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This paper establishes the global asymptotic equivalence between a
Poisson process with variable intensity and white noise with drift under sharp
smoothness conditions on the unknown function. This equivalence is also
extended to density estimation models by Poissonization. The asymptotic
equivalences are established by constructing explicit equivalence mappings.
The impact of such asymptotic equivalence results is that an investigation
in one of these nonparametric models automatically yields asymptotically
analogous results in the other models.

1. Introduction. The purpose of this paper is to give an explicit construction
of global asymptotic equivalence in the sense of Le Cam (1964) between a Poisson
process with variable intensity and white noise with drift. The construction is
extended to density estimation models. It yields asymptotic solutions to both
density estimation and Poisson process problems based on asymptotic solutions
to white noise with drift problems and vice versa.

Density estimation model. A random vectorV�
n of lengthn is observed such

that V�
n ≡ (V �

1 , . . . , V �
n ) is a sequence of i.i.d. variables with a common density

f ∈ F .

Poisson process. A random vector of random length{N,XN} is observed
such thatN ≡ Nn is a Poisson variable withEN = n and that givenN = m,
XN = Xm ≡ (X1, . . . ,Xm) is a sequence of i.i.d. variables with a common density
f ∈ F . The resulting observations are then distributed as a Poisson process with
intensity functionnf .
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White noise. A Gaussian processZ� ≡ Z�
n ≡ {Z�

n(t),0 ≤ t ≤ 1} is observed
such that

Z�
n(t) ≡

∫ t

0

√
f (x) dx + B�(t)

2
√

n
, 0 ≤ t ≤ 1,(1.1)

with a standard Brownian motionB�(t) and an unknown probability density
functionf ∈ F in [0,1].

Asymptotic equivalence. For any two experimentsξ1 andξ2 with a common
parameter space�, �(ξ1, ξ2;�) denotes Le Cam’s distance [cf., e.g., Le Cam
(1986) or Le Cam and Yang (1990)] defined as

�(ξ1, ξ2;�) ≡ sup
L

max
j=1,2

sup
δ(j)

inf
δ(k)

sup
θ∈�

∣∣E(j)
θ L

(
θ, δ(j)) − E

(k)
θ L

(
θ, δ(k))∣∣,

where (a) the first supremum is taken over all decision problems with loss function
‖L‖∞ ≤ 1, (b) given the decision problem andj = 1,2,k ≡ 3−j (k = 2 for j = 1
andk = 1 for j = 2) the “maximin” value of the maximum difference in risks over
� is computed over all (randomized) statistical proceduresδ(�) for ξ� and (c) the
expectationsE(�)

θ are evaluated in experimentsξ� with parameterθ , � = j, k. The
statistical interpretation of the Le Cam distance is as follows: If�(ξ1, ξ2;�) < ε,
then for any decision problem with‖L‖∞ ≤ 1 and any statistical procedureδ(j)

with the experimentξj , j = 1,2, there exists a (randomized) procedureδ(k) with
ξk , k = 3 − j , such that the risk ofδ(k) evaluated inξk nearly matches (withinε)
that ofδ(j) evaluated inξj .

Two sequences of experiments{ξ1,n, n ≥ 1} and{ξ2,n, n ≥ 1}, with a common
parameter spaceF , are asymptotically equivalent if

�(ξ1,n, ξ2,n;F ) → 0 asn → ∞.

The interpretation is that the risks of corresponding procedures converge.
A key result of Le Cam (1964) is that this equivalence of experiments can

be characterized using random transformations between the probability spaces.
A random transformation,T (X,U) which maps observationsX into the space
of observationsY (with possible dependence on an independent, uninformative
random componentU ) also maps distributions inξ1 to approximations of the
distributions in ξ2 via P(1)

θ T ≈ P(2)
θ . For the mapping between the Poisson

and Gaussian processes we shall restrict ourselves to transformationsT with
deterministic inverses,T −1(T (X,U)) = X. The experiments are asymptotically
equivalent if the total-variation distance betweenP(2)

θ and the distribution ofT

underP(1)
θ converges to 0 uniformly inθ . As explained in Brown and Low (1996)

and Brown, Cai, Low and Zhang (2002), knowing an appropriateT allows explicit
construction of estimation procedures inξ1 by applying statistical procedures from
ξ2 to T (X,U).
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In general, asymptotic equivalence also implies a transformation from theP(2)
θ

to theP(1)
θ and the corresponding total-variation distance bound. However, in the

case of the equivalence between the Poisson process and white noise with drift, by
requiring that the transformation be invertible, we have saved ourselves a step. The
transformation in the other direction isT −1, and∥∥P(1)

θ T − P(2)
θ

∥∥ ≥ ∥∥P(1)
θ T T −1 − P(2)

θ T −1∥∥ = ∥∥P(1)
θ − P(2)

θ T −1∥∥.
Therefore, it is sufficient if supθ ‖P(1)

θ T − P(2)
θ ‖ → 0.

The equivalence mappingsTn constructed in this paper from the sample space
of the Poisson process to the sample space of the white noise are invertible
randomized mappings such that

sup
f ∈F

Hf

(
Tn(N,XN),Z�

n

) → 0(1.2)

under certain conditions on the familyF . HereHf (Z1,Z2) denotes the Hellinger
distance of stochastic processes or random vectorsZ1 andZ2 living in the same
sample space, when the true unknown density isf . SinceTn are invertible ran-
domized mappings,Tn(N,XN) are sufficient statistics for the Poisson processes
and their inversesT −1

n are necessarily many-to-one deterministic mappings. Sim-
ilar considerations apply for the mapping of the density estimation problem to the
white noise with drift problem, although in that case there are two mappings, one
from the density estimation to the white noise with drift model and another from
the white noise with drift model back to the density estimation model. These map-
pings are given in Section 2.

There have recently been several papers on the global asymptotic equivalence of
nonparametric experiments. Brown and Low (1996) established global asymptotic
equivalence of the white noise problem with unknown driftf to a nonparametric
regression problem with deterministic design and unknown regressionf when
f belongs to a Lipschitz class with smoothness indexα > 1

2. It has also been
demonstrated that such nonparametric problems are typically asymptotically
nonequivalent when the unknownf belongs to larger classes, for example,
with smoothness indexα ≤ 1

2. Brown and Low (1996) showed the asymptotic
nonequivalence between the white noise problem and nonparametric regression
with deterministic design forα ≤ 1

2, Efromovich and Samarov (1996) showed that
the asymptotic equivalence may fail whenα < 1

4. Brown and Zhang (1998) showed
the asymptotic nonequivalence forα ≤ 1

2 between any pair of the following four
experiments: white noise, density problem, nonparametric regression with random
design, and nonparametric regression with deterministic design. In Brown, Cai,
Low and Zhang (2002) the asymptotic equivalence for nonparametric regression
with random design was shown under Besov constraints which include Lipschitz
classes with any smoothness indexα > 1

2. Gramma and Nussbaum (1998) solved
the fixed-design nonparametric regression problem for nonnormal errors. Milstein
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and Nussbaum (1998) showed that some diffusion problems can be approximated
by discrete versions that are nonparametric autoregression models, and Golubev
and Nussbaum (1998) established a discrete Gaussian approximation to the
problem of estimating the spectral density of a stationary process.

Most closely related to this paper is the work in Nussbaum (1996) where
global asymptotic equivalence of the white noise problem to the nonparametric
density problem with unknown densityg = f 2/4 is shown. In this paper the
global asymptotic equivalence was established under the following smoothness
assumption:f belongs to the Lipschitz classes with smoothness indexα > 1

2.

The parameter spaces. The class of functionsF will be assumed throughout
to be densities with respect to Lebesgue measure on[0,1] that are uniformly
bounded away from 0. The smoothness conditions onF can be described in terms
of Haar basis functions of the densities. Let

θk,� ≡ θk,�(f ) ≡
∫

f φk,�, � = 0, . . . ,2k − 1, k = 0,1, . . . ,(1.3)

be the Haar coefficients off , where

φk,� ≡ 2k/2(1Ik+1,2�
− 1Ik+1,2�+1

)
(1.4)

are the Haar basis functions withIk,� ≡ [�/2k, (�+1)/2k). The convergence of the
Hellinger distance in (1.2) is established via an inequality in Theorem 3 in terms
of the tails of the Besov norms‖f ‖1/2,2,2 and‖f ‖1/2,4,4 of the Haar coefficients
θk,� ≡ θk,�(f ) in (1.3).

The Besov norms‖f ‖α,p,q for the Haar coefficients, with smoothness indexα

and shape parametersp andq, are defined by

‖f ‖α,p,q ≡
[∣∣∣∣ ∫ 1

0
f

∣∣∣∣q +
∞∑

k=0

{
2k(α+1/2−1/p)

( 2k−1∑
�=0

|θk,�(f )|p
)1/p}q]1/q

.(1.5)

Let f̄k be the piecewise average off at resolution levelk, that is, the piecewise
constant function defined by

f̄k ≡ f̄k(t) ≡
2k−1∑
�=0

1{t ∈ Ik,�}2k
∫
Ik,�

f.(1.6)

Since ‖f̄k − f̄k+1‖p
p = ∫ |∑� θk,�φk,�|p = ∑

� |θk,�|p 2k(p/2−1), (1.5) can be
written as

‖f ‖α,p,q ≡
{
|f̄0|q +

∞∑
k=0

(2kα‖f̄k − f̄k+1‖p)q

}1/q

,
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and its tail at resolution levelk0 ≥ 0 is ‖f − f̄k0‖α,p,q , k0 ≥ 0, with

‖f − f̄k0‖q
α,p,q =

∞∑
k=k0

{
2k(α+1/2−1/p)

( 2k−1∑
�=1

|θk,�|p
)1/p}q

.(1.7)

Let B(α,p, q) be the Besov space

B(α,p, q) = {f :‖f ‖α,p,q < ∞}.
The following two theorems on the equivalence of white noise with drift, density
estimation and Poisson estimation models are corollaries of our main result,
Theorem 3, which bounds the squared Hellinger distance between particular
invertible randomized mappings of the Poisson process and white noise with drift
models. The randomized mappings are given in Section 2. Proofs of these theorems
are given in the Appendix.

THEOREM 1. Let Z�
n, {N,XN } and V�

n be the Gaussian process, Poisson
process and density estimation experiments, respectively. Suppose that H is
compact in both B(1/2,2,2) and B(1/2,4,4) and that H ⊆ {f : inf0<x<1f (x) ≥
ε0} for some ε0 > 0. Then

lim
n→∞�(Z�

n, {N,XN};H) = 0(1.8)

and

lim
n→∞�(Z�

n,V�
n;H) = 0.(1.9)

Our construction also shows that asymptotic equivalence holds for a classF if
F is bounded in the Lipschitz norm with smoothness indexβ and compact in the
Sobolev norm with smoothness indexα ≥ β such thatα + β ≥ 1, α ≥ 3

4 or β > 1
2.

For 0< β ≤ 1 the Lipschitz norm‖f ‖(L)
β and Sobolev norm‖f ‖(S)

α are defined
by

‖f ‖(L)
β ≡ sup

0≤x<y≤1

|f (x) − f (y)|
|x − y|β , ‖f ‖(S)

α ≡
∞∑

n=−∞
n2α|cn(f )|2,

wherecn(f ) ≡ ∫ 1
0 f (x)e−in2πx dx are the Fourier coefficients off .

THEOREM 2. Let Z�
n, {N,XN } and V�

n be the Gaussian process, Poisson
process and density estimation experiments, respectively, and let F be bounded
in the Lipschitz norm with smoothness index β and compact in the Sobolev norm
with smoothness index α ≥ β. Suppose F ⊆ {f : inf0<x<1 f (x) ≥ ε0} for some
ε0 > 0. Then if α + β ≥ 1, α ≥ 3

4 or β > 1
2,

lim
n→∞�(Z�

n, {N,XN };F ) = 0

and

lim
n→∞�(Z�

n, V�
n;F ) = 0.
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2. The equivalence mappings. This section describes in detail the mappings
which provide the asymptotic equivalence claimed in this paper. The fact that
these mappings yield asymptotic equivalence is a consequence of our major result,
Theorem 3. The construction is broken into several stages.

From observations of the white noise (1.1), define random vectors

Z
�

k ≡ {Z�

k,�,0≤ � < 2k}, Z
�

k,� ≡ 2k

{
Z�

(
� + 1

2k

)
− Z�

(
�

2k

)}
,(2.1)

W�
k ≡ {W�

k,�,0 ≤ � < 2k}, W�
k,2� ≡ −W�

k,2�+1 ≡ (Z
�

k,2� − Z
�

k,2�+1)/2.(2.2)

Let k0 ≡ k0,n be suitable integers with limn→∞ k0,n = ∞. Following Brown,
Cai, Low and Zhang (2002), we construct equivalence mappings by finding the
counterparts ofZ

�

k0
andW�

k , k > k0, with the Poisson process(N,XN), to strongly
approximate the Gaussian variables.

It can be easily verified from (1.1) that{Z�

k0,�
,0 ≤ � < 2k0,W�

k,2�,0 ≤ � <

2k−1, k > k0} are uncorrelated normal random variables with

EZ
�

k,� = hk,� ≡ 2k
∫
Ik,�

h, h ≡ √
f ,

(2.3) √
Var(Z

�

k,�) = σk ≡
√

2k/(4n),

for � = 0, . . . ,2k − 1, and for� = 0, . . . ,2k−1 − 1,

EW�
k,2� = 1

2(hk,2� − hk,2�+1) =
√

2k−1
∫

hφk−1,�,

(2.4) √
Var(W�

k,2�) = σk−1.

Let Ũ = {Ũk,�, k ≥ k0, � ≥ 0} be a sequence of i.i.d. uniform variables in
[−1/2,1/2) independent of(N,XN). Fork = 0,1, . . . and� = 0, . . . ,2k −1 define

Nk ≡ {Nk,�,0 ≤ � < 2k}, Nk,� ≡ #{Xi :Xi ∈ Ik,�}.(2.5)

We shall approximateZ
�

k in (2.1) in distribution by

Zk ≡ {Zk,�,0≤ � < 2k},
(2.6)

Zk,� ≡ 2σk sgn(Nk,� + Ũk,�)
√

|Nk,� + Ũk,�|,
at the initial resolution levelk = k0. SinceNk,� are Poisson variables with

λk,� ≡ ENk,� = n

2k
fk,� = fk,�

4σ 2
k

, fk,� ≡ 2k
∫
Ik,�

f,(2.7)

by Taylor expansion and central limit theory

Zk,� ≈ 2σk

(√
λk,� + Nk,� − λk,�

2λ
1/2
k,�

)
≈ N

(√
fk,�, σ

2
k

)
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as λk,� → ∞, compared with (2.3). Note that
√

fk,� ≈ hk,� under suitable
smoothness conditions onf , in view of (2.3) and (2.7). The Poisson variablesNk,�

can be fully recovered fromZk,�, while the randomization turnsNk,� into
continuous variables.

Approximation ofW�
k,� for k > k0 is more delicate, since the central limit theo-

rem is not sufficiently accurate at high resolution levels. LetFm be the cumulative
distribution function of the independent sum of a binomial variableX̃m,1/2 with
parameter(m, 1

2) and a uniform variablẽU in [−1
2, 1

2),

Fm(x) ≡ P {X̃m,1/2 + Ũ ≤ x},(2.8)

with F0 being the uniform distribution in[−1
2, 1

2). Let� be theN(0,1) cumulative
distribution. We shall approximateW�

k by using a quantile transformation of
randomized versions of the Poisson random variables. More specifically, let

Wk ≡ {Wk,�,0≤ � < 2k}, Wk,2� ≡ σk−1�
−1(FNk−1,�

(Nk,2� + Ũk,2�)
)

(2.9)

withWk,2� ≡ −Wk,2�+1, � = 0, . . . ,2k−1−1, and theσk in (2.3). GivenNk−1,� = m,

Nk,2� ∼ Bin(m,pk,2�), pk,2� ≡
∫
Ik,2�

f∫
Ik−1,�

f
= fk,2�

fk,2� + fk,2�+1
,(2.10)

so that Wk,2� is distributed exactly according toN(0, σ 2
k−1) for pk,2� = 1

2,
compared with (2.4). Thus, the distributions ofWk,2� andW�

k,2� are close at high
resolution levels as long asf is sufficiently smooth, even for smallNk−1,� = m.

The equivalence mappingsTn, with randomization through̃U, are defined by

Tn : {N,XN, Ũ} → W[k0,∞) → Zn ≡ {Zn(t) : 0 ≤ t ≤ 1},
where fork0 ≤ k ≤ ∞, W[k0,k) ≡ {Zk0,Wj , k0 < j < k}, andZk andWk are as in
(2.6) and (2.9). The inverse ofTn is a deterministic many-to-one mapping defined
by

T −1
n :Z�

n → W�[k0,∞) → (N�,X�
N�),

where fork0 ≤ k ≤ ∞, W�[k0,k) ≡ {Z�

k0
,W�

j , k0 < j < k}.

REMARK 1. One need only carry out the above construction tok = k1 : 2k1 >

εn since we shall assume thatf ∈ B(1
2,2,2) and then the observationsW�[k0,k) ≡

{Z�

k0
,W�

j , k0 < j < k} and W[k0,k) ≡ {Zk0,Wj , k0 < j < k} are asymptotically
sufficient for the Gaussian process and Poisson process experiments. See Brown
and Low (1996) for a detailed argument in the context of nonparametric regression.
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Mappings for the density estimation model. The constructive asymptotic
equivalence between density estimation experiments and Gaussian experiments
is established by first randomizing the density estimation experiment to an
approximation of the Poisson process and then applying the randomized mapping
as given above. Setγk = supf ∈H ‖f − f̄k‖2

1/2,2,2 and note that sinceH is compact

in B(1/2,2,2),γk ↓ 0. Now letk0 be the smallest integer such that 4k0/n ≥ γk0 and
divide the unit interval into subintervals of equal length with length equal to 2−k0.
Let f̃n be the corresponding histogram estimate based onV�

n. Now note that since
functionsf ∈ H are bounded below byε0 > 0 it follows that∫ 1

0

(√
f̃n − √

f
)2 ≤

∫ 1

0

(√
f̃n − √

f
)2 (

√
f̃n + √

f )2

ε0
=

∫ 1

0

(f̃n − f )2

ε0
.(2.11)

Now

E

∫ 1

0
(f̃n − f )2 = E

∫ 1

0

(
f̃n − f̄k0

)2 +
∫ 1

0

(
f − f̄k0

)2(2.12)

and simple calculations show that the histogram estimatef̃n satisfiesEf̃n(x) =
f̄k0(x) and Varf̃n(x) ≤ f̄k0(x)2k0

n
. Hence,

n1/2E

∫ 1

0

(
f̃n − f̄k0

)2 ≤ n1/22k0

n
≤ 2γ

1/2
k0

→ 0.(2.13)

Now n1/2 ≤ 2k0

γ
1/2
k0

and hence, from (1.7),

n1/2
∫ 1

0

(
f − f̄k0

)2 ≤ 1

γ
1/2
k0

∥∥f − f̄k0

∥∥2
1/2,2,2 ≤ γ

1/2
k0

→ 0.(2.14)

It thus follows from (2.11) to (2.14) that

n1/2 sup
f ∈H

E

∫ 1

0

(√
f̃n − √

f
)2 → 0.(2.15)

Hence the density estimate is squared Hellinger consistent at a rate faster than
square root ofn.

Now generateÑ , a Poisson random variable with expectationn and indepen-
dent of V�

n. If Ñ > n generateÑ − n conditionally independent observations
V �

n+1, . . . , V
�

Ñ
with common densityf̃n. Finally let (Ñ, X̃

Ñ
) = (Ñ,V �

1 ,V �
2 , . . . ,

V �

Ñ
) and writeR1

n for this randomization fromV�
n to (Ñ, X̃

Ñ
),

R1
n : V�

n → (Ñ, X̃
Ñ

).

A map from the Poisson number of independent observations back to the fixed
number of observations is obtained similarly. This time letf̂n be the histogram
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estimator based on(N,XN). If N < n generaten − N additional conditionally
independent observations with common densityf̂n. It is also easy to check that

n1/2 sup
f ∈H

E

∫ 1

0

(√
f̂n − √

f
)2 → 0.(2.16)

Now label these observationsVn = (V1, . . . , Vn) and writeR2
n for this randomiza-

tion from (N,XN) to Vn,

R2
n : (N,XN) → Vn.

REMARK 2. It should also be possible to map the density estimation problem
directly into an approximation of the white noise with drift model. Dividing the
interval into 2k0 subintervals and conditioning on the number of observations
falling in each subinterval, the conditional distribution within each subinterval
is the same as for the Poisson process. Therefore, it is only necessary to have a
version of Theorem 4 for a 2k0-dimensional multinomial experiment.

Carter (2002) provides a transformation from a 2k0-dimensional multinomial
to a multivariate normal as in Theorem 4 such that the total-variation distance
between the distributions isO(k02k0n−1/2). The transformation is similar to ours
in that it adds uniform noise and then uses the square root as a variance-stabilizing
transformation. However, the covariance structure of the multinomial complicates
the issue and necessitates using a multi-resolution structure similar to the one
applied here to the conditional experiments. The Carter (2002) result can be
used in place of Theorem 4 to get a slightly weaker bound on the error in the
approximation in Theorem 3 (because of the extrak0 factor) when the total number
of observations is fixed. This is enough to establish Theorem 2 if the inequalities
boundingα andβ are changed to strictly greater than. It is also enough to establish
Theorem 1 ifH is a Besov space withα > 1

2. Carter (2000) also showed that
a somewhat more complicated transformation leads to a deficiency bound on the
normal approximation to the multinomials without the addedk0 factor.

3. Main theorem. The theorems in Section 1 on the equivalence of white
noise with drift experiments and Poisson process experiments are consequences of
the following theorem which uniformly bounds the Hellinger distance between the
randomized mappings described in Section 2.

THEOREM 3. Suppose inf0<x<1f (x) ≥ ε0 > 0. Let W�[k0,k) ≡ {Z�

k0
,W�

j , k0 <

j < k} with the variables in (2.1) and (2.2), and W[k0,k) ≡ {Zk0,Wj , k0 < j < k}
with the variables in (2.6) and (2.9). Then there exist universal constants C,
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D1 and D2 such that for all k1 > k0,

H 2(W�[k0,k1)
,W[k0,k1)

)
≤ C

ε0

4k0

n
+ D1

ε2
0

∞∑
k=k0

2k
2k−1∑
�=0

θ2
k,� + D2

ε3
0

n

4k0

∞∑
k=k0

23k
2k−1∑
�=0

θ4
k,�

≤ C

ε0

4k0

n
+ D1

ε2
0

∥∥f − f̄k0

∥∥2
1/2,2,2 + D2

ε3
0

n

4k0

∥∥f − f̄k0

∥∥4
1/2,4,4,

where θk,� are the Haar coefficients of f as in (1.3), f̄k is as in (1.6) and ‖·‖1/2,p,p

are the Besov norms in (1.5).

REMARK 3. Here the universal constantC is the same as the one in
Theorem 4, whileD1 = 3D

8 + 2 andD2 = D
9 + 8

3 for theD in Theorem 5.

The proof of Theorem 3 is based on the inequalities established in Sections
4 and 5 for the normal approximation of Poisson and Binomial variables. Some
additional technical lemmas are given in the Appendix.

Let X̃m,p be a Bin(m,p) variable,X̃λ be a Poisson variable with meanλ, andŨ

be a uniform variable in[−1
2, 1

2) independent of̃Xm,p andX̃λ. Define

g̃m,p(x) ≡ d

dx
P

{
�−1(Fm(X̃m,p + Ũ)

) ≤ x
}

(3.1)

with theFm in (2.8) and theN(0,1) distribution function�, and define

g̃λ(x) ≡ d

dx
P

{
2 sgn(X̃λ + Ũ )

√
|X̃λ + Ũ | ≤ x

}
.(3.2)

Write ϕb for the density ofN(b,1) variables.

PROOF OFTHEOREM 3. Let g�[k0,k)(w[k0,k)) andg[k0,k)(w[k0,k)) be the joint
densities of W�[k0,k) and W[k0,k), g�

k(wk) be the joint density ofW�
k , and

gk(wk|w[k0,k)) be the conditional joint density ofWk given W[k0,k). SinceW�
k

is independent ofW�[k0,k),√
g�[k0,k)g[k0,k) − √

g�[k0,k+1)g[k0,k+1) = √
g�[k0,k)g[k0,k)

(
1− √

g�
kgk

)
,

so that the Hellinger distance can be written as

H 2
f

(
W�[k0,k1)

,W[k0,k1)

)
= 2

(
1−

∫ √
g�[k0,k1)

g[k0,k1)

)
= 2

(
1−

∫ √
g�[k0,k0+1)g[k0,k0+1)

)
(3.3)
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+ ∑
k0<k<k1

2
∫ √

g�[k0,k)g[k0,k)

(
1−

∫ √
g�

kgk

)

= H 2
f

(
Z

�

k0
,Zk0

) + ∑
k0<k<k1

∫ √
g�[k0,k)g[k0,k)H

2(g�
k, gk).

At the initial resolution levelk0, Nk0,� are independent Poisson variables
by (2.5), so thatZk0,� are independent. This and the independence ofZ

�
k0,�

from (2.1) imply

H 2
f

(
Z

�

k0
,Zk0

) ≤
2k0−1∑
�=0

H 2
f

(
Z

�

k0,�
,Zk0,�

)
.

By (2.6) and (3.2)Zk0,�/σk0 have densities̃gλk0,�
, while Z

�

k0,�
/σk0 areN(hk0,�/

σk0,1) variables by (2.3). Thus, Theorem 4 can be used to obtain

H 2
f

(
Z

�

k0,�
,Zk0,�

) = H 2
f

(
g̃λk0,�

, ϕhk0,�/σk0

) ≤ C

λk0,�

+ 1

2

(
2
√

λk0,� − hk0,�

σk0

)2

.

Sinceλk,� = fk,�/(4σ 2
k ) by (2.7) andσ 2

k = 2k−2/n by (2.3), the above calculation
yields

H 2
f

(
Z

�

k0
,Zk0

) ≤ C

2k0−1∑
�=0

2k0

nfk0,�

+
2k0−1∑
�=0

2n

2k0

(√
fk0,� − hk0,�

)2

(3.4)

≤ C
22k0

nε0
+

2k0−1∑
�=0

n2k0

2ε3
0

(∫
Ik0,�

(
f − fk0,�

)2
)2

by Lemma 1(i) and the boundf ≥ ε0.
Fork > k0 and 0≤ � < 2k−1 − 1, define

µk,2� ≡ √
mk,2�(2pk,2� − 1), βk,2� ≡ √

λk−1,�(2pk,2� − 1),(3.5)

wherepk,2� are as in (2.10),λk,� = fk,�n/2k are as in (2.7), and the functions
mk,2� ≡ mk,2�(w[k0,k)) are defined byNk−1,� = mk,2�(W[k0,k)). At a fixed reso-
lution levelk > k0, and for� = 0, . . . ,2k−1 − 1, Nk,2� are independent binomial
variables conditionally onW[k0,k), so that by (2.9) and (3.1)Wk,2�/σk−1 are in-
dependent variables with densitiesg̃mk,2�,pk,2�

under the conditional densitygk . In
addition,W ∗

k,2� are independent normal variables with varianceσ 2
k−1 underg∗

k .
Thus,

H 2(g∗
k , gk) ≤

2k−1−1∑
�=0

H 2(g̃mk,2�,pk,2�
, ϕβ�

k,2�

)
,(3.6)
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by (2.4), whereβ�
k,2� ≡ EW�

k,2�/σk−1 = √
4n

∫
hφk−1,�. It follows from Theo-

rem 5 and (3.5) that for fixedw[k0,k),

H 2(g̃mk,2�,pk,2�
, ϕβ�

k,2�

)
(3.7)

≤ D

{[
pk,2� − 1

2

]2

+ mk,2�

[
pk,2� − 1

2

]4}
+ (µk,2� − β�

k,2�)
2

2
.

Furthermore, it follows from Lemma 3 that∫ √
g�[k0,k)g[k0,k)

(√
mk,2� − √

λk−1,�

)2

≤
√∫

g[k0,k)

(√
mk,2� − √

λk−1,�

)4

=
√

E
(√

Nk−1,� − √
λk−1,�

)4 ≤ 2,

so that by (3.5),∫ √
g�[k0,k)g[k0,k)(µk,2� − β�

k,2�)
2 ≤ 4(2pk,2� − 1)2 + 2(βk,2� − β�

k,2�)
2.

Similarly,
∫ √

g�[k0,k)g[k0,k)mk,2� ≤
√

EN2
k−1,� ≤ λk−1,� + 1/2. Thus, by (3.7),∫ √

g�[k0,k)g[k0,k)H
2(g̃mk,2�,pk,2�

, ϕβ�
k,2�

)
(3.8)

≤ 4D1
[
pk,2� − 1

2

]2 + Dλk−1,�

[
pk,2� − 1

2

]4 + (βk,2� − β�
k,2�)

2,

with D1 = 3D/8+ 2. Now, by (2.10) and (1.3),

pk,2� − 1

2
=

∫
Ik,2�

f − ∫
Ik,2�+1

f

2
∫
Ik−1,�

f
=

√
2k−1θk−1,�

2fk−1,�

,(3.9)

so that by (3.5), (2.7), the definition ofβ�
k,2� in (3.6) and Lemma 1(ii),

|βk,2� − β�
k,2�| =

∣∣∣∣
√

nfk−1,�

2k−1

√
2k−1θk−1,�

fk−1,�

− √
4n

∫
hφk−1,�

∣∣∣∣
= √

4n

∣∣∣∣ θk−1,�

2
√

fk−1,�

−
∫

hφk−1,�

∣∣∣∣(3.10)

≤ √
4n2(k−1)/2−1f

−3/2
k−1,�

∫
Ik−1,�

(f − fk−1,�)
2.
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Inserting (3.9) and (3.10) into (3.8) and summing over� via (3.6), we find∫ √
g�[k0,k)g[k0,k)H

2(g∗
k , gk)

≤
2k−1−1∑

�=0

∫ √
g�[k0,k)g[k0,k)H

2(g̃mk,2�,pk,2�
, ϕβ�

k,2�

)

≤
2k−1−1∑

�=0

[
4D1

2kθ2
k−1,�

8f 2
k−1,�

+ Dλk−1,�

4kθ4
k−1,�

64f 4
k−1,�

(3.11)

+ n2k

2f 3
k−1,�

(∫
Ik−1,�

(f − fk−1,�)
2
)2]

≤
2k−1−1∑

�=0

[
D1

ε2
0

2k−1θ2
k−1,� +

(
D

16
+ 1

)
n2k−1

ε3
0

(∫
Ik−1,�

(f − fk−1,�)
2
)2]

,

due toλk,� = nfk,�/2k in (2.7) andθ2
k,� ≤ ∫

Ik,�
(f − fk,�)

2.
Finally, inserting (3.4) and (3.11) into (3.3) and then using Lemma 2 yields

H 2
f

(
W�[k0,k1+1),W[k0,k1+1)

)
≤ C

22k0

nε0
+ D1

ε2
0

k1−2∑
k=k0

2k
2k−1∑
�=0

θ2
k,�

+
(

D

16
+ 3

2

) k1−2∑
k=k0

2k−1∑
�=0

n2k

ε3
0

(∫
Ik,�

(f − fk,�)
2
)2

≤ C

ε0

4k0

n
+ D1

ε2
0

k1−2∑
k=k0

2k
2k−1∑
�=0

θ2
k,� + D2

ε3
0

n

4k0

∞∑
k=k0

23k
2k−1∑
�=0

θ4
k,�,

with D2 ≡ ( D
16 + 3

2)/(1− 1
4)2 = D

9 + 8
3 and the theorem follows.�

4. Approximation of Poisson variables. Let X̃λ be a Poisson random
variable with meanλ and Ũ be a uniform variable on[−1

2, 1
2) independent of

X̃λ. Define

Z̃λ ≡ 2 sgn(X̃λ + Ũ )
√

|X̃λ + Ũ |, g̃λ(y) ≡ d

dy
P {Z̃λ ≤ y}.(4.1)

The main result of this section is a local limit theorem which bounds the squared
Hellinger distance between this transformed Poisson random variable and a normal
random variable.



EQUIVALENCE THEORY FOR DENSITY ESTIMATION 2087

THEOREM 4. Let Z̃λ and g̃λ be as in (4.1). Let Z∗
λ ∼ N(2

√
λ,1) and ϕµ be

the density of N(0,µ). Let H(·, ·) be the Hellinger distance. Then, as λ → ∞,

H 2(Z̃λ,Z
∗
λ) = H 2(g̃λ, ϕ2

√
λ

) = (
7+ o(1)

) 1

96λ
.(4.2)

Consequently, there exists a universal constant C < ∞ such that

H 2(g̃λ, ϕµ) ≤ C/λ + (
2
√

λ − µ
)2

/2 ∀λ > 0,µ.(4.3)

REMARK 4. The theorem remains valid if̃Zλ is replaced by

Z̃′
λ ≡ 2

√
X̃λ + Ũ + 1

2,

sinceH 2(Z̃λ, Z̃
′
λ) is bounded by

2− 2
∫ √

f|X̃λ+Ũ |fX̃λ+Ũ+1/2 ≤ 2−
{

1+
∞∑

j=0

e−λ

√
λ2j+1

j !(j + 1)!
}

= 1− E

√
X̃λ

λ
≤ min

(
1,

C′

λ

)
.

PROOF OFTHEOREM 4. The second inequality of (4.3) follows immediately
from (4.2), sinceH 2(ϕµ1, ϕµ2) = (µ1 − µ2)

2/4 [cf. Brown, Cai, Low and Zhang
(2002), Lemma 3] andH 2(g̃λ, ϕµ) ≤ 2.

Let t (x) ≡ 2 sgn(x)
√|x|, a strictly increasing function. Define

X̃∗
λ ≡ t−1(Z∗

λ) = sgn(Z∗
λ)(Z∗

λ)2/4.(4.4)

Let fλ andf ∗
λ denote the densities of̃Xλ + Ũ andX̃∗, respectively. Sincet (·) is

invertible,H 2(Z̃λ,Z
∗
λ) = H(X̃λ + Ũ , X̃∗

λ) = 2 − 2
∫ √

fλf
∗
λ , so that it suffices to

show

Aλ ≡
∫ √

fλf
∗
λ = 1− Cλ

λ
, lim

λ→∞Cλ = 7
192.(4.5)

SinceŨ is uniform,fλ(x) = e−λλj /j ! on [j − 1/2, j + 1/2), so that

Aλ =
∞∑

j=0

fλ(j)

∫ j+1/2

j−1/2
{f ∗

λ (x)/fλ(j)}1/2dx.(4.6)

Sincet ′(x) = |x|−1/2, by (4.4)f ∗
λ (x) = |x|−1/2ϕ(t (x) − 2

√
λ). This gives

f ∗
λ (x)

fλ(j)
= exp{−(2

√
x − 2

√
λ)2/2}√

2πxe−λλj /j ! = exp[2ψj(x)], j − 1
2 ≤ x < j + 1

2,
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for j ≥ 1, in view of the Stirling formulaj ! = √
2πjj+1/2 exp(−j + εj ), where

ψj(x) ≡ −(√
x − √

λ
)2 − logx

4
+ λ

2
+ j

2
log

[
j

λ

]
+ logj

4
− j

2
+ εj

2
(4.7)

with 1/(12j + 1) < εj < 1/(12j), for j = 1,2, . . . . Now, by the mean-value
theorem,∫ j+1/2

j−1/2

{
f ∗

λ (x)

fλ(j)

}1/2

dx

=
∫ j+1/2

j−1/2
exp

[
ψj(j) + ψ ′

j (j)(x − j) + ψ ′′
j (xj )

2
(x − j)2

]
dx

for some|xj − j | ≤ 1
2, with

ψ ′
j (x) =

√
λ

x
− 1− 1

4x
, ψ ′′

j (x) = −
√

λ

2x3/2 + 1

4x2 .(4.8)

Since exp[ψj (j) + ψ ′′
j (xj )(x − j)2/2] is symmetric aboutj , it follows that∫ j+1/2

j−1/2

{
f ∗

λ (x)

fλ(j)

}1/2

dx

(4.9)

=
∫ j+1/2

j−1/2
exp

[
ψj(j) + ψ ′′

j (xj )(x − j)2

2

] ∞∑
k=0

(ψ ′
j (j)(x − j))2k

(2k)! dx.

Now, we shall take uniform Taylor expansions ofψj and their derivatives in

Jλ ≡ {j : |j/λ − 1| ≤ λ−2/5}.
By (4.7),ψj(j) = λψ(j/λ) + εj/2 with

ψ(x) ≡ −(√
x − 1

)2 + 1− x

2
+ x

2
logx.

Sinceψ(1) = ψ ′(1) = ψ ′′(1) = 0, ψ ′′′(1) = 1/4 andψ ′′′′(1) = −7
8,

λψ

(
j

λ

)
= λ

4

(j − λ)3

3!λ3 − 7λ

8

(j − λ)4

4!λ4

(
1+ o(1)

) = o(1).

Since 1/(12j + 1) < εj < 1/(12j), εj /2= (1+ o(1))/(24λ) = o(1). Thus,

ψj(j) = (j − λ)3

24λ2
− 7

8

(j − λ)4

24λ3

(
1+ o(1)

) + 1+ o(1)

24λ
= o(1)

uniformly in Jλ asλ → ∞. Similarly, by (4.8) and|xj − j | ≤ 1
2,

{ψ ′
j (j)}2 = (

1+ o(1)
)(j − λ)2

4λ2 + o(1)

λ
= o(1),

ψ ′′
j (xj ) = −1+ o(1)

2λ
= o(1).
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These expansions and (4.9) imply that uniformly inJλ,∫ j+1/2

j−1/2

{
f ∗

λ (x)

fλ(j)

}1/2

dx

=
∫ j+1/2

j−1/2

[
1+ ψj(j) + {

ψ ′′
j (xj ) + (

ψ ′
j (j)

)2}(x − j)2

2

]
dx

+ o(1)

2∑
k=0

(j − λ)2k

λk+1

= 1+ (j − λ)3

24λ2
− 7

8

(j − λ)4

24λ3
+ 1

24λ
+ 1

24

[−1

2λ
+ (j − λ)2

4λ2

]

+ o(1)

2∑
k=0

(j − λ)2k

λk+1
,

as
∫ j+1/2
j−1/2 (x − j)2 dx = 1

12. Sincefλ(j) is the Poisson probability mass function

of X̃λ, ∑
j∈Jλ

fλ(j)

∫ j+1/2

j−1/2

{
f ∗

λ (x)

fλ(j)

}1/2

dx

(4.10)
= 1+ 1

24λ
−

[
7

8

]
3

24λ
+ 1

24λ
− 1

96λ
+ o(1)

λ
= 1− 7+ o(1)

192λ

as
∑

j∈Jλ
fλ(j) = 1 + o(1/λ). Note thatE(X̃λ − λ)3 = λ and E(X̃λ − λ)4 =

3λ2 + λ. Hence, (4.5) follows from (4.6), (4.10) and the fact that∑
j /∈Jλ

fλ(j)

∫ j+1/2

j−1/2

{
f ∗

λ (x)

fλ(j)

}1/2

dx ≤
√

P {X̃λ /∈ Jλ}P {X̃∗
λ /∈ Jλ} = o

(
1

λ

)
.

�

5. Approximation of binomial variables. The strong approximation of a
normal by a binomial depends on the cumulative distribution functionFm in (2.8).
The addition of the independent uniform̃U in (2.8) to the binomial̃Xm,1/2 makes
the c.d.f. continuous and thus�−1 ◦ Fm is a one-to-one function on(−1

2,m + 1
2)

that maps symmetric binomials to standard normals.
Let ϕb be theN(b,1) density and̃gm,p be the probability density of

�−1(Fm[X̃m,p + Ũ ]), X̃m,p ∼ Bin(m,p),(5.1)

as in (3.1), wherẽU is an independent uniform on[−1
2, 1

2).

THEOREM 5. There is a constant C1 > 0 such that, for all m ≥ 0,

H 2(g̃m,p,ϕb) =
∫ (√

g̃m,p − √
ϕb

)2
dz ≤ C1

(
b2

m
+ b8

m2

)
,(5.2)
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where b = (
√

m/2) log(p/(1− p)). Consequently,

H 2(g̃m,p,ϕβ) ≤ D

[(
p − 1

2

)2

+ m

(
p − 1

2

)4]
+ (

√
m(2p − 1) − β)2

2
.(5.3)

PROOF. The case whenm = 0 is trivial becauseX = 0 with probability 1 and
thereforeg̃0,p is exactly anN (0,1). Thus, the following assumes thatm ≥ 1.

It follows from (3.1) that

g̃m,p(z) = pj(1− p)m−j 2mϕ0(z),(5.4)

wherej = j (z) is the integer between 0 andm such that

�−1[Fm

(
j − 1

2

)] ≤ z < �−1[Fm

(
j + 1

2

)]
.(5.5)

Let θ = log(p/q) so that

log
gm,p(z)

ϕ0(z)
= θ

(
j − m

2

)
+ m log(4pq)

2
,

and the second term can be approximated by

−θ2

4
− θ4

24
≤ log(4pq) = − log

[
2+ eθ + e−θ

4

]
≤ −θ2

4
+ θ4

32
.(5.6)

Let h1(θ) = (2 + e−θ + e−θ )/4. The second inequality in (5.6) follows from
log(h1(θ)) ≥ log(1 + θ2/4) ≥ θ2/4 − θ4/32. The first inequality in (5.6) follows
from h1(θ) ≤ 1+ θ2/4+ θ4/24 for |θ | ≤ 4, and from log(h1(θ)) ≤ |θ | ≤ θ2/4 for
|θ | > 4. Now, let

z′ = z′(z) = j (z) − m/2√
m/2

and b = θ

√
m

2
.(5.7)

Then for some−1/24≤ h2(θ) ≤ 1/32 the log ratio is

log
g̃m,p(z)

ϕ0(z)
= z′b − b2

2
+ h2(θ)mθ4.

The log ratio of normals with different means is log
(
ϕ0/ϕb

) = −zb + b2/2.
Therefore the ratio with respect to the normal with meanb is

log
g̃m,p

ϕb

= h2(θ)mθ4 − b(z − z′), |h2(θ)| ≤ 1
24.(5.8)

Sincey log(x/y) ≤ x − y ≤ x log(x/y), for all positivex andy,

1

2

√
g̃m,p log

(
ϕb

g̃m,p

)
≤ √

ϕb − √
g̃m,p ≤ 1

2
√

ϕb log
(

ϕb

g̃m,p

)
,
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so that by (5.8),

H 2(g̃p,m,ϕb

) ≤ 1

4

∫ {
log

(
ϕb

g̃m,p

)}2

(ϕb + g̃m,p) dz

(5.9)

≤
(

mθ4

24

)2

+ b2

2

∫
(z − z′)2(ϕb + g̃m,p) dz.

It follows from Carter and Pollard (2004) that the difference betweenz and
z′ = z′(z) is bounded by

|z − z′| ≤
{

C2(m
−1/2 + m−1|z|3), for all z,

C2(m
−1/2 + m−1|z′|3), if |z| ≤ √

2m,
(5.10)

for some constantC2. Thus,∫
(z − z′)2g̃m,p dz ≤ 2C2

2
(

1

m
+

∫ |z′|6
m2

g̃m,p dz +
∫
z2>2m

z6

m2
g̃m,p dz

)
.(5.11)

Since
∫

g̃m,pI {z′ = (j − m/2)/
√

m }dz = P {X̃m,p = j},∫
|z′|6g̃m,p dz = E

(
X̃m,p − m/2√

m

)6

= O

(
1+ m3

(
p − 1

2

)6)
= O(1+ b6)

uniformly in (m,p). It follows from (5.4) that∫
z2>2m

z6g̃m,p dz ≤ 2m
∫
z2>2m

z6ϕ0 dz = O(2mm6e−m) = O(m−1).

The above two inequalities and (5.11) imply∫
(z − z′)2g̃m,p dz ≤ 2C2

2O(1/m + b6/m2).

Similarly,
∫
(z − z′)2ϕb dz ≤ 2C2

2O(1/m + b6/m2). Inserting these two inequali-
ties into (5.9) yields (5.2) in view of (5.7).

Now let us prove (5.3). The Hellinger distance is bounded by 2, so thatb8/m2

in (5.2) can be replaced byb4/m and it suffices to consider|p − 1
2| ≤ 1

4 for the
proof of (5.3). By inspecting the infinite series expansion of log(

p
q
) = log(1+x)−

log(1− x) for x = 2p − 1, we find that for|p − 1
2| ≤ 1

4, | log(
p
q
)| ≤ 8

3|2p − 1| and

| log(
p
q
) − 4(p − 1

2)| ≤ 8
9|2p − 1|3. These inequalities, respectively, imply

b2

m
+ b4

m2 ≤ 16

9
(2p − 1)2 + 256

81
m(2p − 1)4

and|b −√
m(2p −1)|2 ≤ 16

81m|2p −1|6 ≤ 4
81m|2p −1|4, in view of the definition

of b, which then imply (5.3) via (5.2) and the fact thatH 2(ϕb −ϕβ) = (b −β)2/4.
�
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APPENDIX

A.1. The Tusnády inequality. The coupling of symmetric binomials and nor-
mals maps the integersj onto intervals[βj , βj+1] such that the normal(m/2,m/4)

probability in the interval is equal to the binomial probability at
(m
j

)
2−j . Taking the

standardized values

zj = 2(βj − m/2)√
m

, uj = 2(j − 1/2− m/2)√
m

,

Carter and Pollard (2004) showed that form/2 < j < m and certain universal finite
constantsC±

C−
uj + 1

m
≤ zj − uj

√√√√1+ 2
u2

j

m
γ

(
uj√
m

)
− log(1− u2

j /m)

2cuj

≤ C+
uj + logm

m

wherec = √
2 log2 andγ is an increasing function withγ (0) = 1/12 andγ (1) =

log 2− 1/2.
This immediately implies that

|zj − uj | ≤ C0

m
(|uj |3 + logm) ∀ u2

j

m
≤ 1

2
(A.1)

for a certain universal constantC0 < ∞. We shall prove (5.10) here based on (A.1).
Because of the symmetry in both distributions, it is only necessary to consider
z > 0.

It follows from (5.5) and (5.7) that

zj ≤ z < zj+1 ⇐⇒ uj ≤ z′ = z′(z) < uj+1.

Let zj ≤ z < zj+1. Sinceuj+1 − uj = 2/
√

m, for u2
j+1 ≤ m/2 (A.1) implies

|z − z′| ≤ |zj − uj | ∨ |zj+1 − uj+1| + 2√
m

≤ C′
0

(
1√
m

+ |z|3 ∧ |z′|3
m

)
.(A.2)

Sinceuj andzj are both increasing inj , it follows that(z∧ z′)/
√

m are uniformly
bounded away from zero foruj+1 ≥ √

m/2, so that

|z − z′| ≤ |zj − uj | ∨ |zj+1 − uj+1| + 2√
m

≤ C′′
0
|z|3 ∧ |z′|3

m
(A.3)

for (m + 1)/
√

m = um+1 ≥ uj+1 ≥ m/2 andz ≤ √
2m. Sincez ∨ z′ ≤ z ∨um+1 ≤√

2z for z >
√

2m, (A.2) and (A.3) imply

|z − z′| ≤
{

C2(m
−1/2 + m−1|z|3), for all z,

C2(m
−1/2 + m−1|z′|3), if |z| ≤ √

2m,

for a certain universalC2 < ∞, that is, (5.10).
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A.2. Technical lemmas. The following three lemmas simplify the rest of the
proof of Theorem 3.

LEMMA 1. (i) Let fk,� and hk,� be as in (2.7) and (2.3). Then

0 ≤ √
fk,� − hk,� ≤ 2k−1f

−3/2
k,�

∫
Ik,�

(f − fk,�)
2.(A.4)

(ii) Let θk,� be the Haar coefficients of f as in (1.3). Then∣∣∣∣ ∫ hφk,� − θk,�

2
√

fk,�

∣∣∣∣ ≤ 2k/2−1f
−3/2
k,�

∫
Ik,�

(f − fk,�)
2.(A.5)

PROOF. Let T = (f − fk,�)/fk,� ≥ −1. By algebra,

√
1+ T − 1= T

1+ √
1+ T

= T

2
− T 2

2(1+ √
1+ T )2

.

It follows from (2.3) and (2.7) that

hk,� = 2k
√

fk,�

∫
Ik,�

√
1+ T

= 2k
√

fk,�

∫
Ik,�

(
1+ f − fk,�

2fk,�

− (f − fk,�)
2

2f 2
k,�(1+ √

1+ T )2

)
,

which implies (A.4) as 2k
∫
Ik,�

= 1 and by (2.7)
∫
Ik,�

(f − fk,�) = 0. For (ii) we
have ∫

hφk,� = √
fk,�

∫
φk,�

√
1+ T

= √
fk,�

∫
φk,�

(
1+ f − fk,�

2fk,�

− (f − fk,�)
2

2f 2
k,�(1+ √

1+ T )2

)
,

which implies (A.5) as
∫

φk,� = 0 and|φk,�| ≤
√

2k by (1.4). �

LEMMA 2. Let θk,� be the Haar coefficients in (1.3) and fk,� be as in (2.7).

Then

∞∑
k=k0

2k
2k−1∑
�=0

(∫
Ik,�

(f − fk,�)
2
)2

≤ 2−ck0

(1− 1/2c)2

∞∑
k=k0

2k(1+c)
2k−1∑
�=0

θ4
k,� ∀ c > 0.

PROOF. Define

δi,j,k,� ≡
{

1, if Ii,j ⊆ Ik,�,

0, otherwise.
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Since
∑

j δi,j,k,� = 2i−k for i ≥ k, using Cauchy–Schwarz twice yields

(∫
Ik,�

(f − f̄k)
2
)2

=
( ∞∑

i=k

2i−1∑
j=0

δi,j,k,�θ
2
i,j

)2

≤
[ ∞∑

i=k

2−ic/2

(
2ic2i−k

2i−1∑
j=0

δi,j,k,�θ
4
i,j

)1/2]2

≤
∞∑
i=k

2−ic
∞∑
i=k

2ic2i−k
2i−1∑
j=0

δi,j,k,�θ
4
i,j

≤ 2−k(1+c)

1− 1/2c

∞∑
i=k

2i(1+c)
2i−1∑
j=0

δi,j,k,�θ
4
i,j .

Since
∑2k−1

�=0 δi,j,k,� = 1 for i ≥ k, the above inequality implies

∞∑
k=k0

2k
2k−1∑
�=0

(∫
Ik,�

(f − fk,�)
2
)2

≤
∞∑

k=k0

2k 2−k(1+c)

1− 1/2c

∞∑
i=k

2i(1+c)
2i−1∑
j=0

2k−1∑
�=0

δi,j,k,�θ
4
i,j

=
∞∑

i=k0

(
i∑

k=k0

2−ck

1− 1/2c

)
2i(1+c)

2i−1∑
j=0

θ4
i,j

≤ 2−ck0

(1− 1/2c)2

∞∑
i=k0

2i(1+c)
2i−1∑
j=0

θ4
i,j . �

LEMMA 3. Let X̃λ be a Poisson random variable with mean λ. Then

E
(√

X̃λ − √
λ

)4 ≤ 4.

PROOF. SinceE(X̃λ − λ)4 = λ(3λ + 1),

E
(√

X̃λ − √
λ

)4 ≤ E(X̃λ − λ)4

(
√

λ + 1)4
+ λ2P

(
X̃λ = 0

)
≤ 3λ + 1

λ + 6
+ 1 ≤ 4. �
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A.3. Proof of Theorem 1. First note that

H(TnR
1
nV�

n,Z�
n) ≤ H

(
TnR

1
nV�

n, Tn(N,XN)
) + H

(
Tn(N,XN),Z�

n

)
and

H(V�
n,R

2
nT

−1
n Z�

n) ≤ H
(
V�

n,R
2
n(N,XN)

) + H
(
R2

n(N,XN),R2
nT

−1
n Z�

n)
)
.

Note also that since for any randomizationT and randomX andY , H(T X,T Y ) ≤
H(X,Y ), it follows that

H
(
TnR

1
nV�

n, Tn(N,XN)
) ≤ H

(
R1

nV�
n, (N,XN)

)
and

H
(
R2

n(N,XN),R2
nT

−1
n Z�

n

) ≤ H
(
(N,XN),T −1

n Z�
n

) = H
(
Tn(N,XN),Z�

n

)
.

For the classH and the randomizationsR1
n andR2

n it follows from (2.15), (2.16)
and the proof of Proposition 3 on page 508 of Le Cam (1986) that

sup
f ∈H

H
(
R1

nV�
n, (N,XN)

) → 0

and

sup
f ∈H

H
(
V�

n,R
2
n(N,XN)

) → 0.

Hence (1.9) and (1.8) will follow once

sup
f ∈H

H
(
Tn(N,XN),Z�

n

) → 0(A.6)

is established.
By Theorem 3, for (A.6) to hold it is sufficient to show that

sup
f ∈H

(
4k0

n
+ ∥∥f − f̄k0

∥∥2
1/2,2,2 + n

4k0

∥∥f − f̄k0

∥∥4
1/2,4,4

)
→ 0.

If the class of functionsH is a compact set in the Besov spaces, then the partial
sums converge uniformly to 0,

sup
f ∈H

‖f − f̄k‖1/2,p,p → 0

for p = 2 or 4 ask → ∞. This implies that there is a sequenceγk → 0 such that
γ −1
k supf ∈H ‖f − f̄k‖4

1/2,4,4 → 0. To be specific, let

γk = sup
f ∈H

‖f − f̄k‖2
1/2,4,4.
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It is necessary to choose the sequence of integersk0(n) that will be the critical
dimension that divides the two techniques. Letk0 be the smallest integer such that
4k0

n
≥ γk0. Therefore,k0(n) → ∞, and asn → ∞,

sup
f ∈H

(
4k0

n
+ ∥∥f − f̄k0

∥∥2
1/2,2,2 + n

4k0

∥∥f − f̄k0

∥∥4
1/2,4,4

)

≤ sup
f ∈H

(
4γk0 + ∥∥f − f̄k0

∥∥2
1/2,2,2 + 1

γk0

∥∥f − f̄k0

∥∥4
1/2,4,4

)
→ 0. �

A.4. Proof of Theorem 2. Theorem 2 follows from Theorem 1 and the fact
that the Lipschitz and Sobolev spaces described are compact in the Besov spaces.

The Lipschitz class is equivalent toBβ,∞,∞ and therefore is compact in
B1/2,p,p if β > 1

2. The Sobolev class is equivalent toBα,2,2 and∥∥f − f̄k0

∥∥2
α,2,2 ≤ Cα

∑
n

|cn(f )|2n2α,

whereCα depends only onα. Thus ifF is compact in Sobolev(α) for α ≥ 1
2 then

it is compact inB1/2,2,2.
Further restrictions are required to show that the Sobolev(α) class is compact in

B1/2,4,4. If ‖f ‖(L)
β ≤ C(L), then‖f̄k − f̄k+1‖∞ ≤ C(L)2−kβ , so that

∥∥f − f̄k0

∥∥4
1/2,4,4 ≤ C2

(L)

∞∑
k=k0

2k2(1−β)
∫

|f̄k − f̄k+1|2dx

= C2
(L)

∥∥f − f̄k0

∥∥2
(1−β),2,2.

Therefore, forF bounded in Lipschitz(β), a compact Sobolev(α) set is also
compact inB1/2,4,4 if α ≥ 1− β.

Finally, if F is compact in Sobolev(α), α ≥ 3/4, then it immediately
follows from the Sobolev embedding theorem that the function is bounded in
Lipschitz(1/4) [e.g., Folland (1984), pages 270 and 273], and it follows thatF
is compact inB1/2,4,4. �
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