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ON THE TESTABILITY OF THE CAR ASSUMPTION

By ERIC A. CATOR!
Delft University of Technology

In recent years a popular nonparametric model for coarsened data
is an assumption on the coarsening mechanism called coarsening at ran-
dom (CAR). It has been conjectured in several papers that this assumption
cannot be tested by the data, that is, the assumption does not restrict the pos-
sible distributions of the data. In this paper we will show that this conjecture
is not always true; an example will be current status data. We will also give
conditions when the conjecture is true, and in doing so, we will introduce a
generalized version of the CAR assumption. As an illustration, we retrieve
the well-known result that the CAR assumption cannot be tested in the case
of right-censored data.

1. Introduction. When dealing with coarsened data, the coarsening may be
due to some random effect. A condition was proposed in Heitjan and Rubin (1991)
on this random effect, called “coarsened at random,” or CAR. In their setup the
random variable of interest, which in this paper we will cElltakes values in
a finite sety. However, instead of observing directly, we observe a nonempty
random seX C Y such that with probability 1Y € X. They then define the CAR
assumption as an assumption on the possible or allowed conditional distributions
of X givenY = y [CAR is a modelling assumption, so a class of distributions for
(Y, X) is considered]:

forall AC Y P(X = A|Y =y) is constantiny € A.

They showed that in this setting, the CAR assumption ensured that the randomness
of the coarsening could be ignored when making inference on the parameter
of interest, namely, the distribution df. Many papers have since appeared
generalizing this idea, especially to general sample spaces. We refer to Jacobsen
and Keiding (1995) and Gill, van der Laan and Robins (1997) for a general
introduction. Our goal is mainly to discuss the testability of the CAR assumption,
that is, does the CAR assumption restrict the possible distributions of the data?
We will start by giving a general model for coarsened data which is very close to
the one givenin Jacobsen and Keiding (1995), but without the measurability issues
in that paper. We repeat that it is not our main goal to extend the notion of CAR to
general sample spaces; therefore, we will not give an extensive comparison with
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definitions given in the aforementioned papers. We would just like to mention that
in practical situations all definitions will lead to more or less the same concept.
Furthermore, our notation will mostly be similar to that in Pollard (2002), with
one notable exception: jf is a measure on a spaZe andsx is a measurable map
from Z to Y, then we denote the image measurelpof © underr asw(w).

Let Y be the space of the variable of interdste.g., the time of onset of a
certain disease). The stochastic variablis distributed according to a probability
measureQ. Let Z be a “hidden” space from which we can retrieveand the
data. To be more precise, the stochastic varighdeZ is distributed according to
a probability measurg and there exists a measurable mapz — Y such that
Y = n(Z). Furthermore, there exists a measurable mra — X, whereX is
the data space, such thét= v (Z) is the observed data. In short,

(Zo 1) —— (Y. 0).

d
(X. P)

The measureu, together with the mappings and v, contains all the
information about how the variable of inter@sts coarsened into the dataX. This
definition of coarsened data is more general than the one used by, for example, Gill,
van der Laan and Robins (1997), where the data must consist of sets. However, it
is also much easier to find counterexamples to the conjecture mentioned in the
abstract, to which we will come shortly.

First, to make things a bit more tangible, let us see how current status data fits
into our framework: lett be the time of onset of a certain disease,(elbe the
time of visiting a doctor, generally called the censoring time, and define the data
X as

X =(C,1yy<cy)-

Then Z = (¥,C) (s0 Z = [0, 00[ x [0,00[), 7(Y,C) =Y and ¢(Y,C) =
(C, Liy<cy)-

In Heitjan and Rubin (1991)Gill, van der Laan and Robins (1997), Nielsen
(2000) and several others, coarsened data consists oBsettements of some
o-algebraB on Y, such thatY € B. Defining Z = Y x 8B, we see that this
approach also fits into ours if we have proper conditionsuonve allow all
such thatr € B almost surely. Of course, we could also say that our data consists
of the setr (¥ ~1{x}) C Y; itis, however, possible (see Example 2.1) that knowing
x provides more information. In any case, we find that our results are more clearly
stated in our definition of coarsened data.

Before we can state the CAR assumption, we need some more notation. We
will restrict ourselves in this paper to dominated models, so we choose a fixed and
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known probability measurgg on Z. In Gill, van der Laan and Robins (1997) the
CAR assumption is also defined for the nondominated case [CAR(ABS)], but we
will get back to this later. Define

Qo=mn(no) and Po=y (ko).

Now we wish to condition on the map (or, equivalently, ort). If Z and¥ are,

for example, Polish spaces, this can always be done via a Markov-kernel: we define
the conditional distribution of underug givenY = y, denoted byio(dz|y), such

that for each bounded measurable functian Z we have

[ k@otdz) = /% ( [ k(z)uo(dzly))ﬂ(uo)(dy).

This is called a disintegration. Of course, we also have that

po({z:m(z) # yHy) =0
for 7 (up)-almost ally.

DEFINITION 1.1 (The CAR assumption). In the notation given above, the
CAR assumption states that<« ug is a possible (or admitted) distribution of
Z if and only if

u(dz) =goY(z)-hom(z)uo(dz),

where#h is an arbitrary density with respect 9y andg is a positive measurable
function onX such that

(1.1) /zg oY (2)mo(dzly) =1 for Qgp-almost ally,

which is equivalent with

Euo(g(X01Y) =1,
This implies that:(y) is the (marginal) density of with respect toQo and that
the conditional distribution of, givenY =y, is given by

p(dzly) = g o ¥ (2)poldzly).

This loosely means that we assume that gi¥etheunknown part by which the
coarsening mechanism choogefote thatug is known!) may only be a function
of the data. Note that under CAR, we can choose an arbitrary dénsify*(Qo),
but the measurable functiopy must be positive and satisfy (1.1) [in particular,
g € LY(Pp)]. This restriction org does not depend dn, however, which gives the
set of all possible distributions &f under CAR a product structure.

It might not be entirely clear why one would want to make such an assumption,
but the popularity of the CAR assumption can largely be explained by the
following proposition. First, we define a linear map

(1.2) S:LY(Q0) = LY(Po): S(h)(x) = E,io(h(Y)|X = x)
(remember that iZ ~ o, thenX ~ Py andY ~ Qo).
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PrOPOSITION 1.2. Let u be a distribution of Z that satisfies the CAR
assumption. This means that there exists g € L(Pg), such that u(dz]y) =
g o Y (z)uol(dzly). Let h be the marginal density of ¥ with respect to Qg [s0
() (dy) = h(y)Qo(dy)]. Then the marginal distribution of X is given by

Y () (dx) = g(x)S(h)(x) Po(dx).

This shows that the likelihood of the data factorizes into a relevant factor
[remember thak(Y) as a function of: is the likelihood based on the underlying
dataY, the variable of interest, and note ttfais known] and a nuisance facter
Since we can choose agythat satisfies (1.1) and then choose an arbitrary density
h independent of the chosgnthe overall parameter space is a product space. So,
for example, we know which would maximize the likelihood of the data, without
having to know anything about the coarsening mechanism (except that it's CAR,
of course). It of course also implies lots more good consequences for likelihood-
based (and, in particular, Bayesian) inference.

PROOF OFPROPOSITION1.2. Letk be a positive measurable function &h
Remember that

u(dz) =g oy (z) - hom(z)po(dz).
Then we have
Ey(k(X)) = E;uo(k(X)g(X)h(Y))
= Epo(k(X)g(X)Eﬂo(h(YﬂX))
= Epy(k(X)g(X)S(h)(X)). O

The CAR assumption as we defined it depends on the choigg,dfut we do
have the following proposition:

PrROPOSITION1.3. Let o and vg be probability measureson Z such that vg
satisfies the CAR assumption for o (in particular, vg < o). Then a probability
measure 1 < vg on Z satisfiesthe CAR assumption for 1o if and only if it satisfies
the CAR assumption for vg.

PROOF Sinceyg satisfies the CAR assumption fap, we can write

vo(dz) = go o ¥ (z)ho o m(z) mo(dz)

such thathg is a density forQg and E,,(go(X)|Y) = 1, which means that
vo(dz]y) = go o ¥ (z)no(dz]y). Supposeu satisfies CAR fopg, SO we can write

u(dz) = gro Y (z)h1om(z)o(dz)
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with E,,(h1(Y)) =1 andE,,(g1(X)|Y) = 1. Note that

h1Qo=m(u) K m(vo) =hoQo,

S0 h1/ ho is well defined(0/0 = 0). The same reasoning, but with replaced
with ¢, gives thatg1/go is well defined. Now note that

h
Ev0<h—z(Y)) = E, (h1(Y)) =1

and
81 81
En(Z=X)|Y=y)=[ = d
(Leolr=y)= [ Lwerosy
_ f 8Ly () g0 () mo(dz]y)
Z 80
_ /Z g1 (¥ (2))o(dzly)
:1,
SO

u(dz) = (g1/80) o ¥ (z)(h1/ ho) o m(z)vo(dz)

satisfies CAR foiyg.
If u satisfies CAR fong, we conclude in a completely analogous way that
satisfies CAR fopg. O

This proposition shows that for any you pick such that a certain coarsening
mechanismy satisfies CAR fomg (and is, therefore, an element of your model),
the possible distributions af absolutely continuous with respect tg are the
same as when you would have chogen= vg. Therefore, a logical choice for
wo is a generic distribution foZ that you would want to have in your model,
preferably with an as large as possible support.

One can easily verify that our definition of the CAR assumption is equivalent to
the ones given in Gill, van der Laan and Robins (1997) (for the dominated case),
Jacobsen and Keiding (1995) and Nielsen (2000), when we restrict ourselves to
their respective setups (see also the discussion after Theorem 3.8). We would
like to point out that for the factorization property of Proposition 1.2, Gill, van
der Laan and Robins (1997) also have to restrict themselves to the dominated
case. The conjecture made in Gill, van der Laan and Robins (1997) is that the
CAR assumption does not restrict the possible distributions of the data, making
it impossible to test whether the CAR assumption is fulfilled or not. In fact, they
prove this conjecture (in their setup) whiris a finite space. In the next section we
will give examples where the conjecture actuddlys, not only in our generalized
setup, but also in the more restrictive setups. In Section 3 we will give sufficient
and almost necessary conditions when the conjecture will hold.
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2. Examples.

EXAMPLE 2.1. LetY =0, co[, Z = [0, oo[ x [0, oo[ andZ = (Y, C). Define
X =y (¥, C) = CY. This coarsening mechanism cannot be described as in Gill,
van der Laan and Robins (1997), for knowikgs not equivalent to knowing that
Y lies in the set of points compatible with the observat’onNow we have to
chooseugp:

no(dydc)=e e “dydec.

The CAR assumption states that for a possible distributioof Z, there exist
h e LY(Qo) andg € L1(Pp) such that

u(dyde) = (g(cy)e “dc)h(y)e™ dy.
Furthermore, (1.1) tells us that

o0
/ gley)e “de=1 Vy>0.
0

But this means that the Laplace transforngdé identically equal to the Laplace
transform of 1, and, therefore,= 1. So the possible choices farare

u(dydc) =h(y)eYe “dydc,

whereh is a density with respect t9o(dy) = e~ dy. Note thatC is independent
of Y with a given distribution, and the distribution &f is arbitrary. A simple
transformation of variables gives

o0 1
() (dx) = ( / e e dy) dx.

Therefore, X always has a decreasing density with respect to the Lebesgue
measure ofi0, oo[, which shows that in this case the CAR assumption does restrict
the possible distributions of the data.

As noted before, the CAR assumption depends on the chojeg db illustrate
this, let us choose

po(dyde) = (ye™“dc) -e™7 dy.
Then CAR implies for our (positive) functiog that

o0
/ gley)ye  Vde=1 Vy>0.
0

However, this is nothing more than saying tlgat a density forPg, since in this
casepP is the standard exponential! Clearly, this means that the CAR assumption
is not testable in this case. However, it is not hard to see that in thisS¢ase- 1,

so all information abouY is lost. As a final remark, note that the CAR assumption
is only affected byug throughuo(dc|y), the conditional distribution of given

Y =y, so that choosing a different (but equivale@t) essentially leaves the CAR
assumption unaltered (this alsmlows from Proposition 1.3).
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EXAMPLE 2.2 (Current status). A much more important example, and one
that also fits the setups of Jacobsen and Keiding (1995) and Gill, van der Laan and
Robins (1997), is that of current status data. We will consider the bounded case,
that is, all times considered fall ifD, 1], but it is not hard to see that this is not
a real restriction. So defing = [0, 1], Y is the time of interestC < [0, 1], the
censoring time, and = (Y, C), soZ = [0, 1] x [0, 1]. Define

v(¥,C)=(C, Liy<cy),

so0 X = [0, 1] x {0, 1}. The interpretation is that one knows the time one visited
the doctor, and the doctor can say whether someone is sick or not. Choose
po(dydc) = dydc. Then (1.1) implies that we can choose positive L(Pp)

such that

1
/ g(C, ]l{ySC})dCZJ_ vO<y<Ll
0

However, this says that

y 1
/ g(c,O)dc—i—/ glc,Ddc=1 VOo<y<1l
0 y

Differentiating with respect tg shows that
g(c,00=¢g(c, 1 VOo<c<1.
So CAR implies that the only allowed models forare
p(dydce) =g(c)h(y)dcdy,

whereh andg are densities ofi0, 1]. This is, of course, equivalent with saying
thatY andC have to be independent.
Consider the following subsets of:

Ar={(x.D:xe[0,3]} and A,={(x,0):xe[3.1]}.
Let 2 be the set of all probability distributions dxi and define for every € 2,
®(P) = (P (A1), P(A2)).
Clearly,
®(P) = {(a1,a2) € [0, 1) 1a1 + az < 1.

Now suppose the CAR assumption holds,YsandC are independent. Then we
know that

Q
>
o

P(X € A1) = P(

IA

IA
2

<P
=P

~—

Nl NI
N—

a a aq
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NI NI NI
Q
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o
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Similarly,

P(X € Ap) <P(C>3)-P(Y >

).

Nl

This means that
P(X €Ay P(X €A < i%.

So, if we definePcar as the set of all possible distributions of the data under the
CAR assumption, then

®(Pcar) C {(a1, a2) € [0, 11%:a1+ap <1 andai - ap < %}

Since this is a proper subset®{ ), we conclude that in the case of current status,

it is possible to find a distribution of the data that contradicts the CAR assumption.
In a future paper we will discuss what would be a good way to test the CAR
assumption in this important example. Here we would like to note a few things. In
the first place, it is possible that the data distribution is an elemeftak, even
though the CAR assumption is not fulfilled: one easily checks that this happens
when

e fo Fle)dy

is a continuous distribution function (i.e., nondecreasing), wh&igc) is the
conditional density oft given C = c. This shows that it is impossible to verify
CAR by the data; it is just sometimes possible to reject the CAR assumption.

In the second place we note that the convex hull of all independent densities
of (¥, C) is weakly dense in the set of all densities, and, therefore, the convex
hull of #car is weakly dense in?. This means that you cannot test the CAR
assumption with one linear test function. In particular, it shows that the model for
the distribution of the data under CAR is not convex.

As a third remark, we would like to point out to the reader that although this
example fits in the setup of Gill, van der Laan and Robins (1997) for CAR on
general sample spaces, it does not fit in their setup for finite spaces, not even when
we restrictY andC to finitely many possible values. This is because the observed
sets are all of the forn)Y < C} or {Y > C}, and it is essential in their setup that
the CAR assumption allow distributions such that all possible nonempty subsets
of Y might be observable. See also the discussion after Theorem 3.8.

Finally, it is not hard to show that under the assumption CAR(ABS) defined in
Gill, van der Laan and Robins (1997), ooen find all possible distributions of
X by assuming that andC are independent, but can have any distribution (not
necessarily dominated). This means that the argument given here also shows that
CAR(ABS) restricts the possible distributions of the d&taWe do not think that
by restricting ourselves to the dominated case we throw away an important part of
the possible distributions df under CAR(ABS).
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3. General conditions for the testability of CAR. In this section we will
give our most abstract definition of coarsened data, but we will first look at the
mapsS: LY(Qo) — L1(Pp). We will repeat its definition:

(3.1) S(h)(x) = E,ip(h(Y)|X = x).

If we denote the duality betweeh!-functions andL>-functions by(-, ), we
would like to remind the reader that the dual map

§*: L% (Po) = L*(Qo)
is defined such that
(S(h), k) = (h, S*(k)).
Note that fork € L°°(Pp),
(S(h), k) = E o (k(X)E 1o (R(Y)|X)) = Eig(k(X)h(Y)).
PROPOSITION3.1. Thelinear map S:L(Qq) — L1(Pp) defined above has
the following properties:

1. S(1) =1and S*(1) = 1, where S* denotesthe dual of S.
2. S ispositive thatis, h > 0= S(h) > 0.
3. |IS|| =1, where]| - || denotes the operator-norm.
PROOF Properties 1 and 2 are obvious. It is also clear that
lhomll=All1 and koo = Ikl
[here we useQqo = () and Po = v (uo)], which shows that|S| < 1. Since
SMH=1,1I51=1. U

The importance of the mapis seen most clearly when we translate (1.1):
Epuo(g(X)|Y) =1.
It is well known that
S*(9)(y) = Eup(8(X)NY =),

so this means that the CAR assumption restricts our choicg frmember that
g o ¥ is the conditional density af givenY =y, for all y) to all positiveg such
that

§*(g) = 1.

This will lead us to a new definition of CAR.
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DEFINITION 3.2. LetY be a stochastic variable of interest, defined on a
spacey, and letQg be a probability measure dj. Let X be the data-space and
Pp a probability measure o%. We define acoarsening (of Y) as a linear map

S:LY(Qo) - L*(Po)
such that:
1. S(1) =1ands*(1) = 1, whereS* denotes the dual .
2. Sis positive, thatish > 0= S(h) > 0.

We thank one of the referees for pointing out the following: every coarsening
S can be obtained through a conditional egtation, as we did in the original
definition of CAR. To see this, defirigé = Y x X. We define a probability measure
1o onY x X in the following way: letA C Y andB C X be measurable such that
14 € LY(Qo) and1p € L1(Pp). Then we define

1o(A x B) = Epy(Lg(X)S(L4)(X)).

This extends to a probability measure $nx X such that forh € L*(Qo) and
k e LY(Py),

Euo(k(X)h(Y)) = Epy (k(X)S()(X)).

It is easy to check tha@q and Py are the marginals df , respectivelyX, and that

S(h)(x) = Euy(R(Y)|X = x).
From this it is clear that

S*(k)(y) = Epo(k(X)|Y =),
so the maps* is in itself a coarsening aX. This is the content of the next lemma,
which we will prove without using the auxiliary measuyte. In fact, we believe
the mapsS to be the most convenient object to study, which is why we will not refer
to up again.

LEmMMA 3.3. Let S:L1(Qg) — L1(Pp) bea coarsening. Then:

1. Siscontinuousand ||S| = 1.
2. The dual map S* is also defined and continuous from L1(Pg) to L1(Qp) (in
fact, S* isa coarseningitself).
PROOF Leth € L1(Qop). Then—|h| <h < |h|, so|S(h)| < S(|h|). Now,
IS(URDI = (S(AD, 1)
=(|hl, 1)
= ||A]|.
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This, together withS(1) = 1, proves the first statement.

Let g € L1(Pg),. There existdg,} C L®(Pp)4 such thatg, 1 g. Clearly, $*
is also positive, s&5*(g,) 1 h for someh € L1(Qo) [note that(h, 1) = lim 4
(S*(gn), 1) = lim 1 (g,, S()) = (g, 1)]. Also, if 1’ € L>®(Qy), then (h, 1) =
(g, S(h")), soh does not depend on the sequeligg}. Defineh = S*(g). It is
trivial to check that with this definition§* is in itself a coarsening.

Define for a probability measure

A, ={heL*(v):h>0and(h, 1) =1},

the set of densities with respectito

DEFINITION 3.4 (CAR). Let
S:L*(Qo) — L*(Po)

be a coarsening of a random varialfleThe CAR assumption now states that the
distribution of the data belongs to the set

Pear =g - S(h):h € Ag,, g € LY(Po)+ andS*(g) = 1}.

First we should note thaPcar C Ap,, because
(g-S(h),1)=(h,$"(g)) =1

ands is a positive map. In this new definition we also retain the product structure
of the likelihood of the data. The remark after Definition 3.2 shows that the only
difference with the previous definition is that we restrict the distributions of the
dataX, instead of restricting the distributions of the hidden varigble

It is clear that the question of testability of the CAR assumption amounts to
checking whether the secar is dense inA p,. Before we consider this question,
we want to note the following: define

M = {S(h) € Apoll’l € AQO}'

ThenM is a convex subset af p,. Now in analogy to the polar set of a subspace
of a linear space, we define

M°={geLY(Po)y:(VheM)h, g)=1}
Since for allg € L1(Pp)4, S*(g) = 1 is equivalent to
(VheAg,)  (Sth),g) =1,
we get that

M - M° = Pcar.
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FiG. 1.

Encouraged by this observation, we define
M® ={h e L*(Po)+: (Vg e M*)(h, g) = 1.

Figure 1 shows the situation whey has a support of 3 points (so we can view
Ap, as atriangle) and/ is a convex subset af p,.

As you can see, we should vieW°° as an extension a¥/ to the edges oA\ p,.
The following proposition, together with Lemma 3.9, substantiates Figure 1:

PrROPOSITION 3.5. Let M be an arbitrary subset of Ap, with P some
probability measure.

1. M C M°° C Ap.
2. (M°°)° = M°.

ProoF 1. The first inclusion is obvious from the definitions. For the second
one, itis enough to note thatelM°, becausé/ C Ap.

2. Clearly,(M°°)° c M°. Letg € M°. If h € (M°)°, then(h, g) = 1 (because
g€ M®),s0g € (M*°)°. O

SinceM - M° C M°°-M° C Ap, anatural necessary condition dhfor M - M°
to be dense im p would be M°° ¢ M. The following proposition more or less
substantiates this statement. We do have to caution the reader that in principle
M° andM°° need not be closed sets, since the linear functibmal (i, g) is not
continuous or.1(P) if g € LY(P). \ L>®(P).

PROPOSITION3.6. Let M beasubset of Ap suchthat M°° ¢ M. Then there
existh € M°° and ¢ > Osuchthatfor all f € M- M°,

/— Iog(%)h dP > ¢.

PROOF.  Chooser € M°°\ M. Then there exists > 0 such that for alh € M,
Ik — k| > e. It is a well-known inequality for the Kullback-Leibler divergence
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[see, e.g., van der Vaart (1998), page 62] that

h 1 3
—log( = \hdP > =|h —h|?
[

Now let f € M - M°, so f = hg, with h € M andg € M°. Note that(g, h) = 1,
sinceh € M°°. So

/—Iog(};—g)th=/—Iog(%)th+/—log(g)th
1
> Zsz—log(/gth)

1
= 282. OJ

We have to point out that this proposition does not state that, under the
assumption that/°° ¢ M, M - M° is not dense inA p. We were not able to prove
that statement in general. However, it dogkcatethatM - M° is not dense i\ p,
and in specific examples it should not be too hard to actually prove it.

ExampPLE 3.7 (Current status). As we have seen already, we consider a
time of interestY € [0, 1], a censoring time&” < [0, 1], and the data consists of
(C, Liy<cy)- We take

Qo(dt)y=dt and Po(dx,8) =xdx 1is—1y+ (L—x)dx - L5=q).
It is easily seen that our mapis equal to

1
1—x

1 rx 1
Sh)(x, ) = ;/0 h(t)dt - 1s=1) + / h(t)dt - 1(5—0.
X
Remember that = S(A,), so for allh € M, we have thati(x, 1) is increasing
in x. Now choose

h(t) = 1y<1/3) — L1/3<1<2/3) + 3 Li1>2/3).

Then(h, 1) = 1 andS(h) > 0, soS(h) € M°°, butxS(h)(x, 1) = Jo h(r)dt is not
increasing inx, so S(h) ¢ M. It was this observation that led us to find the test
described in Example 2.2.

The statement we would like to prove fof C Ap isthatM - M° is dense im p
if and only if M°° c M. However, we were not able to prove it in this generality,
nor find a counterexample to it. Only wheéhhas finite support were we able to
prove the statement in full generality:
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THEOREM 3.8. Let P be a probability measure with finite support and let
M C Ap such_that there exists hg € M with hg > 0. Then M - M° isdensein Ap
if and only if M = M°°.

PROOF Let M # M°°. Since we are now in the situation that(p) =
L®(P), it follows that M°° is closed, so we always haw¢ c M°°. According
to Proposition 3.6, there existe M°° ande > 0 such that forallf e M - M°,

/— |Og<£)h dP > ¢.

Since hg € M°°, we can choosé > 0 [note thatehg + (1 — e)h € M°°, for
all 1> ¢ > 0]. Since{f >0:f € Ap} is an open subset oA p and since
f+— [ —log(f/h)hdP is continuous on this set (so, in particular, continuous at
h), we conclude that there exisis> O such thatforallf e M - M°, || f — k| > 7.
Now let M = M°°. Choosef € Ap with f > 0. SinceM is compact and
h+ [—log(h/f)fdu is lower semi-continuous (see also Lemma 3.11), there
existsh € M that minimizes this Kullback—Leibler divergence. It is also clear that
h > 0, since otherwise the Kullback—Leibler divergence wouldtee (here we
use thatig € M). Now leth € M. Sinceh > 0, there exists > 0 such that when
IA| <&, h+ A(h —h) > 0. This means that + A(h — h) € M°° = M, because
clearly (h + »(h — h), g) = 1 for all g € M°. The function

A /—Iog(%ﬁ_m)fdP

has aminimum at =0 for A € ]—e&, —¢[, so the derivative at = 0 (which exists!)
must be zero. A simple calculation yields

s foo
/(h—h)ﬁdP_O.

This provesthath, f/h) =1forallh € M,sof/h € M°. Therefore,f € M- M°.
It is not hard to see that if,, — &, thenh,, - f/h — f, which proves thad - M°
isdenseimp. O

This theorem is very much like the theorem in Section 2 of Gill, van der Laan
and Robins (1997) and also the proof is very similar. To show how their theorem
(apart from the uniqueness statement) follows from Theorem 3.8, we translate their
setup into ours. LeY be a finite space witlm points and letX = 2 (Y) \ {2},
the collection of all nonempty subsets%f The idea is that one observ&sc Y
such thatt € X. To reformulate the CAR assumption used in Gill, van der Laan
and Robins (1997), we defing = {(y,A):y € A C ¥} anduo as the rescaled
counting measure of, assigning mass'2” /m to each element a&. Obviously,



TESTING THE CAR ASSUMPTION 1971

we definer(y, A) =y andy(y, A) = A, sO0 Qo = (o) is the rescaled counting
measure ory (assigning mass/n to each point) andy = v (o) satisfies

A
PN =L (vACy,

where|A| denotes the number of elements Af Now we defineS:Ll(Qo) —
L1(Po) such that for alh € L1(Qg) andA € X, we have

1
— > h(y).

(3.2) S(h)(A) = Epo(h(Y)|X = A) =
Al S

It follows immediately that fo € L1(Pg) andy € Y, we have

S (@) =23 g(A).

A>y

The CAR assumption now states that the likelihoo&ofith respect taPy equals

g - S(h), whereh is an arbitrary density with respect @y andg € L1(Pg),. such
thatS*(g) = 1. If we would follow Definition 1.1, we would restrict the possible
distributionsu of Z = (Y, X) such that

1(X = AlY =y) = g(Apo(X = AlY = y) = 22"g(A)Ljyen).

It is not hard to see that this is indeed equivalent to the definition of Gill, van
der Laan and Robins (1997) used for finite sample spaces. So, in fact, they use a
very specific form of the mafs; even in finite sample spaces our setup is much
less restrictive. Finally, to conclude that in this case CAR cannot be tested, we use
Theorem 3.8 to see that we only need to check that when we define

M ={S(h):heAg,),

we haveM*° = M. We will use the following lemma.

LEMMA 3.9. Let P beameasurewith finite support and let M C Ap. Then
M® = (M)N Ap.

Here (M) denotesthe linear span of M.

PROOE Leth e (M)N Ap, SOh = > A;h; with A; e R andh; € M such
thath > 0 and(h, 1) = 1. This means thaf_x; = 1. If g € M°, then for every
(h;, g) =1, so we conclude that:, ¢g) = 1, and, thereforeh € M°°. We have
shown thatM) N Ap C M°°.

Now suppose: € Ap andh ¢ (M). SinceLY(P) is finite dimensional, there
exists¢ € L1(P) such that for all € (M), we have(i, ¢) = 0 and(h, ¢) > 0. We

can choos@ such that¢| < 1. Defineg =1+ ¢. Theng > 0 and forh € M we
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have(h, g) = 1, sog € M°. However,(h, g) > 1, SOh ¢ M°°. SinceM°®® C Ap,
we have shown tha¥°° c (M)NAp. O

WhenM = {S(h):h € Ag,}, itis easy to check thatM) N Ap, = {S(h):h €
LY(Qo), (h, 1) =1, S(h) > 0}. Therefore, whenevex is a finite setM°° = M is
equivalent to

(33) Sh)>0 = 3FIh>0:S(h)=SMh) [YheL Qo]

For the mapS we were considering, this follows trivially from (3.2) [note that
S(AyH =h()].

The problem with extending the proof of Theorem 3.8 to genéri twofold.
First of all, M will not be compact in general, which makes it difficult to find a
minimum for the Kullback-Leibler divergence. The second problem is concluding
that the derivative is zero: even if we find a minimum (in some compactification),
we can only conclude that the directional derivative we used in the previous proof
is negative, but not necessarily zero. To solve these problems and come up with
a theorem that can be used for practical situations, we will use theShmpre
extensively by putting restrictions on it. But first we will discuss an extension of
the Kullback-Leibler divergence to solve the noncompactness problem.

DEFINITION 3.10. LetE = (L°°(P))’, the (strong) dual of the Banach space
L®(P). Let f € LY(P),. Define forh € E, h > 0,

KL 7 () = sup{Z— og( )00 € L (PY Y g =1
O (f, i) =

We would like to make a few remarks. Asis the dual of an ordered Banach
space, it is itself ordered in the obvious way:> 0 if for all ¢ € L°°(P),
(h,¢) = 0. Furthermore L1(P) c E. We also have that the unit ball df is
weakly compact (Banach—Alaoglu), andife E. (i.e., h is positive), we have
that|| || = (h, 1). Since KLy is the supremum of weakly continuous functions on
E ., itis itself weakly lower semi-continuous.M C Ap, thenM® (the closure of
M in the weak topology, seen as a subseEdiwill be weakly compact, because
M° c E, and for allh € M?, (h,1) =1, so it is a weakly closed subset of the
unit ball. This means that KL will attain its minimum onM? for someh € M°.

From the theory of ordered vector lattices [see, e.g., Schaefer and Wolff (1999),
Chapter V] it follows thatL1(P) is aband in E. This means that eadhe E.
can be uniquely decomposedias: ki, +h, whereh, € LY(P); andh, > 0is
disjoint from L1(P), soforall f € L1(P),., we have thatinf.; , f) = 0 (compare
this to the decomposition of a measure into a part that is absolutely continuous to
some other measure and a part which is disjoint from this other measure). We have
the following lemma, the proof of which is deferred to the Appendix.
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LEMMA 3.11. Let f € Ll(P)+. Then, in the notation introduced above, for
all h e E+,

h
KLy ) =KL s ) = [ —tog(*L) rar.

Now we will consider a coarsening§:L1(Qg) — L1(Pp). Define Eg, =
(L*(Q0))" and Ep, = (L*°(Pyp))’. By considering the dual map &, we can
extendS:Eg, — Ep,. Clearly, S will be continuous for the weak topologies
on Ep, and Ep, (as well as for the strong topologies) arfd will be a
positive map. DefineM = S(Ag,). SinceAg,” C Eg, is weakly compact,
M? = S(Ag,°)(C Ep,). Whenh € Eg, 1, we can consideh, € L1(Qo)+ as
well asS(h), € LY(Py),. In general, we can only deduce thatr) , > S(hy)),
sinceh =h; +hy andS(h) € LY(Po)+.

Before we can state our main result, we need two assumptions. The first is the
analogue of¥f = M°°, or equation (3.3) which we discussed before, but slightly
stronger:

(A1) For all A’ € Eg, + such thatS(h’), > 0, there existsh € Eg, 4+ with
S(h) = S(i') andh; > 0.

How we will use assumption (Al) is stated in the following lemma: we say that
hy € LY(P), dominates ho € LY(P) (notation:hy < hy), if there existsR > 0
such thati; < Rhq.

LEMMA 3.12. Suppose ho € Eg, + such that hg ; > 0. Let h € L(Qo)+-
Then there exists a sequence i, € L1(Qo) such that 4, < ho,;y and hy, 1 h.

~

PROOF  Definef =ho, . Leth € L1(Qo)+. Define
hp="h-1{f=1/n) A 1.

Since f > 0, h, 1 h. Furthermoref, < n?- f, because o f > 1/n}, h, < n.
O

Sinceh, 1 h implies thatS(h,) 1 S(h), (Al) can be seen as an approximation
property forM = S(Ag,). We will need a similar approximation property for
M° ={g e LY(Py)4:5*(g) =1}

(A2) Forallg e L1(Py), such thats*(g) = 1 andg > 0, there exists a sequence
gn € LY(Po)4 such thats*(g,) = llgall1- 1,82 < g andg, 1 1.

We will first show how these two assumptions are used to prove our main
theorem, after which we will show in two examples how one checks these
assumptions.
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THEOREM 3.13. Let S:LY(Qo) — L1(Py) be a coarsening satisfying (A1)
and (A2). Then the CAR assumption cannot be tested, so Pcar isdensein A p,.

PROOF DefineM = S(Ap,)(C Ap,) andM° = {g € L1(Po);: S*(g) = 1}.
We have to prove tha¥/ - M° is dense inAp,. Let f € Ap, such thatf > 0 and
f is bounded,; the set of all these functions is clearly denged)) so it is enough
to prove thatf e M - M°.

Clearly, KL (1) < 400, so the infimum of KLy on M® C Ep, is finite (because
1 € M). As noted before, since KLis weakly lower semi-continuous and®
is weakly compact, Kl attains its minimum somewhere i, let us say in
k € M°. Using Lemma 3.11, we can see tat> 0, since otherwise Kl(k) =
KL ¢ (k//) = +oo (here we use that > 0). SinceM® = S(Ag,”), we can choose
ho € E g, + With S(ho) =k andhg ;, > 0 [here we use (Al)].

Leth € Ag,. According to Lemma 3.12, there exists a sequénce Ll(Qo)Jr
with h, < ho,y andh, t h [and, thereforeS(h,) + S(h)]. Definea, = (h,, 1)
(soay, 1 1) and fixn. Becauseéi, < ho,//, there exists B< ¢ < 1 such that for all
re]l—e e,

ho,;; + A(a, h —ho,/) = 0.

We conclude thag+A(a, th, —ho) € Ag, "~ , and s+ A(a, 1S (h,) —k) € M°.
Therefore, for alh € ]—e¢, €[,

/_Iog<k//+k(an—1}g(hn) _k//))fdPoZ/—bg(%)fdPo,

which by differentiating at. = 0 implies
7
S(hy), —)=ay.
< (hy) k// ay

SinceS(h,) 1 S(h), we conclude for every € A, that(S(h), f/k;) = 1, which
proves thatf/k/ € L1(Po)+ and thatS*(f/k,) =1, sof/k;, € M°.

We would like to conclude that, € M, but we only know that € M°. We do
know, however, that for alf’ € M°,

(3.4) (ky, g/) <1

For if we choose a sequengg € L°°(Py), such thatg, 1 g/, thenS*(g,) <
S*(gh=1,s0

(ky, 8"y =lim 1 (ky/, gn) <lim 1 (k, g,) < 1.

Now we can use (A2). Defing = f/k, € M°. Clearly,g > 0, so there exists a
sequence, € L1(Py)y with S*(g,) = llgnll1 - 1, such thatg, < g andg, 1 1.
Define b, = |lgunll1 1 1. There existe > 0 such that for allh €] —¢,¢[, g +
AMby e, —g) > 0,s0g+r(b, 1g, —g) € M°. Since we have (3.4) and/, g) = 1,
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we conclude thatk//, g,) = b, SO (k/, 1) = 1. But this means that=k/,, since
k;y <k and(k,1)=1. Sok € LY(Pg) andk is the weak limit [with respect to the
duality with L°°(Pg)] of functions in M. However,L>( Pp) is the dual ofL1(Pp)
andM is convex, so the weak closure Mfin L1(Pg) equals the strong closuné,
which means that € M. Now choosek,,} € M such that||k — k|1 — 0. We
know thatg - k,, € Ap, andg - k = f € Ap,. This means that/gk,, and/gk
are positive elements of the unit spherel&{ P). Since the unit ball is weakly
compact inL2(Pg), we can choose a weakly converging subsequen¢tg’gk,, },

let us say,/gkn, — ¢, for someg in the unit ball. This means, in particular, that
foranyyr € L°°(Pp),

(¢, ) = I (Vekn,, ¥)= Im (Vkn,, ¥ V&)=V ¥/2).

The last equality follows from the well-known fact that the Hellinger metric
induces the same topology anp, as theL'-norm, sovk, — vk in L?(Po),

and the fact thay /g € L?(Po). SinceL>(Py) is dense inL?(Po), we have shown

that¢ = ./gk. This means that every weakly convergent subsequence has the same
limit \/gk, which in turn proves tha{/gk,, converges weakly tqQ/gk. Now note

that if for somep € L2(Pg), we have thafi¢||> = 1, then a neighborhood base for

the L2-topology on the unit ball aroungl is given by

2 . 1
Uy = {w € L2(Po): [l < 1 and(y, ¢) > 1 — ;},

since one easily checks that for atye U,,, ||y — <15||2 < 2/n. This means that
if {v,}is a sequence in the unit ball converging weaklytothen,, — ¢ in
L?(Pg). Through this we conclude thafgk,, — +/gk in L?(Pp), which implies
that gk,, — gk in LY(Pg). Sok - g = f € M - M°, which proves thatPcar is
Li-dense inA p,, and, hence, the CAR assumption is not testalle.

We wish to stress that in our opinion the only natural (necessary and sufficient)
condition onS for Pcar to be dense im\ p, is equation (3.3):

S(hy>0 = 3Jh>0:Sh)=Sh) [YheL(Qol.

This is illustrated by Figure 1 and we have not been able to find counterexamples
to this claim. The stronger condition (Al) and condition (A2) were necessary to
make our proof work, but must be seen as regularization conditions. We know of
examples where (A1) and/or (A2) fail, but we still have the result that CAR cannot
be tested. In these examples, the main ideas of the proof of Theorem 3.13 still
work, but the details are a bit different.

We will try to illustrate the theorem by two examples, which we will discuss in
detail.
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ExAMPLE 3.14 (Missing data). LeX € Y be the variable we wish to observe,
distributed according t@o. However, sometimes we can obsei¥elirectly and
sometimes the observation is missing, which we will denote by saying that our
observation is T. To make things precise, we define our data Spacé/ L {1}.
Furthermore, we will use a hidden space to define our coarseStndgefine
Z =Y x {0,1} and the mapy:Z — X asy¥(y,1) =y (Y is not missing),
¥ (y,0) =T (¥ is missing). Choosgo = Qo x (380 + 381), SO one possible
CAR distribution is that each observation has probabigty)f being missing,
independently ot ~ Qg. It also means thaly = ¢ (g) = l]ly Qo+ %(ST. Then
for h € L1(Qg), we defineS(h) € L1(Pp) as follows:

S =Eu(hMIX =y)=h(y)  (foryey)
and
S(h) (1) = Epo(h(YV)1X = 1) = Egy(h(Y)).
It is not hard to check that fog € L1(Po),

S* () () = Ep(8(X0IY = y) = 38(») + 3g(D),
so indeeds*(1) = 1, which shows that is a coarsening. Then
Pear={g-S(h):h € Ap,,g>0,5%(g) =1}.

SinceS*(g) = 1 implies thatg(y) = 2 — g(1) for Qp-almost ally, we see that
we get all distributions inPcar by allowing Y to be distributed according to an
arbitrary density: with respect toQg and assuming that each observation has an
arbitrary probabilityp = %g(T) to be missing, independently &f.

Now we would like to check assumptions (A1) and (A2). In this case (A2) is
trivial, because ifg € L1(Pg) andg > 0 such thatS*(g) = 1, then O< min(2 —
g(h, g(h)) < g, so 1< g. Assumption (A1) is also not so hard to check, since if
we restrictS(h) to Y, we get thatS(h) = %h, seen as elements éf(Qgp). This
shows thatS(h),, = %h//, so S(h); > 0 clearly impliesh,, > 0. Theorem 3.13
now states that the CAR assumption cannot be tested in this cage;gois
dense inA p,. Clearly, in this simple example it is very easy to directly verify that,
in fact, Pcar = A p,.

ExamMpPLE 3.15 (Right-censored data). L¥t=1]0, 1[, Qo(dt) =dr onY and
Y be a time of interest distributed according to a density with respe@itdAll
that follows can be easily generalized to an arbitrary measure on an open subset of
10, o[, at the cost of some notational difficulty. LEte 10, 1[ be a censoring time
and let the dat&X, A) consist of

X, A) =%, 0) E (¥ AC, 1y =c)).
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We will construct our coarsenin§ as follows: defineug = dtdc on Y x 10, 1.
Then definePy = ¥ (110) as a probability measure on the data-spEc©ne easily
checks that

Po(dx,8)=(1—x)dx -1js=1y + (1 —x)dx - L{5-0.
Now define forh € L1(Qo),
S(h)(x,8) = E,o(h(Y)|(X, A) = (x, 5)).

This is just saying thaS (k) is the density of the distribution of the data with
respect toPp whenY andC are independent] distributed according té () dt
andC distributed according tdc. Therefore, one easily calculates

S(h)(x.8) = h(x) - L1, +—f h(t)dt - 15—0).

Clearly, S(1) = 1 and S is positive. Furthermore, for alt € L1(Qo) and g €
L*>(Po),

(Sth), g)p / QL—-—x)h(x)g(x, 1)dx+/ / h(t)g(x,0)dtdx
=/0 (1—t)g(t,l)h(t)dt+/o (./0 g(x,O)dx)h(t)dt

1 t
=/ ((l—t)g(t,l)-l—/ g(x,O)dx)h(t)dt,
0 0
so we see that
t
S () (1) = (1—Ng(t. 1) + f ¢(x.0)dx.

Hence,$*(1) =1, soS is indeed a coarsening. Defié = S(AQO) and M° =
(g€ LY(Po)+:5*(g) =1}. Leth € Ag, andg € M°. SinceS*(g) =

g, )= %(1—/(;g(x,0)dx).

Becausg > 0, we have thajg g(x,0)dx < 1. If [ g(x,0)dx =1 and we letC
be distributed according to(x, 0) andY according toz, we can easily check that
the density ofyr (Y, C) with respect toPg is exactlyS(h) - g, SO Pcar contains
all data distributions one gets if andC are independent and dominated by the
Lebesgue measure. If we allafvto be distributed according to a subdensity (i.e.,
just saying that the censoring time has a positive probability of being bigger than
the largest possible value &), then we get all ofPcar.

We would now like to check assumptions (A1) and (A2). DenoteS ) (s—1;
the restriction ofS(x) to {§ = 1}. Clearly, forh € Eg,, S(h);s=1y = (L —y) - h;
here(1—y) - h acts onp (y) € L*°(Qp) as follows:

(A=y)-h,¢(y)=(h, X=y)-d(y)).
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To check (Al) it is enough to conclude that > 0 whenevef(1—y)-h], >0
andh > 0. However, in that cas€l — y) - h < h (becausd|l — y|l < 1), SO

0< [(1—y) -h]// fl’l//.
Now letg € M°, g > 0. Define

&n(t,0) =1(¢,00>1/n)-
Clearly, g, (7, 0) < ng(t, 0). Definex, = /3 g,(x, 0)dx and

1 t
gn(t,1) = 1—_[<)\n _/0 gn(x,O)dx).

Then we have that

1

1
n(t, 1) = —t/ gn(x,0)dx
_ t

=

1

n 1

1—t./t g(x,0)dx

n 1 t

E(/O g(x,O)dx—/Og(x,O)dx)
S&(l—/otg(x,O)dx)

=ng(t,1).

Sog, < g. By construction we have th&t(g,) = A, - 1. Furthermore, sincg > 0,

g, (,0) 1 1. This implies thalg, (¢,1) 1+ 1, sog, 1+ 1. This proves that assump-
tion (A2) is also satisfied. Theorem 3.13 now states that the CAR assumption can-
not be tested in the case of right-censored data. We wish to remark that this in itself
is not a new result, but merely an illustration of Theorem 3.13.

APPENDIX

In this Appendix we will give the proof of a lemma which is a bit technical. We
repeat some notation: define for a probability meagutiee space = (L*°(P))’.
This is an ordered vector space abH P) is a band inE, which means that each
h € E can be uniquely decomposed/as=h, + h, whereh, e LY(P), and
h, > 0 is disjoint from P, so for eachf e Ll(P)+, inf(f, h1) = 0. According
to Schaefer and Wolff [(1999), Chapter V, Theorem 1.5] this is equivalent to
saying that for eaclp € L°°(P), and eacte > 0, there exists a decomposition
¢ =¢1+ P2, p1 >0, ¢p2 > 0, such thath, ¢1) + (f, ¢2) < €. For convenience,
we repeat the definition of KL for f € L1(P),.Defineforh e E,

- <hv d)i
KL f(h) =su —log
l-; <(f, bi

;)<f,¢,->:¢,-eL°°<P)+,Z¢,-=1 :
i=1
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LEMMA A.l. Let f e L1(P)+. Then, in the notation introduced above, for
al h e E+,

KLf(h)=KLf(h//)=/ Iog( Jj/)fdp

PrROOF The second equality is well known for the Kullback—Leibler diver-
gence [see, e.g., Pinsker (1964), Section 2.4] and can be proved using standard
techniques like monotone classes. As for the first, singceh, it is clear that
KL r(hy) = KL (h) (—log is a decreasing function). Assume Klkz) < +oo.

We would like to make an important observationyif_; ¢; = 1, and we decom-
pose eaclp; = ¢; 1 + ¢i 2, then Jensen gives us

n 2 n
(h’¢i,j>) N ((h’¢i>) _
A.l —lo ,¢iiy>) —lo , Oi).
oy 33 g(<f,¢l-,,~> (i) = Y=o g1 )50
We only need to conside#; such that{ f, ¢;) > 0 [we define logl/0) - 0 = 0].
We also know that for each sugh, (i, ¢;) > 0. For if not, we could decompose
#i = ¢i1 + ¢i2, such that(h, ¢; 1) is arbitrarily small and £, ¢; 1) > (f, ¢:)/2,
which by (A.1) would imply that KL¢(7) =

So consides; > 0 with (h//, ¢;) > 0andlir.o <> " ;¢ <1.Lete > 0. Be-
cause inh, f)=inf(h,h;,) =0, we can find a decompositi(m =¢i1+¢i2

for eachi such thatih, ¢i — ¢i1) = (hyy, ¢i2) <8, ([, ¢i — =(f ¢i2) <9
and(h, ¢; 1) < 8. Here we can choose> 0 such that

- (hyy+hi,¢i1) . (hy, i)
—log( L= Y i) > Y —log( L) () —
2. og( i) ><f"”1>>§1 oo T )”"” ‘
and, noting thatk, 1) > 0, since KLy (h) < 400,

n (h

2.~ '°g<f¢, )M’ )z e

This last inequality implies that

n

; (h. $1.2) 1)
i Y =S ] e
> —tog( g2 i) = Yo —loa( [ s =

i=1 i=1
All in all, we can conclude that

KLf(h)>ZZ Iog<<f¢ )f¢,,
i)

i=1j=1

>Z & ( <J/‘/¢%l ) i) -

This proves that Klg () > KLf(]’l//). O
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