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NON-TRIVIAL DEFORMATION OF

AN ENTIRE FUNCTION abz + ebz + c

Shunsuke Morosawa∗ and Masahiko Taniguchi

Abstract. In this note, we consider the dynamics of the family of transcenden-

tal entire functions f(z; a, b, c) = abz + ebz + c. In particular, while studying
the case when they have a Baker domains, we investigate the area of Julia sets

and the Hausdorff convergence of Julia sets.

Consider the family

f(z; a, b, c) = abz + ebz + c.

These f(z; a, b, c) with a, b 6= 0 are structurally infinite [7], for they have infinitely
many critical values. For the sake of simplicity, we assume that a, b and c are real.

Theorem 1. If ab ≥ 1, a > 0, c ≤ −1 and

a loga − a + c < 0,

then f = f(z; a, b, c) has a Baker domain B = Ba,b,c, which is completely invari-

ant.

In particular, the Julia set is the boundary of B.

Proof. We set D0 = {z|Re z < 0}. Elementary calculation shows that D0 is

mapped by f to a proper subdomain in D0, and hence D0 is invariant. The Fatou

component B containing D0 is a Baker domain, for if z ∈ D0, then

Re f(z) < abRe z.
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Also the line Lk = {z = x+ iy | x ≥ 0, y = (2k+1)π/b} for k ∈ Z is mapped
by f into D0, since the assumptions imply that

Re (abz + ebz + c) = abx − ebx + c < 0

for every z ∈ Lk .

Since every preimage of D0 by f contains either D0 or some Lk, it intersects

with D0, which shows that B is completely invariant.

The set D0 in the proof is called a fundamental set of the Baker domain B (see

[1]).

The function f = f(z; a, b, c) as above has a completely invariant Baker domain
B containing the left-half plane and the rays Lk. Since, the set of all the critical

points {
zm =

log a + (2m + 1)πi

b

}
⊂ D0 ∪ {Lk},

the orbits of every critical point have the imaginary parts tending to −∞. Hence,
a theorem of Hinkkanen, Krauskopf and Kriete [2] (essentially due to Bergweiler

[3]) gives the following

Theorem 2. For such an f(z; a, b, c) as in Theorem 1,

F (f) = B.

Proof. First, the boundary of the Baker domain B has a positive Euclidean

distance, say σ > 0, from the post-critical set C+, consisting of the forward orbits

of all critical points of f .

On the other hand, since B contains all Lk, every other Fatou component U has

a bounded distance, say η, from the boundary of B. Then the theorem of Hinkkanen,
Krauskopf and Kriete gives the assertion.

But for the sake of convenience, we include a proof, following their preprint.

Suppose that there were a Fatou component U , which should be either a wandering
domain or a Baker domain disjoint from B. Fix a point ζ ∈ U , and set ζn = fn(ζ).
Then the disk Dn with center ζn and radius

rn = σ + d(ζn, B)

satisfiesDn ∩C+ = ∅. Then there is a univalent branch φn of (fn)−1 which sends

ζn to ζ, and a point ξn ∈ J(f) such that

|ζn − ξn| = d(ζn, B)
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for every n. Since functions

gn(z) = φn(rn z + ζn)

on {z| |z| < 1} map 0 to ζ and the images are disjoint from C+ , {gn} is a normal
family. So assume that gn converges to g uniformly on compact sets. Then the
preimages wn of ξ′n = φn(ξn) by gn satisfy

1 >
η

σ + η
> |wn| > d

with some d > 0 by Schwarz lemma, since ξ′n ∈ J(f) cannot tend to ζ. Thus g
is nonconstant and hence a univalent map. The Carathéodory convergence theorem

implies that, for an r < 1 sufficiently close to 1, {fn} on D = g({z| |z| < r})
converges uniformly, and hence D ⊂ F (f). But this contradicts the fact that
ξ′n ∈ J(f) are contained in D for all but finitely many n.

Remark. If every point z in a component U as in the above proof has such

orbits whose real parts tend to +∞, then the standard argument due to Eremenko
and Lyubich gives the same contradiction.

We further note the following facts.

Theorem 3. The Julia set of such an f(z; a, b, c) as in Theorem 1 has vanishing
area.

Proof. We can find an ε > 0 such that

(Lk)ε = {w ∈ C | d(w, Lk) ≤ ε} ⊂ B

for every k. The assertion follows from McMullen-Stallard theorem in [6].

Proposition 4. Set a = eiα and b = iβ. Then we have

f(z; a, b, c) =
∫ z

0
2be(βt+α)i/2βt − α + π

2

∞∏

k=1

(
1 − (βt − α + π)2

4k2π2

)
dt + d.

Proof. Since

f ′(z) = 2be(βz+α)i/2 cos
βz − α

2
,

by using the famous equation

sinπz = πz

∞∏

k=1

(
1 − z2

k2

)
,
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we have

f ′(z) = 2be(βz+α)i/2βz − α + π

2

∞∏

k=1

(
1− (βz − α + π)2

4k2π2

)
.

Hence we obtain the desired equation.

Finally we consider the convergence of Julia sets for two cases.

Theorem 5. Fix b > 0 and c < −3 satisfying 1−bc+logb > 0 and let ab < 1.
Then the sequence of the Julia sets of fa(z) = f(z; a, b, c) converges to the Julia
set of f(z) = z + ebz + c in the sense of the Hausdorff convergence as ab ↗ 1.

Proof. The assumption 1 − bc + log b > 0 implies F (f) consists of only one
Baker domain, which can be seen by the same argument as in the proof of Theorem 1.

In the case ab < 1, there exists an attracting fixed point on the negative real
axis, say, −ra (ra > 0). It is easy to see that ra tends to infinity monotonically as

ab ↗ 1. We set
Da = {z| |z + ra| < ra}.

For z ∈ Da, we have

|fa(z) + ra| < abra + 2 < ra + c + 3 < ra.

This means that Da is a collapsing disk for the attracting fixed point −ra. The

sequence {Da} is monotonically increasing and converges to D0 = {z|Re z < 0}
in the sense of the Carathéodory convergence. To see the sequence of the basins

Ba of the attracting fixed points −ra to F (f) in the sense of the Carathéodory
convergence, we need to show only that, for an arbitrary compact set E ⊂ F (f),
there exists an A > 0 such that E ⊂ Ba for all a > A with ab < 1.

There exists an n such that fn(E) ⊂ D0, for D0 is a fundamental set. Since

{fa} converges to f uniformly on compact sets as ab ↗ 1 (see [5]), we have
fn(E) ⊂ Da, and henceE is contained inBa for all a > A for someA with ab < 1.
Therefore, the sequence of the complements {Bc

a} converges to the complement
F (f)c = J(f) in the sense of the Hausdorff convergence. Since J(f) has no
interior points, we see that {J(fa)} converges to J(f) in the sense of the Hausdorff
convergence.

The Fatou set of z 7→ z + ez contains infinitely many Baker domains, each of

which is contained in the strip

Sm = {z| |Im z − (2m− 1)π| < π}
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for some m ∈ Z \ {0} (see [4]). The orbits of every point in the Baker domain
have the real parts tending to −∞.

Theorem 6. If fc(z) = z + ez + c with c < 0, then F (fc) consists of only
one Baker Domain. Furthermore, {J(fc)} converges to J(z + ez) as c ↗ 0 in the
sense of the Hausdorff convergence.

Proof. We set f(z) = z + ez . Let Bm be the Baker domain in Sm. If

z = x + i{(2m− 1)π ± (α + π/2)} with 0 ≤ α < π/2, then we have

Re f(z) = x + ex sinα > x.

If z = x + i{(2m− 1)π ± α} with 0 ≤ α < π/2 and x < 0, then we have

Im f(z) = (2m− 1)π ± α ∓ ex sinα

and thus

(2m− 1)π − α < Im f(z) < (2m − 1)π + α.

Hence, for z ∈ Bm, there exists an N such that

|Im fn(z)− (2m− 1)π| < π

2

for all n > N . Setting

Km =
{
z| |Im z − (2m− 1)π| < π

2
, Re z < 0

}
,

we see that Km is a fundamental set of Bm.

We consider only the case c > −1. Then D0 = {z|Re z < log(−c)} is a
fundamental set of a Baker domain of fc. Since fc(z) = f(z) + c,

D0

⋃

 ⋃

m∈Z\{0}

Km




is also a fundamental set. By the argument similar to that in the proof of Theorem 1,

we see that F (fc) consists of only one Baker domain. Further by the argument
similar to that in the proof of Theorem 5, we see that {J(fc)} converges to J(f)
as c ↗ 0 in the sense of the Hausdorff convergence.
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