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ON GENERALIZED WIDE DIAMETER OF GRAPHS

Xinmin Hou¤ and Tianming Wang

Abstract. The wide diameter of a graph is a natural generalization of diameter
in a graph when we take account of the connectivity of the graph. In this paper,
we define the generalized wide diameter of a graph and show that every k-
regular k-connected graph on n vertices has generalized k-diameter at most
n=2 and this upper bound cannot be improved when n = 4k ¡ 6 + i(2k¡ 4).

1. INTRODUCTION

The wide diameter of a graph is a natural generalization of diameter in a graph
when we take account of the connectivity of the graph. The concept of wide diameter
has been discussed and used in practical applications, especially in the distributed
and parallel computer networks (see [3] for the survey of this special subject). The
problem of wide diameter of graph G considers the wide distance between any two
vertices of G. The wide distance between any pair of subsets of V (G), is considered
by the generalized wide diameter of G.

Let G be a graph without self-loops or multiple edges unless defined otherwise.
The terminology and notations of graph theory follow Bondy and Murty [2]. For
any pair of subsets of vertices S ½ V (G) and T µ V (G)nS with jSj · jT j · k(G).
Let ¹PjT j(S;T ) be a family of jTj vertex disjoint paths between S and T , i.e.

¹PjT j(S; T) = fP1; P2; ¢ ¢ ¢ ;PjT jg; jP1j · jP2j · ¢ ¢ ¢ jPjT jj;

and for any vertex of S or T , it is at least one end of one path. The generalized
jTj-wide distance (or simply generalized jTj-distance) between S and T , written as
djT j(S;T ), is the minimum jPjT jj among all ¹PjT j(S; T) and the generalized jT j-wide
diameter (or simply generalized jTj-diameter) of G, denoted by ¹djT j(G), is defined
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as the maximum generalized jT j-wide distance djT j(S;T ) over all pairs fS;Tg of
subsets of V (G).

Clearly, when jSj = jT j = 1, the generalized wide diameter ¹djT j(G) = d(G),
which is the diameter of the graph G. Hence it is easy to see that ¹djT j(G) ¸ d(G).

Let G be a k-connected graph. In this paper, we mainly investigate the gener-
alized wide diameter of G when S = fsg and jT j = k and denote it by ¹dk(G) (this
is also called k-Rabin number, defined by Hsu [3] and discussed widely by Rabin
[9], Liaw and Chang [5, 6, 7] and Liaw, Chang, Cao and Hsu [8], etc.). In section
2, we derive some properties of ¹dk(G) and show that every k-regular k-connected
graph on n vertices has generalized k-diameter at most n=2 and this upper bound
is tight when n = 4k¡ 6 + i(2k¡ 4).

2. THE BASIC PROPERTIES OF ¹dk(G) AND THE GENERALIZED WIDE DIAMETERS OF

k-regular k-connected GRAPHS

We start with some simple observations concerning generalized k-diameter of
k-connected graphs.

Proposition 2.1. If G is k-connected then

¹dk(G) ¸ ¹dk¡1(G) ¸ ¢ ¢ ¢ ¹d1(G) = d(G):

Moreover; there exist graphs G for which ¹dk(G) = d(G).

Proof. The inequality is trivial. For the second part we takeG to be a complete
graph on k+ 1 vertices. Then ¹dk(G) = d(G) = 1.

Proposition 2.2. If G is k-connected then dk(G) · n ¡ k. Furthermore; for
every k; n such that 1 · k · n ¡ 1, there exist k-connected graphs for which
¹dk(G) = n¡ k.

Proof. The equality is trivial. For second part, we construct graphs G with
¹dk(G) = n ¡ k. Since for a path on n vertices and a cycle of length n, we have
¹d1(Pn) = d(Pn) = n¡1 and ¹d2(Cn) = n¡2 and the result holds for k = 1 and k =
2. Thus suppose that k ¸ 3 and defineG as Cn¡k+2¢H, whereH is a graph on k¡2
vertices, i,e. G is a graph with vertex set fv1; v2; : : : ; vn¡k+2; w1; w2; : : : ;wk¡2g
such that subset fv1; v2; : : : ; vn¡k+2g spans Cn¡k+2 and subgraph induced by fw1,
w2; : : : ;wk¡2g is isomorphic to H with vi adjacent to wj for all i = 1;2; : : : ;n¡
k+2 and j = 1; 2; : : : ; k¡2. One can easily see that ifH is k¡(n¡k+2) connected
then G is k-connected and the generalized k-distance between vertex v1 and subset
T = fv2; v3g[V (H) is equal to n¡k. Thus, in order to get Gwith ¹dk(G) = n¡k,
it suffices to take H a graph with no edges when either k = 3 or n = 2k ¡ 2, and
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any l-connected graph with k ¡ 2 vertices, where l = maxf2; 2k ¡ n¡ 2g in all
other cases.

Let

¹f(n;k) = maxf ¹dk(G) : G is k-regular k-connected graph with n verticesg:

Clearly, ¹f(n; 2) = n¡ 2, and ¹f(n;k) · n¡ k . Moreover, Proposition 2.3 provides
the value of ¹f(n;k) for large k.

Proposition 2.3. If either kn is even and 5 · n=2 + 2 · k · n ¡ 1 or
n= 2k¡ 2; then ¹f(n;k) = n¡ k.

Proof. We prove our result following Proposition 2.2. Since 5 · n=2 + 2 ·
k · n¡1, so 2k¡n¡2 ¸ 2. Take l = 2k¡n¡2. Since kn is even, so is l(k¡2)
and we can take H a l-connected and l-regular graph on k¡ 2 vertices. Thus, it is
easy to check that G is a k-egular, k-connected graph with ¹dk(G) = n¡ k.

The result follows from ¹f(n; k) · n¡ k.

The following theorem states that even for small k, ¹f(n; k) is bounded by n=2.

Theorem 2.4. If kn is even and k ¸ 3; then ¹f(n; k) · n=2.

Proof. Let G be a k-regular k-connected graph on n vertices, vertex s 2 V (G)
and subset T µ V (G)nfsg with jT j = k, such that ¹dk(s; T) = ¹dk(G) and

¹Pk(s;T ) = fP1;P2; ¢ ¢ ¢ ; Pkg; jP1j · jP2j · ¢ ¢ ¢ · jPkj = ¹dk(G)

be a family of k vertex disjoint paths between s and T that for every other family

¹P 0k(s;T ) = fP 01;P 02; ¢ ¢ ¢ ; P 0kg; jP 01j · jP 02j · ¢ ¢ ¢ jP 0kj = ¹dk(G);

we have
Pk

i=1 jP 0ij ¸
Pk

i=1 jPij. Moreover, let A denotes the subset of all vertices
of G which belong to none of the paths P1, P2; ¢ ¢ ¢ ;Pk. Since G has n vertices,
then

1 +
kX

i=1

jPij+ jAj = n:(*)

We estimate from below the number of edges in G. The number of edges which
belong to paths from ¹Pk(s;T ) is equal to

Pk
i=1 jPij. Furthermore, no two vertices

which belong to path Pk are joined by an edge which does not belong to path
Pk (otherwise Pk would be replaced by a shorter path contradicting the choice of
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¹Pk(s; T)), so there exist precisely (k¡ 2)jPkj + 1 edges incident to vertices from
path Pk which are not contained in it. We shall show that there exist at least jAj
edges which are neither contained in one of the paths from Pk(s; T) nor incident to
vertices of Pk.

Let H be a component of a subgraph induced in G by set A and let jH j be the
number of vertices of H. We shall prove that at least jH j edges of G are incident
to vertices from H and not incident to vertices from Pk. If H contains a cycle then
it contains at least jHj edges. It suffices to consIder the case that H is a tree.

Case 1: k = 3.
Note that H is adjacent to at most jH j+2 vertices of path Pk = v0v1 ¢ ¢ ¢vk, say

vl+1; vl+2; ¢ ¢ ¢ ; vl+jHj+2. where vk 2 T . Indeed, otherwise one could find vertices
vi and vj with j¡i ¸ jHj+2, both adjacent to H , and replace Pk by a shorter path
using vertices of H instead of vi+1vi+2 ¢ ¢ ¢vj¡1. Furthermore, at least one of the
vertices vl+2; vl+3; : : : ; vl+jHj+1 must have a neighbor outside H since otherwise
graph G could be disconnected by deleting vertices vl+1 and vl+jH j+2. Thus, Pk
sends to H at most jHj +2 ¡ 1 = jHj+ 1 edges, so at least

3jHj ¡ (jH j ¡ 1)¡ (jHj+ 1) = jH j;

edges incident to H are not incident to vertices from Pk.

Case 2: k = 4 and H is a path.
Similarly as in the previous case, H must be adjacent to at most jHj+2 vertices

of path Pk = v0v1 : : : vk, say vl+1vl+2 : : : vl+jHj+2, where at least two of the vertices
vl+2; vl+3; : : : ; vl+jHj+1 have neighbors outside H. Furthermore, it is not hard to
see that both vertices vl+1 and vl+jHj+2 can be adjacent to only one vertex of the
path H , namely to one of its ends. Hence, the number of edges between Pk and H
is bounded above by 2 + 2jHj ¡ 2, so at least

4jHj ¡ 2jHj ¡ (jHj ¡ 1) = jH j+1;

edges incident to H are not incident to vertices from Pk.

Case 3: k = 4 and H is not a path.
Since the diameter of H is less than jHj ¡ 1, it is adjacent only to at most

jHj + 1 vertices of path Pk, from which at least two have neighbors outside H.
Thus, as in the previous two cases, the number of edges incident to H but not to
Pk is bounded below by

4jHj ¡ 2(jHj+ 1) + 2¡ (jH j ¡ 1) = jHj+ 1:

Case 4: k ¸ 5.
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Note that no vertex from H is adjacent to more than three vertices from Pk
since otherwise path Pk could be replaced by a shorter one. Hence, G contains at
least

kjHj ¡ 3jHj ¡ (jHj ¡ 1) ¸ jH j+1:

edges incident to vertices from H not incident to vertices from Pk.
Thus we have shown that there are at least jAj edges in G which are neither

contained in some k paths nor incident to vertices from Pk, so

kX

i=1

jPij +(k¡ 2)jPkj+ 1 + jAj · nk=2:(**)

Now subtracting (*) from (**) and dividing by k ¡ 2 gives n=2 as the upper
bound for jPkj.

Remark: Note that from the proof it follows that, when k > 5, ¹dk(s;T ) = n=2

only if all vertices of G lies on some path from ¹Pk(s; T) and all edges of G either
belong to a path from ¹Pk(s;T ) or are incident to some vertices from Pk.

The above bound for ¹f(n; k) cannot be improved in general case. In fact, the
equality ¹f(n;k) = bn=2c holds for infinitely many pairs k and n.

Theorem 2.5. If n = 2k ¡ 3 + i(k¡ 2); where i = 0; 1; : : : and 3 · k · n;
then ¹f(2n;k) = n. In particular, ¹f(2n; 3) = n for n ¸ 3.

Proof. We shall construct a k-regular k-connected graph G(2n; k) with 2n =
4k ¡ 6 + i(2k ¡ 4) vertices for which ¹dk(G(2n; k)) contains vertices vj , j =
0;1; : : : ;n and wml , where l = 1;2; : : : ; k ¡ 2 and m = 0; 1; : : : ; i; i +1. The set
of edges of G(2n;k) consists of the following pairs of vertices:

(a) fvj ; vj+1g for j = 0; 1; : : : ; n¡ 1,
(b) fv0;w0

l g for l = 1; 2; : : : ; k¡ 2, and fv0;wi+1
k¡2g,

(c) fvn;wm+1
l g for l = 1; 2; : : : ; k¡ 2 and fvn; wik¡2g,

(d) fwml ;wm+1
l g for l = 1;2; : : : ; k ¡ 3, m = 0; 1; : : : ; i,

(e) fwmk¡2;w
m+1
k¡2 g for m = 0; 1; : : : ; i¡ 1,

(f) fwml ; vm(k¡2)+sg for l = 1;2; : : : , k ¡ 2, m = 0;1; : : : ; i; i + 1 and s =
1; 2; : : : ; k¡ 2. Graph G(14, 4) is given in Figure 1.

Let T = fwi+1
l jl = 1;2; : : : ; k ¡ 2g [ fwik¡2; vng. One can easily check that

G(2n;k) is k-regular k-connected and the only family of k vertex disjoint paths
between vertex v0 and subset T consists of paths v0wi+1

k¡2, v0v1 : : : vn, v0w0
k¡2 and

k¡ 3 paths v0w0
lw

1
l : : :w

i+1
l , l = 1;2; : : : ; k ¡ 3.
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FIG. 1. G(14, 4).

One might expect that equality ¹f(n; k) = bn=2c holds for every n and k such
that nk is even and 3 · k · bn=2c. The next result shows that it is not true.

Theorem 2.6. If n ¸ 8 and n=2 + 2 · k · n¡ 1 then ¹f(2n;k) < n.

Proof. Due to the observation after the proof of Theorem 2.5, the equality
¹f(2n:k) = n can hold only if for some vertex s and subset T , a family of paths
¹Pk(s; T) contains all vertices of the graph and each edge of the graph which dose
not belong to paths from ¹Pk(s;T ) is incident to Pk. Suppose that for some vertex s
and subset T with jTj = k of a k-regular k-connected graph on 2n vertices we have
¹dk(s;T ) = n. Then, G contains n¡1 vertices outside path Pk = sv1v2 : : : vn¡1vn,
where vn 2 T . So, since k · n¡ 1, Pk¡1 = sw1w2 : : :wl for some l ¸ 2. Vertex
w1 has k¡ 2 > (n¡ 1)=2 neighbors lying on Pk, and k¡1 > (n¡1)=2 neighbors
lying on Pk for vertex w1, so w1 is adjacent to some vertex vi with i > (n¡ 1)=2
and wl is adjacent to vertex vj with j < (n¡1)=2. Thus, paths Pk¡1 and Pk could
be replaced by P 0 = sv1v2 : : : vjwl and P 00 = sw1vivi+1 : : : vn¡1vn, of lengths
j +2<n and n¡ i+ 2<n, and ¹dk(s;T )<n. This contradicts to ¹dk(s; T) = n.
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