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DENSITIES, SPECTRAL DENSITIES AND MODALITY1

BY P. LAURIE DAVIES AND ARNE KOVAC

Universität Duisburg-Essen

This paper considers the problem of specifying a simple approximating
density function for a given data set(x1, . . . , xn). Simplicity is measured
by the number of modes but several different definitions of approximation
are introduced. The taut string method is used to control the numbers of
modes and to produce candidate approximating densities. Refinements are
introduced that improve the local adaptivity of the procedures and the method
is extended to spectral densities.

1. Contents. In Section 1.1 we formulate the density problem in terms of
obtaining the simplest density which is an adequate approximation for the given
data. The taut string method of Davies and Kovac (2001) is adapted to the density
problem and is used for producing candidate densities of increasing complexity.
The difficulties of the density problem are discussed in Section 2. Section 3
contains a more detailed account of the application of the taut string method to
the density problem. The asymptotics of the procedure on appropriate test beds are
discussed in Section 4. A refinement based on cell occupancy frequencies which
increases local sensitivity is described in Section 5. Section 5.4 compares the taut
string method with kernel estimators in a small simulation study. Finally, Section 6
describes the application of the taut string methodology to the problem of spectral
densities.

1.1. The density problem.Given a samplexn = (x1, . . . , xn) of size n,
we consider the problem of specifying a distributionF with the smallest
number of modes such that the resulting model of i.i.d. random variables
XF

n = (XF
1 , . . . ,XF

n ) with common distributionF is an adequate approximation
for the dataxn.

We use different concepts of approximation, one of which is the following.
Let En,

En(x) = 1

n

n∑
i=1

{xi ≤ x},
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denote the empirical distribution of the dataxn and Fn the empirical distrib-
ution function of n i.i.d. random variablesXF

n with common distributionF .
The Kolmogorov metricdKO is defined by

dKO(F,G) = sup{x : |F(x) − G(x)|}.
The i.i.d. model with distributionF will be regarded as an adequate approximation
to the dataxn if

dKO(En,F ) ≤ qu(n,α, dKO),(1.1)

where qu(n,α, dKO) denotes theα-quantile of the random variabledKO(Fn,F )

which is independent ofF for continuousF . This gives rise to the Kolmogorov
problem.

PROBLEM 1.1 (Kolmogorov problem). Determine the smallest integerkn for
which there exists a densityf n with kn modes and whose distributionFn satisfies

dKO(En,F
n) ≤ qu(n,α, dKO).(1.2)

We note that the problem is well posed: for any data setxn it has a solution.
We have posed the problem in terms of approximation so that no assumptions
regarding the “true” data generating mechanism are required or made.

The Problem 1.1 is formulated in terms of the smallest number of modes
required for an adequate approximation. A detailed theoretical discussion of such
one-sided problems is given by Donoho (1988); one of his examples is that
of modality of nonparametric densities and spectral densities. His paper also
raises interesting questions about statistical inference involving objects whose very
existence cannot be shown, an example being the “underlying density” for the data.
We avoid such problems by phrasing the paper in terms of approximation.

Hartigan and Hartigan (1985) and Hartigan (2000) construct tests for the modal-
ity of a density function. They are based on the Kolmogorov distance of the nearest
mixture of uniform distributions to the data and are discussed in more detail below.

Hengartner and Stark (1995) also make use of the Kolmogorov ball to determine
nonparametric confidence bounds for densities subject to an upper bound for
the number of modes. In the particular case of monotone or unimodal densities
the width of their bounds on appropriate test beds is(logn/n)1/3, which agrees
with the results given in this paper. It seems that their bounds become difficult
to calculate for more than one mode as the complexity is given as

(n
l

)
where l

is the number of local extremes. The main differences with respect to the work
of Hengartner and Stark (1995) are as follows:

(i) we provide an explicit density but no bounds,
(ii) neither the number of modes nor even an upper bound is specified in advance,

(iii) the algorithmic complexity of our method isO(n) independently of the num-
ber of modes.
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1.2. The taut string methodology.The basic methodology we use for produc-
ing densities is the taut string methodology. Taut strings were first used in the con-
text of monotonic regression: the greatest convex minorant of the integrated data
is a taut string and its derivative is precisely the monotone increasing least squares
approximation. This is described in Barlow, Bartholomew, Bremner and Brunk
(1972), who were the first to use the phrase “taut string.” We refer also to Leurgans
(1982). The first use of the taut string which goes beyond the monotone case and
which explicitly deals with modality is in Hartigan and Hartigan (1985), where it
is referred to as the “stretched string.” Hartigan and Hartigan (1985) introduced
their DIP test for unimodality which is based on the closest (in the Kolmogorov
metric) unimodal distribution to the empirical distribution function of the data.
Based on the work of Hartigan and Hartigan (1985), Davies (1995) used the taut
string method to produce candidate densities of low modality to approximate data.
Mammen and van de Geer (1997) employed the taut string in the nonparamet-
ric regression problem. They considered a penalized least squares problem where
the penalty is the total variation of the approximating function. The solution is
the basic taut string confined to a tube centered at the integrated data. Mammen and
van de Geer (1997) gave a detailed description of the taut string but did not mention
the connection with modality. Hartigan (2000) recentlyproposed a generalization
of the DIP test to an arbitrary number of modes. It is based on the Kolmogorov
distance between the empirical distribution and the nearest distribution consist-
ing of a mixture of uniform distributions with at mostm modes. This is calcu-
lated using a taut string. Hartigan examines for each antimode of a taut string
approximation the supremum distance between the empirical distribution function
and a monotone density on a “shoulder interval” including the antimode. Finally,
Davies and Kovac (2001) used the taut string methodology to control the number
of local extremes of a nonparametric approximation to a data set. They also intro-
duced the idea of local squeezing and residual driven tube widths, which greatly
increases the precision and flexibility of the taut string methodology.

1.3. Smoothness.The taut string methodology produces densities which are
piecewise constant and therefore not even continuous. Smoothness will not be
a consideration in this paper but we point out that techniques for smoothing such
functions have been developed. The idea is to obtain the smoothest density subject
to shape and deviation constraints taken from the taut string. We refer to Metzner
(1997), Löwendick and Davies (1998) and Majidi (2003).

1.4. Previous work. Much work has been done on the problem of density
estimation. One of the most popular methods is that of kernel smoothing.
We refer to Watson (1964), Nadaraya (1965), Silverman (1986), Sheather and
Jones (1991), Wand and Jones (1995), Sain and Scott (1996) and Simonoff (1996)
and the references given therein. The main problem here is the determination
of appropriate global or local bandwidths. A further approach is based on wavelets.
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We refer to Donoho, Johnstone, Kerkyacharian and Picard (1996), Herrick, Nason
and Silverman (2000) and Vidakovic (1999), Chapter 7. Mixtures of densities
have been considered in the Bayesian framework by Richardson and Green (1997)
and Roeder and Wasserman (1997). Other Bayesian methods are to be found in
Verdinelli and Wasserman (1998).

None of the above approaches is directly concerned with modality. For example,
the non-Bayesian theory is generally based on integrated squared error or some
similar loss function. In spite of this, methods are often judged by their ability
to identify peaks in the data as in Loader (1999) and Herrick, Nason and
Silverman (2000). Work directly concerned with modality has been done by
Müller and Sawitzki (1991) using their concept of excess mass. Their ideas
have been extended to multidimensional distributions by Polonik (1995a, b,
1999). Hengartner and Stark (1995) used the Kolmogorov ball centered at
the empirical distribution function to obtain nonparametric confidence bounds for
shape restricted densities. Another way of controlling modality is that of mode
testing. We refer to Good and Gaskins (1980), Silverman (1986), Hartigan and
Hartigan (1985) and Fisher, Mammen and Marron (1994).

2. The difficulties of the density problem. Obtaining adequate approximate
densities is a special case of nonparametric regression. Whereas nonparametric
regression is usually concerned with the size of the dependent variable, the density
problem is concerned with measuring the degree of closeness of the design points.
In spite of a formal similarity, this is the more difficult problem and it may explain
the modesty evident in the literature on densities. The difficulties may be illustrated
by three data sets each of a sample size ofn = 500. The first was generated using
the standard normal distribution, the second using the uniform distribution on[0,1]
and the third using the so-called claw distribution which is the following mixture
of five normal distributions:

0.5N (0,1) + 0.1
4∑

i=0

N (i/2− 1,0.1).

This density will also be referred to asN5 (see Section 3.1). It is one of ten
introduced by Marron and Wand (1992) to study the performance of different
density methods. For each data set we calculated a kernel estimate with a global
bandwidth which was chosen to be as small as possible subject to the estimate
having the same modality as the density. Similarly for the taut string method we
took the Kolmogorov ball to be as small as possible subject to the estimate having
the same modality as the density. The results are shown in Figure 1.

The kernel method performs very well on the sample from the normal
distribution but the approximation to the uniform density is poor. It can only
be improved by using a smaller bandwidth which then introduces superfluous
modes. The approximation to the claw density is even worse. Only three peaks
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FIG. 1. Normal, uniform and claw density. The panels show kernel and taut string approximations
using the smallest bandwidth that retains the correct modality.
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are correctly identified; the remaining two peaks are in the tails near−2 and 3,
where the claw density does not have a peak. An explanation of this behavior can
be found in Hartigan (2000), who discusses the relationship between the peaks and
bandwidth for kernel estimates.

The taut string method produces excellent approximations in all three cases.
In particular, all five peaks of the claw density are correctly identified. The open
problem is to produce an automatic procedure for the taut string method which
will give good approximations on these and other test beds without knowledge of
the number of modes. In the case of nonparametric regression such an automatic
procedure is available and is reminiscent of hard thresholding for wavelets [Davies
and Kovac (2001)]. Unfortunately, there seems to be no equivalent for densities and
it is this which makes the density problem so difficult.

3. Taut strings, Kuiper metrics and densities.

3.1. Test densities. As part of the evaluation of the procedures to be defined
below, we consider their performance on test beds defined by distributions. For
the sake of convenient reference we list here the distributions we consider.
N (µ,σ 2) refers to the normal distribution with meanµ and varianceσ 2.

U the uniform distribution on[0,1]
N1 the standard normal distribution
S the slash distribution, defined asN (0,1)/U(0,1)

[see Morgenthaler and Tukey (1991)]
N2 the mixture 0.5N (0,1) + 0.5N (3,1)

N4 the mixture 0.8N (0,3)+0.015N (8,0.02)+0.015N (9,0.02)+
0.17N (15,0.2)

N5 the claw distribution 0.5N (0,1) + 0.1
∑4

i=0 N (i/2− 1,0.1)

N10_5 the mixture 0.1
∑10

i=1 N (5i − 5,1)

N10_10 the mixture 0.1
∑10

i=1 N (10i − 5,1)

3.2. Taut strings. We give a short description of the taut string method.
A thorough analysis of properties of the taut string can be found in Hartigan
(2000). Further details and an algorithm of complexityO(n) are given by Davies
and Kovac (2001).

Consider a samplexn and form the ordered samplex(n) = (x(1), . . . , x(n)). For
a givenε > 0 we consider the Kolmogorov tubeT (En, ε) centered at the empirical
distributionEn and of radiusε > 0

T (En, ε) =
{
G :G monotone sup

x
|G(x) − En(x)| ≤ ε

}
.

Imagine now a taut string taking the value of 0 atx(1) and 1 atx(n) and
constrained to lie within the Kolmogorov tube. Such a string is shown in the right
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FIG. 2. These figures illustrate the taut string method applied to a sample of mixture of normal
distributions with two different tubewidths. The right column shows the tubes and the taut strings
while the left column shows histograms of the data and the corresponding densities of the taut string.

panels of Figure 2 for two different values ofε. The taut string defines a functionSn

on the interval[x(1), x(n)]. Although Sn depends onEn andε, we suppress this
dependency to relieve the burden on the notation. We denote the density ofSn

by sn. It is defined as the left-hand side derivative ofSn except at the smallest
data pointx(1) where we use the right-hand side derivative. The left panels
of Figure 2 show histograms of the data with the corresponding densitiessn
superimposed.

The taut string is a spline with knots at the points at which it touches the lower
or upper boundaries of the Kolmogorov tube. The taut string has the following
properties [see Davies and Kovac (2001) and Mammen and van de Geer (1997)]:

(i) Sn is monotonic increasing and linear between knots.
(ii) sn is nonnegative and piecewise constant between knots.
(iii) sn has the minimum modality of all functions whose integral over[x(1), x(n)]

lies in T (En, ε) and satisfies the end point conditions.
(iv) Sn switches from the upper boundaryEn + ε to the lower boundaryEn − ε

at points wheresn has a local maximum.
(v) Sn switches from the lower boundaryEn − ε to the upper boundaryEn + ε

at points wheresn has a local minimum.
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(vi) If ξj and ξj+1 are consecutive knots on the same boundary, then on
the interval(ξj , ξj+1]

sn(x) = |{i : ξj < xi ≤ ξj+1}|
n(ξj+1 − ξj )

.(3.1)

It is property (iii) which is of importance and allows control of the number
of modes. If consecutive knotsξj and ξj+1 are on opposite boundaries, then it
follows from (iv) and (v) above that (3.1) must be replaced by

sn(x) = |{i : ξj < xi ≤ ξj+1}| ± 2ε

n(ξj+1 − ξj )
(3.2)

with a minus sign at local maxima and a plus sign at local minima. This means that
the derivative underestimates local maxima and overestimates local minima. In an
earlier version of this paper we followed Davies and Kovac (2001) and modified
string S̃n by setting

S̃n(ξj ) = En(ξj ) at all knotsξj(3.3)

and linear in between. The corresponding derivatives̃n satisfies

s̃n(ξj ) = |{i : ξj < xi ≤ ξj+1}|
n(ξj+1 − ξj )

between the knotsξj andξj+1.(3.4)

This modification has no effect on the modality and in general produces more
pronounced peaks. More by good luck than by good thinking, the authors
fortunately noticed that much improved results can be obtained bynot modifying
the taut string in this manner. The reason is that this alteration causes both
the taut string and the empirical distribution to have the same mass on intervals
defining local extremes. Below we shall use Kuiper metrics which are defined
by those intervals where the difference is greatest. The idea is that differences in
distributions with different peaks should be greatest on intervals defining peaks.
Modifying the taut string as in (3.4) nullifies this effect. Nevertheless, thefinal
density, which is returned by the procedure, is modified in this manner.

3.3. Data analysis. Even without an automatic procedure, the taut string
can be used as a data analytical tool. If the radius of the Kolmogorov tube is
monotonically decreased, then the number of modes of the derivative of the taut
string increases monotonically. It is therefore possible to specify the number of
modes of the approximate density. Figure 3 shows this for the same sample as
used for Figure 1. The densities of Figure 3 can be interpreted as histograms
with an automatic choice of the number of bins and the bin widths. To measure
the performance of the taut string procedure, we simulated samples of different
sizes from the claw distribution and squeezed the tube as far as possible consistent
with the density having five peaks. A peak is classified as being correctly identified
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FIG. 3. Six taut string estimates of a sample of the claw distribution with increasing number
of modes.
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FIG. 4. Five-modal taut string: number of correctly identified peaks of the claw density as
a function of sample size.

if the midpoint of the interval defining a peak differs by less than 0.15 from
the position of the nearest peak of the claw density. Figure 4 shows the number
of correctly identified peaks as a function of sample size.

It shows that the taut string method is extremely good at finding peaks. For
samples of size 200, the five peaks will be correctly identified in over 80% of
the cases. This in a sense confirms Loader (1999), who, on the basis of theoretical
results of Marron and Wand (1992), claims that for samples of sizen = 193
the claws should be detectable. The problem we now address is the difficult one of
defining an automatic procedure with a similar performance.

3.4. An automatic procedure.The following theorem is an immediate conse-
quence of the properties of the taut string listed above.

THEOREM 3.1. The derivativesn of the taut string constrained to lie in
the tubeT (En,qu(n,α, dKO)) is a solution of the Kolmogorov density problem.

For finite n the values of qu(n,α, dKO) can be obtained by simulation. In
the limit

√
nqu(n,α, dKO) tends to the corresponding quantile of

max
0≤t≤1

B0(t) − min
0≤t≤1

B0(t),

whereB0 denotes a Brownian bridge and for which an explicit expression exists
[Dudley (1989)].
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The solution of the Kolmogorov density problem therefore defines an automatic
procedure based on the taut string and its performance can be evaluated on different
test beds. If we do this on an i.i.d. test bed, that is, with data of the form
X1(F ), . . . ,Xn(F ) whereF has ak-modal density functionf, then it is clear that
the taut string densitysn will have at mostk modes with probability at leastα. This
follows on noting thatF lies in the tube with probabilityα and that in this casesn
has at most as many modes asf . In particular, ifk = 1, we have the following.

THEOREM 3.2. Let X1(F ), . . . ,Xn(F ) be an i.i.d. sample with common
unimodal distributionF and let sn be the solution of the Kolmogorov density
problem(1.2).Then

P(sn unimodal) ≥ α.(3.5)

A simulation was performed to investigate the performance of the procedure
with α = 0.9 and the corresponding tube width 1.245/

√
n on test beds defined

by the distributions listed in Section 3.1. The results are shown in Table 1.
It is clear that for a unimodal distribution the modality is correctly estimated
with probability at least 0.9 in accordance with Theorem 3.2. Indeed the actual
probability greatly exceeds 0.9 as all simulations resulted in exactly one peak. The
results for the other distributions are, in contrast, disappointing. Asymptotically
the modality will be correctly estimated with probability at least 0.9 but the rate of
convergence is clearly very slow. We now try and obtain an improved procedure
in two ways. First we note that the choice of qu(n,α, dKO) for the radius of
the tube means that a probability of at leastα is guaranteed for all unimodal test
beds. If we provisionally accept that the uniform distribution is a poor model
for most data sets, then we may accept a worse performance for the uniform
distribution in return for enhanced performances for other distributions. Silverman
(1986) and Müller and Sawitzki (1991) argue in a similar vein. The second way of
gaining an improved performance is to use a generalized Kuiper metric rather than
the Kolmogorov metric. Kuiper metrics consider the differences in probability over
a fixed number of disjoint intervals and are therefore better at detecting modality.

TABLE 1
The procedure using the0.9-quantile of the Kolmogorov metric. The numbers give the percentage
of simulations in which the correct modality was obtained. The numbers in parentheses give the
mean absolute deviation from the correct modality. The results are based on1000simulations

Dist. U S N1 N2 N4 N5 N10_5 N10_10

100 100 (0) 100 (0) 100 (0) 0(1) 0 (2.34) 0 (4) 0(9) 0 (9)

500 100 (0) 100 (0) 100 (0) 0(1) 0 (2) 0 (4) 0(9) 0 (8.6)

1000 100 (0) 100 (0) 100 (0) 0(1) 0 (2) 0 (4) 0(9) 0 (7.9)

5000 100 (0) 100 (0) 100 (0) 50(0.5) 0 (2) 0 (4) 0(8.3) 100(0)

10000 100 (0) 100 (0) 100 (0) 100(0) 0 (2) 66 (0.4) 99(0.01) 100(0)
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3.5. Calibrating unimodality. To implement the first way of improving perfor-
mance, let qu(n,α,F,1, dKO) denote theα-quantile of the Kolomogorov distance
of the closest unimodal distribution (given by the taut string) to the empirical dis-
tribution Fn of n i.i.d. random variables with common distributionF . We have
the following theorem.

THEOREM 3.3. Let X1(F ), . . . ,Xn(F ) be an i.i.d. sample with common
unimodal distributionF and empirical distributionFn. Let sn be the derivative
of the stringSn through the tubeT (Fn,qu(n,α,F,1, dKO)). Then

P(sn unimodal) = α.(3.6)

Clearly

qu(n,α,F,1, dKO) ≤ qu(n,α, dKO),

but it is not clear whether

sup
F unimodal

qu(n,α,F,1, dKO) = qu(n,α, dKO).

We point out that the uniform distribution does not maximize qu(n,α,F,1, dKO)

[Hartigan and Hartigan (1985)]. We now takeF = U to be the uniform distribution
on the basis that it is not an adequate approximation for most data sets and
setα = 0.5. This means that on uniform test beds the modality will be correctly
determined with probability 0.5. The uniform distribution has the advantage that
the asymptotics of the quantiles qu(n,α,U,1, dKO) can be calculated. We have

lim
n→∞

√
nqu(n,α,U,1, dKO) = qu(α,B0),(3.7)

where qu(α,B0) denotes theα-quantile of the random variable

min
H

sup
x

|B0(x) − H(x)|,(3.8)

where the functionH : [0,1] → R is convex on[0, tH ] and concave on[tH ,1]
for sometH ,0 ≤ tH ≤ 1. Simulations show that the 0.5-quantile of (3.8) is 0.432.
A correction for finiten gives

qu(n,0.5,U,1, dKO) = 0.43/
√

n − 0.64/n,

with a percentage error (based on simulations) of at most 0.0045. Table 2 shows
the results. We see that the performance for the Gaussian test bed is hardly
impaired. On the claw test bed we note that the performance forn = 1000 is now
comparable to that of the simple Kolmogorov quantile forn = 10000.

If we apply the same idea to the normal distribution, then heuristic arguments
indicate that

lim
n→∞

√
nqu

(
n,α,N (0,1),1, dKO

) = 0
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TABLE 2
The procedure based on the0.5-quantile of the Kolmogorov distance of the closest unimodal distri-
bution to a uniform sample. The numbers give to the nearest integer the percentage of simulations in

which the correct modality was obtained. The numbers in parentheses give the mean absolute
deviation from the correct modality correct to one decimal place. The results are based

on 1000simulations

Dist. S N1 N2 N4 N5 N10_5 N10_10

100 100 (0) 100 (0) 22(0.8) 0 (2) 0 (3.8) 0 (8) 0 (3.8)

500 100 (0) 100 (0) 78(0.2) 0 (2) 1 (2.5) 0 (5.5) 1 (2.5)

1000 100 (0) 100 (0) 95(0) 0 (2) 43 (0.7) 27 (1.1) 43 (0.7)

5000 100 (0) 100 (0) 99(0) 48 (0.6) 100(0) 100(0) 100(0)

10000 100 (0) 100 (0) 100(0) 100(0) 100(0) 100(0) 100(0)

but we have no exact asymptotic result. The same argument goes through for any
sufficiently smooth density. If true, this implies that if we use a cut-off point for
the size of the Kolmogorov ball which is bounded below by some constant multiple
of 1/

√
n, then the modality will be consistently estimated. We do not pursue this

idea any further.

3.6. Kuiper metrics. Suppose that the densitysn of the taut string is unimodal.
Part of the description of the taut stringSn given in Section 3.2 is that it switches
from the upper bound to the lower bound at each maximum. Consider now
the Kuiper metricdKU defined by

dKU(F,G) = sup
{
a < b :

∣∣(F(b) − F(a)
) − (

G(b) − G(a)
)∣∣}.(3.9)

It follows from the above that ifdKO(En,Sn) = ε and sn is unimodal, then
dKU(En,Sn) = 2ε. The α-quantile qu(n,α, dKU) of dKU(Fn,F ) is independent
of F for continuousF and is less than twice theα-quantile of dKO(Fn,F ).
This suggests that the Kuiper metric is more appropriate for unimodality than
the Kolmogorov metric. To demonstrate this we firstly define the Kuiper problem.

PROBLEM 3.1 (Kuiper density problem). Determine the smallest integerkn

for which there exists a densityf n with kn modes and whose distributionFn

satisfies

dKU(En,F
n) ≤ qu(n,α, dKU).

Suppose now thatFn is a unimodal distribution which solves the Kuiper density
problem. Let

ε1 = max{x :Fn(x) − En(x)} and

ε2 = max{x :G(x) − Fn(x)}.
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As dKU(En,F
n) = ε1 + ε2 = qu(n,α, dKU), it follows by shifting Fn by

an amount 1
2|ε2 − ε1| that the solution of the Kolmogorov problem with

ε = 1
2qu(n,α, dKU) is also unimodal. As1

2qu(n,α, dKU) < qu(n,α, dKO), this
implies that if the solution of the Kuiper density problem for a givenα is unimodal,
so is the solution of the Kolmogorov problem for the sameα.

To cover the case of multimodality we define the Kuiper metricdκ
KU of

orderκ by

dκ
KU(F,G) = max

{
κ∑
1

∣∣(F(bj ) − F(aj )
) − (

G(bj ) − G(aj )
)∣∣},(3.10)

where the maximum is taken over allaj , bj with

a1 ≤ b1 ≤ a2 ≤ b2 ≤ · · · ≤ aκ ≤ bκ.

Again the distribution ofdκ
KU(Fn,F ) is independent ofF for continuousF .

If we denote theα-quantile by qu(n,α, dκ
KU), we can formulate theκ-Kuiper

problem.

PROBLEM 3.2 (κ-Kuiper density problem). Determine the smallest integerkn

for which there exists a densityf n with kn modes and whose distributionFn

satisfies

dk
KU(En,F

n) ≤ qu(n,α, dκ
KU).

If the density sn of the taut string hask modes, then for the Kuiper
metricd2k−1

KU of order 2k − 1 we have

d2k−1
KU (Em,Sn) = (2k − 1)ε.

This follows on noting that the string switches boundaries at each of thek local
maxima ofsn and also at thek − 1 local minima. As

qu(n,α, d2k−1
KU ) < (2k − 1)qu(n,α, dKO),

this indicates that the Kuiper metricd2k−1
KU is more efficacious when the data ex-

hibit k modes. We have no simple algorithm for solving theκ-Kuiper problem
so we use the strategy of Davies and Kovac (2001) and decrease the radiusε of
the Kolmogorov tube gradually until

d2k−1
KU (En,Sn) ≤ qu(n,α, d2k−1

KU ).

For large n approximations to qu(n,α, dκ
KU) are available using the weak

convergence result

√
ndκ

KU(Fn,F ) ⇒ max

{
κ∑
1

|B0(bj ) − B0(aj )|
}
,
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whereB0 denotes the standard Brownian bridge on[0,1] and

a1 < b1 < a2 < b2 < · · · < aκ < bκ.

The distribution of max{|B0(b) − B0(a)|} corresponding to the unimodal case
k = 1 is known [e.g., Dudley (1989), Proposition 12.3.4.]. Sufficiently accurate
quantiles for finiten and for the other asymptotic cases may be obtained by
simulations. Best results are obtained ifκ is related to the modalityk of the test
bed byκ = 2k − 1. In practice a default value ofκ is required and we useκ = 19.

We combine theκ-Kuiper metric with the ideas of Section 3.5. Let qu(n,α,

F,1, dκ
KU) denote theα-quantile of theκ-Kuiper distance of the closest unimodal

distribution to the empirical distributionFn of n i.i.d. random variables with
common distributionF. We use the stringSn as the closest unimodal distribution.
If F is the uniform distribution of[0,1], then we have again a 1/

√
n asymptotic.

For example, forκ = 19 andα = 0.5, simulations showed that

qu(n,0.5,U,1, d19
KU) � 8.12/

√
n − 30.32/n1.04

is a good approximation.
The results shown in Table 3 confirm the claim that the Kuiper metric with

κ = 2k − 1 performs best on test beds withk modes. Thus the procedure based
on thed3

KU metric is best for the bimodal distributionN2, that based on thed9
KU

metric is best for the five-modal claw densityN5, while that based on thed19
KU

metric is best for the two ten-modal distributionsN10_5 andN10_10. None of
the procedures performs well for the four-modalN4 distribution. This is because
it has two very concentrated but lower power peaks situated at the points 8 and 9.
For this distribution global squeezing of the Kolmogorov tube will only work
for large sample sizes. In small samples when the tube is sufficiently narrow to

TABLE 3
Results for the procedures using the0.5-quantile of the closest unimodaldistribution in the Kuiper

metrics based on3, 9and19 intervals. The numbers give the percentage of simulations in which the
correct modality was obtained. The numbers in parentheses give the mean absolute deviation from
the correct modality. The results are based on1000simulations with sample sizes of250and500

Dist. S N1 N2 N4 N5 N10_5 N10_10

n = 250
k = 3 99(0) 96 (0) 67 (0.3) 0(2) 0 (2.9) 0 (6.7) 38 (0.8)

k = 9 100(0) 99 (0) 59 (0.4) 0(1.9) 20 (1.5) 0 (3.4) 95 (0)

k = 19 100(0) 96 (0) 53 (0.5) 1(1.9) 20 (1.5) 0 (1.0) 99 (0)

n = 500
k = 3 99(0) 99 (0) 90 (0.1) 0(2) 10 (1.7) 0 (3.9) 100(0)

k = 9 100(0) 99 (0) 74 (0.3) 1(1.9) 70 (0.3) 50 (0.6) 100(0)

k = 19 100(0) 99 (0) 66 (0.3) 2(1.9) 57 (0.5) 97 (0) 100(0)
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TABLE 4
Results of global squeezing for the four-modal distributionN4. The

Kolmogorov tube was squeezed to give exactly four peaks. The numbers
give the percentage of simulations in which these were the correct peaks.

The results are based on1000simulations

n 500 1000 2000 4000

3 23 81 99

pick up the lower power peaks, it will have already caused peaks to appear at
other points. This is shown by Table 4. For the sample sizes shown the tube was
squeezed to give just four peaks and it was then checked if the four peaks were
the correct ones. Table 4 gives the percentage of cases when this was the case.
Thus even for a sample of size 2000, the correct peaks were only found in 80%
of the cases. The problem is related to that of detecting low power peaks in
nonparametric regression. In Davies and Kovac (2001) the problem was solved
using local squeezing. In Section 5 we introduce a form of local squeezing for
densities which is based on cell occupancy frequencies.

3.7. Discrete data. So far we have looked for an approximation to the data in
the form of a Lebesgue density. However, at little cost we can extend the method-
ology to integer-valued data which typically arise from counts. Suppose the data
setxn = (x1, . . . , xn) contains onlyN different valuest1 < t2 < · · · < tN . We look
for an approximation in terms ofN probabilitiespj = P(X = tj ), j = 1, . . . ,N ,
where the random variableX has supportt1 < t2 < · · · < tN . Let e1, . . . , eN be
the empirical frequencies of thetj in the data and consider the cumulative sums

Ej =
j∑

i=1

ei

and the tube constructed by linear interpolation of the points(j/N,Ej ), j =
0, . . . ,N . Differentiating yields an approximation ofp1, . . . , pN . This procedure
corresponds to the taut string algorithm in the regression context [Davies and
Kovac (2001)] with time pointst1, . . . , tn and with observationse1, . . . , en. Our
default procedure uses theκ-Kuiper metric withκ = 9 andα = 0.5. We point
out that this radius is conservative for discrete data, but we do not pursue this
any further. Other forms of approximation can be accommodated without much
difficulty. An example is shown in Figure 5 where the discrete taut string method
was applied to 1200 observations from a mixture of three Poisson distributions,

0.25P (2) + 0.5P (8) + 0.25P (21).

The other situation is where repeated values occur not because of the nature of
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FIG. 5. Discrete data. The left panel shows the density function of the mixture of three Poisson
distributions and the frequencies of a sample of size1200.The discrete taut string approximation is
shown in the right panel.

the data (counting) but because of rounding. The rounding of data is very common
and it can cause difficulties when looking for an approximation based on Lebesgue
densities. To see the difficulties assume that some data pointx is observedk
times. Depending on the exact implementation of the taut string algorithm, two
problems may occur. If the tube is centered around the empirical distribution
function and the tube width is smaller thank/2n, the derivative of the taut string
atx will be ∞. If, on the other hand, the tube is constructed by linear interpolation
of the empirical distribution function, then the empirical mass atx of k/n is
spread over the interval[xl, x], wherexl is the largest data point smaller thanx.
To overcome these problems we propose the following. Letε be the precision or
cut-off error which we set toε = 10−3MAD(xn), where MAD denotes the median
absolute deviation. We construct a modified data setx̃1, . . . , x̃n, where the identical
observations atx are equally spread over the interval[x − ε/2, x + ε/2]. To be
precise, we replacex(j+1) = x(j+2) = · · · = x(j+k) by

x̃j+i = x + ε

(
−1

2
+ 1

2k
+ i − 1

k

)

for i = 1, . . . , k. The taut string method described above is then applied tox̃ instead
of x.
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4. Asymptotics on test beds. The asymptotic behavior of the taut string may
be analyzed on appropriate test beds. It turns out that asymptotically the modality
is correctly estimated and that the optimal rate of convergence is attained except
in small intervals containing the local extremes of the densityf .

We denote the modality of the derivative of the taut string in the supremum
tube T (Fn,C/

√
n ) by kC

n . The taut string based on the radiusC/
√

n will be
denoted bySC

n with derivativesC
n . We writeI e

i (n,C),1 ≤ i ≤ kC
n , for the intervals

where sC
n attains its local extreme values and denote the midpoints of these

intervals bytei (n,C), 1 ≤ i ≤ kC
n . The length of an intervalI will be denoted

by |I |.

THEOREM 4.1. Letf be ak-modal density function onR such that

min
g,(k−1)-modal

|F(x) − G(x)| > 0.

Then we have, for all δ > 0,

lim
C→∞ lim inf

n→∞ P

(
{kC

n = k} ∩
{

max
1≤i≤kC

n

|I e
i (n,C)| ≤ δ

}

∩
{

max
1≤i≤kC

n

|tei (n,C) − tej | ≤ δ

})
= 1.

In the following A denotes a generic constant which depends only onf and
whose value may differ from appearance to appearance.

THEOREM 4.2. Assume that

(i) f has a compact support on[0,1],
(ii) f has exactlyk local extreme values at the points0 < te1 < · · · < tek < 1,

(iii) f has a bounded second derivativef (2) which is nonzero at thek local
extremes,

(iv) f (1)(t) = 0 only for t ∈ {te1, . . . , tek }.
Then the following statements hold:

(a)

lim
C→∞ lim inf

n→∞ P
(
tei ∈ I e

i (n,C),1 ≤ i ≤ k
) = 1.

(b) For everyC1 < 6 andC2 > 12,

lim
C→∞ lim inf

n→∞ P

(
|I e

i (n,C)|
(√

n |f (1)(tei )|
C

)1/3

∈ [C1/3
1 ,C

1/3
2 ],1 ≤ i ≤ k

)
= 1.
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(c) Let ξn,C
j be the knots of the taut stringSC

n and denote

m(n,C) = max

{
ξ

n,C
j+1 − ξ

n,C
j : ξn,C

j , ξ
n,C
j+1 ∈ (0,1)

∖ k⋃
1

I e
i (n,C)

}
.

For some constantA only depending onf , we have

lim
C→∞ lim inf

n→∞ P

(
m(n,C) ≤

(
A

∣∣f (1)(xj )
∣∣−2/3

(
logn

n

)1/3))
= 1.

(d) Denote

M(n,C) =
[
A

(
logn

n

)1/3

,1− A

(
logn

n

)1/3]∖ n⋃
i

I e
i (n,C).

Then for some constantA only depending onf , we have

lim
C→∞ lim inf

n→∞ P

(
max

t∈M(n,C)
|f (t) − f C

n (t)| ≤
(
A

∣∣f (1)(t)
∣∣1/3

(
logn

n

)1/3))
= 1.

(e) For some constantsA1 andA2 only depending onf , we have

lim
C→∞ lim inf

n→∞ P

(
max

t∈⋃n
1I e

i (n,C)
|f (t) − f C

n (t)| ≤ AC2/3n−1/3
)

= 1.

Part (d) of the theorem shows that, bounded away from the local extrema,
the taut string density attains the optimal rate of convergence up to a logarithmic
factor. The proofs follow the lines of Davies and Kovac (2001) and we omit them.

5. Cell occupancy frequencies and local squeezing.

5.1. Cell occupancy frequencies.The multiresolution procedure of Davies
and Kovac (2001) is based on comparing the residuals of some regression
function with those of Gaussian white noise. The comparison is based on
the means on intervals which form a multiresolution scheme. A similar idea can
be applied to the density problem. A distributionF is an adequate model for
the dataxn = (x1, . . . , xn) if the transformed data

un = F(xn) = (
F(x1), . . . ,F (xn)

)
looks like an i.i.d. sample of sizen from the uniform distribution on[0,1]. This is
done by comparing the frequencies

wn
jk = |{l :k2−j < ul ≤ (k + 1)2−j }|, 0 ≤ k ≤ 2j ,1 ≤ j ≤ m,

with those to be expected from i.i.d. uniform random variables. The maximum
resolution levelm is taken to be the smallest integer such thatn ≤ 2m. Suppose
thatU1, . . . ,Un are independently and uniformly distributed on[0,1]. Then

Wn
jk = |{l :k2−j < Ul ≤ (k + 1)2−j }|
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is binomially distributedb(n,2−j ). For given α we define the upper bounds
υn

j,k(α) by

υn
j (α) = min

{
υ : P(Zn

j ≥ υ) ≤ 1− α

2n

}
,(5.1)

whereZn
j satisfies the binomial distributionb(n,2−j ). It follows that

P
(
Wn

jk < υn
j (α),1≤ k ≤ 2j ,1 ≤ j ≤ n

) ≥ α.

Lower boundsλn
j,k(α) can be derived similarly. This gives rise to the following

problem.

PROBLEM 5.1 (Cell occupancy problem). Determine the smallest integerkn

for which there exists a densityf n with kn modes and whose distributionFn is
such that the cell frequencieswn

j,k satisfy

λn
j (α) ≤ wn

j,k ≤ υn
j (α),(5.2)

where theυn
j,k(α) are given by (5.1).

Although the cell occupancy problem is well defined, there is no obvious
connection between the modality of the densityf n and the set of inequalities (5.2).
We therefore again adopt the strategy of producing test densities derived from
the taut string and gradually increase the modality until the inequalities (5.2) hold.
The knowledge of which inequalities fail to hold provides further information
which we are able to exploit as described in the next section.

5.2. Local squeezing.Local squeezing is described in Davies and Kovac
(2001). We apply it to the density problem as follows. Suppose that one of
the inequalities of (5.2) fails. We suppose that

wn
j,k = |{l :k2−j < Fn(xl) ≤ (k + 1)2−j }| ≥ υn

j,k(α).

Clearly, there exists an interval[x(l1), x(l2)] such thatk2−j < Fn(xl) ≤ (k +1)2−j

for all pointsxl in [x(l1), x(l2)]. We now squeeze the tube locally on this interval
and do this for all intervals where the upper inequality fails. For coefficientswj,k

we proceed similarly but use slightly larger intervals such thatk2−j < Fn(xl) ≤
(k + 1)2−j for all points xl in (x(l1), x(l2)). The general procedure for doing
this is as follows. First, a suitable initial global tube radiusγ0 is chosen using
the Kolmogorov or generalized Kuiper metrics and the taut string is calculated. If
all the inequalities (5.2) hold, the procedure terminates. If not, we reduce the radius
by a factorρ, 0< ρ < 1, on all intervals where an inequality fails. Typical choices
for ρ are 0.9 or 0.95. The taut string through the modified tube is calculated and,
using this new test distribution, it is checked whether the inequalities (5.2) hold.
If so, the procedure terminates. Otherwise the tube radius is again decreased by
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the factorρ on all intervals where an inequality fails. This is continued until all
the inequalities are satisfied.

It is not easy to analyze the behavior of the local squeezing procedure. In
the case of nonparametric regression Davies and Kovac (2001) give a heuristic
argument indicating that the procedure improves the behavior at local extremes.
A similar argument can be given for densities, but as it remains heuristic we omit it.

The ability of the local squeezing method to detect low power peaks [see Davies
and Kovac (2001)] is shown by the following example. The data consist of a sample
of size 1000 drawn from the four-normal distributionN4 of Section 3.1. The
density is shown in the upper left corner of Figure 6. It exhibits a main peak,
a moderate peak on the right and in the center two low power but very concentrated
and very close peaks.

The upper right panel shows a kernel estimate which was calculated using
a Gaussian kernel. The mode on the right-hand side was detected, but is
considerably broader than the normal component of the original density function.
The main component is well captured but there are three superfluous peaks.
Finally, the two sharp peaks in the center of the data result in one flat local
maximum. The lower left panel shows the result with the taut string method and

FIG. 6. Local squeezing. The upper left panel shows the density of N4. A kernel estimate is shown
in the upper right panel. The lower left panel illustrates globalsqueezing first with a solid line using
the Kolmogorov bounds and then with a dashed line the taut string density with four modes. The local
squeezing estimate is depicted in the lower right panel.
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TABLE 5
Results for the local squeezing procedure. The numbers give the percentage of simulations in which
the correct modality was obtained. The numbers in parentheses give the mean absolute deviation

from the correct modality. The results are based on5000simulations with sample sizes
of 250, 500and1000

Dist. S N1 N2 N4 N5 N10_5 N10_10

n = 250 91 (0.1) 83 (0.2) 42 (0.6) 1(1.6) 4 (2.2) 2 (2.9) 99 (0)

n = 500 89 (0.1) 80 (0.2) 45 (0.6) 22(0.9) 17 (1.5) 36 (0.9) 100(0)

n = 1000 88 (0.1) 79 (0.3) 54 (0.5) 75(0.3) 43 (0.8) 91 (0.1) 100(0)

two global tube radii. The solid line is derived from thed1
KU metric. There are no

spurious local extremes but the small central peaks are not detected. The dashed
line shows that further global squeezing would only lead to additional spurious
modes on the left before the central peaks are detected. Finally, the lower right
panel shows the result of local squeezing. The number and locations of the local
extrema are estimated correctly and the difference with respect to the original
density function is very small.

Table 5 shows the performance of the local squeezing procedure for the distrib-
tionsS, N1, N2, N4, N5, N10_5 andN10_10 for samples of sizes 250 and 500.
The procedure was calibrated as for the Kuiper metrics but, due to the discrete na-
ture of the cell counts, it was not possible to adjust the parameters so that in 50% of
the cases the modality for uniform samples was one. The choice lay between 48%
and 55% and we took the latter. The results show a much enhanced performance
for the distributionN4, but the results for the other distributions are worse than for
the Kuiper metrics. This suggests a compromise procedure.

5.3. Compromise default procedures.Statistical procedures make no assump-
tions about the data [Tukey (1993a)] and consequently are required to be compro-
mises [see Tukey’s example of the milk bottle in Tukey (1993b)]. Given a Kuiper
metricdκ

KU, we calibrate the procedure based upon it so that in 60% of the cases
the approximation to uniform samples is unimodal. Local squeezing is then ap-
plied so that the final approximation is unimodal in 50% of the cases. Again
due to the discrete nature of the cell counts, 50% is not exactly attainable so we
take the smallest percentage higher than 50. A second choice is to standardize
the Kuiper procedure so that in 95% of the cases the approximation to uniform
samples is unimodal. This is then reduced to 90% using local squeezing. We mod-
ify the local squeezing procedure as follows. Instead of using a multiresolution
scheme we consider all intervals of length at most

√
n. This results in a proce-

dure ofO(n1.5) but easily calculable for sample sizes of 50,000 and more. The
reasoning behind this alteration is that we use local squeezing only to detect low
power concentrated peaks. The others should be detected by the preceding Kuiper
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TABLE 6
Results for the compromise procedure based ond19

KU. The numbers give the percentage of
simulations in which the correct modality was obtained. The numbers in parentheses give the mean

absolute deviation from the correct modality. The results are based on1000simulations with
sample sizes of250, 500and1000

Dist. S N1 N2 N4 N5 N10_5 N10_10

n = 250 97 (0) 93(0.1) 51 (0.5) 2(1.8) 17 (1.6) 40 (0.9) 99 (0)

n = 500 97 (0) 94(0.1) 64 (0.4) 19(1.1) 60 (0.5) 95 (0) 100(0)

n = 1000 99 (0) 98(0) 86 (0.1) 82(0.2) 99 (0) 100(0) 100(0)

procedure. For reasons of space and comprehensibility we do not give an exact de-
scription of the local squeezing procedure but the source code is available from our
web site. This leaves open the choice ofκ in dκ

KU. The software is available for all
choicesκ = 1,3, . . . ,19 with the default choiceκ = 19. If data is to be analyzed
in a routine manner,κ can be chosen on the basis of experience or knowledge of
the data involved.

5.4. Further simulations. We now evaluate the two procedures
COMPKU19_50 and COMPKU19_90 which are the compromise procedures
described in the previous section using the Kuiper metricd19

KU and calibrated
at the uniform distribution to give the correct modality with probabilities
0.5 and 0.9, respectively. We compare them with two kernel-based methods.
The first KERNCV uses likelihood cross-validation for the choice of the band-
width, while the second KERNSJ uses the Sheather–Jones plug-in bandwidths.
The comparisons are performed using the ten densities shown in Figure 7. They
are taken from Marron and Wand (1992) and are the uniform distribution on[0,1],
the Gaussian distribution and eight mixtures of normal distributions.

Each method was applied to 1000 samples of each of the densities and
three different sample sizes (100,500,2000). For each estimate it was checked
if the correct number of modes was found and if the positions of the modes
corresponded to those of the densities. Table 7 shows how often the modes were
determined correctly for the various densities and methods. Some comments are
in order. First, if we use the procedure COMPKU5_50 which is tuned to three
modes, then the performance for the trimodal density improves. Forn = 500
three modal values are found in 20% of the cases, and forn = 2000 this rises
to 37%. Second, all the densities are mixtures of a small number of Gaussian
distributions with the exception of the uniform density for which the kernel
methods based on a Gaussian kernel fail. The trimodal distribution is the one
where the kernel methods perform clearly better than the taut string method. If,
however, the central Gaussian distribution is replaced by a uniform distribution,
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FIG. 7. Ten densities that were used in a simulation study.
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TABLE 7
Correctly detected modes in samples of various densities and for several automatic methods

Density Size KERNCV KERNSJ COMPKU19_50 COMPKU19_90

Uniform 100 1 16 50 91
500 0 1 53 89

2000 0 0 53 91

Gaussian 100 77 79 85 98
500 79 78 95 99

2000 74 59 98 99

Strongly skewed 100 4 0 90 99
500 1 0 96 100

2000 0 0 99 99

Outlier 100 15 0 90 99
500 0 0 97 100

2000 0 0 98 100

Bimodal 100 71 81 45 14
500 75 84 68 33

2000 75 73 97 92

Skewed bimodal 100 32 46 34 9
500 45 37 35 13

2000 34 12 49 22

Trimodal 100 29 12 11 1
500 57 67 11 2

2000 81 82 20 6

Claw 100 1 0 4 0
500 2 2 63 34

2000 0 0 100 100

Smooth comb 100 18 0 1 0
500 5 0 5 1

2000 1 1 89 80

Discrete comb 100 12 0 1 0
500 2 0 31 13

2000 0 82 98 99

then the kernel methods again fail. We refer to Hartigan (2000) for an explanation
of this. It indicates that the comparison is weighted in favor of the kernel methods
as both they and the densities are based on the Gaussian kernel. We note that
the performance of the kernel methods seems to deteriorate with increasing
sample size.

6. Hidden periodicities, spectral densities and taut strings.

6.1. Hidden periodicities. The second problem we consider is that of detect-
ing hidden periodicities in a data setxn. One method of formulating the prob-
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lem is the following: calculate an appropriate spectral density functionf n and
identify the hidden periodicities in the data with the peaks off n [Brillinger
(1981), Priestley (1981) and Brockwell and Davis (1987), and the references given
therein].

Existing methods by and large belong to one of two different categories
of procedures. The first is nonparametric and uses some form of smoothing
of the periodogram. This may take the form of kernel estimators or splines or
wavelets or averages of periodograms obtained by splitting the data into blocks
[see Brillinger (1981), Chapter 5, Neumann (1996) and the references given
therein]. The second possibility is to model the data by an autoregressive process
whose order is determined using some criterion such as AIC [Akaike (1977)],
BIC [Akaike (1978)] or HQ [Hannan and Quinn (1979)]. The spectral density
associated with the autoregressive process is then used to determine the hidden
periodicities. None of these methods controls the number of peaks directly
although the problem of hidden peaks is one of modality.

Before proceeding, we assume that the data have been normalized to have
sample mean zero and variance 1. To ease the notation the transformed data will
also be denoted byxn. In the context of time seriesen will denote the empirical
spectral density or the periodogram defined by

en(ω) = 1

2πn

∣∣∣∣∣
n∑

t=1

xt exp(iω t)

∣∣∣∣∣
2

,

(6.1)
0 ≤ ω ≤ 2π.

The corresponding empirical spectral distribution functionEn is given by

En(ω) =
∫ ω

0
en(λ) dλ.(6.2)

The candidate spectral densities we use are based on the taut stringsSn through
the Kolmogorov tubes centered atEn. We assume that the taut string is constrained
to go through(0,Ln(0)) and(2π,En(2π)) = (2π,1), whereLn denotes the lower
boundary.

One difference with respect to the i.i.d. model is the fact that the empirical
spectral distribution function is defined for allω. In practice a grid must be chosen
which, when analyzing the asymptotic behavior on test beds, becomes increasingly
fine. We use the Fourier frequencies2πj

n
, j = 0, . . . , n − 1, where the data have

been augmented by zeros to produce a power of 2. Choosing a finer grid has had
no effect on the data sets we have analyzed so far.

6.2. Data analysis. Just as in Section 3.3, it is possible to use the taut string
as a data analytical tool. The radius of the Kolmogorov tube is gradually decreased
and the resulting densities give information about the power and positions of
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FIG. 8. Sunspot data with number of peaks increasing from one to four.

the peaks. We give two examples. Figure 8 shows the first four peaks for
the sunspot data [Anderson (1971)].

The second example is an artificial data set generated according to a scheme
of Gardner (1988). Gardner does not explicitly specify the spectral density
except that it has Gaussian shape with center frequency 2πλ with λ = 0.35.
The densityf of (6.3) approximates the graph shown in Gardner’s Figure 9.4(a)
[Gardner (1988)]:

f (ω) = 1
3e−300(ω/2π−0.35)2

.(6.3)

A realization of length 2048 was generated by filtering in the frequency domain.
The following pure sine terms were added:√

2sin
(
2π(0.2t − 106/360)

)
,

√
2sin

(
2π(0.21t − 45.1/360)

)
,

√
2/10 sin

(
2π(0.1t − 32.6/360)

)
.

A segment of length 256 starting att = 1023 was taken as the simulated sample.
It is shown in Figure 9.

A similar data set was analyzed by Gardner [(1988), Chapter 9.E, Experimental
Study] in an experimental study of the performance of different spectral estimates.
Figure 10 shows the first four peaks (in a log scale) for the data set of Figure 9.
Finally, Figure 11 shows the four-peak density together with the periodogram.
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FIG. 9. The Gardner data.

FIG. 10. Gardner data with number of peaks increasing from one to four.
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FIG. 11. Gardner data with four peaks and the periodogram.

6.3. Two concepts of approximation.The concepts of approximation used in
the i.i.d. case had the advantage that the distributions involved were independent
of the approximating model. This is no longer the case for stationary models.
Furthermore, specifying the spectral distribution functionF does not specify
the joint distribution of the stationary sequence. If, however, one is prepared to
accept a Gaussian model, then the distributionPF of the sequence is determined
by F . In analogy with the i.i.d. case we have the following.

PROBLEM 6.1 (Kuiper spectral density problem). Determine the smallest
integerkn for which there exists a spectral densityf n with kn modes and whose
distributionFn satisfies

dKU(En,F
n) ≤ qu(n,α,PFn, dKU),(6.4)

wherePFn denotes the distribution of the observations under the model.

There are two disadvantages with the procedure based on this concept of
approximation. One is that the quantile in (6.4) depends onFn. It would be
possible to overcome this by using the taut stringSn at each stage and then
simulating the quantile qu(n,α,PSn, dKU). This is clearly very time consuming.
The second disadvantage is the following. Under appropriate conditions [Dahlhaus
(1988)] we have the weak convergence result

√
n(Fn − F) ⇒ Z,
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whereFn denotes the empirical spectral distribution function of the model with
spectral distribution functionF and densityf andZ denotes a continuous zero-
mean Gaussian process defined by

E
(
Z(λ1)Z(λ2)

) =
∫ min(λ1,λ2)

0
f (ω)2dω.(6.5)

It follows from (6.5) that any large peaks will swamp smaller peaks which may be
present and so prevent their detection. The one advantage of (6.4) is that it allows
an asymptotic evaluation.

A more sensitive procedure is based on some kind of multiresolution analysis.
Suppose for the moment that the sample sizen is a power of 2,n = 2m. Given
a spectral density functionf , we define

gn(f,ω) = en(ω)

f (ω)
,(6.6)

and consider the multiresolution scheme

wjk(f ) =
j2k∑

l=(j−1)2k+1

gn(f,ωl,n),(6.7)

j = 1, . . . ,2m−k−1, k = 0, . . . ,m − 1,

where theωl,n = 2πl/n are the Fourier frequencies. The class of stationary
processes with spectral density functionf is too large to provide a meaningful
definition of approximation so we now restrict attention to Gaussian processes.
Corresponding to level-dependent thresholds for wavelets, we specify lower and
upper boundslk,n anduk,n, respectively, for the multiresolution coefficients (6.7).
These now define the following.

PROBLEM 6.2 (Multiresolution spectral density problem). Determine the
smallest integerkn for which there exists a spectral densityf n with kn modes
such that

lk,n ≤ wjk(f
n) ≤ uk,n, j = 1, . . . ,2m−k−1, k = 0, . . . ,m − 1.(6.8)

The default bounds we use arelk,n = qu(α1n,2k) anduk,n = qu(α2n,2k), where
qu(β, ν) denotes theβ-quantile of the gamma distribution withν degrees of
freedom,α1n = (1 − α)/2n and α2n = 1 − α1n with α = 0.9. The bounds are
based on the Gaussian model and the asymptotic results for such processes as
given, for example, by Theorem 5.2.6 of Brillinger (1981). If the asymptotic results
hold precisely for finiten, then the bounds are chosen such that, for a stationary
Gaussian process with spectral density functionf , the inequalities (6.8) hold
with probability at least 0.9 forf n = f. As the individualgn(f,ω) of (6.6)
for ω = 2πj

n
are asymptotically independent, the bounds will be approximately

of the correct order, again for Gaussian processes with a spectral density function.
The usefulness of the bounds for real data sets is an empirical matter. In particular,
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they will be too slack if the spectral distribution function contains point masses.
This is the case for the Gardner data given above and may be seen in Figure 11.

The absolutely continuous part of the spectrum shows a degree of noise, whereas
the remainder of the spectrum is noise free. The default bounds we propose will
detect the first peak but they are not sufficiently tight to split the two main peaks.
On the other hand, if the bounds are sufficiently tight to separate the two peaks,
then superfluous peaks will be produced in the absolutely continuous part of
the spectrum. There would seem to be no easy solution which will work equally
well for continuous as well as for discrete spectra.

We have no algorithm to solve the problem as it stands so again we use the local
squeezing variant of the taut string method. The string is squeezed locally on
the intervals where (6.8) fails and this is continued until all the inequalities are
satisfied. When doing this, however, care must be taken regarding the order in
which the inequalities are treated. From the form ofgn(f,ω) in (6.6) it is clear
that a particulargn(f,ω) can be very large and influence all intervals containing
this particular frequency and this although the correspondingen(ω) is very small.
Squeezing locally over all intervals affected by this frequency will often produce
many superfluous peaks.

To avoid this we consider the intervals in order of size commencing with
intervals of size 1. When all the inequalities are satisfied we then move on to
intervals of size 2 and continue in this manner until all the inequalities are satisfied.
This is the default version of the algorithm. If global squeezing is used, then
the peaks will be introduced according to their power and may be introduced on
intervals where the inequalities (6.8) are satisfied. This is the case for the Gardner
data. If the default version with local squeezing is used, the main peak is not split.
If, however, global squeezing is used, then it is split.

A practical problem which occasionally occurs is that the local squeezing
version may find peaks of very small power which have no practical relevance.
They may be removed by increasing the baseline of the empirical spectral density
by a small amount. The software does this by first adding a small proportion of
the total power, or the mean empirical spectral density, to the empirical spectral
density and then proceeding as before.

6.4. Asymptotics on test beds.We indicate briefly the results of an asymptotic
analysis using the Kuiper concept of approximation. The test bed we consider
is that of a stationary processXn(F ), 1 ≤ n < ∞, with a spectral distribution
functionF and spectral density functionf as follows.

TEST BED 6.1.

(i) F has exactlyk local extreme values on the interval(0, π).
(ii) F satisfies

inf
G∈F (k−1)

sup
ω ∈[0, π ]

|F(ω) − G(ω)| > 0,



1124 P. L. DAVIES AND A. KOVAC

whereF (k − 1) denotes the set of distributions with at mostk − 1 local
extreme values.

To investigate the behavior of the taut string on the Test bed 6.1, we consider
a tube of width 2C/

√
n and denote the taut string through this tube bySn(C)

with derivativesn(C) and modalitykC
n . The intervals on whichsn(C) takes on its

local extreme values will be denoted byI e
i (n,C), i = 1, . . . , kC

n , with midpoints
ω e

i (n,C). The first theorem shows that on Test bed 6.1 the number and locations
of the local extreme values are determined in a consistent manner.

THEOREM 6.1. Consider the Test bed6.1.Then for allδ > 0,

lim
C→∞ lim inf

n→∞ P

(
{kC

n = k} ∩
{

max
1≤i≤k

|I e
i (n,C)| ≤ δ

}
∩

{
max

1≤i≤k
|tei (n,C) − tei | ≤ δ

})

= 1.

To obtain rates of convergence on appropriate test beds we must impose further
conditions.

TEST BED 6.2.

(i) All spectral densitiesf j of orderj exist and supω |f j (ω)| ≤ Bj for some
constantB.

(ii) The spectral density functionf = f 2 has a continuous second derivativef (2).
(iii) f has exactlyk local extreme values, 0< ω1, . . . ,ωk < 2π , andf (1)(ω) 	= 0

for ω ∈ [0,2π ] \ {ω1, . . . ,ωk}.
(iv) f (2)(ωj ) 	= 0, j = 1, . . . , k.
(v) The fourth-order spectral density is continuous.

The above conditions correspond to (i) of Assumption 2.1 of Dahlhaus (1988).
Rates of convergence require a modulus of continuity for the processZn =√
n(Fn − F), where Fn denotes the empirical spectral distribution function

of the sample(X1(F ), . . . ,Xn(F )). Under the conditions of Theorem 2.4 of
Dahlhaus (1988), it follows that

sup
0≤ω1<ω2≤2π,ω2−ω1<δ

|Zn(ω2) − Zn(ω1)| ≤ C
√

ω2 − ω1 | log(ω2 − ω1)|(6.9)

with probability tending to 1 asδ tends to zero. From this it can be shown that
the rate of uniform convergence away from the local extremes is
O(((logn)2/n)1/3). This differs from the rate of convergence for the test beds con-
sidered in Davies and Kovac (2001) by an extra logn term. This is explained by
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the different modulus of continuity. On the test beds of Davies and Kovac (2001)
it is

√
δ | logδ|, whereas above it is

√
δ | logδ|.

6.5. Examples. The default version we use is the procedure deriving from
the multiresolution problem withα = 1 − 0.1/n and a squeezing factor of 0.9.
For the sunspot data the result is the one-peak density shown in the top left panel
of Figure 8. For the Gardner data the result is the three-peak density derived
from the four-peak density shown in the bottom right panel of Figure 10 but with
the major peak not split (see above). Finally, we consider data generated according
to a scheme of Neumann (1996), which is as follows:

Xn = Yn + c0Zn,(6.10)

where

Yn + a1Yn−1 + a2Yn−2 = b0εn + b1εn−1 + b2εn−2

and {εn}, {Zn} are independent Gaussian white noise processes with variance 1.
Neumann chose the coefficient values as follows:a1 = 0.2, a2 = 0.9, b0 = 1,
b1 = 0,b2 = 1 andc0 = 0.5. A sample of size 1024 was generated according to this
scheme. Figure 12 shows the logarithm of the spectral density of the sequence{Xn}
together with the logarithm obtained from the default version of the taut string
method. The two peaks are correctly identified. The wavelet method used by
Neumann results in six peaks [Neumann (1996), Figure 2(b)] for the data set he
considered.

FIG. 12. Log spectral densities of a sample of size1024generated by the scheme(6.10).
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7. Proofs.

7.1. Proof of Theorem4.1. Using the Glivenko–Cantelli theorem, the prop-
erty of the taut string of minimizing the modality inT (Fn,

C√
n
) and Proposi-

tion 12.3.3 of Dudley (1989) we see that

min
(
P(kC

n ≤ k),P(kC
n ≥ k)

) ≥ P

(
F ∈ T

(
Fn,

C√
n

))

≥ 1− exp(−2C2)

and conclude that

lim
C→∞ lim

n→∞ P(kC
n = k) = 1.

The other claims are proved similarly.

7.2. Proof of Theorem4.2.

PROOF OF (a). Since the empirical processEn = √
n(Fn − F) is tight, we

conclude [Billingsley (1968), page 106] that

lim
C→∞ lim

n→∞ P

(
sup

s≤t≤s+2τn

|En(s) − En(t)| ≤ 1

C

)
= 1,

whereτn = max(tej − t lj ), with tej denoting the point wheref takes itsj th local

extreme value andt lj denoting the left endpoint of thej th local extreme interval

of f C
n .

From Theorem 4.1 we deduce that, forC and n sufficiently large,f C
n has

the correct modality and

sup
s≤t≤2τn

|En(s) − En(t)| ≤ 1

C
(7.1)

with arbitrarily high probability.
SupposeFC

n is initially convex andt l1 < te1. ThenFC
n is the largest convex

minorant ofFn +C/
√

n [Barlow, Bartholomew, Bremner and Brunk (1972)] until
it reaches the left endpointt l1(n,C) of I e

1(n,C) = [t l1(n,C), tr1(n,C)].
For some constantδ > 0, for eachC and sufficiently largen,

tr1 − te1 = arg max
0≤h≤δ

H(h),

where

H(h) = Fn(t
l
1 + h) − Fn(t

l
1) − 2C/

√
n

h
.(7.2)
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As F is convex on[t l1, te1], it can be shown using Taylor expansions that

G(h) = F(te1 + h) − F(te1)

h
(7.3)

defines a strictly increasing function on[0, 4
3µ], whereµ = te1 − t l1. Furthermore,

for all τ < µ,

H

(
4

3
µ

)
− H(τ) ≥ G

(
4

3
µ

)
− G(τ) + 2C√

nτ
− 2C√

n4/3µ
− 2

C
√

nτ

> 0.

This shows thatH cannot attain its maximum on[0,µ] and consequently
tr1 > te1. Similar arguments hold for the other extrema.�

PROOF OF (b). We suppose thatSn has a local maximum onI e
1(n,C) =

[t l1(n,C), tr1(n,C)], thatte1 ∈ I e
1 and that (7.1) is satisfied. DefineG by

G(h) = F(tl1 + h) − F(tl1) − 2C/
√

n

h
,

and considerh0 = argmax0≤h≤δ G(h). ThenG′(h0) = 0 implies

f (tl1 + h0)h0 = F(tl1 + h0) − F(tl1) − 2C√
n
.

Using Taylor expansions inte1 and the fact thatf ′(te1) = 0, we obtain

h3
0 ≥ − 6C√

nf ′′(te1)
+ o(h3

0).

In the other direction we consider

h1 = arg max
0≤h≤δ

F (te1 + h) − F(te1) − 2C/
√

n

h
(7.4)

and

h2 = arg min
0≤h≤δ

F (te1 − h) − F(te1) − 2C/
√

n

h
.

It is not difficult to see thath0 ≤ h1 + h2. Setting the derivative of the right-hand
side of (7.4) to zero and using a Taylor expansion inte1 yields

h3
1 = − 6C√

nf ′′(te1)
+ o(h3

1).

The same argument holds forh2 as well and both together show that

h3
0 ≤ − 12C√

nf ′′(te1)
+ o(h3

0).
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DefineH as in (7.2) and consider

h̃0 = arg maxG(h) − 2√
Cnh

.

The considerations above show that(
−6(C + 1/

√
C )√

nf ′′(te1)

)1/3

≤ h̃0
(
1+ o(1)

) ≤
(
−12(C + 1/

√
C )√

nf ′′(te1)

)1/3

.

Furthermore, considerations as in (a) show thatG(x) − 2√
Cn

defines a strictly

decreasing function. Therefore, for allh > (1+ 1√
C

)h̃0,

H(h̃0) − H(h) ≥ G(h̃0) − G(h) − 2

C
√

nh
> 0.

Consequently,H cannot attain its maximum inh > h̃0(1+ 1√
C

) and hence

arg max
0<h<δ

H(h) <

(
1+ 1√

C

)(
−12(C + 1/

√
C )√

nf ′′(te1)

)1/3

.

Similarly, it can be shown that

arg max
0<h<δ

H(h) <

(
1− 1

1+ √
C

)(
−6(C − 1/

√
C )√

nf ′′(te1)

)1/3

. �

PROOF OF(c). The proof relies on the modulus of continuity of the empirical
processEn.

LEMMA 7.1. LetY (n,C) denote random variables such that, for all ε > 0,

lim
C→∞ lim

n→∞ P
(|Y (n,C)| < ε

) = 1.

Considerαn = n−γ for someγ < 1 and

βC
n = max

{
1

log(n)
, Y (n,C)

}
.

Then for allB > 2 we have

lim
C→∞ lim

n→∞P

(
max

αn<|s−t|<βC
n

|En(s) − En(t)|√|t − s| log(1/|t − s|) > B

)
= 0.

PROOF. Define random integer-valued variablesKn by

Kn =
⌊
log2

(
βC

n

αn

)⌋
.
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Using a result of Mason, Shorack and Wellner (1983), we conclude that
providedβC

n < 1
2,

P

(
max

αn<|s−t|<βC
n

|En(s) − En(t)|√|t − s| log(1/|t − s|) > B

)

≤
∞∑

k=0

P

(
|En(s) − En(t)| > B

√
|t − s| log

(
1

|t − s|
)

for somes, t with

2kαn < |s − t| < 2k+1αn

∣∣k ≤ Kn

)

≤
∞∑

k=0

20

ak(βC
n )3

exp
(
−(1− βC

n )4λ2
k

a
ψ

(
λk√
nak

))
,

where we denote 2k+1αn by ak,

λk = B

√
log(1/αn)

2

and

ψ(x) = 2
(1+ x)(log(1+ x) − 1) + 1

x2
.

It is easily verified thatψ(
λk√
nak

) → 1. Thus

lim
C,n→∞ P

(
(1− βC

n )4ψ

(
λk√
nak

)
>

2

B

)
= 1.(7.5)

Putting this together, we deduce that

P

(
|En(s) − En(t)| > B

√
|t − s| log

(
1

|t − s|
)

for somes, t with

αn < |s − t| < βC
n

)

<
20 log(n)3

nγ (B/2−1)
.

This completes the proof of the lemma.�

We proceed now with the proof of (c). Sincef is twice continuously
differentiable, there is some constantD > 0 such that∣∣F(x + h) − F(x) − hf (x) − 1

2h2f ′(x)
∣∣ ≤ Dh3

for all x andh.
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Let B be an arbitrary constant greater than 2 and

d(n,C) = min

{
|f ′(x)| |x ∈ [0,1]

∖⋃
i

I e
i (n,C)

}
.

Define a random sequenceh(n,C) by

h(n,C) = (8B)2/3 log(d(n,C)2n)1/3

(3n)1/3d(n,C)2/3
.

We consider the situation where

(i) f C
n attains the correct modality;

(ii) tei ∈ I e
i (n,C) for all i;

(iii) the empirical process satisfies

sup
|s−t|<Y(n,C)

|En(t) − En(s)| < B

√
|s − t| log

(
1

|s − t|
)
,

whereY (n,C) is defined by

Y (n,C) = max
{
xj+1 − xj | xj , xj+1 knots,[xj , xj+1] 	= I e

i (n,C) for all i
};

(iv) for all x ∈ [0,1] \ ⋃
i I

e
i (n,C),

hn ≤ f ′(x)

32D
holds;

(v) for each extreme intervalI e
i (n,C), the distances of each endpoint tote1 are

both smaller than 4hn.

The preceding lemmas and parts of this theorem show that the probability that
all these assumptions are satisfied simultaneously converges to 1 asn andC tend
to ∞. For example, (7.2) follows from (b) which provides a constantA > 0 such
that |f ′(x)| ≥ An−1/6.

Consider now an arbitrary pointt1 ∈ [0,1] \ ⋃
i I

e
i (n,C), wheref ′(t1) > 0.

Then
Fn(t1 + hn) − Fn(t1)

hn

≤ f (t1) + 1

2
hnf

′(t1) + Dh2
n + B

√
log(1/hn)√

nhn

.

Plugging in the expression forhn and using the assumptions made above, we
see that

Fn(t1 + hn) − Fn(t1)

hn

≤ f (t1) + 1

2
hnf

′(t1)
(

1+ 1

4
+ 1

4

)
.

Similarly, we conclude that, for allh ∈ [4hn, t
e
j ],

Fn(t1 + h) − Fn(t1)

h
≥ f (t1) + 1

2
hf ′(t1)

(
1− 1

4
− 1

4

)
,

wheretej is the smallest local extreme value greater thant1.
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Suppose that there are knotsxj and xj+1 that do not embrace a local
extreme interval such thath0 = xj+1 − xj > 4hn and such thatf is increasing
on [xj , xj+1]. The widthh̃ is the local argmin

h̃ = arg min
0<h<δ

Fn(x1 + h) − Fn(x1)

h
.

On the other hand, the considerations above show that

Fn(x1 + hn) − Fn(x1)

hn

<
F(x1 + h) − Fn(x1)

h
.

Therefore, the distance between two knots that do not embrace an extreme interval
is bounded by 4hn. �

PROOF OF(d). We assume that all the assumptions made in the proof of (c)
are again satisfied and that each two extreme intervalsI e

i andI e
i+1 are separated

by at least two additional knotsxj andxj+1:

maxI e
i < xj < xj+1 < minI e

i+1.

Definehn as in (7.4). Consider a knotxi which does not delimit a local extreme
intervalI e

i . We takef to be increasing inxi . Then the proof of (c) shows that

f C
n (xi) ≤ Fn(xi + hn) − Fn(xi)

hn

≤ f (xi) + C1|f ′(xi)|1/3
(

log(n)

n

)1/3

.

Similar arguments show that

f C
n (xi) ≥ Fn(xi) − Fn(xi − hn)

hn

≥ f (xi) − C1|f ′(xi)|1/3
(

log(n)

n

)1/3

.

Analogous inequalities can be derived in the case wheref is decreasing inxi .
Suppose now thatt is an arbitrary point in

[
A

(
log(n)

n

)1/3

,1− A

(
log(n)

n

)1/3]∖ k⋃
i=1

I e
i (n,C).

Let xi be the nearest knot which does not delimit a local extreme interval. Then

|f (t) − f C
n (t)|

(7.6)
≤ |f (t) − f (xi)| + |f (xi) − f C

n (xi)| + |f C
n (xi) − f C

n (x)|.
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The inequalities above show that the second term is bounded by

C2|f ′(xi)|1/3
(

log(n)

n

)1/3

.

The first term is bounded by

C3|t − xi| |f ′(xi)| ≤ C3|f ′(xi)|1/3
(

log(n)

n

)1/3

.

This follows from (b).
Depending on the exact definition off C

n (x) at knot points, the third term

is either 0 or bounded by 2C1|f ′(xi)|1/3(
log(n)

n
)1/3.

This completes the proof of (d).�

PROOF OF(e). As in the other cases, we assume thatf C
n attains the correct

modality and thattei ∈ I e
i (n,C) for each extreme pointtei . We also assume that,

for each extreme intervalI e
i ,

(
1− 1

1+ √
C

)(
−6(C − 1/

√
C )√

nf ′′(te1)

)1/3

≤ |I e
i (n,C)|

≤
(

1+ 1√
C

)(
−12(C + 1/

√
C )√

nf ′′(te1)

)1/3

.

The regression functionf C
n takes intei the slope of the taut string in the extreme

intervalI e
i = [x1, x2]. Taylor expansions intei usingf ′(tei ) = 0 and an application

of the modulus of continuity for the empirical processEn as formulated
in Lemma 7.1 yield

|f C
n (tei ) − f (tei )| ≤ D1

(
1+ o(1)

)f ′′(tei )1/3

n1/3 .

The proof is now completed by extending the bound to arbitrary points in extreme
intervalsI e

i . This is done in the usual way as in (7.6) using a Taylor expansion intei
and shows that

|f (t) − f (tei )| ≤ D2|I e
i |2f ′′(tei ). �

Software. The software is available from our home page at www.stat-math.
uni-essen.de. A package for R is in preparation.
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Note added in proof. After acceptance of this paper for publication we found
that a small change of the notion of adequacy for densities leads to a considerable
improvement in the performance of the procedure. In particular,

• a calibration using the uniform density is not necessary;
• a constant density is fitted for almost all samples of the uniform distribution;
• the peaks of densities such as the claw density are detected more reliably.

We consider differences of Kuiper metricsdκ
KU

ρi(F,Fn) = di
KU(F,Fn) − di−1

KU (F,Fn), i = 1, . . . , κ,(∗)

whered0
KU ≡ 0. The distribution of each differenceρi(F,Fn) is independent ofF .

In our modifiedκ-Kuiper problem we require all differences to be smaller than
someα-quantile ofρi with α close to 1. Our default isα = 0.999.

PROBLEM 3.2′ (Modifiedκ-Kuiper density problem). Determine the smallest
integer kn for which there exists a densityf n with kn modes and whose
distributionFn satisfies

ρi(En,F
n) ≤ qu(n,α,ρi)

for all i = 1, . . . , κ .

As for the original κ-Kuiper problem quantiles may again be obtained
by simulation. For largen > 1000 the distribution of

√
nρi(Fn,F ) can be

approximated by the corresponding quantile of a Brownian bridge using the weak
convergence of the empirical process.

The taut string procedure can be initiated by using the global bandwidth
ε0 = 0.5 which corresponds to a constant approximating densityf 0. If all
inequalities (∗) are satisfied forf 0 we are finished. Otherwise assume thati is
the smallest index such that an inequality (∗) is not satisfied. Then we set
ε1 = 0.5 · qu(n,α,ρi) which is the largest tube width such that thei-th difference
ρi of κ-Kuiper metrics is sufficiently small. After a few iterations allρi will
satisfy (∗) and the final approximation is the taut string approximation with the
maximal global bandwidth and hence minimal number of modes which is adequate
for the data.

Table 8 shows that the proposed procedure returns a constant function for the
uniform density in about 99 per cent of the cases independent ofn. At the same
time the 10 peaks of theN10_5-density are found in 23 % of the cases by the new
procedure for samples of size 100 and in 80 % for samples of size 250. The old
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TABLE 8
Results for the taut string procedure based on the modifiedκ-Kuiper criterion usingκ19.

The numbers give the percentage of simulations in which the correct modality was obtained.
The numbers in parentheses give the mean absolute deviation from the correct modality. The results

are based on1000simulations with sample sizes of100,250,500and1000

Dist. U S N1 N2 N4 N5 N10_5 N10_10

100 99 (0.0) 100 (0.0) 98 (0.0) 8 (1.2) 0 (2.1) 3 (3.8) 23 (3.8) 63 (0.4)
250 99 (0.0) 100 (0.0) 100 (0.0) 18 (0.8) 0 (2.0) 23 (2.6) 80 (0.2) 91 (0.1)
500 98 (0.1) 100 (0.0) 100 (0.0) 53 (0.5) 1 (2.0) 76 (0.4) 94 (0.1) 95 (0.1)

1000 98 (0.1) 100 (0.0) 100 (0.0) 86 (0.1) 3 (2.0) 100 (0.0) 98 (0.0) 97 (0.0)

procedure never found the correct number of peaks for samples of size 250. Only
the performance for the bimodalN2-distribution has deteriorated. The small peaks
of theN4 distribution are only detected occasionally even for large sample sizes.
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