/ 3 mZp(mep(ymlogp<y,x>dx
= —Zanglﬂ(x,y) log 5(y; x)
Xy ’
== 2P (9 ) pan (v1x)l0g (s ),
X ’ y “

where
P (. 0) = [ PG PGILG) d
and
pn 0 = [ peinzl ) da.

This is minimized Whenp(y,x) =p, " (yIx). Thus, p_ " (y|x) minimizes
the Bayes risk (12).
Therefore, it suffices to show that

[ L EIDOI), pryp 5100) 3]
(13)
— E[D(p(yIn), png]ﬁ(ylx)ﬂ)\]} dr—0 asl — oo

to prove the admissibility of the Bayesian predictive distributions based on the
priorsin{r, g(A):0< —a+> ;8 <1, >0,i=12,...,d} because the risks
of the Bayesian predictive distributions with the priors in the proposed class are
finite for all values of.. and Theorem 2 holds.

Now we obtain a convenient expression for the integral

[ SO ED(pG1. pr, y GI0)IA] = E[D(pG12). p o (1)) 3]} d
Let

1\ e~ 2X B+l 0] 1, 1\ e~ 2X B+l
= - , ==h —
T (11) (M) =5 l(u)<u)
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and
na,ﬂ(wL w2, LR wd—l)
l
(14) = n(g’]ﬁ (wla w2, ..., wd—l)

DB gt po Laf,
=TTyt v e 1(1_izzlwi) |

Then we have

Ta,p(M)drrdry--- drg

(15) =7ap(, w1, ..., wg—1)dpdwy--- dwg_1
= 7o, p(IW) e, p(W1, - .., wWg—1)dppdwy - - - dwg—1
and
all ) drdirg-- dig
(16) = ()[,{],3(/17 wi, ..., wy—1)dpdwy- - dwg_1

! !
= JTO[,,],g (u)n&,k(wl, s Wg—1)dpdwy - dwg-1.

Letx =x1+x2+ - +xgandy =y1 + y2+--- + yq. If @ prior = (i, w1,
w2, ..., wq—1) hasthe formr (u, w1, wo,. .., wg—1) = T (W) (wy, wo, ..., W4—-1),
then the relation

pﬂ(l‘l” wlv w27 ceey wd—llxlv x27 ey xd)
=[p&, x1,x2, ..., Xg—1l|t, w1, w2, ..., W4—_1)

X (@, w1, w2, ..., Wy—1)]

X Up(i,m,xz,---,xd—llu,wl, w2, ..., W4—1)

-1
@an x 7w, wi, wz,...,wd_l)d,udwldwz---dwd_11|

1
- [p@m)n(m][ [ G du]
X [p(x1,x2, ..., Xg—1]X, w1, w2, ..., wg—1)7 (W1, W2, ..., Wa—1)]

X U p(x1, X2, ..., Xg—1|%, w1, wo, ..., wWg—1)

-1
X w(wg, wo, ..., wq_1)dwidwy--- dwd_11|
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holds, because

p(x1,x2, ..., XqlA1, A2, ..., Aq)

=p(X,x1,X2, ..., Xg—1| i, W1, W2, ..., W4—1)
= p(X|p, w1, we, ..., wWq—1)

X p(X1, X2, ..., Xg—1|X, L, W1, W2, ..., Wg—1)
= p(x|w)p(x1, x2, ..., Xg—1|X, w1, w2, ..., W4-1).

From the relations (14)—(17), and

P(YL, 2, .., YalAr, A2, ..o, Ag)
=plWp(yL, y2, ..., Ya-1ly, w1, wo, ..., wg—1),

it follows that the difference of the Kullback—Leibler losses for

P (V1 Y2, - oo Yalxa, X2, ..., Xa)
and
P, (1, y2, -5 yalxa, x2, ..., Xq)
is given by
D(p(y|2), pry s (¥1x)) — D(p(yI2), Pall, (y1x))
_ZZ Zp(y].?yZ’~~~7yd|}\'15}\'25~~'5}\'d)
y1i Y2
3 V2 ey ValA1, A2, oL A
« log p(y1, y2 ydli1, A2 )
pﬂaﬂ(yl’y27""yd|xlvx2""vxd)
-y > - Zp(yl,yz,..-,ydlkl,kz,...,kd)
yi y2
s V2 ooy ValA1, Aoyl A
(18) « log p(y1, y2 YdlA1, A2 d)

Pl (1, y2, -, yalxa, x2, ..., xq)
(x

=> > - ZP()’W)F()’L Y2, ..o Ya-1lP. w1, w2, ..., wy—1)

y1r 2
P i (Y1, Y2, ..., Yalx, X2, ..., Xq)
x log —=£
Prap V1, Y2, - ooy YalX1, X2, ..., Xa)
Pl y1x)
= Zp(ym) log

naﬂ(~l~)
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where
— o Jo PGl pGl) e () d
Pras O = e ma g t)
and 1
I pGIwpGEwall (0 dp
p i (y1¥) = W :
P Joo pPEImm, g (n)dp
Since
(ap)*
!

« Serpto o DA

|og|:exp{ (s+1)u }M

{s+ou) -1
x(/o expl—(s + oy (MIX)du> }

= Z exp(—au) (a;:')

X Z Zexﬂ s,u) eXp(— (TS')

{ exp(—su)p’
x 1100 —5 —
Jo exp—sp) b (u|X)du

+ |09[(9Xp(—w)u“’)

X( Jo exp(—s )t (%) dp )“
Jo© exp(—s ) exp(—t ) uw (ul ) du) ||

we have

d
s Z exp(—ap) (aﬁ)

X

(sp)” exp(—su)(spw)*/(F
| _
8 Zexp( ) 108 T s i)Y /G D d e
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= lim }[ZZZexp(—au) @) s i1) (s”')v exp(—1 1) (Tl’:?w

=0T x! v

<o [exp(—m)uwfé’oexﬂ—su)uvﬂ(uli)duﬂ
Joo exp(—s ) exp(—tw)um (ulx) d

A

(tp)* (

=D exp(—1p) M—u—ulogﬁ),
: 2! "

wherer :=a +s, z:=x +vand

_ Joo mexp—sp)(s)*/ ) (ul%) dpe
Jo© expl—s ) (sp)?/ (W) (1]%) d s

_ Joo mexp(—tp) (tp)*/ () () d e
Jo© exp(—tp) (1) /(D (ydp

We putc =a — ;i +1 (0 < ¢ < 1) and g/(n) = (1/2)h?(u). Then the
expected divergence frop(y|w) to p_m (y]x) is expressed by
na,ﬂ

o

E[D(p(1w); o (515)|1]

= Z exp(—a) (a;)
(19) ’ i i
(b)? exp(—bp) (bp)”/(3))
—b [ Z
X 2RI % Texe—bin (b)) (RI)
a+b b4 >
=/ i > exp(—u) (tg,) (ﬁz,t —p—plog Mﬂi”)dt,
where
A, _ Jo pexpt) () /() () dp
TS exp =) ()7 /g () d
20) _JoTexp—t) (1) T g () d

Tt exp(—tp) (1) g () d

_ [—flexp(—m)(m)“l—cg,(wg"
+ /O Lexp(—10){(z + 1 — ) (1) 1g1(w)

+ () g (w)) d u]
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[ele) -1
<[t [T exp-nen g dn
_ztl-c  Jotexp—tn) )t gi(u) dp
1 12 [o” exp(—tp) (tp) =g () dp”
In the same way, the expected divergence fio|w) to

0-(7) " () T
X)=(——
DPrg gy a+b a+b) TE—-c+1Dy!

is expressed by

E[D(p(I1), Pryy (F15)) 1]

( u) exp(—bu) (bp)’ /(3"

Prap (V1%)

a+b (41— 1-
:/ Zexp(—m)( M) <Z+ ¢ —u—ulogu)dn
a Z Z! t tpl,

(21) (bu)

log

Zexp( bu)

From (18), (19) and (21), we obtain the following expression for the integral
in (13):

[ LG [ EID (9 12). by (1))
— E[D(pG12), P, (k)] } da

_ / PO E[D(pGI), Pry G19)) 1]

22) — E[D(pG11). p o0 (519)) ]} dn
a+b
/ {/ a(pyp™*
(1 )
z=0
% (H — fu.,—pnlog ¢> d,u}dt.
Tl

We show (13) by evaluating (22) using the following inequalities, (23) and
(24), similar to the inequalities used by Ghosh and Yang (1988) to prove the
admissibility of a class of linear estimators of Poisson means of the form
A; = cix; + b; under the Kullback—Leibler loss.
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We have

/ Q™) exp(—tp) (m,)
0 = z!

z+1—c . z+1—c
X | ——— =, — mlog———— | du
t Tl

> SN ey gy (R
5/0 g (u)p dexp( =

z+1—-c . tﬁ“—%z+l—cq
-~ - d
X { M+ (1 1l i
o pe-l 00 (t,u)z—l-l—c
:2:,{/ exp(—1m) g () ————
o & Uo z+1-c
o0
(23) — [ ex-tig 0@ dua (i, - G+ 1)
e (tp)i+i—e |
= , [—f Lexp(—tp) g () ———~——
=0 < z+1-clo
oo (t/J,)Z'H'_C B
+/ t 1exﬂ—lﬂ){gl/(ﬂ)7+g1(,u)t(t,u)z C}d,u
0 z+1-c

- /0 eXp(—tu)gz(u)(tu)z_cdu]

x {ti; —(z+1-c)}
(e} tc—2

= { /0 exp(—tu)g; (1)

|
z=0 z:

()=t
z+1-c

duitin, — G +1-0)

By using (20) and the inequality

z+1 1

z+41—¢c 1—c¢

’

where 0< ¢ < 1, we have

o & (W} (z+1—-c z+1—c¢
/ g™ exp(—1p) ( — fig; — plog 7> du
0 ) z! t 1y

(24) _1 i 1 {5 exp—tw)(tp) g/ () du)?
T l-c G +D! Jexp(—tp)(tp) g () d
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173 2 {fo exp— ) () * T (e phy () e () d )

ST LGN et h di

13 & 2 texp—iw) ()T (tphj(w)?dp

ST 2 G D et W di

x [ exp-ti @ hEGo di
0

(32 2

pEerd My [ et et hio)*a

1-—
2tC 8 1.
— [T exp ) a (yw)a
2 o 1—c / 2
— “(h d
= (1—c)t2/o w i)
The derivative of; () is given by
0, ifO<u<l,
1
/ = -—— if 1
(25) hy() 1ogl’ ifl<u<lI,
0, if I <pu.

From (22), (24) and (25), we have

[ 7L OUEID (G110 pr y 910) = D(p 1), pygn (s10)[A]}

a+b 2 00 Iecrir 2
E/Q {(1—7c)t2/o = (hy () du}dt
[

a+b 2 1
Z/a {(1—c)t2/1 u“C(Iogl)zd“}dt

a+b 2 1 2 1 1
< /i (-L)oo
« (L—o)t?logl 1—o)logi\a a+b

asl — oo.

We have thus proved the theorent.]

PROOF OF THEOREM 5. From Lemma 1, the generalized Bayes estimator
of A with respect tars(A) is given by
S rims) [1{exp(—aki) (ari)™ /(xiD} d
C [asM 1 {exp(—aki) (@hi)i /(xi)} dA

A
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L a T (T +2)/T (0 x +d/2+ DIz Tixj + 1/2T (xi + 3/2)
a1 (g x4+ D /T x +d /21T T (xj +1/2)

1 >xj+1 ( +1>
azkxk—{—d/Z 2)

The plug-in distribution withi.(x) is given by

PR = pOla, ) = pGl) p(y|5. W),
where

R 1 Z 41 R x,-—{—l/2

=— X; , W= ——2,
a\= ' ' Y jxj+d/2
DILRY2 .. e

o N < A ( y )
p(yIi) = expl MXW POy, Wy ={ | "y, ) P We W

We show that the predictive distributiop,¢(y|X)p(y|y, w) dominates the
plug-in distribution p(y|»). The difference between the risk of the plug-in
distribution p(y|1) and that ofp,¢(¥1X) p(y|y, W) is given by

E[D(p(In), pID)|A] = E[D(pOIA), prsGIF) p(r1F, ©))[A]
= E[D(pGlw), p(3IW)[1] = E[D(p(yI1), ps(F1%))[2].

From (21), the expected Kullback—Leibler divergence fro(|.) to p.s(y|x)
is

E[D(p(F|1), pas(319))|3]
a+b X < +1 +1
:/a Zexp( t )(tm (Z —M—/UOQZI—M>C”-

Since the Kullback—Leibler divergence fropiy|u) to p(3|i) is given by

(26)

D(pGlw), pGID) =b(/l - —ulog%),
we have

E[D(p(Iw). p(3l)|A]
_bijemxa)umy(£+l—u—ubgii3”-
a apn

Note that the integrand of (26) coincides with (27) multiplied byb 1
whent = a. Hence, to prove the theorem, it suffices to show that the integrand
of (26) is a decreasing function ofor all values ofy..

(27)
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The derivative of the integrand of (26) is given by

< 1 1
—Zexp( t )(W) <Z—: —p—plo 9Z+ )
1 (tp)*
=H { 22t +Zexp( tw)———log(z +1)
— Z exp(—ru) UD log(z+1)¢.
z=1 (z—1)!
Since
N (1)
B 1 o (IM)Z—FZ
o {exp(—tu) +rpexp(—tp) + Zg;)exp(—tu) ey }
1
= —tz—z{eXp(—t/x) +rpexp—ru)}
_ (t M)Z( 1 1 )
;)exp( ‘) ' \z+1 z+2/
1 (tw)?* 1
—exp( tu)+;)exp( L) oo
and
00 7—1
Zexp( m)ﬂ logz+1) — > exp(—tu) (th) log(z + 1)
=0 =1 -1t
= ) —log(z + 1)}
(tuu)Z 1
= _ZX%GXFX t) L i1 2
we have
<Z+1 —M—Mlogil> s—lzexp(—m) <0.
tu t
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Thus, the integrand of (26) is a strictly decreasing function @herefore, (26) is
smaller than (27) for all values of [
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