
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 5, No. 3, pp. 667-679, September 2001

This paper is available online at http://www.math.nthu.edu.tw/tjm/

PROPAGATION OF ALGEBRAIC DEPENDENCE

OF MEROMORPHIC MAPPINGS

Yoshihiro Aihara

Abstract. In this paper we give some criteria for the propagation of algebraic

dependence of dominant meromorphic mappings from an analytic finite cov-

ering space X over the complex m-space into a projective algebraic manifold
and give their applications. We study this problem under a condition on the

existence of meromorphic mappings separating the fibers of X .

0. INTRODUCTION

Let π : X → Cm be a finite analytic covering space and M a projective

algebraic manifold. Let f1, · · · , fl be dominant meromorphic mappings from X
intoM . Suppose that they have the same inverse images of given divisors onM . In

this paper, we give conditions under which f1, · · · , fl are algebraically related. We

study this problem from the point of view in Nevanlinna theory. Roughly our result

says that if these mappings satisfy the same algebraic relation at all points of the set

of the inverse images of divisors and if the given divisors are sufficiently ample, then

they must satisfy this relationship identically. The theorems on the propagation of

dependence from an analytic subset to the whole space was first studied by L. Smiley

in his doctoral thesis [12]. There have been several studies on the propagation of

dependence (cf. [6] and [5]). In the past, this problem has been studied under the

conditions on the growth of meromorphic mappings and the ramification divisor B

of π : X → Cm. For example, W. Stoll proved some theorems on the propagation

of dependence of meromorphic mappings f : X → M under a condition on the

growth of mappings (cf. [15]). In his results, at least one of the mappings fj
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must grow quicker than the ramification divisor B. In this paper we give criteria

for algebraic dependence under another condition, that is, under a condition on

the existence of meromorphic mappings separating the fibers of π : X → Cm.

Thanks to the theorem on algebroid reduction of meromorphic mappings proved by

J. Noguchi [8], we can always find such a mapping. In some of our criteria, we

assume complicated conditions, but they have wider ranges of applicability. These

criteria are actually corollaries of two theorems, which are Fundamental Lemmas

for our study. The method for the proofs of the Fundamental Lemmas uses the

Second Main Theorem due to Noguchi [8] in an essential computational way. In

applications of his Second Main Theorem, the ramification estimate for B and the

theorem on algebroid reduction of meromorphic mappings are especially important.

We give some remarks on algebroid reduction of Nevanlinna theory in §1. We give
our Fundamental Lemmas and criteria for algebraic dependence in §2. In §§3–5,
we give applications of results in §2. In particular, we give some conditions under
which two holomorphic mappings are related by an endomorphism of elliptic curves.

Details will be published elsewhere (cf. [4]).

§1. ALGEBROID REDUCTION OF NEVANLINNA THEORY

Let z = (z1, · · · , zm) be the natural coordinate system in Cm, and set

‖z‖2 =
m∑

ν=1

zνzν , X(r) = π−1({z ∈ Cm : ‖z‖ < r}) and α = π∗ddc‖z‖2,

where dc = (
√
−1/4π)(∂ − ∂). For a (1,1)-current ϕ of order zero on X , we set

N(r, ϕ) =
1
s0

∫ r

1
〈ϕ ∧ αm−1, χ

X(t)〉
dt

t2m−1
,

where χ
X(r) denotes the characteristic function of X(r). Let M be a compact

complex manifold and L → M a line bundle over M . Denote by | · | a hermitian
fiber metric in L, and by ω its Chern form. Let f : X → M be a meromorphic

mapping. We set

Tf(r, L) = N(r, f∗ω),

and call it the characteristic function of f with respect to L. Then we have the

following inequality of Nevanlinna for meromorphic mappings:

Theorem 1.1. Let L→M be a line bundle over M and let f : X →M be a

nonconstant meromorphic mapping. Then

N(r, f∗D) ≤ Tf(r, L) + O(1)
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for D ∈ |L| with f(X) 6⊆ Supp D, where O(1) stands for a bounded term as
r → +∞.

Let E be an effective divisor on Cm. Set N1(r, E) = N(r, Supp E). A
meromorphic mapping f : X → M is said to be dominant if rank f = dim M .

The following second main theorem for dominant meromorphic mappings gives us

an essential computational technique for the Fundamental Lemmas (cf. [8, Theorem

1]):

Theorem 1.2. Let M be a projective algebraic manifold with m ≥ dim M
and L → M an ample line bundle. Suppose that D1, · · · , Dq are divisors in |L|
such that D1 + · · ·+ Dq has only simple normal crossings. Let f : X → M be a

dominant meromorphic mapping. Then

q Tf(r, L) + Tf(r, KM) ≤
q∑

j=1

N1(r, f∗Dj) + N(r, B) + Sf(r),

where Sf(r) = O(log Tf (r, L)) + o(log r) except on a Borel subset E ⊆ [1, +∞)
with finite measure.

In applications of Theorem 1.2, it is essential to give the estimate for N(r, B)
by the characteristic function of f . For meromorphic mappings f : X → M , we

have the following ramification estimate proved by J. Noguchi:

Definition 1.3. Let Y be a compact complex manifold. We say that a mero-

morphic mapping f : X → Y separates the fibers of π : X → Cm if there exists

a point z in Cm − (Supp π∗B ∪ π(I(f))) such that f(x) 6= f(y) for any distinct
points x, y ∈ π−1(z). Here I(f) denotes the locus of indeterminacy of f .

Assume that f : X → M separates the fibers of π : X → M and that L

is ample. Since L is ample, there exist the least positive integer µ0 and a pair

of sections σ0, σ1 ∈ H0 (M, µ0L) such that a meromorphic function f∗(σ0/σ1)
separates the fibers of π : X → Cm. Let s0 be the sheet number of π : X → Cm.

Then we have the following ramification estimate due to J. Noguchi (cf. [8, p. 277]):

Theorem 1.4 (Noguchi). Suppose that L → M is ample and f : X → M

separates the fibers of π : X →M . Let µ0 be as above. Then

N(r, B) ≤ 2µ0(s0 − 1) Tf(r, L) + O(1).

In the case where f does not separate fibers of π : X →M , we cannot estimate

the growth of the ramification divisor in general. However, we have the following

reduction theorem proved by J. Noguchi (cf. [8, p. 272]):
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Theorem 1.5 (Noguchi). Let f : X → M be a meromorphic mapping. Then

there exist a finite analytic covering space $ : X → Cm, a surjective proper
holomorphic mapping λ : X → X and a meromorphic mapping f : X → M

which separates the fibers of $ : X → Cm such that the following diagram

Cm π←−−− X
f−−−→ M

id

y λ

y
yid

Cm ←−−−
$

X −−−→
f

M

is commutative. Furthermore, if f is dominant, so is f .

Remark 1.6. By making use of Theorem 1.4, we can easily obtain the following

equalities (cf. [8, p. 273]):

Tf(r, L) = Tf(r, L), and N(r, f∗D) = N(r, f∗D).

We also have

N(r, B) ≤ 2µ0(s0 − 1) Tf(r, L) + O(1),

where B is the ramification divisor of $ : X → Cm. Therefore we can apply

Theorems 1.2 and 1.4 for an arbitrary dominant meromorphic mapping f : X →M .

For the theory of algebroid reduction of Nevanlinna theory, see also [14].

§2. FUNDAMENTAL LEMMAS

We first give a definition of algebraic dependence of meromorphic mappings.

For a positive integer l, setM l = M×· · ·×M (l-times). For meromorphic mappings
f1, · · · , fl : X → M , we define a meromorphic mapping f1 × · · · × fl : X →M l

by

(f× · · · × fl)(z) = (f(z), · · · , fl(z)), z ∈ X − (I(f1) ∪ · · · ∪ I(fl)),

where, for each j, I(fj) is the indeterminacy locus of fj . A proper algebraic subset

Σ of M l is said to be decomposable if, for some positive integer s not greater than
l, there exist positive integers l1, · · · , ls with l = l1 + · · ·+ ls and algebraic subsets

Σj ⊆M lj such that Σ = Σ1 × · · · × Σs.

Definition 2.1. Let S be an analytic subset of X . Nonconstant meromorphic
mappings f1, · · · , fl : X →M are said to be algebraically dependent on S if there
exists a proper algebraic subset Σ of M l such that (f1 × · · · × fl)(S) ⊆ Σ and Σ
is not decomposable. In this case, we also say that f1, · · · , fl are Σ-related on S.
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For a line bundle L over M , we denote by H0(M, L) the space of all holomor-
phic sections of L→M .

Definition 2.2. A line bundle L over M is said to be big provided that

dim H0(M, νL) ≥ Cνdim M

for all sufficiently large positive integers ν and for some positive constant C.

Let Pic(M) be the Picard group overM . Let F ∈ Pic(M)⊗Q and γ ∈ Q. We
simply write γF for F⊗γ . Then F is said to be big (resp. ample) provided that a

line bundle νF ∈ Pic(M) is big (resp. ample) for some positive integer ν. We fix

an ample line bundle L → M . We assume that there exists at least one dominant

meromorphic mapping f0 : X →M .

LetD1, · · · , Dq be divisors in |L| such thatD1+· · ·+Dq has only simple normal

crossings, where |L| is the complete linear system defined by L. Let S1, · · · , Sq

be hypersurfaces in X such that dim Si ∩ Sj ≤ m− 2 for any i 6= j. We define a
hypersurface S in X by S = S1∪· · ·∪Sq . Let E be an effective divisor on X , and

let k be a positive integer. If E =
∑

j νjE
′
j for distinct irreducible hypersurfaces

E ′
j in X and for nonnegative integers νj , then we define the support of E with

order at most k by

Suppk E =
⋃

0<νj≤k

E ′
j .

Assume that Suppkj
f∗
0 Dj coincides with Sj for all j with 1 ≤ j ≤ q, where kj is

a fixed positive integer. Let F be the set of all dominant meromorphic mappings

f : X → M such that Suppkj
f∗Dj is equal to Sj for each j with 1 ≤ j ≤ q. Let

F1, · · · , Fl be big line bundles over M . We define a line bundle F̃ over M l by

F̃ = π∗
1F1 ⊗ · · · ⊗ π∗

l Fl,

where πj : M l →M is the natural projection on the jth factor. Let L̃ be a big line

bundle over M l. Note that, in general,

L̃ 6∈ π∗
1 Pic(M)⊕ · · · ⊕ π∗

l Pic(M).

In the case of L̃ 6= F̃ , we assume that there exists a positive rational number γ̃

such that γ̃F̃ ⊗ L̃−1 is big. If L̃ = F̃ , then we take γ̃ = 1. Let R be the set of

all hypersurfaces Σ in X such that Σ = Supp D̃ for some D̃ ∈ |L̃| and Σ is not

decomposable.

Let s0 be the sheet number of π : X → Cm. Assume that f : X →M separates

the fibers of π : X → M . Since L is ample, there exist a positive integer µ and a

pair of sections σ0, σ1 ∈ H0 (M, µL) such that a meromorphic function f∗(σ0/σ1)
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separates the fibers of π : X → Cm for all such mappings f . We denote by µ0 the

least positive integer among those µ′s. We assume that there exists a line bundle,
say, F0 in {F1, · · · , Fl} such that F0 ⊗ F−1

j is either big or trivial for all j. Set

k0 = max1≤j≤q kj . We define L0 ∈ Pic(M)⊗ Q by

L0 =




q∑

j=1

kj

kj + 1
− 2µ0(s0 − 1)


L⊗

(
− γ̃lk0

k0 + 1
F0

)
.

By making use of Theorems 1.1, 1.2 and 1.4, we have our basic result as follows:

Fundamental Lemma I. Let f1, · · · , fl be arbitrary mappings in F and Σ ∈
R. Suppose that f1, · · · , fl are Σ-related on S. If L0⊗KM is big, then f1, · · · , fl

are Σ-related on X .

Now, let us consider a more general case. Let L1, · · · , Ll be ample line bundles

overM . Let q1, · · · , ql be positive integers and assume thatDj = Dj1+· · ·+Djqj ∈
|qjL| has only normal crossings, where Djk ∈ |Lj. Let Z be a hypersurface in X .
Let G be a family of dominant meromorphic mappings f : X →M such that

Suppkj
f∗Dj = Z

for some 1 ≤ j ≤ l. In the case where Lj = L for all j, we defineG0 ∈ Pic(M)⊗Q
by

G0 =
(

min
1≤j≤l

{
qjkj

kj + 1

}
− 2µ0(s0 − 1)

)
L⊗

(
− γ̃lk0

k0 + 1
F0

)
.

Then we have one more Fundamental Lemma for our study.

Fundamental Lemma II. Let f1, · · · , fl be arbitrary mappings in G and
Σ ∈ R. Suppose that f1, · · · , fl are Σ-related on Z. If G0 ⊗ KM is big, then

f1, · · · , fl are Σ-related on X .

Now, we will give criteria for the propagation of algebraic dependence of dom-

inant meromorphic mappings, which are corollaries of Fundamental Lemma I. For

F ∈ Pic(M)⊗ Q, we define [F/L] by

[F/L] = inf{γ ∈ Q; γL⊗ F−1 is big}.

Set

p0 =
q∑

j=1

kj

kj + 1
− [K−1

M /L]− 2µ0(s0 − 1).
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We also set

m1 = q − [K−1
M /L]− 2µ0(s0 − 1) and mj = q − [K−1

M /L] (2 ≤ j ≤ l).

Then we have the following criterion for the propagation of algebraic dependence:

Proposition 2.3. Let f1, · · · , fl ∈ F . Suppose that they are Σ-related on S. If
mj are positive and if

p0 −
γ̃lk0

k0 + 1
[F1/L] + m1

l∑

j=2

(
p0 −

γ̃lk0

k0 + 1
[Fj/L]

)
> 0,

then f1, · · · , fl are Σ-related on X .

We also have the following criteria similar to Proposition 2.3. Set

n1 = q1 − [K−1
M /L1]− 2µ0(s0 − 1) and nj = qj − [K−1

M /Lj ] (2 ≤ j ≤ l).

We also set

pj =
qjkj

1 + kj
− [K−1

M /Lj ]− 2µ0(s0 − 1)

for all j with 1 ≤ j ≤ l. Then we have the following criterion:

Proposition 2.4. Let f1, · · · , fl be arbitrary mappings in G and Σ ∈ R.
Suppose that f1, · · · , fl are Σ-related on Z. If all nj > 0 and if

p1 −
γ̃lk0

k0 + 1
[F1/L1] + n1

l∑

j=2

(
pj −

γ̃lk0

k0 + 1
[Fj/Lj ]

)
> 0,

then f1, · · · , fl are Σ-related on X .

Set e0 = 2µ0(s0 − 1) + 1. Then we also have the following:

Proposition 2.5. Let f1, · · · , fl be as in Proposition 2.4. If all nj > 0 and if

p1 −
γ̃lk0

k0 + 1
[F1/Lj ] +

l∑

j=2

(
n1pj −

γ̃le0k0

nj(k0 + 1)
[Fj/Lj ]

)
> 0,

then f1, · · · , fl are Σ-related on X .

Remarks 2.6. (1) The cases, when either all kj = 1 or all kj = +∞, are
especially important from the viewpoint of Nevanlinna theory. We now consider
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the case where kj = +∞ for some j. We first note that Supp f∗D = Suppkj
f∗D

if kj = +∞. Set kj/(kj + 1) = 1 and 1/(kj + 1) = 0 for kj = +∞. Then it
is easy to see that the proofs of the Fundamental Lemmas also work in the case

where kj = +∞ for some j. Hence the conclusions of the above propositions are
still valid for the case where some of the kj is ∞. We also note that the proof of
Fundamental Lemma I also works in the case where some of the Sj are empty sets.

(2) We give a remark on the assumptions in Fundamental Lemmas I and II. In

Fundamental Lemma I, we assume that D1, · · · , Dq are linearly equivalent. We

consider the case where Di and Dj are not linearly equivalent for some pair (i, j)
but all the Chern classes c1([Dj ]) are identical. In this case, the conclusion of
Fundamental Lemma I remains valid provided that the line bundle




q∑

j=1

kj

kj + 1
− 2µ0(s0 − 1)


 [D1]⊗

(
− γ̃lk0

k0 + 1
F0

)

is ample. We next consider Fundamental Lemma II. In the case where Li and Lj

are not the same for some i and j but all the Chern classes c1(Lj) are identical, the
conclusion of Fundamental Lemma II is still valid if the line bundle

(
min

1≤j≤l

{
qjkj

kj + 1

}
− 2µ0(s0 − 1)

)
L1 ⊗

(
− γ̃lk0

k0 + 1
F0

)

is ample.

§3. UNICITY THEOREMS FOR MEROMORPHIC MAPPINGS

In this section we give some unicity theorems as an application of the criteria

for dependence by taking line bundles Fj of a special type. For the details of this

direction, see [2, 3, 5, 13]. We keep the same notation as in §2. Let Φ : M → Pn(C)
be a meromorphic mapping with rankΦ = dim M . We denote byH the hyperplane

bundle over Pn(C). Now let l = 2 and take F1 = F2 = Φ∗H . We also take L̃ = F̃ .
Then we see

L0 =




q∑

j=1

kj

kj + 1
− 2µ0(s0 − 1)


L⊗

(
− 2k0

k0 + 1
Φ∗H

)
.

Set

Ω0 = M − ({w ∈M − I(Φ) : rankdΦ(w) < dim M} ∪ I(Φ)),

where I(Φ) is the locus of indeterminacy of Φ. A set {Dj}qj=1 of divisors is said

to be generic with respect to f0 and Φ provided that

f0(Cm − I(f0)) ∩ Supp Dj ∩ Ω0 6= ∅
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for at least one 1 ≤ j ≤ q, where I(f0) denotes the locus of indeterminacy of
f0. We assume that {Dj}qj=1 is generic with respect to f0 and Φ in what follows.
Let F1 be the set of all mappings f ∈ F such that f = f0 on S. Then we have

the following unicity theorems by Fundamental Lemma I and by the uniqueness of

analytic continuation (cf. [2, Theorem 2.1]):

Theorem 3.1. Suppose that L0⊗KM is big. Then the family F1 contains just

one mapping f0.

We next consider the case dim M = 1. Assume that M is a compact Riemann

surface with genus g0. In the case g0 = 0, we have the following unicity theorem
for meromorphic functions on X by Theorem 3.1, which is closely related to the

uniqueness problem of algebroid functions (cf. [1, Theorem 3.3]).

Theorem 3.2. Let f1, f2 : X → P1(C) be nonconstant holomorphic mappings.
Let a1, · · · , ad be distinct points in P1(C). The following hold.
(1) Suppose that Suppf1

∗aj = Suppf2
∗aj for all j. If d ≥ 2s0 + 3, then f1 and

f2 are identical on X .

(2) Suppose that Supp1f1
∗aj = Supp1f2

∗aj for all j. If d ≥ 4s0 + 3, then f1

and f2 are identical on X .

Note that H. Ueda gave an example which shows that the above theorem is

sharp in the case X = C (cf. [16, p. 458]).

Example 3.3. We consider the integral

z = ϕ(w) :=
∫ w

0

(1− t4)−
1
2 dt

on the unit disc in C. Set z1 = ϕ(1), z2 = ϕ(
√
−1), z3 = ϕ(−1) and z4 =

ϕ(−
√
−1). Then ϕ maps the unit disc onto the square z1 z2 z3 z4. By Schwarz’s

reflection principle, the inverse function of z = ϕ(w) can be analytically continued
over the complex plane C, and the resulting function w = f(z) is doubly periodic.
Let a1 = 1, a2 =

√
−1, a3 = −1, a4 = −

√
−1, a5 = 0 and a6 = ∞. Set f1 = f

and f2 =
√
−1f . Then Supp1f1

∗aj = Supp1f2
∗aj for all j, but f1 6≡ f2.

The uniqueness problem of holomorphic mappings into a compact Riemann

surface with positive genus is not well studied (cf. [1, 5, 6, 10]. In the case of

g0 = 1, we will discuss the uniqueness for holomorphic mappings into smooth
elliptic curves in §5. We now consider the case where g0 ≥ 2. Note that Riemann-
Roch’s theorem shows that µ0 ≤ g0 + 1. In this case, by making use of Theorem
3.1, we have the following unicity theorem (cf. [1, Theorem 3.6]):

Theorem 3.4. Let f1, f2 : X → M be nonconstant holomorphic mappings.

Let a1, · · · , ad be distinct points in M . The following hold.
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(1) Suppose that Suppf∗
1 aj = Suppf∗

2aj for all j. If d > max {4g0, 2(g0 +
1)(s0 − 1)}, then f1 and f2 are identical on X .

(2) Suppose that Supp1f
∗
1 aj = Supp1f

∗
2 aj for all j. If d > max{4g0, 2(g0 +

1)(2s0 + 1)− 8g0}, then f1 and f2 are identical on X .

Under the condition of Theorems 3.2 and 3.4, at least one Supp1f
∗
1 aj is not

empty. We note that some examples of holomorphic mappings into compact Riemann

surfaces satisfying our condition were constructed (cf. [9, §5]).

§4. MEROMORPHIC MAPPINGS INTO COMPLEX PROJECTIVE SPACES

In this section, we investigate meromorphic mappings into complex projective

spaces. Note that if f : X → Pn(C) separates the fibers of π : X → Cm, we

can always take µ0 = 1. Let H be the hyperplane bundle over Pn(C). Then
Pic(Pn(C)) ∼= Z and H is the generator of Pic(Pn(C)) with c1(H) = 1. Let
KPn(C) be the canonical bundle of Pn(C). Then, as is well-known, we have
KPn(C) = −(n + 1)H . We note that

Pic(Pn(C)2) = π∗
1 Pic(Pn(C))⊕ π∗

2 Pic(Pn(C)).

Hence we may assume that L̃ = F̃ . Since Pic(Pn(C)) ∼= Z, there exists a posi-
tive integer d such that L = dH . There also exist positive integers dj such that

Fj = djH for j = 1, 2. Thus a holomorphic section of L̃ → Pn(C)2 is a ho-
mogeneous polynomial P (ξ; ζ) of degree d1 in ξ = (ξ0, · · · , ξn) and degree d2 in

ζ = (ζ0, · · · , ζn). Let S be a hypersurface in X . In [6], S. J. Drouilhet dealt with

the case of n = 1 and obtained some theorems on the dependence of meromorphic
functions. By making use of Proposition 2.3, we have the following:

Theorem 4.1. Let D and D′ be hypersurfaces of degree d which have only
simple normal crossings. Let f1, f2 : Cm → Pn(C) be dominant meromorphic
mappings such that Suppk f∗

1 D = Suppk f∗
2 D′ = Z as point sets (1 ≤ k ≤ +∞).

Let P (ξ; ζ) be as above. Suppose that P (f1; f2) = 0 on Z. If d ≥ d1 + d2 + 1 +
(1 + k−1)(n + 1), then P (f1; f2) = 0 on Cm.

If X = C, n = 1 and k = +∞, then we have Drouilhet’s theorem (cf. [6,
p. 495]). He also gave some examples which show that his result is sharp.

§5. HOLOMORPHIC MAPPINGS INTO SMOOTH ELLIPTIC CURVES

In this section we consider the case whereM is a smooth elliptic curve E. The

uniqueness problem of holomorphic mappings into elliptic curves was first studied
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by E. M. Schmid [10]. Schmid obtained the following unicity theorem: Let f ,

g : C → E be nonconstant holomorphic mappings. If f−1(aj) = g−1(aj) as point
sets for distinct five points a1, · · · , a5 in E, then f and g are identical. In this

section, we consider the problem to determine the condition which yields g = ϕ(f)
for an endomorphism ϕ of the abelian group E. We first note the following fact:

If f : X → E separates the fibers of π : X → Cm, then we can take µ0 = 2
(cf. [9, p. 286]). Note that the canonical bundle KE of E is trivial. It is well-

known that

Pic(E2) 6= π∗
1 Pic(E)⊕ π∗

2 Pic(E).

We denote by [p] the point bundle determined by p ∈ E. Let F1 = F2 = [p]. Let
f, g : X → E be nonconstant holomorphic mappings. We denote by End(E) the
ring of endomorphisms of E. Let ϕ ∈ End (E) and consider a curve

S̃ = {(x, y) ∈ E ×E; y = ϕ(x)}

in E×E. Let L̃ be the line bundle [S̃] determined by S̃. In this section, γ̃ denotes

the infimum of rational numbers such that γF̃ ⊗ [S̃]−1 is ample. Then we have

γ̃ = deg ϕ + 1. This result is proved by T. Katsura. For the proof of Katsura’s
theorem, see [4, §6]. Note that if ϕ is an endomorphism defined by ϕ(x) = nx for

some n ∈ Z, then γ̃ = n2 + 1 (cf. [11, p. 89]). By making use of Fundamental
Lemma II, we have the following theorem:

Theorem 5.1. Let f, g and ϕ be as above. Let D1 = {a1, · · · , ad} be a set of
d points and ϕ an endomorphism of E. Set D2 = ϕ(D1). Assume that the number
of points in D2 is also d. Suppose that Suppk f∗D1 = Suppk g∗D2 for some k.
If d > 2(degϕ + 1) + 8(s0 − 1)(1 + k−1), then g = ϕ(f).

In the case where ]D2 < d, we have the following theorem by Proposition 2.5:

Theorem 5.2. Let f, g : Cm → E be nonconstant holomorphic mappings.

Let D1 = {a1, · · · , ad} be a set of d points and ϕ ∈ End(E). Set D2 = ϕ(D1).
Assume that the number of points in D2 is d′. Suppose that Supp1 f∗D1 =
Supp1 g∗D2. If dd′ > (d + d′)(deg ϕ + 1), then g = ϕ(f).

In the case where m = 1, Supp f∗D1 = Supp g∗D2 and E has no complex

multiplication, we have Drouilhet’s theorem (cf. [6, Theorem 6]). We finally give

the following unicity theorem, which is a direct conclusion of Theorem 5.1:

Theorem 5.3. Let a1, · · · , ad be distinct points in E. Let f1, f2 : X → E be

nonconstant holomorphic mappings. Suppose that Supp1 f∗
1 aj = Supp1 f∗

2 aj for

all j. If d > 16s0 − 12, then f1 and f2 are identical.
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Remark 5.4. Note that Theorem 5.3 is sharp. We give an example. Let f1,

f2 : Cm → E be nonconstant holomorphic mappings. We first note that each fj has

no defect and has no totally ramified value. Let a1, · · · , a4 be two-torsion points

in E and ℘ the Weierstrass ℘ function. If f∗
1 aj = f∗

2 aj for j = 1, · · · , 4, then
we also have (℘ ◦ f1)∗aj = (℘ ◦ f2)∗aj . Now, applying Nevanlinna’s four points

theorem for meromorphic functions ℘ ◦ f1, ℘ ◦ f2 : Cm → P1(C), we can easily see
that ℘ ◦ f1 and ℘ ◦ f2 are identical (cf. [7, p. 122]). Since ℘ is an even function,

we have f1 ≡ f2 or f1 ≡ −f2. In contrast to the case M = P1(C), it seems that
the structure of the function field of E affects strongly the uniqueness problem for

holomorphic mappings.
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