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ON THE TESTABILITY OF THE CAR ASSUMPTION

BY ERIC A. CATOR1

Delft University of Technology

In recent years a popular nonparametric model for coarsened data
is an assumption on the coarsening mechanism called coarsening at ran-
dom (CAR). It has been conjectured in several papers that this assumption
cannot be tested by the data, that is, the assumption does not restrict the pos-
sible distributions of the data. In this paper we will show that this conjecture
is not always true; an example will be current status data. We will also give
conditions when the conjecture is true, and in doing so, we will introduce a
generalized version of the CAR assumption. As an illustration, we retrieve
the well-known result that the CAR assumption cannot be tested in the case
of right-censored data.

1. Introduction. When dealing with coarsened data, the coarsening may be
due to some random effect. A condition was proposed in Heitjan and Rubin (1991)
on this random effect, called “coarsened at random,” or CAR. In their setup the
random variable of interest, which in this paper we will callY , takes values in
a finite setY. However, instead of observingY directly, we observe a nonempty
random setX ⊂ Y such that with probability 1,Y ∈ X. They then define the CAR
assumption as an assumption on the possible or allowed conditional distributions
of X givenY = y [CAR is a modelling assumption, so a class of distributions for
(Y,X) is considered]:

for all A ⊂ Y P(X = A|Y = y) is constant iny ∈ A.

They showed that in this setting, the CAR assumption ensured that the randomness
of the coarsening could be ignored when making inference on the parameter
of interest, namely, the distribution ofY . Many papers have since appeared
generalizing this idea, especially to general sample spaces. We refer to Jacobsen
and Keiding (1995) and Gill, van der Laan and Robins (1997) for a general
introduction. Our goal is mainly to discuss the testability of the CAR assumption,
that is, does the CAR assumption restrict the possible distributions of the data?

We will start by giving a general model for coarsened data which is very close to
the one given in Jacobsen and Keiding (1995), but without the measurability issues
in that paper. We repeat that it is not our main goal to extend the notion of CAR to
general sample spaces; therefore, we will not give an extensive comparison with
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definitions given in the aforementioned papers. We would just like to mention that
in practical situations all definitions will lead to more or less the same concept.
Furthermore, our notation will mostly be similar to that in Pollard (2002), with
one notable exception: ifµ is a measure on a spaceZ, andπ is a measurable map
from Z to Y, then we denote the image measure onY of µ underπ asπ(µ).

Let Y be the space of the variable of interestY (e.g., the time of onset of a
certain disease). The stochastic variableY is distributed according to a probability
measureQ. Let Z be a “hidden” space from which we can retrieveY and the
data. To be more precise, the stochastic variableZ ∈ Z is distributed according to
a probability measureµ and there exists a measurable mapπ :Z → Y such that
Y = π(Z). Furthermore, there exists a measurable mapψ :Z → X, whereX is
the data space, such thatX = ψ(Z) is the observed data. In short,

(Z,µ)

ψ

π
(Y,Q).

(X,P )

The measureµ, together with the mappingsπ and ψ , contains all the
information about how the variable of interestY is coarsened into the dataX. This
definition of coarsened data is more general than the one used by, for example, Gill,
van der Laan and Robins (1997), where the data must consist of sets. However, it
is also much easier to find counterexamples to the conjecture mentioned in the
abstract, to which we will come shortly.

First, to make things a bit more tangible, let us see how current status data fits
into our framework: letY be the time of onset of a certain disease, letC be the
time of visiting a doctor, generally called the censoring time, and define the data
X as

X = (
C,1{Y≤C}

)
.

Then Z = (Y,C) (so Z = [0,∞[×[0,∞[ ), π(Y,C) = Y and ψ(Y,C) =
(C,1{Y≤C}).

In Heitjan and Rubin (1991), Gill, van der Laan and Robins (1997), Nielsen
(2000) and several others, coarsened data consists of setsB, elements of some
σ -algebraB on Y, such thatY ∈ B. Defining Z = Y × B, we see that this
approach also fits into ours if we have proper conditions onµ: we allow all µ
such thatY ∈ B almost surely. Of course, we could also say that our data consists
of the setπ(ψ−1{x}) ⊂ Y; it is, however, possible (see Example 2.1) that knowing
x provides more information. In any case, we find that our results are more clearly
stated in our definition of coarsened data.

Before we can state the CAR assumption, we need some more notation. We
will restrict ourselves in this paper to dominated models, so we choose a fixed and
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known probability measureµ0 on Z. In Gill, van der Laan and Robins (1997) the
CAR assumption is also defined for the nondominated case [CAR(ABS)], but we
will get back to this later. Define

Q0 = π(µ0) and P0 = ψ(µ0).

Now we wish to condition on the mapπ (or, equivalently, onY ). If Z andY are,
for example, Polish spaces, this can always be done via a Markov-kernel: we define
the conditional distribution ofZ underµ0 givenY = y, denoted byµ0(dz|y), such
that for each bounded measurable functionk onZ we have∫

Z
k(z)µ0(dz) =

∫
Y

(∫
Z

k(z)µ0(dz|y)

)
π(µ0)(dy).

This is called a disintegration. Of course, we also have that

µ0
({z :π(z) �= y}|y) = 0

for π(µ0)-almost ally.

DEFINITION 1.1 (The CAR assumption). In the notation given above, the
CAR assumption states thatµ � µ0 is a possible (or admitted) distribution of
Z if and only if

µ(dz) = g ◦ ψ(z) · h ◦ π(z)µ0(dz),

whereh is an arbitrary density with respect toQ0 andg is a positive measurable
function onX such that∫

Z
g ◦ ψ(z)µ0(dz|y) = 1 for Q0-almost ally,(1.1)

which is equivalent with

Eµ0

(
g(X)|Y ) = 1.

This implies thath(y) is the (marginal) density ofY with respect toQ0 and that
the conditional distribution ofZ, givenY = y, is given by

µ(dz|y) = g ◦ ψ(z)µ0(dz|y).

This loosely means that we assume that givenY , theunknown part by which the
coarsening mechanism choosesZ (note thatµ0 is known!) may only be a function
of the data. Note that under CAR, we can choose an arbitrary densityh ∈ L1(Q0),
but the measurable functiong must be positive and satisfy (1.1) [in particular,
g ∈ L1(P0)]. This restriction ong does not depend onh, however, which gives the
set of all possible distributions ofZ under CAR a product structure.

It might not be entirely clear why one would want to make such an assumption,
but the popularity of the CAR assumption can largely be explained by the
following proposition. First, we define a linear map

S :L1(Q0) → L1(P0) :S(h)(x) = Eµ0

(
h(Y )|X = x

)
(1.2)

(remember that ifZ ∼ µ0, thenX ∼ P0 andY ∼ Q0).
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PROPOSITION 1.2. Let µ be a distribution of Z that satisfies the CAR
assumption. This means that there exists g ∈ L1(P0)+ such that µ(dz|y) =
g ◦ ψ(z)µ0(dz|y). Let h be the marginal density of Y with respect to Q0 [so
π(µ)(dy) = h(y)Q0(dy)]. Then the marginal distribution of X is given by

ψ(µ)(dx) = g(x)S(h)(x)P0(dx).

This shows that the likelihood of the data factorizes into a relevant factor
[remember thath(Y ) as a function ofh is the likelihood based on the underlying
dataY , the variable of interest, and note thatS is known] and a nuisance factorg.
Since we can choose anyg that satisfies (1.1) and then choose an arbitrary density
h independent of the choseng, the overall parameter space is a product space. So,
for example, we know whichh would maximize the likelihood of the data, without
having to know anything about the coarsening mechanism (except that it’s CAR,
of course). It of course also implies lots more good consequences for likelihood-
based (and, in particular, Bayesian) inference.

PROOF OFPROPOSITION1.2. Letk be a positive measurable function onX.
Remember that

µ(dz) = g ◦ ψ(z) · h ◦ π(z)µ0(dz).

Then we have

Eµ(k(X)) = Eµ0

(
k(X)g(X)h(Y )

)
= EP0

(
k(X)g(X)Eµ0(h(Y )|X)

)
= EP0

(
k(X)g(X)S(h)(X)

)
. �

The CAR assumption as we defined it depends on the choice ofµ0, but we do
have the following proposition:

PROPOSITION1.3. Let µ0 and ν0 be probability measures on Z such that ν0
satisfies the CAR assumption for µ0 (in particular, ν0 � µ0). Then a probability
measure µ � ν0 on Z satisfies the CAR assumption for µ0 if and only if it satisfies
the CAR assumption for ν0.

PROOF. Sinceν0 satisfies the CAR assumption forµ0, we can write

ν0(dz) = g0 ◦ ψ(z)h0 ◦ π(z)µ0(dz)

such thath0 is a density forQ0 and Eµ0(g0(X)|Y ) = 1, which means that
ν0(dz|y) = g0 ◦ ψ(z)µ0(dz|y). Supposeµ satisfies CAR forµ0, so we can write

µ(dz) = g1 ◦ ψ(z)h1 ◦ π(z)µ0(dz)
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with Eµ0(h1(Y )) = 1 andEµ0(g1(X)|Y ) = 1. Note that

h1Q0 = π(µ) � π(ν0) = h0Q0,

so h1/h0 is well defined(0/0 = 0). The same reasoning, but withπ replaced
with ψ , gives thatg1/g0 is well defined. Now note that

Eν0

(
h1

h0
(Y )

)
= Eµ0

(
h1(Y )

) = 1

and

Eν0

(
g1

g0
(X)

∣∣∣Y = y

)
=

∫
Z

g1

g0
(ψ(z))ν0(dz|y)

=
∫
Z

g1

g0
(ψ(z))g0(ψ(z))µ0(dz|y)

=
∫
Z

g1(ψ(z))µ0(dz|y)

= 1,

so

µ(dz) = (g1/g0) ◦ ψ(z)(h1/h0) ◦ π(z)ν0(dz)

satisfies CAR forν0.
If µ satisfies CAR forν0, we conclude in a completely analogous way thatµ

satisfies CAR forµ0. �

This proposition shows that for anyµ0 you pick such that a certain coarsening
mechanismν0 satisfies CAR forµ0 (and is, therefore, an element of your model),
the possible distributions ofZ absolutely continuous with respect toν0 are the
same as when you would have chosenµ0 = ν0. Therefore, a logical choice for
µ0 is a generic distribution forZ that you would want to have in your model,
preferably with an as large as possible support.

One can easily verify that our definition of the CAR assumption is equivalent to
the ones given in Gill, van der Laan and Robins (1997) (for the dominated case),
Jacobsen and Keiding (1995) and Nielsen (2000), when we restrict ourselves to
their respective setups (see also the discussion after Theorem 3.8). We would
like to point out that for the factorization property of Proposition 1.2, Gill, van
der Laan and Robins (1997) also have to restrict themselves to the dominated
case. The conjecture made in Gill, van der Laan and Robins (1997) is that the
CAR assumption does not restrict the possible distributions of the data, making
it impossible to test whether the CAR assumption is fulfilled or not. In fact, they
prove this conjecture (in their setup) whenY is a finite space. In the next section we
will give examples where the conjecture actuallyfails, not only in our generalized
setup, but also in the more restrictive setups. In Section 3 we will give sufficient
and almost necessary conditions when the conjecture will hold.
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2. Examples.

EXAMPLE 2.1. LetY = [0,∞[, Z = [0,∞[×[0,∞[ andZ = (Y,C). Define
X = ψ(Y,C) = CY . This coarsening mechanism cannot be described as in Gill,
van der Laan and Robins (1997), for knowingX is not equivalent to knowing that
Y lies in the set of points compatible with the observationX. Now we have to
chooseµ0:

µ0(dy dc) = e−ye−c dy dc.

The CAR assumption states that for a possible distributionµ of Z, there exist
h ∈ L1(Q0) andg ∈ L1(P0) such that

µ(dy dc) = (
g(cy)e−c dc

)
h(y)e−y dy.

Furthermore, (1.1) tells us that∫ ∞
0

g(cy)e−c dc = 1 ∀y > 0.

But this means that the Laplace transform ofg is identically equal to the Laplace
transform of 1, and, therefore,g = 1. So the possible choices forµ are

µ(dy dc) = h(y)e−ye−c dy dc,

whereh is a density with respect toQ0(dy) = e−y dy. Note thatC is independent
of Y with a given distribution, and the distribution ofY is arbitrary. A simple
transformation of variables gives

ψ(µ)(dx) =
(∫ ∞

0
h(y)e−ye−x/y 1

y
dy

)
dx.

Therefore,X always has a decreasing density with respect to the Lebesgue
measure on[0,∞[, which shows that in this case the CAR assumption does restrict
the possible distributions of the data.

As noted before, the CAR assumption depends on the choice ofµ0. To illustrate
this, let us choose

µ0(dydc) = (ye−yc dc) · e−y dy.

Then CAR implies for our (positive) functiong that∫ ∞
0

g(cy)ye−cy dc = 1 ∀y > 0.

However, this is nothing more than saying thatg is a density forP0, since in this
caseP0 is the standard exponential! Clearly, this means that the CAR assumption
is not testable in this case. However, it is not hard to see that in this caseS(h) = 1,
so all information aboutY is lost. As a final remark, note that the CAR assumption
is only affected byµ0 throughµ0(dc|y), the conditional distribution ofC given
Y = y, so that choosing a different (but equivalent)Q0 essentially leaves the CAR
assumption unaltered (this alsofollows from Proposition 1.3).
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EXAMPLE 2.2 (Current status). A much more important example, and one
that also fits the setups of Jacobsen and Keiding (1995) and Gill, van der Laan and
Robins (1997), is that of current status data. We will consider the bounded case,
that is, all times considered fall in[0,1], but it is not hard to see that this is not
a real restriction. So defineY = [0,1], Y is the time of interest,C ∈ [0,1], the
censoring time, andZ = (Y,C), soZ = [0,1] × [0,1]. Define

ψ(Y,C) = (
C,1{Y≤C}

)
,

so X = [0,1] × {0,1}. The interpretation is that one knows the time one visited
the doctor, and the doctor can say whether someone is sick or not. Choose
µ0(dy dc) = dy dc. Then (1.1) implies that we can choose positiveg ∈ L1(P0)

such that ∫ 1

0
g
(
c,1{y≤c}

)
dc = 1 ∀0≤ y ≤ 1.

However, this says that∫ y

0
g(c,0) dc +

∫ 1

y
g(c,1) dc = 1 ∀0≤ y ≤ 1.

Differentiating with respect toy shows that

g(c,0) = g(c,1) ∀0≤ c ≤ 1.

So CAR implies that the only allowed models forµ are

µ(dy dc) = g(c)h(y) dc dy,

whereh andg are densities on[0,1]. This is, of course, equivalent with saying
thatY andC have to be independent.

Consider the following subsets ofX:

A1 = {
(x,1) :x ∈ [

0, 1
2

]}
and A2 = {

(x,0) :x ∈ [1
2,1

]}
.

Let P be the set of all probability distributions onX and define for everyP ∈ P ,

�(P ) = (
P (A1),P (A2)

)
.

Clearly,

�(P ) = {(a1, a2) ∈ [0,1]2 :a1 + a2 ≤ 1}.
Now suppose the CAR assumption holds, soY andC are independent. Then we
know that

P(X ∈ A1) = P
(
C ≤ 1

2 andY ≤ C
)

≤ P
(
C ≤ 1

2 andY ≤ 1
2

)
= P

(
C ≤ 1

2

) · P
(
Y ≤ 1

2

)
.
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Similarly,

P(X ∈ A2) ≤ P
(
C ≥ 1

2

) · P
(
Y ≥ 1

2

)
.

This means that

P (X ∈ A1) · P (X ∈ A2) ≤ 1
16.

So, if we definePCAR as the set of all possible distributions of the data under the
CAR assumption, then

�(PCAR) ⊂ {
(a1, a2) ∈ [0,1]2 :a1 + a2 ≤ 1 anda1 · a2 ≤ 1

16

}
.

Since this is a proper subset of�(P ), we conclude that in the case of current status,
it is possible to find a distribution of the data that contradicts the CAR assumption.
In a future paper we will discuss what would be a good way to test the CAR
assumption in this important example. Here we would like to note a few things. In
the first place, it is possible that the data distribution is an element ofPCAR, even
though the CAR assumption is not fulfilled: one easily checks that this happens
when

c �→
∫ c

0
f (y|c) dy

is a continuous distribution function (i.e., nondecreasing), wheref (y|c) is the
conditional density ofY given C = c. This shows that it is impossible to verify
CAR by the data; it is just sometimes possible to reject the CAR assumption.

In the second place we note that the convex hull of all independent densities
of (Y,C) is weakly dense in the set of all densities, and, therefore, the convex
hull of PCAR is weakly dense inP . This means that you cannot test the CAR
assumption with one linear test function. In particular, it shows that the model for
the distribution of the data under CAR is not convex.

As a third remark, we would like to point out to the reader that although this
example fits in the setup of Gill, van der Laan and Robins (1997) for CAR on
general sample spaces, it does not fit in their setup for finite spaces, not even when
we restrictY andC to finitely many possible values. This is because the observed
sets are all of the form{Y ≤ C} or {Y > C}, and it is essential in their setup that
the CAR assumption allow distributions such that all possible nonempty subsets
of Y might be observable. See also the discussion after Theorem 3.8.

Finally, it is not hard to show that under the assumption CAR(ABS) defined in
Gill, van der Laan and Robins (1997), onecan find all possible distributions of
X by assuming thatY andC are independent, but can have any distribution (not
necessarily dominated). This means that the argument given here also shows that
CAR(ABS) restricts the possible distributions of the dataX. We do not think that
by restricting ourselves to the dominated case we throw away an important part of
the possible distributions ofX under CAR(ABS).
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3. General conditions for the testability of CAR. In this section we will
give our most abstract definition of coarsened data, but we will first look at the
mapS :L1(Q0) → L1(P0). We will repeat its definition:

S(h)(x) = Eµ0

(
h(Y )|X = x

)
.(3.1)

If we denote the duality betweenL1-functions andL∞-functions by〈·, ·〉, we
would like to remind the reader that the dual map

S∗ :L∞(P0) → L∞(Q0)

is defined such that

〈S(h), k〉 = 〈h,S∗(k)〉.
Note that fork ∈ L∞(P0),

〈S(h), k〉 = Eµ0

(
k(X)Eµ0

(
h(Y )|X)) = Eµ0

(
k(X)h(Y )

)
.

PROPOSITION3.1. The linear map S :L1(Q0) → L1(P0) defined above has
the following properties:

1. S(1) = 1 and S∗(1) = 1, where S∗ denotes the dual of S.
2. S is positive, that is, h ≥ 0 ⇒ S(h) ≥ 0.
3. ‖S‖ = 1, where ‖ · ‖ denotes the operator-norm.

PROOF. Properties 1 and 2 are obvious. It is also clear that

‖h ◦ π‖1 = ‖h‖1 and ‖k ◦ ψ‖∞ = ‖k‖∞

[here we useQ0 = π(µ0) andP0 = ψ(µ0)], which shows that‖S‖ ≤ 1. Since
S(1) = 1, ‖S‖ = 1. �

The importance of the mapS is seen most clearly when we translate (1.1):

Eµ0

(
g(X)|Y ) = 1.

It is well known that

S∗(g)(y) = Eµ0

(
g(X)|Y = y

)
,

so this means that the CAR assumption restricts our choice forg (remember that
g ◦ ψ is the conditional density ofZ givenY = y, for all y) to all positiveg such
that

S∗(g) = 1.

This will lead us to a new definition of CAR.
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DEFINITION 3.2. Let Y be a stochastic variable of interest, defined on a
spaceY, and letQ0 be a probability measure onY. Let X be the data-space and
P0 a probability measure onX. We define acoarsening (of Y ) as a linear map

S :L1(Q0) → L1(P0)

such that:

1. S(1) = 1 andS∗(1) = 1, whereS∗ denotes the dual ofS.
2. S is positive, that is,h ≥ 0 ⇒ S(h) ≥ 0.

We thank one of the referees for pointing out the following: every coarsening
S can be obtained through a conditional expectation, as we did in the original
definition of CAR. To see this, defineZ = Y×X. We define a probability measure
µ0 onY ×X in the following way: letA ⊂ Y andB ⊂ X be measurable such that
1A ∈ L1(Q0) and1B ∈ L1(P0). Then we define

µ0(A × B) = EP0

(
1B(X)S(1A)(X)

)
.

This extends to a probability measure onY × X such that forh ∈ L1(Q0) and
k ∈ L1(P0),

Eµ0

(
k(X)h(Y )

) = EP0

(
k(X)S(h)(X)

)
.

It is easy to check thatQ0 andP0 are the marginals ofY , respectively,X, and that

S(h)(x) = Eµ0

(
h(Y )|X = x

)
.

From this it is clear that

S∗(k)(y) = Eµ0

(
k(X)|Y = y

)
,

so the mapS∗ is in itself a coarsening ofX. This is the content of the next lemma,
which we will prove without using the auxiliary measureµ0. In fact, we believe
the mapS to be the most convenient object to study, which is why we will not refer
to µ0 again.

LEMMA 3.3. Let S :L1(Q0) → L1(P0) be a coarsening. Then:

1. S is continuous and ‖S‖ = 1.
2. The dual map S∗ is also defined and continuous from L1(P0) to L1(Q0) (in

fact, S∗ is a coarsening itself ).

PROOF. Let h ∈ L1(Q0). Then−|h| ≤ h ≤ |h|, so|S(h)| ≤ S(|h|). Now,

‖S(|h|)‖ = 〈S(|h|),1〉
= 〈|h|,1〉
= ‖h‖.
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This, together withS(1) = 1, proves the first statement.
Let g ∈ L1(P0)+. There exists{gn} ⊂ L∞(P0)+ such thatgn ↑ g. Clearly,S∗

is also positive, soS∗(gn) ↑ h for someh ∈ L1(Q0) [note that〈h,1〉 = lim ↑
〈S∗(gn),1〉 = lim ↑ 〈gn,S(1)〉 = 〈g,1〉]. Also, if h′ ∈ L∞(Q0), then 〈h,h′〉 =
〈g,S(h′)〉, so h does not depend on the sequence{gn}. Defineh = S∗(g). It is
trivial to check that with this definition,S∗ is in itself a coarsening.�

Define for a probability measureν,

�ν = {h ∈ L1(ν) :h ≥ 0 and〈h,1〉 = 1},
the set of densities with respect toν.

DEFINITION 3.4 (CAR). Let

S :L1(Q0) → L1(P0)

be a coarsening of a random variableY . The CAR assumption now states that the
distribution of the data belongs to the set

PCAR = {
g · S(h) :h ∈ �Q0, g ∈ L1(P0)+ andS∗(g) = 1

}
.

First we should note thatPCAR ⊂ �P0, because

〈g · S(h),1〉 = 〈h,S∗(g)〉 = 1

andS is a positive map. In this new definition we also retain the product structure
of the likelihood of the data. The remark after Definition 3.2 shows that the only
difference with the previous definition is that we restrict the distributions of the
dataX, instead of restricting the distributions of the hidden variableZ.

It is clear that the question of testability of the CAR assumption amounts to
checking whether the setPCAR is dense in�P0. Before we consider this question,
we want to note the following: define

M = {
S(h) ∈ �P0 :h ∈ �Q0

}
.

ThenM is a convex subset of�P0. Now in analogy to the polar set of a subspace
of a linear space, we define

M◦ = {g ∈ L1(P0)+ : (∀h ∈ M)〈h,g〉 = 1}.
Since for allg ∈ L1(P0)+, S∗(g) = 1 is equivalent to(∀h ∈ �Q0

) 〈S(h), g〉 = 1,

we get that

M · M◦ = PCAR.
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FIG. 1.

Encouraged by this observation, we define

M◦◦ = {h ∈ L1(P0)+ : (∀g ∈ M◦)〈h,g〉 = 1}.
Figure 1 shows the situation whenP0 has a support of 3 points (so we can view

�P0 as a triangle) andM is a convex subset of�P0.
As you can see, we should viewM◦◦ as an extension ofM to the edges of�P0.

The following proposition, together with Lemma 3.9, substantiates Figure 1:

PROPOSITION 3.5. Let M be an arbitrary subset of �P , with P some
probability measure.

1. M ⊂ M◦◦ ⊂ �P .
2. (M◦◦)◦ = M◦.

PROOF. 1. The first inclusion is obvious from the definitions. For the second
one, it is enough to note that 1∈ M◦, becauseM ⊂ �P .

2. Clearly,(M◦◦)◦ ⊂ M◦. Let g ∈ M◦. If h ∈ (M◦)◦, then〈h,g〉 = 1 (because
g ∈ M◦), sog ∈ (M◦◦)◦. �

SinceM ·M◦ ⊂ M◦◦ ·M◦ ⊂ �P , a natural necessary condition onM for M ·M◦
to be dense in�P would beM◦◦ ⊂ �M . The following proposition more or less
substantiates this statement. We do have to caution the reader that in principle
M◦ andM◦◦ need not be closed sets, since the linear functionalh �→ 〈h,g〉 is not
continuous onL1(P ) if g ∈ L1(P )+ \ L∞(P ).

PROPOSITION3.6. Let M be a subset of �P such that M◦◦ �⊂ �M. Then there
exist h ∈ M◦◦ and ε > 0 such that for all f ∈ M · M◦,∫

− log
(

f

h

)
hdP > ε.

PROOF. Chooseh ∈ M◦◦ \ �M . Then there existsε > 0 such that for all̃h ∈ M ,
‖h − h̃‖ > ε. It is a well-known inequality for the Kullback–Leibler divergence
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[see, e.g., van der Vaart (1998), page 62] that

∫
− log

(
h̃

h

)
hdP ≥ 1

4
‖h − h̃‖2.

Now let f ∈ M · M◦, sof = h̃g, with h̃ ∈ M andg ∈ M◦. Note that〈g,h〉 = 1,
sinceh ∈ M◦◦. So∫

− log
(

h̃g

h

)
hdP =

∫
− log

(
h̃

h

)
hdP +

∫
− log(g)hdP

>
1

4
ε2 − log

(∫
ghdP

)

= 1

4
ε2. �

We have to point out that this proposition does not state that, under the
assumption thatM◦◦ �⊂ �M, M · M◦ is not dense in�P . We were not able to prove
that statement in general. However, it doesindicate thatM ·M◦ is not dense in�P ,
and in specific examples it should not be too hard to actually prove it.

EXAMPLE 3.7 (Current status). As we have seen already, we consider a
time of interestY ∈ [0,1], a censoring timeC ∈ [0,1], and the data consists of
(C,1{Y≤C}). We take

Q0(dt) = dt and P0(dx, δ) = x dx · 1{δ=1} + (1− x) dx · 1{δ=0}.

It is easily seen that our mapS is equal to

S(h)(x, δ) = 1

x

∫ x

0
h(t) dt · 1{δ=1} + 1

1− x

∫ 1

x
h(t) dt · 1{δ=0}.

Remember thatM = S(�Q0), so for allh̃ ∈ �M , we have thatxh̃(x,1) is increasing
in x. Now choose

h(t) = 1{t≤1/3} − 1{1/3<t≤2/3} + 3 · 1{t>2/3}.

Then〈h,1〉 = 1 andS(h) ≥ 0, soS(h) ∈ M◦◦, butxS(h)(x,1) = ∫ x
0 h(t) dt is not

increasing inx, soS(h) /∈ �M . It was this observation that led us to find the test
described in Example 2.2.

The statement we would like to prove forM ⊂ �P is thatM ·M◦ is dense in�P

if and only if M◦◦ ⊂ �M. However, we were not able to prove it in this generality,
nor find a counterexample to it. Only whenP has finite support were we able to
prove the statement in full generality:
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THEOREM 3.8. Let P be a probability measure with finite support and let
M ⊂ �P such that there exists h0 ∈ M with h0 > 0. Then M · M◦ is dense in �P

if and only if �M = M◦◦.

PROOF. Let �M �= M◦◦. Since we are now in the situation thatL1(P ) =
L∞(P ), it follows thatM◦◦ is closed, so we always have�M ⊂ M◦◦. According
to Proposition 3.6, there existh ∈ M◦◦ andε > 0 such that for allf ∈ M · M◦,∫

− log
(

f

h

)
hdP > ε.

Since h0 ∈ M◦◦, we can chooseh > 0 [note thatεh0 + (1 − ε)h ∈ M◦◦, for
all 1 > ε > 0]. Since {f > 0 :f ∈ �P } is an open subset of�P and since
f �→ ∫ − log(f/h)hdP is continuous on this set (so, in particular, continuous at
h), we conclude that there existsη > 0 such that for allf ∈ M · M◦, ‖f − h‖ > η.

Now let �M = M◦◦. Choosef ∈ �P with f > 0. Since �M is compact and
h �→ ∫ − log(h/f )f dµ is lower semi-continuous (see also Lemma 3.11), there
existsh ∈ �M that minimizes this Kullback–Leibler divergence. It is also clear that
h > 0, since otherwise the Kullback–Leibler divergence would be+∞ (here we
use thath0 ∈ M). Now let h̃ ∈ M . Sinceh > 0, there existsε > 0 such that when
|λ| < ε, h + λ(h̃ − h) ≥ 0. This means thath + λ(h̃ − h) ∈ M◦◦ = �M , because
clearly〈h + λ(h̃ − h), g〉 = 1 for all g ∈ M◦. The function

λ �→
∫

− log
(

h + λ(h̃ − h)

f

)
f dP

has a minimum atλ = 0 for λ ∈]−ε,−ε[ , so the derivative atλ = 0 (which exists!)
must be zero. A simple calculation yields∫

(h̃ − h)
f

h
dP = 0.

This proves that〈h̃, f/h〉 = 1 for all h̃ ∈ M , sof/h ∈ M◦. Therefore,f ∈ �M ·M◦.
It is not hard to see that ifhn → h, thenhn · f/h → f , which proves thatM · M◦
is dense in�P . �

This theorem is very much like the theorem in Section 2 of Gill, van der Laan
and Robins (1997) and also the proof is very similar. To show how their theorem
(apart from the uniqueness statement) follows from Theorem 3.8, we translate their
setup into ours. LetY be a finite space withm points and letX = P (Y) \ {∅},
the collection of all nonempty subsets ofY. The idea is that one observesX ⊂ Y
such thatY ∈ X. To reformulate the CAR assumption used in Gill, van der Laan
and Robins (1997), we defineZ = {(y,A) :y ∈ A ⊂ Y} andµ0 as the rescaled
counting measure onZ, assigning mass 21−m/m to each element ofZ. Obviously,
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we defineπ(y,A) = y andψ(y,A) = A, soQ0 = π(µ0) is the rescaled counting
measure onY (assigning mass 1/m to each point) andP0 = ψ(µ0) satisfies

P0({A}) = |A|
m2m−1 (∀A ⊂ Y),

where|A| denotes the number of elements ofA. Now we defineS :L1(Q0) →
L1(P0) such that for allh ∈ L1(Q0) andA ∈ X, we have

S(h)(A) = Eµ0

(
h(Y )|X = A

) = 1

|A|
∑
y∈A

h(y).(3.2)

It follows immediately that forg ∈ L1(P0) andy ∈ Y, we have

S∗(g)(y) = 21−m
∑
A�y

g(A).

The CAR assumption now states that the likelihood ofX with respect toP0 equals
g · S(h), whereh is an arbitrary density with respect toQ0 andg ∈ L1(P0)+ such
thatS∗(g) = 1. If we would follow Definition 1.1, we would restrict the possible
distributionsµ of Z = (Y,X) such that

µ
(
X = A|Y = y

) = g(A)µ0
(
X = A|Y = y

) = 21−mg(A)1{y∈A}.

It is not hard to see that this is indeed equivalent to the definition of Gill, van
der Laan and Robins (1997) used for finite sample spaces. So, in fact, they use a
very specific form of the mapS; even in finite sample spaces our setup is much
less restrictive. Finally, to conclude that in this case CAR cannot be tested, we use
Theorem 3.8 to see that we only need to check that when we define

M = {
S(h) :h ∈ �Q0

}
,

we haveM◦◦ = �M . We will use the following lemma.

LEMMA 3.9. Let P be a measure with finite support and let M ⊂ �P . Then

M◦◦ = 〈M〉 ∩ �P .

Here 〈M〉 denotes the linear span of M .

PROOF. Let h ∈ 〈M〉 ∩ �P , so h = ∑
λihi with λi ∈ R and hi ∈ M such

thath ≥ 0 and〈h,1〉 = 1. This means that
∑

λi = 1. If g ∈ M◦, then for everyi
〈hi, g〉 = 1, so we conclude that〈h,g〉 = 1, and, therefore,h ∈ M◦◦. We have
shown that〈M〉 ∩ �P ⊂ M◦◦.

Now supposeh ∈ �P andh /∈ 〈M〉. SinceL1(P ) is finite dimensional, there
existsφ ∈ L1(P ) such that for all̃h ∈ 〈M〉, we have〈h̃, φ〉 = 0 and〈h,φ〉 > 0. We
can chooseφ such that|φ| ≤ 1. Defineg = 1+ φ. Theng ≥ 0 and forh̃ ∈ M we
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have〈h̃, g〉 = 1, sog ∈ M◦. However,〈h,g〉 > 1, soh /∈ M◦◦. SinceM◦◦ ⊂ �P ,
we have shown thatM◦◦ ⊂ 〈M〉 ∩ �P . �

WhenM = {S(h) :h ∈ �Q0}, it is easy to check that〈M〉 ∩ �P0 = {S(h) :h ∈
L1(Q0), 〈h,1〉 = 1, S(h) ≥ 0}. Therefore, wheneverX is a finite set,M◦◦ = �M is
equivalent to

S(h) ≥ 0 �⇒ ∃ h̃ ≥ 0 :S(h̃) = S(h) [ ∀h ∈ L1(Q0)].(3.3)

For the mapS we were considering, this follows trivially from (3.2) [note that
S(h)({y}) = h(y)].

The problem with extending the proof of Theorem 3.8 to generalP is twofold.
First of all, �M will not be compact in general, which makes it difficult to find a
minimum for the Kullback–Leibler divergence. The second problem is concluding
that the derivative is zero: even if we find a minimum (in some compactification),
we can only conclude that the directional derivative we used in the previous proof
is negative, but not necessarily zero. To solve these problems and come up with
a theorem that can be used for practical situations, we will use the mapS more
extensively by putting restrictions on it. But first we will discuss an extension of
the Kullback–Leibler divergence to solve the noncompactness problem.

DEFINITION 3.10. LetE = (L∞(P ))′, the (strong) dual of the Banach space
L∞(P ). Let f ∈ L1(P )+. Define forh ∈ E, h ≥ 0,

KLf (h) = sup

{
n∑

i=1

− log
( 〈h,φi〉

〈f,φi〉
)
〈f,φi〉 :φi ∈ L∞(P )+,

n∑
i=1

φi = 1

}
.

We would like to make a few remarks. AsE is the dual of an ordered Banach
space, it is itself ordered in the obvious way:h ≥ 0 if for all φ ∈ L∞(P )+,
〈h,φ〉 ≥ 0. Furthermore,L1(P ) ⊂ E. We also have that the unit ball ofE is
weakly compact (Banach–Alaoglu), and ifh ∈ E+ (i.e., h is positive), we have
that‖h‖ = 〈h,1〉. Since KLf is the supremum of weakly continuous functions on
E+, it is itself weakly lower semi-continuous. IfM ⊂ �P , then �Mσ (the closure of
M in the weak topology, seen as a subset ofE) will be weakly compact, because
�Mσ ⊂ E+ and for allh ∈ �Mσ , 〈h,1〉 = 1, so it is a weakly closed subset of the
unit ball. This means that KLf will attain its minimum on�Mσ for someh ∈ �Mσ.

From the theory of ordered vector lattices [see, e.g., Schaefer and Wolff (1999),
Chapter V] it follows thatL1(P ) is a band in E. This means that eachh ∈ E+
can be uniquely decomposed ash = h// + h⊥, whereh// ∈ L1(P )+ andh⊥ ≥ 0 is
disjoint fromL1(P ), so for allf ∈ L1(P )+, we have that inf(h⊥, f ) = 0 (compare
this to the decomposition of a measure into a part that is absolutely continuous to
some other measure and a part which is disjoint from this other measure). We have
the following lemma, the proof of which is deferred to the Appendix.
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LEMMA 3.11. Let f ∈ L1(P )+. Then, in the notation introduced above, for
all h ∈ E+,

KLf (h) = KLf (h//) =
∫

− log
(

h//

f

)
f dP.

Now we will consider a coarseningS :L1(Q0) → L1(P0). Define EQ0 =
(L∞(Q0))

′ andEP0 = (L∞(P0))
′. By considering the dual map ofS∗, we can

extendS :EQ0 → EP0. Clearly, S will be continuous for the weak topologies
on EQ0 and EP0 (as well as for the strong topologies) andS will be a
positive map. DefineM = S(�Q0). Since �Q0

σ ⊂ EQ0 is weakly compact,
�Mσ = S(�Q0

σ
)(⊂ EP0). Whenh ∈ EQ0,+, we can considerh// ∈ L1(Q0)+ as

well asS(h)// ∈ L1(P0)+. In general, we can only deduce thatS(h)// ≥ S(h//),
sinceh = h// + h⊥ andS(h//) ∈ L1(P0)+.

Before we can state our main result, we need two assumptions. The first is the
analogue of�M = M◦◦, or equation (3.3) which we discussed before, but slightly
stronger:

(A1) For all h′ ∈ EQ0,+ such thatS(h′)// > 0, there existsh ∈ EQ0,+ with
S(h) = S(h′) andh// > 0.

How we will use assumption (A1) is stated in the following lemma: we say that
h1 ∈ L1(P )+ dominates h2 ∈ L1(P )+ (notation:h2 � h1), if there existsR > 0
such thath2 ≤ Rh1.

LEMMA 3.12. Suppose h0 ∈ EQ0,+ such that h0,// > 0. Let h ∈ L1(Q0)+.
Then there exists a sequence hn ∈ L1(Q0)+ such that hn � h0,// and hn ↑ h.

PROOF. Definef = h0,//. Let h ∈ L1(Q0)+. Define

hn = h · 1{f>1/n} ∧ n.

Sincef > 0, hn ↑ h. Furthermore,hn ≤ n2 · f , because on{f > 1/n}, hn ≤ n.
�

Sincehn ↑ h implies thatS(hn) ↑ S(h), (A1) can be seen as an approximation
property forM = S(�Q0). We will need a similar approximation property for
M◦ = {g ∈ L1(P0)+ :S∗(g) = 1}:
(A2) For all g ∈ L1(P0)+ such thatS∗(g) = 1 andg > 0, there exists a sequence

gn ∈ L1(P0)+ such thatS∗(gn) = ‖gn‖1 · 1, gn � g andgn ↑ 1.

We will first show how these two assumptions are used to prove our main
theorem, after which we will show in two examples how one checks these
assumptions.
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THEOREM 3.13. Let S :L1(Q0) → L1(P0) be a coarsening satisfying (A1)
and (A2). Then the CAR assumption cannot be tested, so PCAR is dense in �P0.

PROOF. DefineM = S(�Q0)(⊂ �P0) andM◦ = {g ∈ L1(P0)+ :S∗(g) = 1}.
We have to prove thatM · M◦ is dense in�P0. Let f ∈ �P0 such thatf > 0 and
f is bounded; the set of all these functions is clearly dense in�P0, so it is enough
to prove thatf ∈ M · M◦.

Clearly, KLf (1) < +∞, so the infimum of KLf on �Mσ ⊂ EP0 is finite (because
1 ∈ M). As noted before, since KLf is weakly lower semi-continuous and�Mσ

is weakly compact, KLf attains its minimum somewhere in�Mσ , let us say in
k ∈ �Mσ . Using Lemma 3.11, we can see thatk// > 0, since otherwise KLf (k) =
KLf (k//) = +∞ (here we use thatf > 0). Since�Mσ = S(�Q0

σ
), we can choose

h0 ∈ EQ0,+ with S(h0) = k andh0,// > 0 [here we use (A1)].
Let h ∈ �Q0. According to Lemma 3.12, there exists a sequencehn ∈ L1(Q0)+

with hn � h0,// andhn ↑ h [and, therefore,S(hn) ↑ S(h)]. Define an = 〈hn,1〉
(soan ↑ 1) and fixn. Becausehn � h0,//, there exists 0< ε ≤ 1 such that for all
λ ∈]−ε, ε[,

h0,// + λ(a−1
n hn − h0,//) ≥ 0.

We conclude thath0+λ(a−1
n hn −h0) ∈ �Q0

σ
, and sok+λ(a−1

n S(hn)−k) ∈ �Mσ .
Therefore, for allλ ∈]−ε, ε[,∫

− log
(

k// + λ(a−1
n S(hn) − k//)

f

)
f dP0 ≥

∫
− log

(
k//

f

)
f dP0,

which by differentiating atλ = 0 implies〈
S(hn),

f

k//

〉
= an.

SinceS(hn) ↑ S(h), we conclude for everyh ∈ �Q0 that〈S(h), f/k//〉 = 1, which
proves thatf/k// ∈ L1(P0)+ and thatS∗(f/k//) = 1, sof/k// ∈ M◦.

We would like to conclude thatk// ∈ �M , but we only know thatk ∈ �Mσ . We do
know, however, that for allg′ ∈ M◦,

〈k//, g
′〉 ≤ 1.(3.4)

For if we choose a sequencegn ∈ L∞(P0)+ such thatgn ↑ g′, thenS∗(gn) ≤
S∗(g′) = 1, so

〈k//, g
′〉 = lim ↑ 〈k//, gn〉 ≤ lim ↑ 〈k, gn〉 ≤ 1.

Now we can use (A2). Defineg = f/k// ∈ M◦. Clearly,g > 0, so there exists a
sequencegn ∈ L1(P0)+ with S∗(gn) = ‖gn‖1 · 1, such thatgn � g andgn ↑ 1.
Define bn = ‖gn‖1 ↑ 1. There existsε > 0 such that for allλ ∈]− ε, ε[, g +
λ(b−1

n gn−g) ≥ 0, sog+λ(b−1
n gn−g) ∈ M◦. Since we have (3.4) and〈k//, g〉 = 1,
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we conclude that〈k//, gn〉 = bn, so〈k//,1〉 = 1. But this means thatk = k//, since
k// ≤ k and〈k,1〉 = 1. Sok ∈ L1(P0) andk is the weak limit [with respect to the
duality with L∞(P0)] of functions inM . However,L∞(P0) is the dual ofL1(P0)

andM is convex, so the weak closure ofM in L1(P0) equals the strong closure�M ,
which means thatk ∈ �M . Now choose{km} ∈ M such that‖k − km‖1 → 0. We
know thatg · km ∈ �P0 andg · k = f ∈ �P0. This means that

√
gkm and

√
gk

are positive elements of the unit sphere ofL2(P0). Since the unit ball is weakly
compact inL2(P0), we can choose a weakly converging subsequence of{√gkm },
let us say

√
gkmn → φ, for someφ in the unit ball. This means, in particular, that

for anyψ ∈ L∞(P0),

〈φ,ψ〉 = lim
n→∞

〈√
gkmn,ψ

〉 = lim
n→∞

〈√
kmn,ψ

√
g

〉 = 〈√
k,ψ

√
g

〉
.

The last equality follows from the well-known fact that the Hellinger metric
induces the same topology on�P0 as theL1-norm, so

√
km → √

k in L2(P0),
and the fact thatψ

√
g ∈ L2(P0). SinceL∞(P0) is dense inL2(P0), we have shown

thatφ = √
gk. This means that every weakly convergent subsequence has the same

limit
√

gk, which in turn proves that
√

gkm converges weakly to
√

gk. Now note
that if for someφ ∈ L2(P0), we have that‖φ‖2 = 1, then a neighborhood base for
theL2-topology on the unit ball aroundφ is given by

Un =
{
ψ ∈ L2(P0) :‖ψ‖2 ≤ 1 and〈ψ,φ〉 > 1− 1

n

}
,

since one easily checks that for anyψ ∈ Un, ‖ψ − φ‖2
2 ≤ 2/n. This means that

if {ψn} is a sequence in the unit ball converging weakly toφ, thenψn → φ in
L2(P0). Through this we conclude that

√
gkm → √

gk in L2(P0), which implies
that gkm → gk in L1(P0). So k · g = f ∈ M · M◦, which proves thatPCAR is
L1-dense in�P0, and, hence, the CAR assumption is not testable.�

We wish to stress that in our opinion the only natural (necessary and sufficient)
condition onS for PCAR to be dense in�P0 is equation (3.3):

S(h) ≥ 0 �⇒ ∃ h̃ ≥ 0 :S(h̃) = S(h) [ ∀h ∈ L1(Q0)].
This is illustrated by Figure 1 and we have not been able to find counterexamples
to this claim. The stronger condition (A1) and condition (A2) were necessary to
make our proof work, but must be seen as regularization conditions. We know of
examples where (A1) and/or (A2) fail, but we still have the result that CAR cannot
be tested. In these examples, the main ideas of the proof of Theorem 3.13 still
work, but the details are a bit different.

We will try to illustrate the theorem by two examples, which we will discuss in
detail.
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EXAMPLE 3.14 (Missing data). LetY ∈ Y be the variable we wish to observe,
distributed according toQ0. However, sometimes we can observeY directly and
sometimes the observation is missing, which we will denote by saying that our
observation is †. To make things precise, we define our data spaceX = Y � {†}.
Furthermore, we will use a hidden space to define our coarseningS: define
Z = Y × {0,1} and the mapψ :Z → X as ψ(y,1) = y (Y is not missing),
ψ(y,0) = † (Y is missing). Chooseµ0 = Q0 × (1

2δ0 + 1
2δ1), so one possible

CAR distribution is that each observation has probability1
2 of being missing,

independently ofY ∼ Q0. It also means thatP0 = ψ(µ0) = 1
21Y ·Q0 + 1

2δ†. Then
for h ∈ L1(Q0), we defineS(h) ∈ L1(P0) as follows:

S(h)(y) = Eµ0

(
h(Y )|X = y

) = h(y) (for y ∈ Y)

and

S(h)(†) = Eµ0

(
h(Y )|X = †

) = EQ0(h(Y )).

It is not hard to check that forg ∈ L1(P0),

S∗(g)(y) = Eµ0

(
g(X)|Y = y

) = 1
2g(y) + 1

2g(†),

so indeedS∗(1) = 1, which shows thatS is a coarsening. Then

PCAR = {
g · S(h) :h ∈ �Q0, g ≥ 0, S∗(g) = 1

}
.

SinceS∗(g) = 1 implies thatg(y) = 2 − g(†) for Q0-almost ally, we see that
we get all distributions inPCAR by allowingY to be distributed according to an
arbitrary densityh with respect toQ0 and assuming that each observation has an
arbitrary probabilityp = 1

2g(†) to be missing, independently ofY .
Now we would like to check assumptions (A1) and (A2). In this case (A2) is

trivial, because ifg ∈ L1(P0) andg > 0 such thatS∗(g) = 1, then 0< min(2 −
g(†), g(†)) ≤ g, so 1� g. Assumption (A1) is also not so hard to check, since if
we restrictS(h) to Y, we get thatS(h) = 1

2h, seen as elements ofL1(Q0). This
shows thatS(h)// = 1

2h//, so S(h)// > 0 clearly impliesh// > 0. Theorem 3.13
now states that the CAR assumption cannot be tested in this case, soPCAR is
dense in�P0. Clearly, in this simple example it is very easy to directly verify that,
in fact,PCAR = �P0.

EXAMPLE 3.15 (Right-censored data). LetY =]0,1[, Q0(dt) = dt onY and
Y be a time of interest distributed according to a density with respect toQ0. All
that follows can be easily generalized to an arbitrary measure on an open subset of
]0,∞[, at the cost of some notational difficulty. LetC ∈]0,1[ be a censoring time
and let the data(X,�) consist of

(X,�) = ψ(Y,C)
def= (

Y ∧ C,1{Y≤C}
)
.
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We will construct our coarseningS as follows: defineµ0 = dt dc on Y×]0,1[.
Then defineP0 = ψ(µ0) as a probability measure on the data-spaceX. One easily
checks that

P0(dx, δ) = (1− x) dx · 1{δ=1} + (1− x) dx · 1{δ=0}.
Now define forh ∈ L1(Q0),

S(h)(x, δ) = Eµ0

(
h(Y )|(X,�) = (x, δ)

)
.

This is just saying thatS(h) is the density of the distribution of the data with
respect toP0 whenY andC are independent,Y distributed according toh(t) dt

andC distributed according todc. Therefore, one easily calculates

S(h)(x, δ) = h(x) · 1{δ=1} + 1

1− x

∫ 1

x
h(t) dt · 1{δ=0}.

Clearly, S(1) = 1 andS is positive. Furthermore, for allh ∈ L1(Q0) and g ∈
L∞(P0),

〈S(h), g〉P0 =
∫ 1

0
(1− x)h(x)g(x,1) dx +

∫ 1

0

∫ 1

x
h(t)g(x,0) dt dx

=
∫ 1

0
(1− t)g(t,1)h(t) dt +

∫ 1

0

(∫ t

0
g(x,0) dx

)
h(t) dt

=
∫ 1

0

(
(1− t)g(t,1) +

∫ t

0
g(x,0) dx

)
h(t) dt,

so we see that

S∗(g)(t) = (1− t)g(t,1) +
∫ t

0
g(x,0) dx.

Hence,S∗(1) = 1, soS is indeed a coarsening. DefineM = S(�Q0) andM◦ =
{g ∈ L1(P0)+ :S∗(g) = 1}. Let h ∈ �Q0 andg ∈ M◦. SinceS∗(g) = 1,

g(t,1) = 1

1− t

(
1−

∫ t

0
g(x,0) dx

)
.

Becauseg ≥ 0, we have that
∫ 1
0 g(x,0) dx ≤ 1. If

∫ 1
0 g(x,0) dx = 1 and we letC

be distributed according tog(x,0) andY according toh, we can easily check that
the density ofψ(Y,C) with respect toP0 is exactlyS(h) · g, soPCAR contains
all data distributions one gets ifY andC are independent and dominated by the
Lebesgue measure. If we allowC to be distributed according to a subdensity (i.e.,
just saying that the censoring time has a positive probability of being bigger than
the largest possible value forY ), then we get all ofPCAR.

We would now like to check assumptions (A1) and (A2). Denote byS(h){δ=1}
the restriction ofS(h) to {δ = 1}. Clearly, forh ∈ EQ0, S(h){δ=1} = (1 − y) · h;
here(1− y) · h acts onφ(y) ∈ L∞(Q0) as follows:

〈(1− y) · h,φ(y)〉 = 〈h, (1− y) · φ(y)〉.
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To check (A1) it is enough to conclude thath// > 0 whenever[(1 − y) · h]// > 0
and h ≥ 0. However, in that case(1 − y) · h ≤ h (because‖1 − y‖∞ ≤ 1), so
0 < [(1− y) · h]// ≤ h//.

Now letg ∈ M◦, g > 0. Define

gn(t,0) = 1{g(t,0)>1/n}.

Clearly,gn(t,0) ≤ ng(t,0). Defineλn = ∫ 1
0 gn(x,0) dx and

gn(t,1) = 1

1− t

(
λn −

∫ t

0
gn(x,0) dx

)
.

Then we have that

gn(t,1) = 1

1− t

∫ 1

t
gn(x,0) dx

≤ n

1− t

∫ 1

t
g(x,0) dx

= n

1− t

(∫ 1

0
g(x,0) dx −

∫ t

0
g(x,0) dx

)

≤ n

1− t

(
1−

∫ t

0
g(x,0) dx

)

= ng(t,1).

Sogn � g. By construction we have thatS∗(gn) = λn ·1. Furthermore, sinceg > 0,
gn(t,0) ↑ 1. This implies thatgn(t,1) ↑ 1, sogn ↑ 1. This proves that assump-
tion (A2) is also satisfied. Theorem 3.13 now states that the CAR assumption can-
not be tested in the case of right-censored data. We wish to remark that this in itself
is not a new result, but merely an illustration of Theorem 3.13.

APPENDIX

In this Appendix we will give the proof of a lemma which is a bit technical. We
repeat some notation: define for a probability measureP the spaceE = (L∞(P ))′.
This is an ordered vector space andL1(P ) is a band inE, which means that each
h ∈ E+ can be uniquely decomposed ash = h// + h⊥, whereh// ∈ L1(P )+ and
h⊥ ≥ 0 is disjoint fromP , so for eachf ∈ L1(P )+, inf(f,h⊥) = 0. According
to Schaefer and Wolff [(1999), Chapter V, Theorem 1.5] this is equivalent to
saying that for eachφ ∈ L∞(P )+ and eachε > 0, there exists a decomposition
φ = φ1 + φ2, φ1 ≥ 0, φ2 ≥ 0, such that〈h⊥, φ1〉 + 〈f,φ2〉 < ε. For convenience,
we repeat the definition of KLf for f ∈ L1(P )+. Define forh ∈ E+,

KLf (h) = sup

{
n∑

i=1

− log
( 〈h,φi〉

〈f,φi〉
)
〈f,φi〉 :φi ∈ L∞(P )+,

n∑
i=1

φi = 1

}
.
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LEMMA A.1. Let f ∈ L1(P )+. Then, in the notation introduced above, for
all h ∈ E+,

KLf (h) = KLf (h//) =
∫

− log
(

h//

f

)
f dP.

PROOF. The second equality is well known for the Kullback–Leibler diver-
gence [see, e.g., Pinsker (1964), Section 2.4] and can be proved using standard
techniques like monotone classes. As for the first, sinceh ≥ h//, it is clear that
KLf (h//) ≥ KLf (h) (− log is a decreasing function). Assume KLf (h) < +∞.
We would like to make an important observation: if

∑n
i=1 φi = 1, and we decom-

pose eachφi = φi,1 + φi,2, then Jensen gives us

n∑
i=1

2∑
j=1

− log
( 〈h,φi,j 〉

〈f,φi,j 〉
)
〈f,φi,j 〉 ≥

n∑
i=1

− log
(〈h,φi〉

〈f,φi〉
)
〈f,φi〉.(A.1)

We only need to considerφi such that〈f,φi〉 > 0 [we define log(1/0) · 0 = 0].
We also know that for each suchφi , 〈h//,φi〉 > 0. For if not, we could decompose
φi = φi,1 + φi,2, such that〈h,φi,1〉 is arbitrarily small and〈f,φi,1〉 > 〈f,φi〉/2,
which by (A.1) would imply that KLf (h) = +∞.

So considerφi ≥ 0 with 〈h//,φi〉 > 0 and1{f >0} ≤ ∑n
i=1 φi ≤ 1. Letε > 0. Be-

cause inf(h⊥, f ) = inf(h⊥, h//) = 0, we can find a decompositionφi = φi,1 + φi,2
for eachi such that〈h//,φi − φi,1〉 = 〈h//,φi,2〉 < δ, 〈f,φi − φi,1〉 = 〈f,φi,2〉 < δ

and〈h⊥, φi,1〉 < δ. Here we can chooseδ > 0 such that
n∑

i=1

− log
(〈h// + h⊥, φi,1〉

〈f,φi,1〉
)
〈f,φi,1〉 ≥

n∑
i=1

− log
(〈h//,φi〉

〈f,φi〉
)
〈f,φi〉 − ε

and, noting that〈h,1〉 > 0, since KLf (h) < +∞,
n∑

i=1

− log
( 〈h,1〉

〈f,φi,2〉
)
〈f,φi,2〉 ≥ −ε.

This last inequality implies that
n∑

i=1

− log
(〈h,φi,2〉

〈f,φi,2〉
)
〈f,φi,2〉 ≥

n∑
i=1

− log
( 〈h,1〉

〈f,φi,2〉
)
〈f,φi,2〉 ≥ −ε.

All in all, we can conclude that

KLf (h) ≥
n∑

i=1

2∑
j=1

− log
( 〈h,φi,j 〉

〈f,φi,j 〉
)
〈f,φi,j 〉

≥
n∑

i=1

− log
( 〈h//,φi〉

〈f,φi〉
)
〈f,φi〉 − 2ε.

This proves that KLf (h) ≥ KLf (h//). �
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