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FINITE SAMPLE PROPERTIES OF MULTIPLE
IMPUTATION ESTIMATORS

BY JAE KWANG KIM 1

Yonsei University

Finite sample properties of multiple imputation estimators under the
linear regression model are studied. The exact bias of the multiple imputation
variance estimator is presented. A method of reducing the bias is presented
and simulation is used to make comparisons. We also show that the suggested
method can be used for a general class of linear estimators.

1. Introduction. Multiple imputation, proposed by Rubin (1978), is a pro-
cedure for handling missing data that allows the data analyst to use standard
techniques of analysis designed for complete data, while providing a method to
estimate the uncertainty due to the missing data. Repeated imputations are drawn
from the posterior predictive distribution of the missing values under the specified
model given a suitable prior distribution.

Schenker and Welsh [(1988), hereafter SW] studied the asymptotic properties
of multiple imputation in the linear-model framework, where the scalar outcome
variableYi is assumed to follow the model

Yi = x′
iβ + ei,

(1)
ei

i.i.d.∼ N(0, σ 2).

Thep-dimensionalxi ’s are observed on the complete sample and are assumed to
be fixed.

To describe the imputation procedure, we adopt matrix notation. Without loss
of generality, we assume that the firstr units are the respondents. Letyr =
(Y1, Y2, . . . , Yr)

′ andXr = (x1,x2, . . . ,xr )
′. Also, letyn−r = (Yr+1, Yr+2, . . . , Yn)

′
andXn−r = (xr+1,xr+2, . . . ,xn)

′. The suggested method of multiple imputation
for model (1) is as follows:

[M1] For each repetition of the imputation,k = 1, . . . ,M , draw

σ ∗2
(k)

∣∣ yr
i.i.d.∼ (r − p)σ̂ 2

r /χ2
r−p,(2)

whereσ̂ 2
r = (r − p)−1y′

r[I − Xr(X
′
rXr )

−1X′
r ]yr .
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[M2] Draw

β∗
(k)

∣∣ (
yr , σ

∗
(k)

) i.i.d.∼ N
(
β̂r , (X

′
rXr)

−1σ ∗2
(k)

)
,(3)

whereβ̂r = (X′
rXr)

−1X′
ryr .

[M3] For each missing unitj = r + 1, . . . , n draw

e∗∗
j (k)

∣∣ (
β∗

(k), σ
∗
(k)

) i.i.d.∼ N
(
0, σ ∗2

(k)

)
.(4)

ThenY ∗∗
j (k) = xjβ

∗
(k) + e∗∗

j (k) is the imputed value associated with unitj for
thekth imputation.

[M4] Repeat [M1]–[M3] independentlyM times.

The above procedure assumes a constant prior for(β, logσ) and an ignorable
response mechanism in the sense of Rubin (1976).

At each repetition of the imputation,k = 1, . . . ,M , we can calculate the
imputed version of the full sample estimators

β̂I (k),n =
(

n∑
i=1

xix′
i

)−1[ r∑
i=1

xiyi +
n∑

i=r+1

xiY
∗∗
i(k)

]

and

V̂I (k),n =
(

n∑
i=1

xix′
i

)−1

σ̂ 2
I (k),n,

where

σ̂ 2
I (k),n = (n − p)−1

[
r∑

i=1

(
Yi − x′

iβ̂I (k),n

)2 +
n∑

i=r+1

(
Y ∗∗

i(k) − x′
i β̂I (k),n

)2
]
.

The proposed point estimator for the regression coefficient based onM repeated
imputations is

β̂M,n = M−1
M∑

k=1

β̂I (k),n.(5)

The proposed estimator for the variance of the point estimator (5) is

V̂M,n = WM,n + (1+ M−1)BM,n,(6)

where

WM,n = M−1
M∑

k=1

V̂I (k),n(7)
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and

BM,n = (M − 1)−1
M∑

k=1

(
β̂I (k),n − β̂M,n

)(
β̂I (k),n − β̂M,n

)′
.(8)

Rubin (1987) calledWM,n the within-imputation variance and calledBM,n the
between-imputation variance. We callV̂M,n Rubin’s variance estimator.

SW studied the asymptotic properties of the point estimator (5) and its variance
estimator (6). Under regularity conditions they showed that

lim
n→∞E(β̂M,n − β) = 0(9)

and

lim
n→∞n

{
E(V̂M,n) − Var(β̂M,n)

} = 0,(10)

where the reference distribution in (9) and (10) is the regression model (1) with an
ignorable response mechanism.

Note that (9) and (10) require that the sample sizen go to infinity, for fixed
M , M > 1. Finite sample properties are not discussed by SW. The next section
gives finite sample properties of the multiple imputation estimators. In Section 3
a simple modified version of the SW method is proposed to minimize the finite
sample bias of the multiple imputation variance estimator. In Section 4 extensions
are made to a more general class of estimators. In Section 5 results of a simulation
study are reported. In Section 6 concluding remarks are made.

2. Finite sample properties. The following lemma provides the covariance
structure of the multiply-imputed data set generated by [M1]–[M4].

LEMMA 2.1. Let Yi be the observed value of the ith unit, i = 1,2, . . . , r

(r > p + 2), and let Y ∗∗
j (k) be the imputed value associated with the j th unit for

the kth repetition of the multiple imputation generated by the steps [M1]–[M4].
Then, under model (1) with an ignorable response mechanism,

Cov
(
Yi, Y

∗∗
j (k)

) = x′
i(X

′
rXr)

−1xj σ
2(11)

and

Cov
(
Y ∗∗

i(k), Y
∗∗
j (s)

)

=




(1+ λ)x′
i(X

′
rXr)

−1xiσ
2 + λσ 2, if i = j and k = s,

(1+ λ)x′
i(X

′
rXr)

−1xj σ
2, if i �= j and k = s,

x′
i(X

′
rXr)

−1xjσ
2, if k �= s,

(12)

where λ = (r − p − 2)−1(r − p) and the expectations in (11) and (12) are taken
over the joint distribution of model (1) and the imputation mechanism with the
indices of respondents fixed.
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For the proof, see Appendix A.
Note that the imputed valueY ∗∗

i(k) can be decomposed into three independent
components as

Y ∗∗
i(k) = xiβ̂r + xi

(
β∗

(k) − β̂r

) + e∗∗
i(k).(13)

The first componentxiβ̂r has meanxiβ and variancex′
i(X

′
rXr )

−1xiσ
2, the

second component has mean zero and varianceλx′
i(X

′
rXr)

−1xiσ
2 and the third

component has mean zero and varianceλσ 2.
The following theorem gives the mean and variance of the point estimatorβ̂M,n

of the regression coefficient and the mean of the multiple imputation variance
estimatorV̂M,n. Again, the expectations in the following theorem are taken over
the joint distribution of model (1) and the imputation mechanism with the indices
of respondents fixed.

THEOREM 2.1. Under the assumptions of Lemma 2.1,

E(β̂M,n) = β,(14)

Var(β̂M,n) = (X′
rXr)

−1σ 2 + M−1λ
[
(X′

rXr)
−1 − (X′

nXn)
−1]σ 2,(15)

E(WM,n) = (X′
nXn)

−1{1+ (n − p)−1(λ − 1)(n − r)
}
σ 2(16)

and

E(BM,n) = λ
[
(X′

rXr)
−1 − (X′

nXn)
−1]σ 2,(17)

where λ = (r −p−2)−1(r −p), WM,n is the within-imputation variability defined
in (7) and BM,n is the between-imputation variability defined in (8). The bias of
the multiple imputation variance estimator is

E(V̂M,n) − Var(β̂M,n) = (X′
nXn)

−1(n − p)−1(λ − 1)(n − r)σ 2

(18) + (λ − 1)
[
(X′

rXr)
−1 − (X′

nXn)
−1]σ 2.

For the proof, see Appendix B.
As is observed from (15), the point estimatorβ̂M,n for infinite M achieves the

same efficiency of̂βr , the estimator based on the respondents. In fact,

lim
M→∞ β̂M,n

=
(

n∑
i=1

xix′
)−1{ r∑

i=1

xi

[
x′
iβ̂r + (yi − x′

i β̂r )
]}

+
(

n∑
i=1

xix′
)−1{ n∑

i=r+1

xi

[
x′
iβ̂r + M−1

M∑
k=1

(
x′
i

(
β∗

(k) − β̂r

) + e∗∗
i(k)

)]}

= β̂r ,
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because
∑r

i=1 xi(yi − x′
iβ̂r ) = 0 by standard regression theory, limM→∞ M−1 ×∑M

k=1(β
∗
(k) − β̂r ) = 0 by the law of large numbers and limM→∞ M−1 ×∑M

k=1 e∗∗
i(k) = 0 by the law of large numbers. By (15) the variance ofβ̂M,n can

be written as

Var(β̂M,n) = Var(β̂r ) + M−1λ
[
Var(β̂r ) − Var(β̂n)

]
.(19)

The second part in the right-hand side of (19) is the increase in variance due
to usingβ̂M,n instead ofβ̂r . By (17) that increase can be unbiasedly estimated

by M−1BM,n. Thus, an alternative estimator for the total variance ofβ̂M,n that is
unbiased for (15) is

V̂ar(β̂r ) + M−1BM,n,(20)

whereV̂ar(β̂r ) is the standard variance estimator that treats the respondents as if
they are the original sample.

In large samples,λ
.= 1 and the bias of the multiple imputation variance

estimator for the imputed regression coefficient is negligible. The bias term (18) is
an exact bias forr > p + 2.

The total variance of̂βM,n can be decomposed into three parts:

Var(β̂M,n) = Var(β̂n) + Var(β̂r − β̂n) + Var(β̂M,n − β̂r ).

The first part, the second part and the third part can be called the sampling variance,
the variance due to missingness and the variance due to imputation, respectively.
Rubin’s multiple imputation usesWM,n to estimate the sampling variance,BM,n to
estimate the variance due to missingness andM−1BM,n to estimate the variance
due toM repeated imputations. The first term on the right-hand side of (18) is the
bias ofWM,n as an estimator of the sampling variance and the second term on the
right-hand side of (18) is the bias ofBM,n as an estimator of the variance due to
missingness. The imputation variance is unbiasedly estimated byM−1BM,n.

3. A modification. We consider ways of reducing the bias of the multiple
imputation variance estimator. Recall that multiple imputation is characterized by
the method of generating the imputed values and by the variance formula. The
variance formula directly uses the complete sample variance estimator so that it
can be implemented easily using existing software.

One estimator of variance is the alternative variance estimator in (20), which
involves direct estimation of parameters from the respondents. A similar idea was
used by Wang and Robins (1998). Then Rubin’s variance estimatorV̂M,n in (6) is
no longer required.
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If we want to use Rubin’s variance formula, one approach is to modify the
imputation method to minimize the bias term in (18). To find a best imputation
procedure, instead of fixing a constant prior for logσ , we use a class of prior
distributions indexed by hyperparameters to express a class of imputation methods.
As a conjugate prior distribution forσ 2, we choose a scaled inverse chi-square with
degrees of freedomν0 and scale parameterσ 2

0 as the hyperparameters; that is, the
prior distribution ofσ 2 is the distribution ofν0σ

2
0/χ2

ν0
. In the modified imputation

method we determine the values of the hyperparameters,ν0 andσ 2
0 , to remove the

bias of the multiple imputation variance estimator.
Using the hyperparameters, the posterior distribution forσ 2 is written

σ ∗2
(k)

∣∣ yr
i.i.d.∼ [

ν0σ
2
0 + (r − p)σ̂ 2

r

]/
χ2

(ν0+r−p),(21)

so that

E
(
σ ∗2

(k)

) = (ν0 + r − p − 2)−1(ν0σ
2
0 + (r − p)σ 2).(22)

Note that SW usedν0 = 0. Using the arguments of the proofs of Lemma 2.1 and
Theorem 2.1, the bias of the multiple imputation variance estimator based on the
posterior distribution in (21) is

Bias(V̂M,n) = (X′
nXn)

−1(n − p)−1{(λ0 − 1)(n − r)σ 2 + λ1(n − r)σ 2
0
}

+ {
(X′

rXr )
−1 − (X′

nXn)
−1}{(λ0 − 1)σ 2 + λ1σ

2
0
}
,

(23)

whereλ0 = (ν0 + r − p − 2)−1(r − p) andλ1 = (ν0 + r − p − 2)−1ν0. The bias
is zero whenν0 = 2 andσ 2

0 = 0, which is equivalent to generating the posterior
values ofσ 2 from the inverse chi-square distribution with degrees of freedom
ν = r −p +2 instead ofν = r −p in (2). Thus, the choice ofν = r −p +2 in (2)
makes Rubin’s variance estimator unbiased for a finite sample.

We can also derive the optimal prior using the recent work of Meng and
Zaslavsky (2002) on single observation unbiased priors (SOUP). Meng and
Zaslavsky [(2002), Section 6] showed that

π(σ 2) ∝ (σ 2)−2(24)

is the unique SOUP among all continuously relatively scale invariant priors for
the scale family distribution. Note that the prior density of the scaled inverse chi-
square distribution can be written as

π(σ 2) ∝ (σ 2)−(νo/2+1) exp
[−ν0σ

2
0/(2σ 2)

]
.(25)

Thus, the unique SOUP forσ 2 in (24) corresponds to the scaled inverse chi-square
distribution with ν0 = 2 andσ 2

0 = 0, which makes the posterior mean in (22)
unbiased forσ 2.
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4. Extensions. In this section we investigate the properties of the modified
method when it is applied to estimators other than the regression coefficients. Let
the complete sample point estimator be a linear estimator of the form

θ̂n =
n∑

i=1

αiYi(26)

for some known coefficientsαi . Also, let the complete sample estimator for the
variance ofθ̂n be a quadratic function of the sample values of the form

V̂n =
n∑

i=1

n∑
j=1

�ijYiYj(27)

for some known coefficients�ij .
For the V̂M,n to be asymptotically unbiased for the variance ofθ̂M,n, we

need the “congeniality” assumption as defined in Meng (1994). The congeniality
assumption in our context implies

Var(θ̂∞,n) = Var(θ̂n) + Var(θ̂∞,n − θ̂n).(28)

For the case ofθ̂n = β̂n discussed in Section 2, congeniality holds because
θ̂∞,n = β̂r and

Var(β̂r − β̂n) = (X′
rXr)

−1σ 2 − (X′
nXn)

−1σ 2

= Var(β̂r) − Var(β̂n).

We restrict our attention to the case of congenial multiple imputation estimation
because otherwise the variance estimator will be biased even asymptotically.

The following theorem expresses the bias of Rubin’s variance estimator applied
to the general class of estimatorsθ̂n in (26) andV̂n in (27) under the SW method.

THEOREM 4.1. Let the assumptions of Lemma 2.1 hold. Assume that the
complete sample variance estimator V̂n in (27) is unbiased for the variance of the
complete sample point estimator θ̂n in (26) under model (1). Let the congeniality
assumption (28) hold. Then the multiple imputation point estimator θ̂M,n is
unbiased with variance

Var(θ̂M,n) =
{

r∑
i=1

α2
i + 2

r∑
i=1

n∑
j=r+1

αiαjhij +
n∑

i=r+1

n∑
j=r+1

αiαjhij

}
σ 2

(29)

+ M−1λ

{
n∑

i=r+1

n∑
j=r+1

αiαjhij +
n∑

i=r+1

α2
i

}
σ 2.
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The bias of V̂M,n as an estimator of Var(θ̂M,n) is

E(V̂M,n) − Var(θ̂M,n)

=
{

2
r∑

i=1

n∑
j=r+1

�ijhij + (1+ λ)

n∑
i=r+1

n∑
j=r+1

�ijhij

(30)

+ (λ − 1)

n∑
j=r+1

�jj

}
σ 2

+ (λ − 1)

{
n∑

j=r+1

α2
j +

n∑
j=r+1

n∑
j=r+1

αiαjhij

}
σ 2,

where λ = (r − p − 2)−1(r − p) and hij = x′
i (X

′
rXr)

−1xj .

For the proof, see Appendix C.
The first term on the right-hand side of (30) is the bias ofWM,n as an estimator

of Var(θ̂n) and the second term is the bias of(1 + M−1)BM,n as an estimator of
Var(θ̂M,n − θ̂n).

Note that the bias term in (30) can be written

Bias(V̂M,n) = 2
n∑

i=1

n∑
j=r+1

�ijhij σ
2 + (λ − 1)Uσ 2,(31)

where

U =
{

n∑
i=r+1

n∑
j=r+1

(�ij + αiαj )hij +
n∑

j=r+1

(�jj + α2
j )

}

= trace
{
(�n−r + αn−rα

′
n−r)

[
Xn−r (X

′
rXr)

−1X′
n−r + In−r

]}
with �n−r the lower-right (n − r) × (n − r) partition of � = [�ij ] and
αn−r = (αr+1, . . . , αn)

′. By the nonnegative definiteness of�n−r , αn−rα
′
n−r ,

Xn−r (X
′
rXr)

−1X′
n−r and In−r , the U term is nonnegative. Thus, if we use the

modified method suggested in Section 3 so that we haveλ = 1, the variance
term (29) decreases and the bias will be reduced to

Bias(V̂M,n) = 2
n∑

i=1

n∑
j=r+1

�ijhij σ
2,(32)

which is always smaller than the original bias in (31) becauseλ = (r − p −
2)−1(r − p) > 1.

A sufficient condition for the bias term in (32) to be zero is

� = c
[
In − Xn(X

′
nXn)

−1X′
n

]
(33)
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for some constantc > 0. To show this, letδij be the(i, j)th element ofIn. Then

n∑
i=1

�ijhij =
n∑

i=1

c
[
δij − x′

i(X
′
nXn)

−1xj

][
x′
i(X

′
rXr)

−1xj

]

= cx′
j (X

′
rXr)

−1xj − cx′
j (X

′
nXn)

−1

[
n∑

i=1

xix′
i

]
(X′

rXr)
−1xj = 0

and the bias term in (32) equals zero, which alternatively justifies our assertion of
zero bias in Section 3.

5. Simulation study. To see the effect of changingν = r − p into ν =
r − p + 2, we performed a limited simulation. The simulation study can be
described as a 2× 3 × 2 factorial design withL = 50,000 samples within each
cell, where each sample is generated from

Yi = 2+ 4xi + ei,(34)

wherexi = 5+ 10(n + 1)−1i andei are independently and identically distributed
from the standard normal distribution. Thus, the population mean of(X,Y ) is
(10, 42). The factors are as follows:

1. factor A, method of multiple imputation—SW method (ν = r −2), new method
(ν = r);

2. factor B, response rate(r/n)—0.8, 0.6, 0.4;
3. factor C, sample size(n)—20, 200.

We used a uniform response mechanism andM = 5 repeated imputations.
Table 1 presents the mean, the variance and the percentage relative efficiency

of the point estimators under the two imputation schemes. The percentage relative
efficiency (PRE) is

PRE= [
VarL(θ̂SW)

]−1 VarL(θ̂new) × 100,

where the subscriptL denotes the distribution generated by the Monte Carlo
simulation. Both imputation methods are unbiased for the two parameters and
the Monte Carlo results are consistent with that property. The new procedure is
slightly more efficient than the SW procedure and the efficiency is greater for
lower response rates.

Table 2 presents the relative bias andz-statistics for the variance estimators.
The relative bias ofV̂ as an estimator of the variance ofθ̂ is calculated as
[VarL(θ̂ )]−1[EL(V̂ )−VarL(θ̂)], and thez-statistic for testingH0 :E(V̂ ) = Var(θ̂)

is

z-statistic = L1/2[ELV̂ ) − VarL(θ̂ )]
{EL[V̂ − EL(V̂ ) + VarL(θ̂) − (θ̂ − EL(θ̂))2]2}1/2

.(35)



MULTIPLE IMPUTATION ESTIMATORS 775

TABLE 1
Mean, variance and the percentage relative efficiency (PRE ) of the multiple imputation

point estimators under the two different imputation schemes (50,000samples)

Mean Variance PRE

Parameter n r/n SW New SW New (%)

Mean 20 0.8 42.0 42.0 0.066533 0.066056 99.2
0.6 42.0 42.0 0.095951 0.094192 98.2
0.4 42.0 42.0 0.150521 0.142537 94.7

200 0.8 42.0 42.0 0.006594 0.006583 99.8
0.6 42.0 42.0 0.009069 0.009057 99.9
0.4 42.0 42.0 0.014143 0.014090 99.6

Slope 20 0.8 4.0 4.0 0.008873 0.008785 99.0
0.6 4.0 4.0 0.013148 0.012956 98.5
0.4 4.0 4.0 0.018190 0.017443 95.9

200 0.8 4.0 4.0 0.000780 0.000779 99.9
0.6 4.0 4.0 0.001084 0.001084 100.0
0.4 4.0 4.0 0.001681 0.001674 99.6

A heuristic argument for the justification of thez-statistic is made in Appendix D.
Under the SW imputation, the relative bias is larger for smaller samples and

for smaller response rates. The new imputation produces much smaller relative
bias for the variance estimator. For large sample sizes both imputation methods
produce negligible relative biases of the variance estimators.

TABLE 2
Relative bias (RB) and the z-statistic of Rubin’s variance estimators under

the two different imputation schemes (50,000samples)

RB z-statistic

Parameter n r/n SW New SW New

Mean 20 0.8 0.0624 0.0008 9.33 0.12
0.6 0.1520 −0.0045 21.27 −0.66
0.4 0.3221 0.0074 37.23 0.97

200 0.8 −0.0086 −0.0124 −1.36 −1.94
0.6 0.0040 −0.0045 0.61 −0.69
0.4 0.0155 −0.0037 2.29 −0.55

Slope 20 0.8 0.0706 0.0095 10.39 1.41
0.6 0.1560 −0.0064 21.21 −0.90
0.4 0.3418 0.0046 37.81 0.59

200 0.8 0.0129 0.0107 2.03 1.67
0.6 0.0175 0.0031 2.69 0.48
0.4 0.0240 0.0047 3.60 0.70
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TABLE 3
Mean length and the coverage of 95%confidence intervals under the

two different imputation schemes (50,000samples)

Mean length Coverage (%)

Parameter n r/n SW New SW New

Mean 20 0.8 1.1397 1.0996 95.4 95.0
0.6 1.5305 1.4032 95.9 94.7
0.4 2.2635 1.9213 96.4 94.7

200 0.8 0.3232 0.3223 95.0 94.9
0.6 0.3949 0.3928 94.8 94.7
0.4 0.5235 0.5170 94.8 94.6

Slope 20 0.8 0.4169 0.4020 95.5 95.0
0.6 0.5646 0.5175 95.8 94.7
0.4 0.7897 0.6696 96.7 94.9

200 0.8 0.1124 0.1121 95.2 95.1
0.6 0.1374 0.1364 95.0 95.0
0.4 0.1811 0.1789 95.0 94.7

Table 3 displays the mean lengths and the coverages of 95% confidence inter-
vals. The confidence intervals are(θ̂ − t

√
V̂ , θ̂ + t

√
V̂ ), wheret = t0.025,ν andν

is computed using the method of Barnard and Rubin (1999). The coverages of
the confidence intervals are all close to the nominal level. For small sample sizes
the confidence intervals based on the new imputation are slightly narrower than the
confidence intervals based on the SW method. Interval estimation shows less dra-
matic results for small sample size than variance estimation. This is partly because
the distributions of point estimates are bell-shaped and partly because the degrees
of freedom of Barnard and Rubin (1999) attenuate the effect of small sample bias
of the variance estimator.

6. Discussion. We study the mean and the covariance structure of the data set
generated by the conventional multiple-imputation method under the regression
model. Using the mean and the covariance structure of the multiply-imputed data
set, we investigate the exact bias of Rubin’s variance estimator. The bias of Rubin’s
variance estimator is negligible for large sample sizes, as discussed by SW, but
the bias may be sizable for small sample sizes. We propose a simple modified
imputation method that is more efficient than the SW method and makes Rubin’s
variance estimator unbiased. When applied to a general class of linear estimators,
the proposed method produces more efficient estimates and has smaller bias for
variance estimation than that of the SW method. In a simulation study we found
that the bias of Rubin’s variance estimator under the SW method is remarkably
large for small sample sizes. The bias of Rubin’s variance estimator under the new
method is reasonably small in the simulation.
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In practice, the small sample bias of the multiple imputation variance estimator
is of special concern when the scale parameterσ is generated with small degrees of
freedom. One such example is stratified sampling, where the sample selection is
performed independently across the strata. In a stratified sample the assumption
of equal σ across the strata is not a reasonable assumption. Thus, the scale
parameters have to be generated independently within each stratum, using only
the respondents in the stratum, which often makes the degrees of freedom very
small even for a large data set. The new method will significantly reduce the bias
in this case.

A commonly used imputation model is the cell mean model, where the study
variables are assumed homogeneous within each cell. Under the cell mean model
Rubin and Schenker (1986) considered various multiple imputation methods.
Since the imputation is performed separately within each cell, the scale parameters
are generated independently within each cell. Thus, the methods considered by
Rubin and Schenker (1986) are subject to small sample biases. The biases can
be significant when there are a small number of respondents within each cell.
Recently, Kim (2002) proposed an alternative imputation method of making the
variance estimator unbiased under the cell mean model.

APPENDIX A

PROOF OFLEMMA 2.1. By (3),

E
(
x′
jβ

∗
(k)|yr

) = x′
j β̂r .(A.1)

So

Cov
(
Yi, Y

∗∗
j (k)

) = Cov
{
Yi,E

(
Y ∗∗

j (k)|yr

)} = Cov(Yi,x′
j β̂r ) = x′

i(X
′
rXr)

−1xjσ
2.

Now, by (2),

E
(
σ ∗2

(k)

) = E
(
σ ∗2

(k)|yr

) = E(λσ̂ 2
r ) = λσ 2,(A.2)

whereλ = (r − p − 2)−1(r − p). So

Cov
(
x′
iβ

∗
(k),x′

jβ
∗
(k)|yr

) = Cov
[
E

(
x′
iβ

∗
(k)|yr , σ

∗
(k)

)
,E

(
x′
jβ

∗
(k)|yr , σ

∗
(k)

)|yr

]
+ E

[
Cov

(
x′
iβ

∗
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jβ
∗
(k)|yr , σ

∗
(k)

)|yr

]
(A.3) = E

[
x′
i(X

′
rXr)

−1xj σ
∗2
(k)|yr

]
= x′

i(X
′
rXr)

−1xj σ̂
2
r λ,

and, fork �= s,

Cov
(
x′
iβ

∗
(k),x′

jβ
∗
(s)|yr

) = 0.(A.4)
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Hence, by (A.1) and (A.3),

Cov
(
x′
iβ

∗
(k),x′

jβ
∗
(k)

) = Cov
[
E

(
x′
iβ

∗
(k)|yr

)
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(
x′
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)]
+ E

[
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(
x′
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∗
(k)|yr

)]
(A.5) = Cov(x′

i β̂r ,x′
j β̂r ) + E

{
x′
i(X

′
rXr)

−1xj σ̂
2
r λ

}
= (1+ λ)x′

i(X
′
rXr)

−1xjσ
2

and, fork �= s, by (A.1) and (A.4),

Cov
(
x′
iβ
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jβ
∗
(s)

) = E
[
Cov

(
x′
iβ

∗
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jβ
∗
(s)|yr

)]
+ Cov

[
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(
x′
iβ

∗
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(
x′
jβ

∗
(s)|yr

)]
(A.6)

= Cov(x′
i β̂r ,x′

j β̂r) = x′
i(X

′X)−1xj σ
2.

By (4) we have, fori �= j ,

Cov
(
Y ∗∗

i(k), Y
∗∗
j (s)

) = Cov
(
x′
iβ

∗
(k),x′

jβ
∗
(s)

)
(A.7)

and

Cov
(
Y ∗∗

i(k), Y
∗∗
j (k)

) =
{

Var
(
x′
iβ

∗
(k)

) + E
(
σ ∗2

(k)

)
, if i = j ,

Cov
(
x′
iβ

∗
(k),x′

jβ
∗
(k)

)
, if i �= j .

(A.8)

Therefore, inserting (A.2), (A.5) and (A.6) into (A.7) and (A.8), result (12)
follows. �

APPENDIX B

PROOF OFTHEOREM 2.1. Before we calculate the variance of the multiple
imputation estimator we provide the following matrix identity.

LEMMA B.1. Let Xn be an n×p matrix of the form X′
n = (X′

r ,X
′
n−r ), where

Xr is an r × p matrix and Xn−r is an (n − r) × p matrix. Assume that X′
nXn and

X′
rXr are nonsingular. Then

(X′
rXr)

−1 = (X′
nXn)

−1 + (X′
nXn)

−1X′
n−rXn−r (X

′
nXn)

−1

+ (X′
nXn)

−1X′
n−rXn−r (X

′
rXr )

−1X′
n−rXn−r (X

′
nXn)

−1.
(B.1)

PROOF. Using the identity [e.g., Searle (1982), page 261]

(D − CA−1B)−1 = D−1 + D−1C(A − BD−1C)−1BD−1(B.2)

with A = I , B = Xn−r , C = X′
n−r andD = X′

nXn, we have

(X′
rXr)

−1 = (X′
nXn)

−1 + (X′
nXn)

−1X′
n−r

[
I − Xn−r (X

′
nXn)

−1X′
n−r

]−1

× Xn−r (X
′
nXn)

−1.
(B.3)
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Using (B.2) again withA = X′
nXn, B = X′

n−r , C = Xn−r andD = I , we have

[
I − Xn−r (X

′
nXn)

−1X′
n−r

]−1 = I + Xn−r (X
′
rXr )

−1X′
n−r .(B.4)

Inserting (B.4) into (B.3), we have (B.1).�

Note thatβ̂M,n = M−1 ∑M
k=1 β̂I (k),n and theβ̂I (1),n, β̂I (2),n, . . . , β̂I (M),n are

identically distributed. Thus,

Var(β̂M,n) = (1− M−1)Cov
(
β̂I (1),n, β̂I (2),n

) + M−1 Var
(
β̂I (1),n

)
.(B.5)

Defineai = (X′
nXn)

−1xi andhij = x′
i(X

′
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−1xj . By (11) and (12)
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i=r+1
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j=r+1
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2 + λ
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By the definition ofai andhij , we have
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′
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′
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Hence, inserting (B.8)–(B.10) into (B.6) and (B.7), and applyingX′
rXr +

X′
n−rXn−r = X′

nXn and (B.1), we have

Cov
(
β̂I (1),n, β̂I (2),n

) = (X′
rXr )

−1σ 2(B.11)

and

Var
(
β̂I (1),n

) = (X′
rXr)

−1σ 2 + λ
[
(X′

rXr)
−1 − (X′

nXn)
−1]σ 2.(B.12)

Thus, (15) is proved by (B.5).
To show (17), because thêβI (1),n, β̂I (2),n, . . . , β̂I (M),n are identically distrib-

uted,

E(BM,n) = Var
(
β̂I (1),n

) − Cov
(
β̂I (1),nβ̂I (2),n

)
.(B.13)

Thus, (17) is proved by inserting (B.11) and (B.12) into (B.13).
To show (16), we definẽY′

(k) = (y′
r ,y∗∗′

(k)) to be the vector of the augmented
data set at thekth repeated imputation, wherey∗∗
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′,
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By (11) and (12) we have
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(k))σ
−2 − In. Then

E
{
(n − p)σ̂ 2

I (k),n

} = E
{
(I − Px)(Qx + In)σ

2}
(B.14) = trace{In − Px}σ 2 + trace{[In − Px]Q}σ 2.

By the classical regression theory trace{In − Px} = n − p. For the second
term note that the left-upperr × r elements ofQ are all zeros. DefineC =
(X′

nXn)
−1X′

n−rXn−r andD = (X′
rXr)
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Note that, usingX′
rXr + X′

n−rXn−r = X′
nXn, we have

trace(D − CD)

= trace
{[

I − (X′
nXn)

−1X′
n−rXn−r

]
(X′

rXr )
−1X′

n−rXn−r

}
(B.17)

= trace
{
(X′

nXn)
−1X′

n−rXn−r

} = trace(C).

Thus, by applying (B.17) to (B.15) and (B.16), we have

trace(Q − PxQ) = (λ − 1)(n − r).(B.18)

Therefore, inserting (B.18) into (B.14), we have (16).�

APPENDIX C

PROOF OF THEOREM 4.1. The variance formula (29) directly follows by
applying the multiple imputation variance formula (B.5) toθ̂M,n and usingai = αi

in (B.6) and (B.7).
To show (30), we decompose the total variance into three parts:

Var(θ̂M,n) = Var(θ̂n) + Var(θ̂M,n − θ̂n) + 2 Cov(θ̂n, θ̂M,n − θ̂n).(C.1)

To compute the bias ofWM,n as an estimator of Var(θ̂n), we first express it as
V̂n = Y′

n�Yn, whereY′
n = (y′

r ,y′
n−r) and� = [�ij ]; then the within-imputation

variance term can be writtenWM,n = M−1 ∑M
k=1 Ỹ′

(k)�Ỹ(k). By E(Ỹ(k)) =
E(Yn),

E
(
V̂(k)

) = E
(
Ỹ′

(k)

)
�E

(
Ỹ(k)

) + trace
{
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(
Ỹ(k)

)}
= E(V̂n) + trace
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�

[
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(
Ỹ(k)

) − Var(Yn)
]}

.

By the unbiasedness of̂Vn and by the covariance structures in (11) and (12) we
have

E(WM,n) − Var(θ̂n)

= 2
r∑

i=1

n∑
j=r+1

�ijhij σ
2 + (σ 2 + λσ 2)

n∑
i=r+1

n∑
j=r+1

�ijhij(C.2)

+ (λ − 1)σ 2
n∑

j=r+1

�jj .

For the BM,n term it can be shown that, using the same argument as for
(B.6) and (B.7),

E(BM,n) = Var
(
θ̂I (1),n

) − Cov
(
θ̂I (1),nθ̂I (2),n

)
(C.3)

=
(

n∑
i=r+1

n∑
j=r+1

αiαjhij +
n∑

j=r+1

α2
i

)
λσ 2.
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By the covariance structures in (11)

Cov(θ̂M,n, θ̂n) =
(

r∑
i=1

α2
i +

r∑
i=1

n∑
j=r+1

αiαjhij

)
σ 2.(C.4)

Thus, by (29), (C.4) and Var(θ̂n) = ∑n
i=1 α2

i σ
2,

Var(θ̂M,n − θ̂n) = Var(θ̂M,n) + Var(θ̂n) − 2 Cov(θ̂M,n, θ̂n)

(C.5)

= (1+ M−1λ)

(
n∑

i=r+1

α2
i +

n∑
i=r+1

n∑
j=r+1

αiαjhij

)
σ 2

and, by (C.3) and (C.5),

E
[
(1+ M−1)BM,n

] − Var(θ̂M,n − θ̂n)

(C.6)

= (λ − 1)

[
n∑

i=r+1

α2
i +

n∑
i=r+1

n∑
j=r+1

αiαjhij

]
σ 2.

For the covariance term in (C.1) note that

Cov(θ̂n, θ̂M,n − θ̂n)

= Cov(θ̂n, θ̂∞,n − θ̂n) + Cov(θ̂n, θ̂M,n − θ̂∞,n) = 0,

(C.7)

because the first term on the right-hand side of the above equality is zero by the
congenialitycondition (28) and the second term is also zero because

Cov(θ̂n, θ̂M,n − θ̂∞,n) = Cov(θ̂n, θ̂M,n) − Cov(θ̂n, θ̂∞,n) = 0,

by the fact thatθ̂I (k), k = 1,2, . . . ,M , are identically distributed. Therefore, (30)
follows from (C.2), (C.6) and (C.7).�

APPENDIX D

D.1. Justification for z-statistic in (35). Let (θ̂i , V̂i), i = 1,2, . . . ,L, be
i.i.d. samples from a bivariate distributionG(θ̂, V̂ ) with second moments. Then
E(V̂ ) is unbiasedly estimated byEL(V̂ ) = L−1 ∑L

i=1 V̂i and Var(θ̂) is unbiasedly
estimated by(L − 1)−1L × EL[(θ̂ − EL(θ̂))2] .= L−1 ∑L

i=1(θ̂ − EL(θ̂))2, where
EL(θ̂) = L−1 ∑L

i=1 θ̂i . Thus, by the central limit theorem,

Z = EL(V̂ ) − EL[(θ̂ − EL(θ̂))2] − [E(V̂ ) − Var(θ̂ )]√
Var{EL(V̂ ) − EL[(θ̂ − EL(θ̂))2]}

(D.1)
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converges to aN(0,1) distribution asL → ∞. As EL(V̂ ) − EL[(θ̂ − EL(θ̂))2] =
L−1 ∑L

i=1[V̂i − (θ̂i − EL(θ̂))2], the variance term in the denominator of (D.1) is
consistently estimated by

L−1EL

{[
V̂ − (

θ̂ − EL(θ̂)
)2 − EL

[
V̂ − (

θ̂ − EL(θ̂)
)2]]2}

.= L−1EL

{[
V̂ − (

θ̂ − EL(θ̂)
)2 − EL(V̂ ) + VarL(θ̂)

]2}
.

Thus, using Slutsky’s theorem, thez-statistic in (35) converges to aN(0,1)

distribution underH0 :E(V̂ ) = Var(θ̂) asL → ∞.
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