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This paper establishes the global asymptotic equivalence between a
Poisson process with variable intensity and white noise with drift under sharp
smoothness conditions on the unknown function. This equivalence is also
extended to density estimation models by Poissonization. The asymptotic
equivalences are established by constructing explicit equivalence mappings.
The impact of such asymptotic equivalence results is that an investigation
in one of these nonparametric models automatically yields asymptotically
analogous results in the other models.

1. Introduction. The purpose of this paper is to give an explicit construction
of global asymptotic equivalence in the sense of Le Cam (1964) between a Poisson
process with variable intensity and white noise with drift. The construction is
extended to density estimation models. It yields asymptotic solutions to both
density estimation and Poisson process problems based on asymptotic solutions
to white noise with drift problems and vice versa.

Density estimation model. A random vectoV}, of lengthn is observed such
thatV; = (Vf, ..., V;) is a sequence of i.i.d. variables with a common density
feF.

Poisson process. A random vector of random lengthv, X} is observed
such thatN = N,, is a Poisson variable wittk N = n and that givenN = m,
Xy =X, =(X1,...,X,,) isasequence of i.i.d. variables with a common density
f € F. The resulting observations are then distributed as a Poisson process with
intensity functioruf.
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White noise. A Gaussian procesg* = Z; = {Z(1),0 <t < 1} is observed
such that

t *
(1.1) z;(;)sfo «/f(x)dx+§\§%), 0<r=<1,

with a standard Brownian motio®*(¢) and an unknown probability density
function f € £ in [0, 1].

Asymptotic equivalence. For any two experiments; and&, with a common
parameter spac®, A(&1, &2; ©) denotes Le Cam’s distance [cf., e.g., Le Cam
(1986) or Le Cam and Yang (1990)] defined as

NGRS supmaxsuplnf sup|E(’)L(9, 800y — Eék)L(e, s0)],
L J=12 ) §® pe@

where (a) the first supremum is taken over all decision problems with loss function
ILllso <1, (b) giventhe decision problemanid=1,2,k=3—j (k=2forj=1
andk = 1 for j = 2) the "“maximin” value of the maximum difference in risks over
® is computed over all (randomized) statistical proceddf€sfor & and (c) the
expectatlonsE“) are evaluated in experimeriswith parametep, £ = j, k. The
statistical interpretation of the Le Cam distance is as follow& (1, &2; ®) < ¢,
then for any decision problem withZ |, < 1 and any statistical procedus&’’
with the experimeng;, j =1, 2, there exists a (randomized) procedsife with
&, k =3 — j, such that the risk o§© evaluated ir; nearly matches (withim)
that of§/) evaluated irg;.

Two sequences of experiments ,, n > 1} and{&, ,, n > 1}, with a common
parameter spacg, are asymptotically equivalent if

A1, 620 F)—0 asn — oo.

The interpretation is that the risks of corresponding procedures converge.

A key result of Le Cam (1964) is that this equivalence of experiments can
be characterized using random transfations between the probability spaces.
A random transformationT (X, U) which maps observation¥ into the space
of observationg (with possible dependence on an independent, uninformative
random component/) also maps distributions i1 to approximations of the
distributions in &> via Pél)T ~ Péz). For the mapping between the Poisson
and Gaussian processes we shall restrict ourselves to transformatiarith
deterministic inverses] ~1(T'(X, U)) = X. The experiments are asymptotically
equivalent if the total-variation distance betweléﬁ) and the distribution of”

underPél) converges to 0 uniformly iA. As explained in Brown and Low (1996)
and Brown, Cai, Low and Zhang (2002), knowing an appropffagédiows explicit
construction of estimation proceduregirby applying statistical procedures from
£ TX,U).



2076 L. D. BROWN, A. V. CARTER, M. G. LOW AND C.-H. ZHANG

In general, asymptotic equivalence also implies a transformation frorﬁéﬁ)\e

to the P(Sl) and the corresponding total-variation distance bound. However, in the
case of the equivalence between the Poisson process and white noise with drift, by
requiring that the transformation be invertible, we have saved ourselves a step. The
transformation in the other direction7s1, and

1 2 1 — 2) r— 1 2)
POT P2 = [P Tt - PAT | = [P P71,

Therefore, it is sufficient if su5p||P§)1)T — Pé2)|| — 0.

The equivalence mappingg constructed in this paper from the sample space
of the Poisson process to the sample space of the white noise are invertible
randomized mappings such that

(1.2) SupHs(Tw(N,Xn), Z;) - 0

feF
under certain conditions on the famify. Here H¢(Z1, Z») denotes the Hellinger
distance of stochastic processes or random ve&gmsnd Z» living in the same
sample space, when the true unknown density .iSinceT,, are invertible ran-
domized mappingsT;, (N, Xy) are sufficient statistics for the Poisson processes
and their inverseﬁ"n—1 are necessarily many-to-one deterministic mappings. Sim-
ilar considerations apply for the mapping of the density estimation problem to the
white noise with drift problem, although in that case there are two mappings, one
from the density estimation to the white noise with drift model and another from
the white noise with drift model back to the density estimation model. These map-
pings are given in Section 2.

There have recently been several papers on the global asymptotic equivalence of
nonparametric experiments. Brown and Low (1996) established global asymptotic
equivalence of the white noise problem with unknown dfifto a nonparametric
regression problem with deterministic design and unknown regregSiatnen
f belongs to a Lipschitz class with smoothness index % It has also been
demonstrated that such nonparametric problems are typically asymptotically
nonequivalent when the unknowyi belongs to larger classes, for example,
with smoothness index < % Brown and Low (1996) showed the asymptotic
nonequivalence between the white noise problem and nonparametric regression
with deterministic design fax < % Efromovich and Samarov (1996) showed that
the asymptotic equivalence may fail whenrc ;11. Brown and Zhang (1998) showed
the asymptotic nonequivalence f@r< % between any pair of the following four
experiments: white noise, density problem, nonparametric regression with random
design, and nonparametric regression with deterministic design. In Brown, Cali,
Low and Zhang (2002) the asymptotic equivalence for nonparametric regression
with random design was shown under Besov constraints which include Lipschitz
classes with any smoothness index % Gramma and Nussbaum (1998) solved
the fixed-design nonparametric regression problem for nonnormal errors. Milstein
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and Nussbaum (1998) showed that some diffusion problems can be approximated
by discrete versions that are nonparametric autoregression models, and Golubev
and Nussbaum (1998) established a discrete Gaussian approximation to the
problem of estimating the spectral density of a stationary process.

Most closely related to this paper is the work in Nussbaum (1996) where
global asymptotic equivalence of the white noise problem to the nonparametric
density problem with unknown density = f2/4 is shown. In this paper the
global asymptotic equivalence was established under the following smoothness
assumptionyf belongs to the Lipschitz classes with smoothness imdsx%.

The parameter spaces. The class of functiong will be assumed throughout
to be densities with respect to Lebesgue measurg0ph] that are uniformly
bounded away from 0. The smoothness conditiongaran be described in terms
of Haar basis functions of the densities. Let

(13) Ou=0eH=[fore  €=0...2-1 k=01,
be the Haar coefficients gf, where

(1.4) Gk,e = 2k/2(11k+1,2z - :H‘[k+1,2(+1)

are the Haar basis functions with, = [£/2*, (¢4 1)/2"). The convergence of the
Hellinger distance in (1.2) is established via an inequality in Theorem 3 in terms
of the tails of the Besov normif'||1/2,2,2 and|| f [|1/2,4,4 of the Haar coefficients
Ok,e = 6Ok (f) in (1.3).

The Besov normg f |, .4 for the Haar coefficients, with smoothness index
and shape parametepssandg, are defined by

1 19 o -1 1/pya1/a
(1.5) N flla,pqg= |:’—/0 f‘ + Z {Zk(oz+l/2—1/p)< Z |9k,£(f)|p> } :| )
k=0 £=0

Let f; be the piecewise average gfat resolution levek, that is, the piecewise
constant function defined by

k1
(1.6) fi= i =Y 1re )2t i f.
k.l

£=0

Since || i — firallp = [ 1 eb0kehiel? = T l6kelP 2€P/27D, (1.5) can be
written as

00 1/q
1f llep.g = { 1fol? + D (211 fi — fk+1||p)q} :

k=0
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and its tail at resolution levély > 0 is || f — fkolla,p,q, ko > 0, with

B o0 2k_1 1/pyq
(1.7) I f— fk0||g’p’q = Z {2k(ot+1/2—1/p)< Z |9k’€|p) } )

k=ko =1
Let B(a, p, g) be the Besov space

B(a, p,q)={f" ||f||ot,p,q < o0},

The following two theorems on the equivalence of white noise with drift, density
estimation and Poisson estimation models are corollaries of our main result,
Theorem 3, which bounds the squared Hellinger distance between particular
invertible randomized mappings of the Poisson process and white noise with drift
models. The randomized mappings are given in Section 2. Proofs of these theorems
are given in the Appendix.

THEOREM 1. Let Z}, {N,Xy} and V; be the Gaussian process, Poisson
process and density estimation experiments, respectively. Suppose that # is
compact in both B(1/2,2,2) and B(1/2, 4, 4) andthat # C {f :info_,-1 f(x) >
go} for some gg > 0. Then

(1.8) lim A(Z}, {N,Xn}; #)=0
n—oo

and

(1.9) lim A(Z3, V5 #) =0.

Our construction also shows that asymptotic equivalence holds for a&li#ss
F is bounded in the Lipschitz norm with smoothness infleend compact in the
Sobolev norm with smoothness index g such thatx + > 1,& > 3 or g > 3.

For O< B < 1 the Lipschitz norm|f||f8L) and Sobolev nornnf||ff) are defined
by

Lf(x) = f(D)I -
I = sup = fI0 = Y n® eI

O<x<y<1l lx — y|/3 N——00
wherec, (f) = [Olf(x)e—"”z’” dx are the Fourier coefficients gf.

THEOREM 2. Let Z, {N, Xy} and V} be the Gaussian process, Poisson
process and density estimation experiments, respectively, and let ¥ be bounded
in the Lipschitz norm with smoothnessindex 8 and compact in the Sobolev norm
with smoothness index « > 8. Suppose ¥ C {f :infoex<1 f(x) > go} for some
eo>O.Thenifa+ﬂzl,az%0rﬂ> %,

n"—>mooA(Z;’ {N,Xn}; F)=0
and
lim_A(Z;, V3 ) =0.
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2. Theequivalencemappings. This section describes in detail the mappings
which provide the asymptotic equivalence claimed in this paper. The fact that
these mappings yield asymptotic equivalence is a consequence of our major result,
Theorem 3. The construction is broken into several stages.

From observations of the white noise (1.1), define random vectors

— S+l S
(1) Zy={(Z;,0<t<2", zkg_zk{z ( o )-z (?)}
(2.2) Wi={W,,0<t<2%,  Wiy=-Wipi1= o~ Zros1)/2
Let ko = ko, be suitable integers with lim, « ko, = oo. Following Brown,
Cai, Low and Zhang (2002), we construct equivalence mappings by finding the
counterparts oZk andWy, k > ko, with the Poisson process/, X ), to strongly
approximate the Gaussian variables. -
It can be easily verified from (1.1) thafZZO,e, 0<¢ < 2o, Wl:,ZE’ 0<t¢ <
2=1 k > ko} are uncorrelated normal random variables with
E?;;E=hk,352k h, hz\/?,

Ix.e

VVar(Zy ) = o = V2 /(4n),

fore=0,...,2x—1,andfor¢ =0,..., 21 -1,

(2.3)

EW} 5 = 3(hg.20 — he 2041) = V 2k_1/]’l¢k_1’g,
v Var(W/?,Zz) = Ok—1-

Let U = (Ui, k > ko, £ > O} be a sequence of i.i.d. uniform variables in
[—1/2,1/2) independentofN, Xy). Fork =0,1,...and¢ =0, ..., 2* — 1 define

(2.5) N = {Npe, 0 < <28}, Nio=#X;: Xi € I¢).

(2.4)

We shall approxima@; in (2.1) in distribution by

Zy={Zr,0< <25y,
(2.6) . - _
Zio =20, SYN(Ni ¢ + Uk, )V |Ni¢ + Ug ¢l

at the initial resolution levet = kg. SinceNy , are Poisson variables with

Jit
27

4oy

by Taylor expansion and central limit theory

Akt
Zk ¢~ Zak(\/)\k + ﬁ) ~ N(V S 05 Ukz)
k,E

n
(2.7) A =ENp = Efk,z = fru=2* 1
Ir e
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as Ak — oo, compared with (2.3). Note thay/fi¢ ~ hr¢ under suitable
smoothness conditions gf in view of (2.3) and (2.7). The Poisson variablMs,
can be fully recovered fronZ; ,, while the randomization turnvy , into
continuous variables.

Approximation of W , for k > ko is more delicate, since the central limit theo-
rem is not sufficiently accurate at high resolution levels. Egtoe the cumulative
distribution function of the independent sum of a binomial varia%,lgl/z with
paramete(m, 1) and a uniform variabl& in [-3, 3),

(2.8) Fn(x)=P{Xn12+U <x},

with Fo being the uniform distribution if—3, 3). Let ® be theN (0, 1) cumulative
distribution. We shall approximate/; by using a quantile transformation of
randomized versions of the Poisson random variables. More specifically, let

(2.9) Wi={Wi,,0<t<2"), Wi, 20 = 0k—1® H(Fn,_y ,(Nk 2 + Uk 20))

With Wy 20 = =Wk 2041, £ =0, ..., 2k=1_ 1, and theyin (2.3). GivenNy_1, = m,

Jia f fi,2¢
(210) Nk,ZE ~ Bin(m, pkvzg)’ Pkt = k,2¢ _ , ’
flk—l,( f Jee2e + fr2e+1

so that Wy o, is distributed exactly according toV (O, akz_l) for proe = %

compared with (2.4). Thus, the distributionsWf 2, and W} ,, are close at high

resolution levels as long g&is sufficiently smooth, even for smally_1 = m.
The equivalence mapping, with randomization through, are defined by

T AN, X, U} = Wikg.00) = Zn = (Z,(1):0<1 <1},

where forkg < k < 00, Wiy k) = {Zkes W, ko < j < k}, andZ; andW are as in
(2.6) and (2.9). The inverse @f, is a deterministic many-to-one mapping defined
by

T2y = W o) = (N* X3,

where forkg < k < oo, W = {7;0, W, ko < j <k}

REMARK 1. One need only carry out the above constructioh ok : 251 >
en since we shall assume théte B(%, 2,2) and then the observatiordgfko’k) =
{Z;O,W;,ko < j <k} andWpg k) = {Zio, W, ko < j < k} are asymptotically
sufficient for the Gaussian process and Poisson process experiments. See Brown
and Low (1996) for a detailed argument in the context of nonparametric regression.
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Mappings for the density estimation model. The constructive asymptotic
equivalence between density estimation experiments and Gaussian experiments
is established by first randomizing the density estimation experiment to an
approximation of the Poisson process and then applying the randomized mapping
as given above. Sgf = supyc g Il f — fk||§/2’2’2 and note that sinc&¢ is compact
in B(1/2,2,2), yx | 0. Now letkq be the smallest integer such th&t 4 > Yko @nd
divide the unit interval into subintervals of equal length with length equafte.2
Let f, be the corresponding histogram estimate based;oNow note that since
functions f € # are bounded below by > 0 it follows that

L
2.11) /Olm—mzs/;m—mz(@jom = [

€0

Now
1 1 1 _
(2.12) E /O (o= 2=E /O (Fo = fio)® + /0 (f = fio)?

and simple calculations show that the histogram estinfatsatisfiesE f, (x) =
fio(x) @and Varf, (x) < fko(x)znﬁ. Hence,

1 _ 2ko
(2.13) nl/zE/ (fn — fko)2 <nt?=_ < Zyklo/z — 0.
0 n
Now n1/2 < % and hence, from (1.7),
Vko

1 ) 1 )
2 2 12
(2.14) ”1/2/0 (f = fro)™ < W”f — Jko ||1/2,2,2 = Vko/ — 0.
ko

It thus follows from (2.11) to (2.14) that

Vi =VF) = 0.

1

(2.15) n? supE
fed 0

Hence the density estimate is squared Hellinger consistent at a rate faster than

square root ofi.

Now generateV, a Poisson random variable with expectatioand indepen-
dent of V;. If N > n generateN — n conditionally independent observations
15> VA with common densityf,. Finally let (N, X5) = (N, V§, V5, ...,

Vlg) and WriteR,} for this randomization fronv}, to (N, XN),

R}:VY— (N, X ).
A map from the Poisson number of independent observations back to the fixed

number of observations is obtained similarly. This time fgtbe the histogram
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estimator based ofWV, Xy). If N <n generates — N additional conditionally
independent observations with common dengjtylt is also easy to check that

1~
(2.16) nY2supE | (Vi —VF) —o.
fex JO
Now label these observatioks, = (V4, ..., V,) and WriteR,f for this randomiza-

tion from (N, Xy) to V,,,

R2:(N,Xy) = V,.

REMARK 2. It should also be possible to map the density estimation problem
directly into an approximation of the white noise with drift model. Dividing the
interval into 20 subintervals and conditioning on the number of observations
falling in each subinterval, the conditional distribution within each subinterval
is the same as for the Poisson process. Therefore, it is only necessary to have a
version of Theorem 4 for &@-dimensional multinomial experiment.

Carter (2002) provides a transformation from *a-8imensional multinomial
to a multivariate normal as in Theorem 4 such that the total-variation distance
between the distributions i@ (kg2*0n~1/2). The transformation is similar to ours
in that it adds uniform noise and then uses the square root as a variance-stabilizing
transformation. However, the covariance structure of the multinomial complicates
the issue and necessitates using a multi-resolution structure similar to the one
applied here to the conditional experiments. The Carter (2002) result can be
used in place of Theorem 4 to get a slightly weaker bound on the error in the
approximation in Theorem 3 (because of the ekgréactor) when the total number
of observations is fixed. This is enough to establish Theorem 2 if the inequalities
boundingx andg are changed to strictly greater than. It is also enough to establish
Theorem 1 if# is a Besov space with > % Carter (2000) also showed that
a somewhat more complicated transformation leads to a deficiency bound on the
normal approximation to the multinomials without the addgdhactor.

3. Main theorem. The theorems in Section 1 on the equivalence of white
noise with drift experiments and Poisson process experiments are consequences of
the following theorem which uniformly bounds the Hellinger distance between the
randomized mappings described in Section 2.

THEOREM3. Supposeinfo, <1 f(x) > e0>0.Let W, ) = {Zto: W, ko <

Jj <k} with the variablesin (2.1) and (2.2), and Wk, k) = {Zk,, W, ko < j < k}
with the variables in (2.6) and (2.9). Then there exist universal constants C,
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D, and D, such that for all k1 > kg,
2 *
H (Wi k)> Wikokp)

k_1
_C4o D1 . Dy n & 32,
5 Y. 2 Zek@ Y236,
50 n 80 k=ko  £=0 84k° k=ko (=0
C 4ko n
58_07 ||f fko”l/222+ 34k0||f fko||1/244’

where6y , arethe Haar coefficientsoff asin(1.3), frisasin (1.6) and || - l1/2,p.p
are the Besov normsin (1.5).

REMARK 3. Here the universal constaf is the same as the one in
Theorem 4, whileD, = 32 + 2 andD;, = 2 + & for the D in Theorem 5.

The proof of Theorem 3 is based on the inequalities established in Sections
4 and 5 for the normal approximation of Poisson and Binomial variables. Some
additional technical lemmas are given in the Appendix.

Let X,,., be a Birm, p) variable,X; be a Poisson variable with meanand/

be a uniform variable ifi—3, 3) independent o, , andX . Define
~ d _ ~ ~
(3.1) gm,p(x)sap{ob YFu(Xm.p +0)) < x}
with the F,,, in (2.8) and theV (0, 1) distribution function®, and define
~ d ~ ~ = -
(3.2) gk(x)EEP{ngr(X;L+U)\/|XA+U| <x).
Write ¢, for the density ofV (b, 1) variables.

PROOF OFTHEOREM 3. Let g[*ko,k)(W[ko,k)) and gk, k) Wiko.k)) be the joint
densities ofoko’k) and Wi, 1), gx(wx) be the joint density ofW;, and
gk (Wk|Wiko,k)) be the conditional joint density oV, given Wiy, «). SinceW;
is independent oV}, .,

V8o, 8lko.k) = V 8lko k4 1) 8lko k+1) = V &l k) 8lko ) (1 — V8L 8K )
so that the Hellinger distance can be written as

Hf (Wiko.k)» Wiko k1))

= 2<1 - / v 8lko.ky) 8lko k1) )

(3.3) = 2(1 - / V &k ko+1) &lko.ko+1) )
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+ 2 Z/V kok)g[kok( /@)

ko<k<kq
=HAZp Zi)+ Y [ Velonsion H2 80
ko<k<kq

At the initial resolution levelko, Ny, . are independent Poisson variables
by (2.5), so thatZ;, , are independent. This and the independenceZyf,
from (2.1) imply

2k0—1
2/5% = 5 —
HF(Z,. Zip) < ) Hf(Tko,Z’Zko,Z)~
(=0

By (2.6) and (3.2)Zy, ¢/o, have densitieg;, ,, while Z;  ,/ox, are N (i ¢/
ok, 1) variables by (2.3). Thus, Theorem 4 can be used to obtain

hko@ 2
T

2,5+ = 2/~
Hf( Lot Ziot) = Hj (g)\ko,e’ ‘phko,e/ﬁko) = o
0

- kko,z

Sinceix o = fr.e/(40?) by (2.7) ands? = 2¢-2/n by (2.3), the above calculation
yields

20-1 ko 2ko—1

2n
(Zko’zko <C Z Z 2ko(v Jro,t hko@)

nfko ¢

2% 2010k
<ct 4 ( /
neg Z(:) 288 I

(3.4)

(f - fko,e)z)z

O,Z

by Lemma 1(i) and the bounfl > «o.
Fork > kg and 0< ¢ < 21— 1, define

(3.5) k20 = /M 20(pr,2e — 1), Br,2¢ = vV Ak—1,¢(2pr,2e —

where py 2 are as in (2.10)Ax¢ = fi.¢n/2" are as in (2.7), and the functions
my 20 = my 2¢(Wiko k) are defined byi_1 ¢ = my 20(Wiio 1)). At a fixed reso-
lution levelk > ko, and for¢ =0, ..., 25~ — 1, N; , are independent binomial
variables conditionally oW/, x), so that by (2.9) and (3.1Wj 2¢/ox—1 are in-
dependent variables with densitigs, ,,. . ,, Under the conditional densigy. In
addition, W}, are independent normal variables with variaage; underg;.
Thus,

*x=1_1

(36) Hz(g;:7 gk) S Z Hz(gl’nk,ze,pk,zga (pﬁ]‘;ze)7
=0
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by (2.4), where; 5, = EW} 5,/ok—1 = ~/4n [ h—1,¢. It follows from Theo-
rem 5 and (3.5) that for fixedx, 1),

2 ~
H (gmk,ze,Pk,Zl ’ (pﬁi,ze)
3.7) 2 4 f20)”
L 1 (k,2¢ = B 20)
=Dy P =5 | Fmkzelprae =S| T

Furthermore, it follows from Lemma 3 that

* 2
/ 8iko. k) 8lko. ) (v/ Mk 26 — v/ hi—1.e)

4
< \// 8iko.l) (VMk,2¢ — v/ Ai—1,¢)

= \/E(‘/Nk—l,é — Vi)t <2,
so that by (3.5),

[ VSt iuai Gak.2e = B 0% < 4@prae — 1P + 2Bzt — i)’

Similarly, [ /&, k) 8lko.k)Mk,2¢ <V EN?_, < h-1¢+1/2.Thus, by (3.7),

2/~
/ngko,k)g[ko,k)H (gmk,ZEka,ZE’qoﬁ/:,zz)

(3.8)
2 4
<4D1[pr2c — 317+ Dai—ve[pr2e — 31"+ (Brze — Bfo)?.

with D1 = 3D/8+ 2. Now, by (2.10) and (1.3),

(3 9) » 1 [[k,zé f - f]k,25+1 f V 2k—19k—1,€
. k,20 — 7 — = ’
2 210, f 2fk-1.¢

so that by (3.5), (2.7), the definition gf ,, in (3.6) and Lemma 1(ii),

nfi-10 V2014 —m/hdnc ”‘

Brae = Bl = |\ 5

Si—1,¢
Ok—1,¢
3.10 = 4n‘7’—/h _ ‘
(3.10) Van o s Pr—1.¢

_ 1 ,—3/2
SN VR RS

k=1t
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Inserting (3.9) and (3.10) into (3.8) and summing o&era (3.6), we find
/ v gfko,k)g[ko,k)Hz(glf, 8k)

211

2 ~
Z /ngko,k)g[ko’k)H (gmk,ze»Pk,ze’(pﬁ,:vze)

21 k 1.2 4k0/? 1,2
(3.11) < Z 4D1 + Drk—1¢—F—
8fk 1,2 64f164—l,€
n2k 2
+ - (/ (f—fk—l,e)z) ]
2f 1,0 N1

Zk_l_l D]_ k—1,2 D nzk 1 2 2
< —=2tp7 +< +1) (/ (f_fk—l,é))],
ZE) [88 kb 16 88 Tr—1.

due torg ¢ =nfi¢/2Fin (2.7)anddf, < [, (f = fe.)®.
Finally, inserting (3.4) and (3.11) into (3.3) and then using Lemma 2 yields

Hj 2wy ko ky+1)> Wiko k1))
22ko

k1—
<C—+—ZZ"Z@H

neo 80kk0 =0

(16 2)“22221 Zk( Ik’e(f—fk,oz)z

kkEOSO
2*_1
c4k0 Dy ki Dy n &
k 3% 4
= Zz Zekﬁ 2 a0 220 ) O
0 SOkko (=0 k=kg  £=0

with D = (& + 3)/(1 - $)?2= & + 8 and the theorem follows.O

4. Approximation of Poisson variables. Let X, be a Poisson random
variable with mear. and U be a uniform variable ofi— 2) independent of
X,.. Define

~ - o~ = _ d ~
(4.1) Z,=2sgnX; +U)VIXy+ U], gk(y)EEP{ZASY}-
The main result of this section is a local limit theorem which bounds the squared

Hellinger distance between this transformed Poisson random variable and a normal
random variable.
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THEOREM 4. Let Z; and gy beasin (4.1). Let Z; ~ N2/, 1) and ¢, be
the density of N (O, ). Let H(-, -) be the Hellinger distance. Then, as . — oo,

~ . 1
(4.2) HXZ5, 2)) = H*(&0, 055) = (T+ 0(D) g
Consequently, there exists a universal constant C < oo such that

(4.3) H?(3.00) <C/h+ 2V —pn)?/2  ¥Ya>0,pu.

REMARK 4. The theorem remains valid ¥, is replaced by

Z,=2X,+U+3,

sinceH?(Z;, Z}) is bounded by

22j+1
JIG+ D!

v /
:1—E,/& gmin(l, 2)
A A

PROOF OFTHEOREM 4. The second inequality of (4.3) follows immediately
from (4.2), sinceH?(¢,.,, ¢u,) = (111 — 12)?/4 [cf. Brown, Cai, Low and Zhang
(2002), Lemma 3] andi?(g;, ¢,,) < 2.

Lett(x) = 2 sgn(x)+/]x[, a strictly increasing function. Define

0
2= 2/\/J[|)~(A+I7|f)?x+l7+l/2 <2- {1+ e
j=0

(4.4) X =171Z5) = sgnZ)(Z5)? /4.

Let £, and f;* denote the densities of; + U and X*, respectively. Since(-) is
invertible, H2(Z,, Z) = H(X;. + U, X}) =2 — 2/ fo.f;, so that it suffices to
show

(4.5) A;LE/«/fAfle—%, lim ) = 1%

A—00

N

Sincel is uniform, f;(x) = e *A/ /jlon[j — 1/2, j + 1/2), so that
0 j+1/2
(4.6) n=Y 50 [ Ly VIR
j=0 f‘

Sincet’(x) = |x| Y2, by (4.4) £;*(x) = |x| Y29 (t(x) — 2¢/2). This gives

£ _expl—@yx —2V1)%/2)
() V2 xe=* )i /j!

=exp2y;(x)], j-—3<x<j+3.
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for j > 1, in view of the Stirling formulaj! = /27 j/+Y2exp(—j + ¢;), where

I i lo i .
@n ¥ == \/_)_%+2+élg[x}+%_é+%

with 1/(12j + 1) < ¢; < 1/(12)), for j =1,2,.... Now, by the mean-value
theorem,

jH+1/2 ( £* 1/2
s
i~z Uf())

+1/2 e
=/ o exp[w,-u) = )+ 2 - j)z] dx
a

2
for somelx; — j| < 3, with
A 1 . Vi 1
(4.8) ¥i(x) = f 1—5, WJ(X)——W#-@.
Since expy; (j) + lp'}/(.x]')(x — j)2/2] is symmetric abouj, it follows that

J+y2( fx 1/2
e
i-12 L))
j+1/2 Y= NP E WD = jn*
= ex (7)) + : dx.
[, e|v0 . ]g) T
Now, we shall take uniform Taylor expansionsyaf and their derivatives in
L=t —1 <272,

By (4.7),v;(j) = Ay (j/A) + /2 with
U(x) =—(vVx — 1) + 1T + ~logx.
Sincey (1) =¢'(1) =¢"(1) =0,¥" (1) =1/4 andw””(l) =3

JN_ G =03 TG =n* 3
(1) =50 5 i A+ o) =0,

Since ¥(12j +1) <¢ej <1/(12j),¢;/2=(1+ 0(1))/(241) = 0o(1). Thus,

L G= TG =W 140(1)
Vil ="0g7 ~8 o LoD+ —

uniformly in J, asi — oo. Similarly, by (4.8) andx; — j| < %

=o0(1)

i — )2 1
W= (1+o@)Y 4k2) "( e
p —1+0(1)
vi(xj) = o o(1).
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These expansions and (4.9) imply that uniformlyjn

i+1/2 ( £* 1/2
e
i-y2 Uf())

_ [ P RN N € e Dl
=/ [1+w]<n+{w,-<x,>+(w,-m)} S |

(j— 0
+o(1) Z s

(j—x)?’ 7G=0 1 i[—_l (j—mz]
2)

=1 N
+ 24).2 8 24,3 +24x+24 4).2

(-0
+o (1)2 YEsa

as[’+1l//22(x — )2dx = 1—2. Since f;.(j) is the Poisson probability mass function

OfX)\,
Y2 frx) Y2
> o [7 S
jed j—=1/2 f)\(.])
(4.10) 14 1 [7} 3 N 1 1 +0(1)_1_7+0(1)
o 24),  |8]24n 241 96M A 192,

asY ey, [o(j) = 1+ o(1/2). Note thatE(X; — )% =1 and E(X; — 1)* =
312 4+ 1. Hence, (4.5) follows from (4.6), (4.10) and the fact that

i * 2
Z S(h) /]]1/1:2{];1((;)) }1/ dx < \/P{)N(A ¢ L) P(X5¢ )= 0(%).
JEI B

O

5. Approximation of binomial variables. The strong approximation of a
normal by a binomial depends on the cumulative distribution fundtipmn (2.8).
The addition of the independent uniforhin (2.8) to the binomialX,, 1> makes

the c.d.f. continuous and thds1 o F,, is a one-to-one function 0(1—% m + %)
that maps symmetric binomials to standard normals.
Letp, be theN (b, 1) density ancg,,,, be the probability density of

(5.1) O Y Fu X, + 0D,  Xp.p~Bin(m, p),

as in (3.1), wherd/ is an independent uniform dr-3, 3).

THEOREM5. Thereisa constant C; > 0 such that, for all m > 0,

2, ~ . \/~_ b2 b_8
(5-2) H (gm,p’@b)— ( 8m,p \/_) dz < C1| — m2 s
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where b = (/m/2)log(p/(1 — p)). Consequently,

(5.3) Hz(g’m,p’(/’ﬁ)SD[(P—%)z-l-m( -3) }+ STCE

PrROOF The case whem = 0 is trivial becaus& = 0 with probability 1 and
thereforegg, , is exactly anv (0, 1). Thus, the following assumes that> 1.
It follows from (3.1) that

(5.4) &m.p(@) = p (L= p)"2"po(2),
wherej = j(z) is the integer between 0 andsuch that
(5.5) O Y Fu(j — 3] <z < @ Y Fu(j + 3)].

Letd =log(p/q) so that

log 8m,p(2) :9< . @) n m|09(4pq)’
9o(2) 2

2

and the second term can be approximated by

02 94 2+€9 +e—9 92 94

6) —— — 2 <log4 _log| £ ¢

(5.6) 4~ 24 =109(4pg) = og[ ) }5

Let h1(8) = 2+ ¢~ ? + ¢ %) /4. The second inequality in (5.6) follows from
log(h1(0)) > log(1 + 62/4) > 62/4 — #*/32. The first inequality in (5.6) follows
from h1(0) < 1+ 62/4+6%/24 for|9| < 4, and from logh1(0)) < |6| < 62/4 for
|6] > 4. Now, let

Jj@) —m/2
Vm/2

Then for some-1/24 < h»(9) < 1/32 the log ratio is

(5.7) 7=7@)= and b:@g.

b2
8np @ _ iy O 0ymet,
%o(z) 2
The log ratio of normals with different means is lg@/¢y) = —zb + b?/2.
Therefore the ratio with respect to the normal with méas

log

(5.8) 0g %L = hp(@)m6® ~ bz —2),  h26)| = 3y
b

Sinceylog(x/y) <x —y <xlog(x/y), for all positivex andy,

L rioo( ) < vri— Vi< Summoa( L),

8m,p
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so that by (5.8),

2/~ 1 ¥b 2 -
H (gp,m7fpb)51/{log(~ )} (‘Pb"‘gm,p)dz

8m,p

5.9
©9) <<m_94)2 b_2 ’)2 5 d
=\ + 2/(2—2 (op + &m,p) dz.

It follows from Carter and Pollard (2004) that the difference betweemd
7/ =7/(z) is bounded by

Co(m=Y2 4+ m=17)3), for all z,
Co(m™Y2+m='13),  if |z] < v2m,
for some constanf,. Thus,

(5.10) lz—2| < {

i 115, 8
(511) /(Z - Z/)zgm,p dz < 2C22<; + ng,p dz + 22 om ﬁgm,p dZ)-

Sincef gm, pl{z' = (j —m/2)/J/m}dz = P{Xn , = j},

~

X, —m/2\® —1\°
i () (a0 ) 00t 08

uniformly in (m, p). It follows from (5.4) that
/ 88, pdz < 2" Dpodz=0@2"mb ™) =0m™Y).
72>2m 74>2m

The above two inequalities and (5.11) imply
/ (2 — 2)28m.pdz < 2C220(1/m + b®/m?).

Similarly, [(z — z/)%¢p dz < 2C2°0(1/m + b®/m?). Inserting these two inequali-
ties into (5.9) yields (5.2) in view of (5.7).

Now let us prove (5.3). The Hellinger distance is bounded by 2, safhat?
in (5.2) can be replaced by*/m and it suffices to considep — %l < 711 for the
proof of (5.3). By inspecting the infinite series expansion otgo)g: log(1+x)—
log(1— x) for x =2p — 1, we find that for p — %| < ;11, | |Og(§)| < %|2p —1jand
| Iog(g) —4(p — %)I < §|2p — 1]3. These inequalities, respectively, imply

b? N b* - 16(
m m2~ 9
and|b — /m(2p — 1|2 < $2m|2p — 1|® < gtm|2p — 1%, in view of the definition
of b, which then imply (5.3) via (5.2) and the fact thie (¢, — ¢p) = (b — B)?/4.
O

256
2p— 1%+ ﬁm(zp — 1t
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APPENDIX

A.l. TheTusnady inequality. The coupling of symmetric binomials and nor-
mals maps the integeyonto intervald8;, ;1] suchthatthe normah/2,m/4)
probability in the interval is equal to the binomiall probabilit;(’%ijz—f. Taking the
standardized values

_2Bj—m/2) _2(-1/2-m/2)
;= 7«/% ; uj= NG )
Carter and Pollard (2004) showed thatfof2 < j < m and certain universal finite
constants”

2 2
ui+1 us uj log(1 —u%/m) u;+logm
c 4 <,__12_4/</)_ J <Cc. 4
m =3z I/t‘/\] + m 14 \/% +
wherec = 4/21log2 andy is an increasing function with (0) = 1/12 andy (1) =
log2—1/2.
This immediately implies that

2cu m

CO 3 u2
Al F—ujl < —(uil>+lo v-L<Z
( ) |Z] u]|_m(|”]| + logm) m =2
for a certain universal constafiy < co. We shall prove (5.10) here based on (A.1).
Because of the symmetry in both distributions, it is only necessary to consider
z>0.
It follows from (5.5) and (5.7) that

[EnN

zj<z<zjt1 = u;<7=70) <uju.
Letz; <z <zjt1.Sinceu; 1 —u; =2//m, for u?H <m/2 (A.1) implies
2 1 PP
(A2) |z—=ZI<lzj—ujlVizjy1—ujs1l + T < Cé(ﬁ + 7)

m

Sinceu ; andz; are both increasing i, it follows that(z A z’)//m are uniformly
bounded away from zero for; 1 > /m/2, so that

3 73
ZI"N|Z
chll |z’

2
(A.3) lz—2| <lzj —ujl Vizj41 —ujqal + NG
for(m+1)/Vm=umt1>ujr1>m/2andz <+2m.SincezVvz' <zVupyy1 <
2z for z > v/2m, (A.2) and (A.3) imply
Co(m=Y2 4+ m=17)3), forall z,

Co(m™Y2 +m™Y')3),  if |z] < v2m,
for a certain universal’; < oo, that is, (5.10).

lz —7| <
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A.2. Technical lemmas. The following three lemmas simplify the rest of the

proof of Theorem 3.
LEMMA 1. (i) Let fz ¢ and ki beasin (2.7) and (2.3). Then
(A.4) 0<Vfie—hie= Zk_lfkjgg/Z/I (f = o)
k.l

(i) Let 6; ¢ bethe Haar coefficientsof f asin (1.3). Then

A5 /h Y e — fen)?
(A.5) ‘ Br.e 2\/fT Jre Ik,e(f fr.0)
PROOF LetT =(f — fk.¢)/fr.e = —1. By algebra,
2
19T —1— T T T

1+Vi+T 2 20+J1+1)2
It follows from (2.3) and (2.7) that

hie =25V fre ; v1+T
kL
2
_ kT ( LIS o (F=fed) )
fk Ike 2fk,€ 2fk2,E(1+V1+T)2

which implies (A.4) as ’2f,ke =1 and by (2.7)f; ,(f — fk.e) = 0. For (ii) we
have ’ ’

/hd’kl :«/fk—,ef¢k,e«/l+—T

_ f=Tie (= fin)?
_ka,€/¢k,£<1+ s 2fk2’@(1+ él—i-T)Z)’

which implies (A.5) asf ¢, = 0 and|¢¢| < v2¥ by (1.4). O

LEMMA 2. Let 6, bethe Haar coefficientsin (1.3) and f; , beasin (2.7).
Then

00 2k_1

2
k _ 2 k(14c) 4
E 2 E ( s (f fk’g) ) < 1_ 1/26)2 E 2 E 9 Ve>0.

k=ky (=0

ProoE Define
) B { 1, if 1;; C Ixe,
ij.kt = 0, otherwise.
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Since}_; 8ijk.e = 2=k for i > k, using Cauchy—Schwarz twice yields
( i (f_fk)2> = (Z > z/,kﬁf,)
k.t =k j=0

24 22
|: —lC/2<21C21_k Z 61',]',](’@9!"}]) :|
i=k

Mg

=
j=0
o 2i_1
< Zz—tc Zzlczl—k Z Si,j,k,ﬁel“}j
i=k j=0
2—k(l+c) (o) 2-1 4
i c .
S 71_ 1/2C 2:2 X_: 61"]’](’@91"]'.
i=k j=0

Sincezg;‘ol 8i.j.k,e = 1fori >k, the above inequality implies

3 2 Zkf( - fu)z)2

k=ky (=0

o] _k(l 00 —12k—

+c)
Z 1-— 1/262 l(1+C)Z Z&,kﬁ,,

k=ko j=0 ¢=0

2
i(14-c)
—2(21 1/26)2 29
i=ko
2 cko

—ko

LEMMA 3. Let X; bea Poisson random variable with mean A. Then
ENVX,—vr)' <4

PROOF  SinceE(X; —A)* =131 + 1),

- E(X, —1* A2P(X, =0
BV =iyt == e+ P (R =0
3A+1
Sk+6+154'
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A.3. Proof of Theorem 1. First note that

H(T, RN, Z%) < H(T, RNV, T,,(N, Xy)) + H (T, (N, Xn), Z})

n-n’ n-n’

and

H(\V, R2T712%) < H(V*, R3(N,Xy)) + H(R?(N, Xy), R’T1Z*)).

n n

Note also that since for any randomizatibrand randonX andY, H(T X, TY) <
H(X,Y), it follows that

H(T, RN, T,(N, Xx)) < H(RIV:, (N, Xn))

n-n’ n-n’
and
H(R?(N,Xy), R’T1Z%) < H((N, Xy), T, 12%) = H(T,,(N, Xn). Z}).

For the class# and the randomization8} and R? it follows from (2.15), (2.16)
and the proof of Ryposition 3 on pag 508 of Le Cam (1986) that

sup H(RV?:, (N, Xy)) — 0
fedH

and

sup H(V%, R3(N,Xy)) — 0.
fedt

Hence (1.9) and (1.8) will follow once

(A.6) SupH(T,,(N,Xy),Z;) — 0
fegt

is established.
By Theorem 3, for (A.6) to hold it is sufficient to show that

4ko = 2 n = 4
sup (7 +Hf = feolijz22+ g5 1/ = fiol 1/2,4,4) -0

If the class of functions¥ is a compact set in the Besov spaces, then the partial
sums converge uniformly to O,

supllf — fillyz.p.p— O
fedt

for p =2 or 4 ask — oo. This implies that there is a sequenge— 0 such that
Vi tsupres I f — fill} 2,44 — O- To be specific, let

vi = SUp|lf — fillf244
fedH
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It is necessary to choose the sequence of intelggrg that will be the critical
dimension that divides the two techniques. kgbe the smallest integer such that

47'(0 > Yo~ Thereforeko(n) — oo, and as: — oo,
4ko = 12 n 4
sup (7 1 = feolijz22+ g5 1 = fiol 1/2,4,4)

= 2 1 = 4
= sup <4Vko +f = frolLj222+ —f = fol 1/2,4,4) — 0. O
fedt Vko

A.4. Proof of Theorem 2. Theorem 2 follows from Theorem 1 and the fact
that the Lipschitz and Sobolev spaces described are compact in the Besov spaces.
The Lipschitz class is equivalent 84 o.oc and therefore is compact in

Bi/2,p,p if B> % The Sobolev class is equivalent®y > » and

1f = fiol222= Ca 3 len( )10,

whereC, depends only or. Thus if # is compact in Sobolaw) for o > % then
it is compact inB1/2 2 2.

Further restrictions are required to show that the Soljalesiass is compactin
Bijzaa T 1L < Cuy, then| fi — fialloo < C1)27*, so that

o0
| f = fro ||£11/2,4,4 = C(ZL) > 2k2(l_ﬁ)/ | fi — frsal?dx
k=ko

= 12
= C(ZL) Hf - fko H 1-p),2,2°

Therefore, for¥ bounded in Lipschitgd), a compact Sobol€w) set is also
compactinBy2 44 if « >1— .

Finally, if # is compact in Sobolew), « > 3/4, then it immediately
follows from the Sobolev embedding theorem that the function is bounded in
Lipschitz(1/4) [e.g., Folland (1984), pages 270 and 273], and it follows that
is compact inB1/24,4. U
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